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Multitarget Detection and Tracking Using

Multisensor Passive Acoustic Data
Chris Kreucher and Ben Shapo

Abstract—This paper describes a Bayesian approach to de-

tecting and tracking multiple moving targets using acoustic data

from multiple passive arrays. We describe a surveillance applica-

tion, where a collection of fixed-location passive acoustic arrays

is charged with monitoring a predefined spatial region. Our

approach combines a unique hybrid discrete-grid/particle approx-

imation to the posterior with a dynamic density factorization. This

results in a novel 2-D (X/Y) multisensor multitarget tracker that

uses bearing measurements only. The efficacy of the algorithm is

illustrated both in simulation and on collected at-sea data.

Index Terms—Fuse-before-track, fusion, nonlinear filtering,

passive acoustics, tracking.

I. INTRODUCTION

T HIS paper describes a Bayesian approach to detecting

and tracking multiple moving targets using acoustic data

from multiple passive arrays. We focus on a surveillance appli-

cation, where a collection of passive acoustic arrays monitors a

predefined spatial region to detect and track moving targets in

2-D. This regime presents two main challenges. First, bearing

measurements provide incomplete information about target

state and couple nonlinearly to the target state. Second, passive

acoustic sensors typically receive low signal levels. Therefore,

detect-before-track approaches which declare target detections

by thresholding received signals may have an unacceptable

false alarm/detection tradeoff [1], [2].

Traditional tracking methods [3]–[7] are based on linear (or

linearized) Kalman filters and use detections (i.e., threshold ex-

ceedances) as input. These suboptimal methods are used for a

number of good reasons in different applications. First, in some

applications (e.g., RADAR) sensor measurements occur at a

very high rate, requiring the tracker to execute very quickly.

Second, communication channels between the sensor and the

processing unit may be limited (and this is exacerbated by the

high-data rate), meaning that only summary information can be

sent to the processor and not the raw measurements. For these

reasons, Kalman techniques which are implemented by a series

of matrix operations are very useful.

In the passive sonar surveillance scenario we focus on here,

these constraints are relaxed. First, sensor measurements are

aggregated at a low rate, on the order of one Hertz. Second, in
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our application the arrays are directly cabled to a processing

center, allowing raw measurements to be transmitted faithfully.

Finally, the processing center can be equipped with high-power

computers. For these reasons, techniques which are more com-

putationally burdensome and require higher communication

requirements are viable in this application. Therefore, given

the nonlinear measurement modality and utility of using non-

thresholded data, we advocate a nonlinear track-before-detect

approach which fully models the nonlinear measurement to

target state coupling and operates with raw measurements

rather than just threshold exceedances.

In the multisensor case, conventional methods [8]–[11] de-

velop tracks at each sensor, associate tracks between nodes,

and then fuse. In contrast, the present application has the band-

width to allow data fusion from multiple nodes at the measure-

ment level, and can employ hardware with sufficient compu-

tational power to do so. Combined with the challenges of low

signal levels and nonlinear measurement to target coupling, this

again suggests measurement level nonlinear filtering. A fuse-be-

fore-track approach can increase algorithm performance over

conventional track-and-then-fuse methods by delaying hard de-

cisions about target existence and state until all of the sensor

data has been incorporated.

A number of track-before-detect approaches have been

studied in the literature. The “Unified Data Fusion” work of

Stone [12], [13], the “JMPD” approach of Kastella [14], and

the dim target tracking work of Boers [15] are all examples

of Bayesian approaches which do not require thresholding,

explicit measurement to track association, linear models, or

Gaussian statistics. They also may be used with multiple sen-

sors without using track fusion by incorporating multisensor

measurements through the likelihood function. Many others

have done important related work [16]–[25]. In particular,

Bethel and Shapo [26] apply track-before-detect to single-node

passive acoustic tracking.

The method presented in this work is a combination and ex-

tension of these and other existing techniques. It gives a novel,

bearings-only 2-D (X/Y) multisensor multitarget tracker. In

particular, we present the following main contributions. First,

we give a unique implementation which approximates the

required nonparametric probability density using a fixed grid

(discrete) method while the density is diffuse and an adap-

tive grid (particle) scheme once the density is well localized.

Second, we apply a dynamic probability density function fac-

torization method that accommodates closely-spaced targets,

modeling coupling in target state uncertainty when necessary,

but not wasting computations when such modeling is not

required. Finally, we illustrate the efficacy of the algorithm on

both simulated and real, collected at-sea data.
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The paper proceeds as follows. Section II describes the mul-

tisensor passive sonar setting and our application. Sections III

and IV describe single-target Bayesian detection and tracking

and our implementation, which is based on a novel combination

of discrete grid detection and particle filter tracking methods.

Sections V and VI describe multitarget filtering and our imple-

mentation which utilizes a unique adaptive factorization to cap-

ture important multitarget target couplings while not requiring

full estimation of the high dimensionality joint target density

for all targets. Section VII illustrates the value of the approach

on simulated and real collected passive acoustic data from a sea

test. Section VIII concludes the paper.

II. THE MULTISENSOR PASSIVE SONAR SETTING

The application we focus on here is surveillance of a large

spatial region using multiple passive acoustic arrays. This sec-

tion describes the nominal sensor layout and develops a statis-

tical signal model for the energy received by the arrays, which

is the input to our tracking algorithm.

A. The Surveillance Problem

A region of large spatial extent is to be monitored by

a collection of fixed (e.g., bottom mounted) linear passive

acoustic arrays. There are hydrophone arrays where the

position of the center element is denoted , for array

. The surveillance region is defined by its extent

. Ideally, the arrays are located

conveniently with respect to the surveillance region, e.g., along

the boundaries and at right angles to each other.

Undersea and surface targets emit acoustic energy which is

received at the passive arrays. We are interested in detecting

and tracking targets in 2-D from this received energy. For loud

targets, conventional signal processing methods use this energy

to estimate target bearing relative to each array. With well sep-

arated arrays (with respect to target range) triangulation can be

used to compute target range and 2-D position. However, our

application is to low energy targets, which are not amenable to

detect before track (i.e., thresholding approaches) and so more

sophisticated methods of estimating target state are required.

B. Signal Modeling

Each of the physically separated arrays consists of

hydrophones. Energy impinges on each element in array

from acoustic sources, and the time series of received energy is

recorded as . This data is processed to generate estimates

of target energy as a function of bearing from the array.

Processing is typically done according to the standard

delay-and-sum beamforming method [27]. The spatial separa-

tion of individual elements causes the propagation time from

a source to each element to differ. Denote the propagation

time delay from a source at bearing to hydrophone by

. For a linear array with elements separated by ,

. For a candidate arrival angle , the

beamformer implements appropriate delays at each element to

force any signals arriving from that direction to add coherently,

i.e., the coherent sum at array for arrival direction

(1)

is the total energy in array at bearing as a function of time.

Computation is typically done in the frequency domain with

short (on the order of 1-second) time blocks of data as

(2)

In practice, the beamformer performs this computation for

a set of candidate arrival directions (beams) numbered

. It then noncoherently aggregated across frequency

for each beam to capture all the energy in that direction, yielding

what we refer to as the measurement from array in beam ,

.

Under certain conditions on element bandwidth and snapshot

time, the beamformer values at individual frequencies are inde-

pendent random Gaussian variables [28]. Therefore, we model

the statistics of as such. The parameters of the Gaussian

random variable depend on whether or not there is a target at

direction .

III. SINGLE-TARGET DETECTION AND TRACKING

This section describes the Bayesian approach to single target

detection and tracking using data from multiple passive arrays.

For the purposes of this section, we assume there is at most one

target present. This assumption is removed in Section V.

Notation

We denote the state of a single target at time as , which for

this work refers to the target 2-D position and velocity, i.e.,

. Additionally, let denote the hypothesis that

no target is present at time , and let denote the hypothesis

that a single target is present.

The following notation describes the measurements:

continues to denote the measurement received by array

in bearing beam at time ; denotes the vector

of all measurements received by array at time , i.e.,

; denotes measurements received

by all arrays at time , i.e., ; finally,

denotes the collection of all measurements received by all

arrays up to and including time , i.e., .

The Bayesian method is to estimate the joint probability a

target is present ( is true) at each state given the mea-

surements. Mathematically, this means we wish to estimate the

hybrid continuous-discrete probability density function (pdf)

(3)
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for all , as well as the discrete probability

(4)

which is simply .

Notice that we can write

(5)

i.e., the density is the product of the target present probability

and the target state probability .

Both conceptually and in implementation, we treat the problem

as separate (but coupled) tasks of estimating the target present

probability and the estimating target state probability.

In the Bayesian approach, we (1) assume an initial or prior

estimate of the desired probabilities is present (perhaps com-

pletely uninformative), and (2) generate a recursive formula that

relates probabilities at one time step with those at the next. This

is done in two steps, analogous to the Kalman Filter: the tem-

poral update, which predicts the probability distribution at time

from that at time , and the measurement update which

corrects the predicted probability distribution at time given

the measurements received at time .

A. Temporal Update

The first step in recursive Bayesian filtering is to predict the

relevant probability distributions forward in time using statis-

tical models on target kinematics. The temporal update of the

target present density is

(6)

where the quantity is a statistical model of

how targets arrive and exit the surveillance region, to be speci-

fied by studying the target arrival properties.

Similarly, the time-predicted target state density is based on

a model of how targets move

(7)

where the density is a statistical model

on target kinematics specified in the particular implementation.

The normalizing term does not

need to be evaluated, as the density can be forced to integrate to

1. In this work, we assume the nearly constant velocity (NCV)

model for the target. Other models, or even multiple models are

admissible under the Bayesian framework [29].

B. Measurement Update

The second step in Bayesian filtering is to incorporate the

measured data into the probability estimate. The measured data

comes into the picture through the likelihood ratio

(8)

where the functional form of is a model specified

by sensor physics. Recall that in this approach, measurements

are not just threshold exceedances, but rather the full measure-

ment set consisting of beamformer outputs from all sensors at

all beams.

With this definition, the target present and target absent de-

tection probabilities are measurement-updated using the law of

total probability and Bayes’ rule, yielding

(9)

and

(10)

These equations express the current target present and ab-

sent hypothesis probabilities in terms of the target present,

target absent, and target state probabilities predicted from

the previous time step and the conditional likelihood of

the incoming measurements. The normalization constant

does not need to be computed since

.

The target state probability is updated in a similar manner

(11)

again is independent of and

does not need to be computed since the probability density in-

tegrates to 1.

In our multisensor passive array application, the likelihood

ratio can be expressed as follows. We assume

measurements from different arrays are independent condi-

tioned on the target state, i.e.

(12)
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and that the measurements a particular array takes in each beam

are independent conditioned on the target state, i.e.

(13)

For each array , the state corresponds

to bearing , which maps to a beam we will denote . With

this notation, we write

(14)

where is the probability density on the received energy

in beams where the target exists (the target present density)

and is the probability density on the received energy in

beams where no targets exist (the target absent density). Thus,

this equation says that the likelihood of a scan of data given

target state is proportional to the ratio of the target present

probability in the beam maps to divided by the target absent

probabilty in that same beam. We have ignored extended target

effects such as sidelobes in this simplification. If we were to

consider these, the state would map to a set of beams rather

than a single beam and (14) would then include a term that de-

pended on all of the cells in the mapping.

Combining (12) and (14), we see that fusing over multiple

arrays gives the multisensor likelihood ratio

(15)

IV. SINGLE-TARGET IMPLEMENTATION

If the probability density of interest is well

approximated by a Gaussian or sum-of-Gaussians, techniques

such as the extended Kalman filter, unscented Kalman filter,

or Gaussian sum filter are preferred. In the multisensor passive

acoustic case, however, the density is poorly approximated by

such parameterizations. We instead rely on two nonlinear fil-

tering approaches, the discrete grid and particle filter.

A. The Merits of Discrete Grid and Particle Representations

The numerics involved in a discrete grid approximation to

a pdf is a well studied area [29]–[31]. In the discrete grid ap-

proach, a pdf of interest is typically represented on a fixed,

evenly spaced, multidimensional grid. The main benefit of this

method is it generates probability estimates over a defined re-

gion of state space, only assuming the pdf is zero outside of

the grid boundaries. Conversely, the main deficiencies are that

the fixed discrete grid approach spends computational effort up-

dating grid cells with near-zero probability and that the number

of grid cells grows exponentially with the dimension of the state

space.

The particle filter approach, on the other hand, uses an adap-

tive grid where the tie-points are computed online via impor-

tance sampling [32], [33]. For certain classes of problems [34]

and a well localized initial pdf, the particle approach provides

excellent estimation performance at a fraction of the cost of a

discrete grid approach. Thus, its main strengths are that com-

putational effort is only used in areas of high pdf probability,

and the grid adaptively changes size. This is important in the

present application because the shape of the spatial uncertainty

about target location varies dramatically with its position rela-

tive to the sensors. The main deficiency is this sparse sampling

approach is ill-suited to represent very broad pdfs, such as a pdf

which has uniform uncertainty over a large spatial region.

For these reasons, we advocate a hybrid approach which in-

herits the best features of the two methods. The pdf is first

approximated using a discrete grid. At some point, the target

present probability exceeds a threshold, indicating a target is

present and it has been well localized. At this point, the pdf ap-

proximation is transitioned to a particle filter. This allows sus-

tained tracking of this target with a grid that adapts to the pdf’s

shape and extent.

B. The Discrete Grid Representation

The details of the discrete grid method [29], [30], [35] are

briefly reviewed here.

1) Density Representation: The pdf of is discretized onto a

4D grid (corresponding to the four dimensional state vector )

of cells. This approximation is appropriate

here, given we wish to perform surveillance over a region of

fixed spatial extent. The effect of spatial truncation of the prob-

ability distribution will be discussed later.

2) Kinematic and Measurement Updates: The NCV model

we adopt leads to the Fokker–Plank equation [30], [36]–[38]

which says that the rate of change of the probabilty density with

respect to time can be expressed in terms of the rates of change

with respect to the parameter values , , , and as

(16)

where and are diffusion constants that model the kine-

matics of the target.

Computationally, the state probability is discretized onto the

grid and the update is computed from time to using an

implicit Euler method. This approach is always stable and has

acceptable accuracy in and . We use Thomas’ algorithm

as a fast tridiagonal solver leading to computation linear in the

number of grid cells. For more details, see [29], [39].

The temporal evolution of the target present probability

assumes constant target arrival/removal, i.e.

(17)

where is the arrival rate parameter. As this has been cast as

a standard hypothesis test between the two point hypotheses

representing target present and target absent, we declare a

target present when the probability of target present hypothesis

exceeds a threshold in accordance with the standard
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Neyman-Pearson approach. The Bayes update of the proba-

bility density (11) is approximated when using the discrete grid

representation by a pointwise multiplication of each cell in the

discrete representation by the corresponding data likelihood

ratio (15).

3) Effect of the Finite Grid Extent: The problem of interest

is surveillance over a fixed spatial region. As such, the spatially

limited discrete grid pdf approximation proposed here is a nat-

ural approach. However, (nuisance) targets which are located

off of the grid do contribute energy and this phenomenon must

be accounted for in the formulation.

The likelihood ratio derived above implicitly assumes the

probability density on is estimated over an unlimited spa-

tial extent. In practice, in this application we are only interested

in estimation over a finite spatial region. Hence the and

hypotheses correspond to the event that a target is present in the

region of interest, and the event that a target is not present in

the region of interest, respectively. Therefore, the definition of

the likelihood ratio must be modified to reflect the finite size

region over which we wish to estimate target presence by prop-

erly accounting for energy emitted by off-grid targets.

We therefore generalize the likelihood ratio to account for

the modified definitions of and . In particular, the target

absent hypothesis is now the composite hypothesis that ei-

ther a target is not present, or that a target is present but outside

the finite grid. For the two array case and a state that is hy-

pothesized to not contain a target, two things can happen: the

target absent statistics are present in both arrays, or there is a real

target outside of the detector’s spatial region that concidentally

puts energy into one of the beams (but not the other). Therefore,

the target absent hypothesis is supported when both arrays re-

ceive energy from the target absent density, or one array receives

energy from the target absent density and one receives energy

from the target present density. The target present hypothesis is

supported only when both arrays receive energy from the target

present density. Concretely, we define in the example of two

arrays using the generalized likelihood ratio as

(18)

C. The Particle Filter Representation

An alternative method of representing the target state prob-

ability is via a particle filter. Particle filtering is

an adaptive grid method of representing a pdf and numerically

updating it temporally and with measurements [32]. The details

are briefly reviewed here.

1) Density Representation: In a single target particle filter,

the density of interest is approximated by a set of

weighted samples (particles)

(19)

where represents the usual Dirac delta function.

2) Kinematic and Measurement Updates: The model update

and the measurement update are simulated by the following

three step recursion. First, the particle locations at time are

generated using the particle locations at time and the

current measurements by sampling from an importance den-

sity, denoted . The design of the importance den-

sity is a well studied area [40], as the choice of the importance

density can have a dramatic effect of the efficiency of the par-

ticle filter algorithm. It is known that the optimal importance

density (OID) is given by , but this density is typ-

ically prohibitively difficult to sample from. In practice, often-

times the importance density is chosen just to be the kinematic

prior , which is what we do here. A more sophisti-

cated choice of importance density may lead to better results for

a fixed computational burden, but that is not studied here.

Particle weights are updated according to the weight equa-

tion, which involves the likelihood, the kinematic model, and

the importance density [32]

(20)

When using the kinematic prior as the importance density, the

weight equation reduces to . Finally,

a resampling step is used to prevent particle degeneracy. We

have selected to resample when the number of effective particles

[32] falls below a threshold, here chosen as half the number of

particles.

D. Combined Approximation

In our approach, we represent the surveillance region via a

discrete grid at onset. Once the target present probability ex-

ceeds a threshold, indicating the density is well localized, the

approximation is transitioned to a particle representation. This

hybrid approach allows good performance when the pdf is broad

(at onset) as well as good tracking performance once a target is

found. This transition is accomplished by sampling par-

ticles from the discrete grid.

V. MULTITARGET DETECTION AND TRACKING

In this section, we show the generalization of the single target

tracking algorithm to the general case where there are an un-

known and time varying number of targets.

Notation

In multitarget detection and tracking, we wish to estimate the

hybrid continuous-discrete density

(21)

for all and , where is the number of targets

and are the states of the individual targets.

For notational convenience, we define

(22)
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i.e., denotes the multitarget state vector, where the cardinality

will be clear by context.

As in the single target case (5), the joint multitarget density

can be expressed as the product of the target number density and

the target state density as

(23)

A. Temporal Update

The target number temporal update is given by

(24)

And the target state temporal update can be expressed

(25)

where the density is a statistical model

on target kinematics and the integral over is to be inter-

preted as performing the required integrations over the do-

main of .

B. Measurement Update

In extension of the definition given earlier (8), we define the

multitarget likelihood ratio as

(26)

The recursive update of the target number probability is then

given in a form analogous to the single target case (9) as

(27)

where the constant term does not

need to be computed since the probability mass function sums

to 1.

In the multiple target situation, it is possible that more than

one target projects into the same bearing cell. targets with

states will project into bearing cells .

Let denote the set of all beams the hypothesized targets

occupy in sensor , i.e., . Let

denote the occupation number (i.e., the number of targets that

are hypothesized to exist in cell ), and be the probability

density on the measurement received in bearing cell when

there are targets predicted in to be in that cell. Then we can

write

(28)

Using reasoning similar to the single target case, we therefore

have

(29)

The target state update can then be written using Bayes’ rule

as

(30)

where the constant term does

not need to be computed since the pdf integrates to 1.

VI. MULTITARGET IMPLEMENTATION

The dimension of the state space required to directly estimate

the joint multitarget probability grows exponentially with the

number of targets. This “curse of dimensionality” makes it im-

practical to directly estimate the full multitarget density when

there are more than 1 or 2 targets in the surveillance region of

interest [34], [41], [42].

This reality is addressed in the literature in two ways. In con-

ventional Kalman multitarget methods [3], [4], the approach is

to run a bank of single target trackers (one for each target) and

use data association to determine which measurements to give

to each tracker. This implicitly assumes the input data is thresh-

olded and can be treated by linear or linearized methods. Other

approaches [41]–[46] fully model the joint multitarget density,

but use procedures which amount to factoring the joint density

into a product of smaller dimensionality densities. Sophisticated

approaches do this adaptively at each time step, selecting which

targets are “close” and performing more intense processing to

account for the coupling of measurements on these targets.

As discussed below, we treat the problem as separate but

coupled detection and tracking stages. In the detection stage,

we employ a collection of single target fuse-before-track and

track-before-detect filters. Once a detector has accumulated

enough evidence to initiate a tracker, we use an adaptive fac-

torization method which determines which targets are close in

sensor space and treats these pairs (or triplets, etc.) jointly as

necessary. In this case, the individual particle filter approxima-

tion to the multiple targets is combined into a single multiple

target density and this density is time and measurement updated

jointly. The main effect is that the sensor modeling of (28) now

becomes relevant. In particular, the measurement likelihood for

a pair of targets where both targets project into the same beam

takes a different functional form from when they project into
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Fig. 1. Detector with four targets. At time Step 3, the detector has four peaks corresponding to the XY location of the four targets. A tracker is initiated about the
highest peak, leaving three targets in the detector at time Step 5. This continues until all targets have been initiated by time Step 10.

different beams. In practice, this high fidelity modeling pre-

vents track coalescence onto the stronger track and/or dropping

of the weaker track.

A. Detection Stage

The surveillance region is divided up into static

spatial subregions, each of which is called a “detector.”

Each detector is defined by its extent

and is a represented by a single

target discrete grid. Detectors thus consist of a probability

density for each state that maps to the detector and a target

present probability corresponding to the detector. Each

state in the overall surveillance region maps to a unique

detector denoted .

Each detector is updated temporally and with measurements

according to the single target method described earlier. There

are competing desires for detector size. On the one hand, each

detector should be small to contain either 0 or 1 targets, so the

problem exactly breaks down into a collection of single target

problems. Conversely, it is also important for each region to be

large enough to allow sufficient track-before-detect updates on

the target to integrate SNR over multiple time steps before the

target moves into a different subregion.

With well separated targets, the factorization

(31)

holds. More critically, the multitarget likelihood also factors in

this situation. By assumption, measurements in different beams

are independent conditioned on the (multitarget) state, i.e.

(32)

where is again the beam target maps to in array . This is

valid when the are distinct (i.e., the targets are well sepa-

rated in measurement space and map to different beams). There-

fore, with well separated targets

(33)

B. Tracking Stage

When the detection statistic for detector , exceeds a

threshold a tentative target is declared and a “tracker” is initiated

around the target. A tracker is implemented by a particle filter.

The tracker follows the tentative target and continues to update

the estimate of target state and target present probability. We

continue to allow for the possibility new targets arrive in the

original detector subregion.

C. Closely Spaced Targets

Although targets are typically well separated, there is the pos-

sibility that multiple targets are present in a single detector, or

there is spatial overlap between a detector and a tracker, or be-

tween trackers. The consequences of this mismatch between as-

sumptions and reality must be explored.

First, each detector assumes there is either 0 or 1 target in its

spatial extent. It is possible that more than 1 target is actually

present on the detector. In this case, the likelihood ratio (8) will

become peaked at multiple points, rather than at a single point.

The detector pdf will correspondingly peak at multiple points.

This leads to the target present hypothesis computed by (9) to

grow faster than if a single target was present in the detector. In

this situation, the detector’s target present hypothesis crosses a

threshold and a tracker is first initiated around the largest peak

by sampling an area spatially close to that peak. The detector’s
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Fig. 2. The detection statistic verbs time for the example of Fig. 1. Targets are
initiated at time step 3, 5, 7, and 9.

target present hypothesis again exceeds the threshold at a subse-

quent time step and a second target is initiated around the second

peak, and so on. Figs. 1 and 2 illustrate what happens when there

are four targets in a single detector using synthetic data. First,

the detector pdf develops four peaks. In our implementation, a

tracker is launched first around the strongest peak. The target

existence probability remains high even after this target is ini-

tiated since there are multiple targets in that detector. There-

fore, shortly later a second target is initiated, and so on. As ex-

plained below, if targets are very close together, there may be

some delay in initiating the second target since we prevent mea-

surement sharing between trackers and detectors. However, the

approach typically performs well in practice.

Second, since a mobile tracker moves its position in and

to follow a target, there may be spatial overlap between the fixed

detectors and the mobile trackers. In this case, our approach is

to prevent both a detector and a colocated tracker from simul-

taneously updating their single target pdf with the same mea-

surements. This is done by determining when entities overlap,

and modifying the likelihood ratio computation for the detector

to omit the measurements made in the overlapping region. A

target state is said to be included in a tracker if the convex

hull defined by the tracker’s particles includes . With this, we

then define the indicator function

maps to tracker

otherwise
(34)

and construct the logical disjunction over the trackers as

(35)

which is 1 if maps to any tracker. Then the modified detector

likelihood, accounting for closely spaced targets, is

(36)

Finally, two trackers may be close together in measurement

space. In this case, the pdfs must be updated jointly. As dis-

cussed earlier, we compute the separation between trackers and

cluster them into groups to determine which trackers must be

updated jointly and which may be updated independently. The

clustering is performed as follows. Each track is characterized

by its state estimate, projected into each sensor’s bearing beam.

Those tracks that are close in beamspace are clustered together

and treated jointly. In the ideal situation where all targets are

well separated, each cluster contains one target. In the case

where multiple targets are close, a cluster may contain 2, 3,

or more targets. In this instance, we form the joint multitarget

density on the cluster (in 8 or 12 dimensions as appropriate)

and treat the multiple targets as a single unit for temporal

and measurement update. For computational purposes, we use

the coupled partition method of [42] to propose and weight

new joint particles. If tracks are incorrectly clustered together

when they, in fact, correspond to well separated targets the

algorithm runs slower than it otherwise would. However, the

density estimation is still done correctly. Conversely, if tracks

are incorrectly deemed separate when they are in fact close, the

coupling is not correctly preserved. Therefore, we choose this

threshold conservatively to err on the side of over clustering.

VII. RESULTS

This section illustrates the proposed technique on simulated

and real collected passive acoustic data. Section VII-A starts

with a synthetic experiment which illustrates the performance

of the algorithm by directly comparing it to (simulated) truth.

Section VII-B shows results of the tracking approach when ap-

plied to a set of real collected data.

A. Results on Synthetic Data

The following simulation illustrates the utility of the ap-

proach. Three targets were simulated to move according to the

NCV model of Section IV. The surveillance region (shown in

Fig. 3) covered and . The

initial location of the three targets is (900,1000), (1200,500),

and . The sensor arrays are located at (0,0) and

(700,0). All units are nominally in meters.

The surveillance region was implemented with a 4 4 set of

overlapping detector grids. Overlapping grids are used to allow

quicker detection of targets that start close to the edge of one

detector and then move onto another.

Synthetic input data was created as follows. Simulated

bearing time records (BTRs), which are profiles of the quan-

tized target bearing versus time, were created according to the

model of Section II-B. The BTR surfaces, shown in Fig. 4, are

the input to the tracker. The simulation used 1 degree bearing

beams. The sensor model we employ to describe how the

measured data couples to the target state under estimation is

the nonlinear pixelated model described in (14).

The method described in this paper was evaluated using

this input data. Each detector grid was chosen to have

26 21 26 21 cells with spatial and velocity resolu-

tions of 25 m and 1 m/s, respectively. Each single target

detector was measurement and time updated according to

the method of Section IV. When a detectors’ estimate of the

target present probability exceeds the threshold (here

set at ), the target is transitioned to a particle filter

representation according to the description in Section IV-C.
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Fig. 3. Surveillance region for the synthetic experiment.

Fig. 4. Synthetic BTRS from two sensors with three targets.

Detector thresholds were crossed (resulting in a target transi-

tion from fixed grid to particle filter) at time steps 4, 6, and 9.

Target initializations at time step 4 and 9 came from the same

detector. Two targets were close together for a portion of the

tracking and were clustered and treated jointly by the algorithm

between time steps 146 and 188.

At each time step, this particle filter representation of the

probability density was used to compute the minimum mean

square error estimate of target state. Fig. 5 shows the position

component of this state estimate over time in comparison to the

truth.

Fig. 5. XY point estimates (circles) produced by the method, as compared to
truth (dashed line) for the three targets in this simulated scenario. Tracker point
estimates are only shown every 10 s for clarity.

Fig. 6. Surveillance region for the synthetic experiment, with true target tracks
(dashed lines) and estimated target tracks (circles) drawn in.

The tracker estimates and target truth are shown with respect

to each other, the surveillance region, and the sensors in Fig. 6.

Fig. 7 shows the estimated tracks projected back on to the

BTRs. Note the tracker operates in XY but these XY tracks can

be reprojected onto the input surfaces to show algorithm effi-

cacy, as is done here.
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Fig. 7. XY point estimates from the tracker projected back on to the BTRs.

B. Results on the Shallow Water Array Performance Array

This subsection illustrates the proposed technique on a set

of real collected passive acoustic data. The shallow water array

performance (SWAP) array is located off the eastern cost of

Florida near Ft. Lauderdale. The SWAP array has four linear

segments, each of which are approximately 200 m long and

contain 125 hydrophones. The hydrophone locations are known

with high accuracy. A small number of the hydrophones did not

operate during the collection, but these elements are known have

been excluded from the beamforming process. The 4 segments

are labeled 1, 2, 3, and 4 with segment 1 closest to shore (west-

ernmost) and segment 4 farthest from shore (easternmost). The

elements in each segment run approximately west-to-east. Seg-

ment 1 is oriented approximately 0.6 (relative to east), and

Segment 4 is oriented approximately . All hydrophones

are approximately 265 m deep.

The environment has heavy commercial and recreational

traffic. The experiments shown here use data collected by

segments 1 and 4 on August 9, 2007 starting at 1115 local

time. The data was recorded as part of a four-day sea test. We

selected a time segment with two targets of opportunity. This

data includes a challenging situation where the two targets

cross in sensor space, therefore the adaptive algorithm must

temporarily treat the joint target state to prevent target coales-

cence or removal.

Fig. 8. Input data surfaces (BTRs) that were used to evaluate the method. Top:
Segment 1. Bottom: Segment 4.

Fig. 9. Surveillance region, and the 2 2 grid of single-target detectors used
to tile the region. The four detectors are each 51 13 51 13 grids updated
using the methods of Section IV.

The raw sensor data was prepared according to the process

described in Section II. This is briefly summarized as follows.

Each hydrophone sampled and recorded raw acoustic data. This

raw data was decoded and interpolated to obtain 1000 sam-

ples per second at equal intervals, time synchronized at all hy-
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Fig. 10. Input data surfaces, with hand-truthed traces in each segment.

drophones. A conventional beamformer, followed by integra-

tion over frequency, was used to produce BTRs at 1 Hz. The

sensor model we employ to describe how the measured data

couples to the target state under estimation is again the nonlinear

pixelated model described in (14). The target present and ab-

sent distributions and are assumed Gaussian by appealing

to the analysis of [28]. The target present probability threshold

used to elevate a target to detected status was fixed at .

Fig. 8 shows the input data surfaces.

The surveillance region is defined as shown in Fig. 9. It was

implemented using a 2 2 set of overlapping detector grids.

Notice that the finite spatial extent of surveillance region means

that only that portion of the BTR data corresponding to the

surveillance region will be used. For example, measurements

in bearing cells directly to the left of the segments do not map

to the surveillance region and are thus not used in updating the

system at onset.

Each detector grid has 51 13 51 13 cells with spatial

and velocity resolution of 50 m and 2 m/s, respectively. Each

single target detector is measurement and time updated ac-

cording to the method of Section IV.When a detectors’ estimate

of exceeds the threshold, the target is transitioned to

a particle filter representation according to the description in

Section IV-C.

Here we illustrate the benefit offered by our target space

tracking method (XY) over traditional measurement domain

methods, which track on the individual data surfaces and then

fuse the results (the track-fusion approach). The track-fusion

approach proceeds as follows. First, a measurement domain

tracker is used on each BTR to generate bearing estimates.

Kinematics are enforced on the data surface, rather than the

XY space in which the target actually operates. Next, the tracks

are associated between sensors and the targets’ XY position

are computed using trigonometry. We have simulated that

method here by hand-truthing the traces in the BTR as shown

in Fig. 10. Note that in the hand-truthing, the beams of the

individual traces are known exactly and correctly.

Whether done by hand or with an automated tracker that oper-

ates independently at each node, this approach does not take into

account kinematic models operating in XY space, but instead

only enforces kinematics on the bearings. As a consequence,

the XY tracks associated with this hand truthing may be non-

physical in the XY domain. Fig. 11 shows the noisy tracks that

result from tracking in bearing and then associating the tracks,

characterized by nonphysical jumps in X and Y. Note that the

figure also indicates the locations of the two sensor arrays near

the bottom center, with labels “SEGMENT 1” and “SEGMENT

4,” respectively. The error seen in the target XY estimate is due

entirely to the fact that the estimate of the target bearing is the

center of the (correct) beam, but it does not have subbeam accu-

racy. If, for example the target is actually in the center of both

beams, the tracker estimate of target XY is perfect. If, on the

other hand, it is at the edge of the beam, the error is larger.

The wild oscillations are a manifestation of the target moving

through a beam and having its bearing poorly estimated, then

estimated well, and then poorly estimated again.

In contrast, the tracker proposed here constructs a pdf on the

region by combining XY kinematic models with the measure-

ments. Although the input data has the same resolution as the

track fusion approach, the performance is much better because

the tracker enforces plausible kinematics, and this provides ad-

ditional information which ensures that the tracks are smooth in

XY.

The complete nonparametric target pdf it estimates can be

used to produce both point estimates and covariance ellipses,

although the internal representation is much richer than this.

Fig. 12 shows the tracker point estimates of target XY in this

scenario. Note that these targets were automatically detected

and initiated according to the methodology of Section III. The

trackers are deemed closely spaced from time steps 1639 to

1693 and thus treated jointly by the method during that time

period.

Since this was a controlled experiment, we also have latitude

and longitude truth sources from the automatic identification

system (AIS) for some of the contacts in the collection. One

of the targets in our surveillance region during the period of

interest was an AIS equipped vessel, and its truth track (dashed

gray line) is shown in the plot for comparison to the tracker

output. The system runs at about 1.5 s per update on a standard

off the shelf 2.83 GHz Linux machine running MatLab™.

As can be seen by comparing the track fusion results (see

Fig. 11) with the output of the tracker proposed here (see
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Fig. 11. Nonphysical XY tracks associated with the hand-truthed bearing. Because tracking is done on the data surfaces, the XY tracks are not guaranteed to be
physically plausible.

Fig. 12. Tracker target state point estimates. Two targets were automatically detected and tracked. A known truthed target was in the region (dashed). Notice that
these track estimates are much more physically plausible then the track-fusion tracks.

Fig. 13. Detection statistic calculated by each of the four detectors. Two targets are initiated near the beginning of the trial. The detection statistic never rises
above the threshold again.

Fig. 12), utilizing physical kinematic models in the target’s

natural coordinate system provides significant value.

Further detail on the tracker performance is as follows. Two

tracks are initiated automatically by the 2 2 detector grid.

Fig. 13 shows the detection statistic (9) for each of

the four detectors over time. Notice that at the beginning of the

test, two detectors have detection statistic that grows past the

threshold. Trackers are initiated from these detectors. For the

rest of the experiment, there are no detectors that have detection

statistic which grows past the threshold. There is a brief period
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Fig. 14. One track, with tracker estimated covariance ellipses plotted every 16 s.

Fig. 15. Input data surfaces, with tracker estimates projected into measurement
space.

where one detector begins to accumulate evidence of a target

but it never reaches the decision threshold.

Fig. 14 shows one of the tracks and the associated covariance

ellipses at equally spaced time steps. As can be seen from the

figure, the main axis of the uncertainty ellipse is in the range

direction with respect to the (bearings-only) sensors. For ex-

ample, when the target is northwest of the sensors, uncertainty is

predominately in the north-west direction. Likewise, when the

target is northeast of the sensors, uncertainty is oriented in the

north-east direction.

Fig. 15 shows the tracker estimates projected back onto the

two original input surfaces. Some contacts visible in the BTRs

do not have associated tracks. As discussed earlier, this is be-

cause the XY locations corresponding to the bearing traces are

outside the specified surveillance region and thus do not map

to any detector and are therefore not initiated. The surveillance

region size is a choice made by the operator.

VIII. CONCLUSION

This paper has described a Bayesian approach to multiple

target detection and tracking using multiple passive acoustic

arrays. It included the development of a novel method of ap-

proximating the required multitarget probability density which

combines a fixed grid (discrete) method for target detection and

an adaptive grid (particle) scheme for tracking and a dynamic

factorization method to deal with closely spaced targets. The

method was illustrated on real collected multinode passive

acoustic data. The method was shown to provide a benefit over

track fusion, in terms of the smoothness of the track estimate.
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