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Abstract

We present an iterative approximate solution to the mul-
tidimensional assignment problem under general cost func-
tions. The method maintains a feasible solution at every
step, and is guaranteed to converge. It is similar to the it-
erated conditional modes (ICM) algorithm, but applied at
each step to a block of variables representing correspon-
dences between two adjacent frames, with the optimal con-
ditional mode being calculated exactly as the solution to
a two-frame linear assignment problem. Experiments with
ground-truthed trajectory data show that the method out-
performs both network-flow data association and greedy re-
cursive filtering using a constant velocity motion model.

1. Introduction
The multi-target, multi-frame data association problem

has a long history, with early works appearing in the target
tracking [6] and computer vision [10] communities. It has
seen a resurgence of interest in computer vision due to re-
cent popularity of tracking-by-detection approaches, which
apply a detector independently on every frame to find can-
didate objects that are then associated across frames [1].

Traditional data association problems consider point-like
objects (e.g. radar blips), with trajectory quality measured
by smoothness and continuity of object motion. Vision-
based data association, on the other hand, involves objects
of extended spatial extent in an image, from which dis-
criminative appearance cues can be extracted to help dis-
ambiguate matches. We argue that recent vision-based ap-
proaches have begun to rely too heavily on these appearance
cues, to the point of ignoring motion characteristics. One
example is the recent network flow approach to data asso-
ciation, which formulates an objective function containing
only pairwise costs, and for which a globally optimal solu-
tion can be found in polynomial time [22, 3, 17]. And yet,
see Figure 1 for a simple example where network flow is
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Figure 1. Comparison of trajectories computed by network-flow
data association (left) versus our approach using a cost function
that incorporates a constant-velocity smoothness term (right). Net-
work flow approaches gain their efficiency by limiting the cost
function to pairwise terms. Using higher-order motion models
leads to smoother trajectories that reduce the number of mismatch
errors, particularly at low sampling rates.

unable to find the correct trajectories because it is unable to
represent constant velocity motion constraints. These net-
work flow formulations gain efficiency by limiting the cost
functions they can handle. Our experiments show that lack
of regularizing motion models has a detrimental effect on
quality of the trajectories found, particularly when appear-
ance constraints are weak and detection frame-rate is low.

To focus our arguments, in this paper we do not use ap-
pearance terms – objects are described solely by their 2D
point locations. We do not deny that when objects are easily
distinguishable by appearance, appearance terms can (and
probably should) do most of the work. Our point is that we
need to retain the ability to leverage kinematic motion mod-
els in cases where objects are very similar, or when there
are rapid appearance changes due to pose or lighting. Al-
though this paper focuses on kinematic cost functions alone,
we fully expect an improvement in data association perfor-
mance when appearance terms are added back in.

From a combinatorial optimization standpoint, search for
the best data association is governed by the form of the ob-
jective function, which requires two design decisions: how
to represent the set of all trajectories that can be formed
from raw target observations; and how to calculate the cost
(or affinity score, if maximizing) of each trajectory. Our ap-
proach borrows from network flow ideas to represent each
trajectory as a sequence of edges through a trellis graph, en-
abling efficient local update rules. However, network flow
approaches also factor the cost function into pairwise costs,
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one cost per edge in the graph, while we retain general cost
functions that are in principle defined over entire trajecto-
ries. This is a major difference, and has both pros and cons.
On the upside is the increase in power of our cost functions
to represent nontrivial motion constraints. On the downside,
the use of cost functions defined over temporal windows
longer than 2 frames yields data association problems that
are NP-hard. However, this NP-hardness is nothing new to
the multi-target tracking community, which has shown that
approximate algorithms can produce multi-frame trajecto-
ries of high quality while working efficiently in practice.

Contributions.
• We present an iterative approximate solution to the

multidimensional assignment problem under general cost
functions. The method maintains a feasible solution at ev-
ery step, and is guaranteed to converge to a (local) mini-
mum. It is similar to the iterated conditional modes (ICM)
algorithm, but is applied at each step to a block of variables
representing possible correspondences between two adja-
cent frames. The block-optimal conditional mode at each
step is calculated exactly and efficiently as the solution to a
two-frame linear assignment problem.
• Our approach differs from both traditional multi-frame

data assignment approaches as well as from more recent
network flow approaches. Unlike traditional multi-frame
data association, we factor the decision variable for each
trajectory into a product of variables defined over edges in a
trellis graph. Unlike recent network flow formulations, we
retain the full power of general cost functions for describ-
ing kinematic motion models and long-range regularizers
that improve the quality of estimated trajectories.
•We develop a novel higher-order cost function for data

association that uses active contour (“snake”) spline energy
to measure the quality of a proposed trajectory. We show
in our evaluation that this cost function compares favorably
with network-flow solutions and greedy sequential filtering
using a constant velocity motion model.

2. Background and Related Work
This section reviews different combinatorial formula-

tions of the data association problem. Data association is
the process of partitioning a set of observations into tra-
jectories. Although the combinatorial formulations differ,
all are based on the fundamental constraint that trajectories
must be disjoint; that is, no two trajectories can claim the
same observation. To keep the discussion at a high level,
observations will be denoted as elements, and trajectories
as subsets of elements.

In the weighted Set Partition Problem (SPP) [2], we
are given a universe of elements U = {e1, e2, . . . , en}, a
list of allowable sets S = {S1, S2, . . . , Sm|Sj ⊆ U}, and a
cost cj for each set. The goal is to choose a minimum cost

collection of sets that form a partition of U, i.e. each element
appears in one and only one set. Creating a solution vector
of binary decision variables, x = [x1, x2, . . . , xm]

T , with
xj = 1 iff set Sj is in the solution, SPP can be written as
the binary integer program

min
m∑
j=1

cjxj s.t.
{
Ax = 1
xj ∈ {0, 1}

(1)

where A is an n × m constraint matrix with one row for
each element, one column for each set, and aij=1 if ele-
ment i appears in set j, 0 otherwise. The i-th constraint∑

j aijxj = 1 counts the number of sets in the solution that
contain element i, and requires there to be only one.

The closely-related Set Packing (SP) problem is written
as a maximization

max
m∑
j=1

pjxj s.t.
{
Ax ≤ 1
xj ∈ {0, 1}

(2)

where p is now a vector of scores to be maximized rather
than costs to be minimized (for example, pj=−cj). The
main difference is the ≤ relation in the constraints, mak-
ing it possible to leave some elements unused in the solu-
tion. In the context of data association, this makes it easier
to ignore false positive detections and spurious trajectory
fragments, rather than explicitly accounting for them. The
classic paper by Morefield on 0-1 programming for data as-
sociation is an SP formulation [14]. Recent network flow
algorithms for data association [22, 3, 17] can also be inter-
preted as solving SP, although limited to scores/costs having
a decomposable structure (Section 3.3).

The Maximum-Weight Independent Set (MWIS)
problem, aka vertex packing, is also closely related to SP
and SPP. Consider the column intersection graph G(S,E) as-
sociated with constraint matrix A, with one vertex for each
set Sj , and edge set E = {(i, j)|Si ∩ Sj 6= ∅}, that is, hav-
ing an edge between two vertices if their underlying sets are
not disjoint. As above, each set Sj has a score pj and a bi-
nary decision variable xj indicating whether set/vertex Sj

is part of the solution. The MWIS problem solves for

max
m∑
j=1

pjxj s.t.
{
xj + xj ≤ 1, ∀(i, j) ∈ E
xj ∈ {0, 1} .

(3)

The pros and cons of using MWIS for data association
as compared to multi-hypothesis tracking (MHT) are dis-
cussed in [16]. A two-frame MWIS approach followed by
hierarchical linking is presented in [7].

The MultiDimensional Assignment (MDA) problem is
a specialization of SPP to the case of hypergraphs where
elements are organized into a k-partite graph and the allow-
able sets are hyperedges containing one element per par-
tite set. The SPP formulation is particularly well-suited to



data association for multi-target tracking, where elements
are target observations in a series of frames, and allowable
sets are paths connecting observations between frames.

For example, assume a sequence of k frames with n ob-
servations in each frame, from which an optimal partition of
n trajectories of length k is to be formed (this is generalized
in Section 3 to include varying numbers of observations and
trajectory lengths). The k-partite structure of MDA enables
enumeration over trajectories and cost function values by
nested sums over observations and frames, i.e.

min
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1

ci1i2...ikxi1i2...ik (4)

subject to

∑∑
· · ·
∑

I\if
xi1i2...ik = 1;



f = 1, 2, . . . , k
i1 = 1, 2, . . . , n
i2 = 1, 2, . . . , n
...
ik = 1, 2, . . . , n
xi1i2...ik ∈ {0, 1}

(5)

Here, I\if denotes all observations in all frames other than
frame f . As in SPP, there is one constraint per observation,
represented as a summation over all k-paths containing it.

MDA is known to be NP-hard for 3 or more frames.
However, in the case of two frames it reduces to the 2D
linear assignment problem on a bipartite graph

min
n∑

i=1

n∑
j=1

cijxij s.t.


∑

j xij = 1; i = 1, 2, . . . , n∑
i xij = 1; j = 1, 2, . . . , n

xij ∈ {0, 1}
(6)

for which polynomial time exact solutions are known, e.g.,
the Kuhn-Munkres (Hungarian) algorithm [8].

Data association problems formulated in an MDA frame-
work have been widely studied, particularly target track-
ing applications performing probabilistic MAP estimation
[6, 20, 18]. Solution methods include both determinis-
tic (e.g. MHT [16]) and stochastic (e.g. MCMCDA [15])
search. Shafique presents a polynomial-time exact solution
for pairwise cost functions and a greedy approximate solu-
tion for higher-order motion models [21]. We adopt a gen-
eralized MDA framework in Section 3.

Several recent vision papers show that data association
can be formulated as a Network Flow (NF) problem for
cost functions that decompose into a product of pairwise
terms [22, 3, 17, 11]. Network flow can be solved in poly-
nomial time using either linear programming [11], push-
relabel methods [22], or successive shortest path algorithms
[3, 17]. Efficient approximate solutions based on dynamic
programming also can be applied.

However, as mentioned in the introduction, the network
flow formulation is limited to relatively uninteresting mo-

tion models such as pairwise distance [22] or bounded ve-
locity [17]. This is so because a static set of pairwise in-
terframe edge costs is not able to represent kinematic con-
straints such as constant velocity that require data over three
or more frames. We show in our experimental results (Sec-
tion 4.2) that the inability to use higher-order motion mod-
els has a major detrimental effect on the quality of trajecto-
ries found using network flow.

All the previous approaches have been linear program-
ming formulations. In contrast, data association can also be
formulated as a Quadratic Boolean Optimization (QBO)
problem [7, 13], including the problem of two frame associ-
ation via graph matching [9]. The main benefit of quadratic
programming is the ability to represent constraints between
pairs of trajectories, such as coupling them to encourage
similar motions [7].

3. Our Approach

We adopt a generalized multidimensional assignment
(MDA) formalism that handles trajectory fragments and
unassigned observations [18, 20], and present an iterative
approximate solution for general cost functions. While re-
taining generality of the cost function, we factor the trajec-
tory decision variables into pairwise edges between obser-
vations in adjacent frames, facilitating local trajectory up-
dates. We present an iterative approach that cycles through
the sequence, solving for decision variables between each
subsequent pair of frames while holding the rest of the cur-
rent solution fixed. These two-frame solutions are com-
puted exactly and efficiently using the Hungarian algorithm.
Each step of each iteration improves the value of the objec-
tive function (more precisely, does not increase it’s value)
and iterations continue until no further improvement is seen.

Our method is similar to the Iterated Conditional Modes
(ICM) algorithm of Besag [5], except blocks of variables
representing potential matches between pairs of adjacent
frames are updated simultaneously, instead of a single vari-
able at a time. This block update strategy is helpful be-
cause it maintains disjointness of trajectories. It is also ex-
pected that solution updates optimizing over multiple vari-
ables should be able to find stronger local optima than up-
date schedules that solve for a single variable at a time.

In the next section we lay out the generalized MDA prob-
lem formulation. Section 3.2 presents our block-ICM itera-
tive improvement strategy and sketches a proof (due to Be-
sag) that it is guaranteed to converge. Section 3.3 shows
that when the cost function can be factored into a product
of pairwise costs between adjacent frames, our formalism
reduces to the network flow approach. Finally, Section 3.4
discusses implementation issues related to initialization and
termination of the algorithm.



3.1. Problem Formulation

Consider a sequence of k image frames where detections
have been observed. In each frame f = 1, . . . , k we have
nf observations, labeled by an augmented index set If

If = {0, 1, 2, . . . , nf} ; 1 ≤ f ≤ k (7)

where index 0 is a virtual or dummy index that allows us to
reason over missed detections and partial trajectories [18].
The observations from frames 1 through k form a k-partite
graph G = (V,E) with

V = I1 ∪ I2 ∪ · · · ∪ Ik (8)
E = (I1xI2) ∪ (I2xI3) ∪ · · · ∪ (Ik−1x Ik) . (9)

We treat G as an undirected graph.
Denote the set of all paths of length k through graph G

by T = I1 × I2 × · · · × Ik, and define a cost function
c : T → R. Each path t ∈ T represents one hypothe-
sized target trajectory, while c(t) is a cost quantifying track
quality. We write a k-path as an ordered list of its incident
indices, (i1, i2, . . . , ik), with if ∈ If for 1 ≤ f ≤ k.

The dummy index 0 plays an important role in increasing
the flexibility of the k-path representation to handle partial
trajectories. For example,

(0,0,a,b,c) : path that starts at frame 3
(a,b,c,0,0) : path that ends at frame 3
(0,0,a,0,0) : false positive detection in frame 3
(a,b,0,0,c) : missed detections or occlusion

Thus all trajectory hypotheses, including partial trajectories
and false positives, are represented by complete paths of
length k. The definition of trajectory disjointness is modi-
fied to exclude index 0 so that a variable number of missed
detections can be represented in any given frame. We re-
quire each path to contain at least one real observation.

Finding the best set of disjoint trajectories can now be
formulated as a multidimensional assignment problem, with
binary decision variables xi1i2...ik for each k-path with as-
sociated costs ci1i2...ik . We seek an optimal set of k-paths
with respect to the following linear objective function and
disjointness constraints

min
n1∑

i1=0

n2∑
i2=0

· · ·
nk∑

ik=0

ci1i2...ikxi1i2...ik (10)

subject to

n2∑
i2=0

n3∑
i3=0

· · ·
nk∑

ik=0

xi1i2...ik = 1; i1 = 1, 2, . . . , n1 (11)

n1∑
i1=0

n3∑
i3=0

· · ·
nk∑

ik=0

xi1i2...ik = 1; i2 = 1, 2, . . . , n2 (12)

...
...

n1∑
i1=0

n2∑
i2=0

· · ·
nk−1∑

ik−1=0

xi1i2...ik = 1; ik = 1, 2, . . . , nk(13)

Since the problem is NP-hard, it is infeasible to search for
the exact optimal solution, and an approximate solution
method is necessary.

Greedy forward sequential methods are one obvious ap-
proach. These are commonly found in the target tracking
literature in the form of probabilistic recursive estimators,
including single target filters such as the Kalman filter and
PDAF, as well as multitarget filters such as JPDAF [19, 6].
These approaches require causal cost functions where com-
putations at time t are based only on information observed
up to time t. Because decisions, once made, are fixed, these
methods are susceptible to making matches that are later re-
vealed to be suboptimal. We use a greedy sequential method
based on constant velocity motion prediction as a baseline
for comparison in our experiments, as well as to initialize
our iterative improvement approach.

Multi-hypothesis tracking (MHT) seeks stronger solu-
tions through a deferred decision strategy [6]. Ambiguous
matches are maintained until enough later information has
been seen to disambiguate them. This leads to a combina-
torially large, branching tree of hypotheses, and in practice
suboptimal heuristic pruning decisions must be made [10].
Poore [18] and Deb et al. [20] present Lagrangian relaxation
schemes for multidimensional assignment. These methods
progressively relax the one-to-one matching constraints to
generate a series of problems that are easier to solve, by
inserting some of the matching constraints into the objec-
tive function as soft constraints using Lagrange multipliers.
Both MHT and Lagrangean relaxation are complicated al-
gorithms that are difficult to code and analyze. In the next
section we propose a block-ICM iteration scheme that ap-
plies a series of optimal two-frame linear assignment deci-
sions to monotonically improve an initial solution.

3.2. An Iterative Approximation

To introduce our solution strategy, first consider the no-
tation for a simple 4-frame problem with observations in-
dexed in the first frame by Ia = (0, 1, . . . , na), in the
second frame by Ib = (0, 1, . . . , nb), third frame Ic =
(0, 1, . . . , nc), and fourth frame Id = (0, 1, . . . , nd). Let-
ting binary decision variable xabcd be 1 if path (a,b,c,d) is
in the solution, and zero otherwise, our multidimensional
assignment problem of Eq. 10 can be written as

min
na∑
a=0

nb∑
b=0

nc∑
c=0

nd∑
d=0

cabcdxabcd (14)

s.t Ax = 1 (15)
x ∈ {0, 1} (16)



where A is a matrix representing the linear constraints in
equations 11-13.

We further leverage the k-partite structure of the problem
by noting that a path (a, b, c, d) is uniquely defined by its
edge list ((a, b), (b, c), (c, d)), so we can replace decision
variables on the paths T = I1 × I2 × I3 × I4 with decision
variables on the edgesE = (I1×I2)∪(I2×I3)∪(I3× I4).
That is, we can factor xabcd as fab ∗ gbc ∗ hcd, with xabcd =
1 iff fab = 1, gbc = 1, and hcd = 1. This factoring is
advantageous because the number of decision variables is
now on the order of (k − 1) × n2 instead of nk. It also
allows us to structure our objective function as∑

a

∑
b

∑
c

∑
d

cabcd xabcd (17)

=
∑
a

∑
b

∑
c

∑
d

cabcd fab gbc hcd (18)

=
∑
a

∑
b

fab
∑
c

gbc
∑
d

hcd cabcd (19)

(20)

For a general k-frame problem with trajectory variables
xi1i2...ik and associated costs ci1i2...ik , we write the deci-
sion variable factorization as

xi1i2...ik =

k−1∏
j=1

zj j+1
ijij+1

(21)

where notation zj j+1
ijij+1

is introduced to represent the fac-
tored decision variables on graph edges. The superscripts
denote an edge that runs between frame j and frame j + 1,
and the superscripts denote that it is connecting observation
ij (in frame j) to observation ij+1 (in frame j + 1). For
example, z1 2

3 4 represents an edge connecting the third ob-
servation in frame 1 with the fourth observation in frame 2.
We then have∑

i1

∑
i2

· · ·
∑
ik

ci1i2...ikxi1i2...ik (22)

=
∑
i1

∑
i2

· · ·
∑
ik

ci1i2...ik

k−1∏
j=1

zj j+1
ijij+1

(23)

=
∑
i1

∑
i2

z1 2
i1i2

∑
i3

z2 3
i2i3 · · ·

∑
ik

zk−1 k
ik−1ik

ci1i2...ik (24)

Note that the cost function ci1i2...ik is still a general function
computed with respect to an entire trajectory.

The constraints 11-13 also need to be rewritten in terms
of the new, factored decision variables, but this is easily
achieved based on properties of the desired set partitioning.
That is, for each node representing an observation, the sum
of decision variables entering the node and the sum of de-
cision variables exiting the node must be exactly one. Note

that this is a stronger constraint than the typical flow con-
servation constraints in network flow, where the sum of flow
into and out of a node can be either 0 or 1. The difference
arises because our approach builds upon a set partitioning
formulation rather than a set packing one.
Local improvement heuristic: We are now in a position to
describe our local improvement heuristic, again illustrated
with the 4-frame problem above. Assume we already have
a feasible solution, meaning a binary labeling of decision
variables fab, gbc and hcd satisfying all of the path disjoint-
ness constraints. Let the value of the objective function for
this solution be C. Without loss of generality, hold the label-
ings of all variables fab and hcd fixed, and consider changes
only to variables gbc representing edges between pairs of
observations in frames 2 and 3.

Define a → bi to be the unique element {a|fabi = 1},
and similarly cj → d to be

{
d|hcjd = 1

}
. Then∑

a

∑
b

∑
c

∑
d

cabcd fab gbc hcd (25)

=
∑
b

∑
c

gbc
∑
a

∑
d

fab hcd cabcd (26)

=
∑
b

∑
c

gbc c(a→b)bc(c→d) (27)

=
∑
b

∑
c

gbc ω(b, c) (28)

Example: Consider two targets viewed through four frames
as shown in the sketch below.

The thick lines represent variable values being held fixed,
i.e. f11 = f22 = h12 = h21 = 1 and all other f and h
decision variables are 0. The thin dashed lines represent the
variables g11, g12, g21, g22 that we want to update. Apply-
ing the reduction from Eq 28 produces the two-frame cost
matrix

ω(b, c) =

[
c1112 c1121
c2212 c2221

]
. (29)

It is easily seen that Eq 28 is equivalent to a weighted
maximum matching in a bipartite graph, aka the two-frame
linear assignment problem. This subproblem can be solved
exactly, in polynomial time, by a rectangular-matrix variant
of the Kuhn-Munkres Hungarian algorithm [8].

Our proposed solution makes a series of iterations. At
each iteration we step through pairs of adjacent frames



from 1-2 through (k-1)-k, updating the edge decision vari-
ables between them while holding all other decision vari-
ables fixed. An iteration thus consists of (k-1) two-frame
linear assignment updates. In general notation, an update
step involves solving for decision variables zf f+1

if if+1
between

frames f and f +1 holding all other variables fixed. Define
{p→ if} to be the current subpath from frame 1 to f end-
ing in observation if . Similarly, define {if+1 → q} to be
the current subpath from observation if+1 to frame k. The
update step reduces to a two-frame assignment with objec-
tive function∑

if

∑
if+1

zf f+1
if if+1

c{p→if}if if+1{if+1→q} . (30)

It is important to note that the objective function value
C′ after an update step can be no worse than the value C
of the current solution, that is, C′ ≤ C. This is so because
the current solution is among the set of solutions consid-
ered by each reduced two-frame assignment problem. As
such, block-ICM inherits the convergence properties of reg-
ular ICM, in that it is guaranteed to eventually converge to a
(local) optimum [5]. We also find experimentally that con-
vergence occurs rapidly, usually within 5 iterations.

3.3. Decomposable Cost Functions

Although we have maintained the ability to use cost
functions defined over arbitrarily long trajectories, many
cost functions encountered in practice are defined over
smaller temporal windows. In these situations, additional
decomposition of the objective function may be possible.

For example, consider the case of cost functions that de-
compose into a product of pairwise costs

ci1i2...ik =

k−1∏
j=1

cj j+1
ijij+1

. (31)

In this special case, Eq. 24 further simplifies to

∑
i1

∑
i2

z1 2
i1i2

∑
i3

z2 3
i2i3 · · ·

∑
ik

zk−1 k
ik−1ik

k−1∏
j=1

cj j+1
ijij+1

(32)

=
∑
i1

∑
i2

z1 2
i1i2c

1 2
i1i2

∑
i3

z2 3
i2i3c

2 3
i2i3 · · ·

∑
ik

zk−1 k
ik−1ik

ck−1 k
ik−1ik

(33)

and we see that each cost factor is now paired with an
associated edge decision variable. The objective function
therefore can be completely represented by a graph with
weighted edges, as in the network flow formalism of [3].
This explains more precisely the relationship, as well as the
limitations, of network flow data association with respect
to the general data association problem. Network flow is a
special case that only handles cost functions that can be fac-
tored into a product of costs computed in sequence between

pairs of observations along a hypothesized trajectory. As
we have already stated, this type of cost function has lim-
ited ability to represent motion models, as there is little that
can be computed from pairs of locations other than distance.

3.4. Initialization and Termination

Our approach is an iterative improvement strategy, and
therefore requires an initial feasible solution to get started.
Because it is monotonically improving the solution (i.e. hill-
climbing), starting with a good initial solution should yield
convergence to a better local optimum. In our experiments
we use a greedy baseline algorithm (Section 4) for initial-
ization – this algorithm makes a series of bipartite assign-
ments forward in time while using constant velocity motion
prediction.

Typically, one runs an ICM-like algorithm until the value
of the objective function stops improving. However, we also
note that our approach maintains a feasible solution at every
step, unlike, say, Lagrangean relaxation [6]. In time-critical
applications, one could therefore use this approach as an
“anytime” algorithm that can be terminated early while still
providing a usable result.

4. Experimental Evaluation
In this section we evaluate our proposed iterative ap-

proximation approach against two baseline algorithms rep-
resenting commonly-used alternatives. The first, called
“Flow”, is a network flow approach using pairwise distance
as the cost of an edge between potential matches in adja-
cent frames. Since there is no appearance information be-
ing used, the objective function to be minimized reduces to
finding the k shortest disjoint paths over all trajectories. The
globally optimal solution to this objective is being found.

The second baseline algorithm, “Greedy”, is a forward
sequential filtering algorithm incorporating constant veloc-
ity motion prediction. For each current trajectory, the last
two point locations define a velocity estimate that is used to
predict a virtual point location in the next frame. Distances
between predicted locations and observed targets form the
cost matrix for a two-frame matching problem, solved by
the Hungarian algorithm. Trajectories for which no matches
are found are carried forward using the constant velocity
prediction for a short period of time, but eventually die out.
Observations for which no trajectory matches are found are
used to start new trajectories. Once a decision has been
made at a time step, it is fixed and cannot be undone.

4.1. Spline-based “Snake Energy" Cost Function

Motivated by the active contour model of Kass, Witkin
and Terzopoulos[12], we define a spline-based cost function
for our higher-order motion model :

cost(P ) = αEcont + βEcurv (34)



where

Econt =
1

n− 1

n∑
i=2

‖pi − pi−1‖ (35)

Ecurv =

n−1∑
i=2

‖pi+1 − 2pi + pi−1‖2 . (36)

This is a variant of the internal energy term of a “snake”
active contour, and is applied to each hypothesized trajec-
tory to compute the cost of that path. Econt is the aver-
age distance between successive pairs of points, penalizing
large jumps in position. Ecurv is a sum of curvature terms
over the length of the trajectory. In our experiments we set
α = β = 1. When there are only 2 points in the trajectory,
Ecurv = 0, and the cost reduces to distance between the
points. We do not use any training data to tune cost func-
tion parameters, e.g. no distance or velocity thresholds and
no knowledge of entry or exit regions.

Note that the curve of least energy with respect to
Ecurve is a natural cubic spline. Also, note that the curva-
ture term is a finite difference computation of acceleration,
and since we are minimizing, the objective function will au-
tomatically prefer piecewise constant velocity trajectories.

4.2. Evaluation

As a testset for evaluation, we have collected and
groundtruthed two datasets of trajectories from pedestrians
walking in an atrium1. One is a relatively “sparse” se-
quence, with an average of 5 observed people per frame.
The second “dense” sequence is more challenging, with
roughly 20 people observed per frame. The number of peo-
ple in each frame is variable, since individuals may enter
and exit the view at any time in the sequence.

Each sequence is 15 minutes long, and human-labeled
annotations were used to generate ground truth locations of
all people in every 10th frame, in a ground plane coordinate
system. This trajectory data was then broken into 20 second
sliding windows, each overlapping by 10 seconds, to pro-
vide a collection of smaller sequences for testing. To study
the effect of sampling rate, we subsampled the data into test
sets with 3 observations per second, 2 observations per sec-
ond and 1 observation per second, expecting problems with
a lower temporal sampling rate to be more difficult.

Table 1 shows a quantitative comparison of tracking per-
formance. Algorithms evaluated are network flow (Flow),
greedy sequential filtering (Greedy), and our block-ICM ap-
proach (Ours) using the snake energy cost function. Al-
though both “Greedy” and our approach use constant ve-
locity motion information, the snake energy model applies
it to evaluate smoothness of entire trajectories, rather than
to provide an inter-frame matching criterion.

1Dataset available from http://vision.cse.psu.edu/

Table 1. Mismatch error percentage for network flow (Flow),
greedy forward sequential filtering (Greedy) and our approach
(Ours) using the snake energy cost function. Smaller numbers
are better. Approaches are compared on sparsely and densely
populated sequences, for sampling rates ranging from 1 to 3
frames per second. Also shown in parentheses for our approach
is the average number of iterations to convergence.

Sparse Trajectories Dense Trajectories
Flow Greedy Ours Flow Greedy Ours

3fps 0.04 0.00 0.00 (1) 0.23 0.12 0.13 (2)
2fps 0.28 0.06 0.12 (1) 1.36 0.34 0.25 (2)
1fps 5.43 1.36 0.80 (2) 21.35 6.83 4.13 (5)

The error measure used is total mismatch error percent-
age (mmep), which is one component of the Multiple Ob-
ject Tracking Accuracy (MOTA) error measure commonly
used by the target tracking community [4]. It is computed
as follows: let g(t) be the number of ground truth targets at
time t, and let mme(t) be the number of mismatches (aka
identity swaps) that occurred at time t within the estimated
trajectories. Mismatch percentage mmep is then computed
as mmep = 100× (

∑
t g(t)/

∑
tmme(t)). A higher mis-

match percentage means a higher number of cases where an
estimated trajectory incorrectly “jumps” from one individ-
ual to another during tracking. Sample images comparing
network flow results with our results are shown in Figure 2.

Figure 2. Sample trajectories. Far left: network flow results, with
22 ID swaps. Second from left: Our approach using snake energy
on the same image yields 2 ID swaps. Second from right: network
flow on a denser sequence, with 116 ID swaps. Far right: Our
approach on the same image yields 71 ID swaps. All trajectories
are color-coded with respect to ground truth; edges of good trajec-
tories appear in the same color as the observations they connect.

Discussion: As expected, all methods perform better when
the sampling rate is higher. However, at all sampling rates,
even greedy forward selection outperforms the globally op-
timal shortest path solution computed by network flow,
demonstrating the benefits of a constant velocity motion
model for reducing mismatch errors. The improvement in
performance is particularly notable for lower frame rates
and for sequences with larger numbers of closely-spaced
objects. Table 1 also shows average number of iterations
until convergence for our iterative approach. These num-
bers confirm our observations that the block-ICM algorithm
converges quickly.



5. Summary and Future Work
Starting with a generalized MDA framework [18], we

factor the trajectory decision variables into a product of
variables on edges in a k-partite trellis network represent-
ing multiframe observations. However, unlike network flow
formalisms, we retain fully general cost functions that can
use higher-order motion models to evaluate path quality.
Although our problem formulation is NP-hard, we have
proposed an iterative approximate solution method similar
to ICM that cycles through pairs of adjacent frames, com-
puting block-optimal two-frame linear assignment solutions
while holding all other decision variables fixed. The method
is guaranteed to converge, and usually converges rapidly.
Using a “snake energy” trajectory cost function, our ap-
proach has been shown to outperform two common baseline
algorithms for data association.

Our use of general cost functions allows evaluation of
path quality over an entire trajectory of state vectors. In
this paper we have only used object location as the state
vector in order to isolate the effects of kinematic motion
features from the confounding effects of appearance in-
formation. However, it is trivial to extend our approach
to include shape and appearance information by augment-
ing each observation state vector with additional features
such as bounding box width and height, detector confi-
dence scores, normalized color histograms, or HOG de-
scriptors. The cost function would then be able to com-
pute additional quality measures based on average detec-
tor confidence, smoothness of variation of bounding box
size/shape, and variance of appearance of the target with
respect to its “mean” appearance over the whole trajectory.
To properly incorporate this additional information, we will
need to specify or learn relative weights for fusing different
types of appearance, shape and motion cues into a single
path quality score.
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