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Abstract: Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Terminalia
arjuna (Roxb. ex DC.) Wight & Arnot of the Combretaceae family is one of the most frequently
approved and utilized medicinal trees in the traditional medicinal system, which was used for
the treatment of a variety of diseases, including cardiovascular disorders. The present study aims
to identify phytochemicals from T. arjuna, that do not exhibit any toxicity and have significant
cardioprotective activity using an in-silico technique. Four different cardiovascular proteins, namely
human angiotensin receptor (PDB ID: 4YAY), P38 mitogen-activated protein kinase (MAPK, PDB ID:
4DLI), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-Co A) reductase (PDB ID: 1HW9), and human
C-reactive protein (PDB ID: 1B09), were used as target proteins to identify potential inhibitors using a
virtual screening of the phytochemicals in T. arjuna revealed casuarinin as a potential inhibitor of all
selected target proteins with strong binding energy. Furthermore, MD simulations for a 100 ns time
scale also revealed that most of the key protein contacts of all target proteins were retained throughout
the simulation trajectories. Binding free energy calculations using the MM-GBSA approach also
support a strong inhibitory effect of casuarinin on target proteins. Casuarinin’s effective binding
to these proteins lays the groundwork for the development of broad-spectrum drugs as well as the
understanding of the underlying mechanism against cardiovascular diseases through in vivo and
clinical studies.

Keywords: Terminalia arjuna; cardiovascular diseases; phytochemicals; molecular docking; MD
simulations; MM/GBSA
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1. Introduction

Cardiovascular diseases (CVDs) are a category of heart and blood vessel disorders
that include coronary heart disease, cerebrovascular disease, peripheral arterial disease,
rheumatic heart disease, congenital heart disease, deep vein thrombosis, and pulmonary
embolism [1]. CVDs are a leading cause of death in both developed and developing nations
(https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases, accessed
on 19 November 2022). CVDs are predicted to kill 18.6 million people per year, accounting
for 33% of all global deaths. More than 75% of CVD deaths occur in low- and middle-
income nations [2]. The main causes of the rise in CVDs are urbanization and lifestyle
changes. More than 23.3 million individuals are predicted to die each year from CVDs by
2030 [3].

The renin-angiotensin system (RAS) is a critical regulator of cardiovascular and renal
function [4]. Blockage of RAS using angiotensin-converting enzyme (ACE) inhibitors
and angiotensin receptor antagonists has become a first-line treatment for hypertensive
target organ damage and progressive renal disease [4,5]. High blood cholesterol levels
are another major contributor to the progression of coronary artery disease (CAD) [6].
Cholesterol is produced through the mevalonate pathway. In cells, the concentration of
mevalonate is tightly controlled through the activity of 3-hydroxy-3-methylglutaryl-CoA
reductase (HMG-CoA reductase) [7]. HMG-CoA reductase is an enzyme that plays a role
in the biosynthesis of endogenous cholesterol in the liver. It catalyzes the conversion
of HMG-CoA to mevalonate, a precursor of sterols including cholesterol. Inhibition of
HMG-CoA reductase decreases mevalonate production, therefore reducing cholesterol
synthesis [8]. Several large-scale clinical trial studies showed that inhibition of this enzyme
could significantly reduce cholesterol levels and reduce the risk of stroke and mortality by
29% and 22%, respectively [9,10].

P38 kinases, which are members of the mitogen-activated protein kinase (MAPK)
family, play an important part in the signal transduction cascade causing post-ischemic
cardiac apoptosis. RAS angiotensin II suppressed adipogenesis by activating the ERK
1/2 and MAPK kinase pathways [11] and MAPK p38 inhibition may reduce reperfusion
injury [12]. Chronic insulin exposure and metabolic stressors in ischemic conditions activate
p38 MAPK and enhance insulin receptor substrate 1/2 (IRS1/2) degradation, culminating
in AKT inactivation and eventual myocyte death and heart failure [13]. C-reactive protein
(CRP), an acute-phase protein, is not only an inflammatory marker but also a direct cause
of CVD; hence, interventions that lower CRP should be beneficial for both primary and
secondary CVD prevention [14,15]. A number of side effects were observed in synthetic
medications used to treat various cardiovascular problems. Hyperkalemia, dry cough,
angioedema, hypotension, dizziness, headache, and renal failure are the most common side
effects of ACE inhibitors (ACEi) [16,17]. Another serious side effect of ACEi is angioedema.
It can affect any region of the body, including the intestine, but edoema of the tongue, glottis,
and/or larynx is the most serious, causing airway obstruction [18]. The most prevalent side
effect of statin therapy for the treatment of cardiovascular disorders is myalgia (1–10%) [19].

Plant-based medical systems have grown in popularity in the modern era due to their
low cost, ease of availability, effectiveness, and lack of adverse effects [20]. Terminalia arjuna
(Roxb) Wight and Arnot (T. arjuna), also called as “Arjuna”, has been used as a cardiotonic
in heart failure, ischemic heart disease, cardiomyopathy, atherosclerosis, and myocardial
necrosis [21–23]. Several studies have been conducted to investigate the cardioprotective
potential of T. arjuna stem bark using various models [24–28]; however, the mechanism of
action of T. arjuna phytochemicals against cardiovascular target proteins remains unknown.
Mythili et al. [29] discovered that arjunolic acid, found in T. arjuna stem bark, protects
against CsA-induced cardiotoxicity.

As increasingly improved technologies for looking for pharmaceuticals derived from
phytochemicals present in a range of medicinal plants have been available, computer-aided
drug discovery approaches have emerged [30,31]. Computational prediction models are
critical in influencing strategy choices in technological and pharmaceutical research. They
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have also been used to predict in silico pharmacokinetic, pharmacological, and toxicological
performance [32,33]. Molecular docking tools, MD simulations, and ADMET prediction
were used in a new strategy that was developed to find the interaction between the
phytochemicals from T. arjuna and synthetic drugs (phosphocholine, simvastatin, lisinopril,
losartan, and losmapimod) and cardiovascular targets. This strategy was developed as part
of an effort to expand the scope of our investigation into cardiovascular disorders.

2. Results
2.1. Molecular Docking Analysis

Table 1 summarizes the binding energies of selected phytocompounds with target
proteins using the Glide (grid-based ligand docking) program. Among all phytocom-
pounds, casuarinin had a good binding affinity and better binding modes than selected
phytocompounds and standard drugs. Casuarinin showed binding energies of −9.678,
−10.685, −9.216, and −18.276 kcal mol−1 with 1B09, 1HW9, 4DLI, and 4YAY proteins,
respectively (Table 1). The redocking was also performed to check the binding interaction
of native ligands with the respective targets and it was observed that the docked phyto-
chemicals showed better binding than that of re-docked ligands (Supplementary Table S1,
Supplementary Figure S1).

Table 1. Binding energy of docked phytocompounds from T. arjuna against targeted protein receptors.
Binding energy was expressed in terms of kcal mol−1.

Phytocompounds 4YAY 4DLI 1HW9 1B09

3-O-Methylellagic-acid-3-rhamnoside −7.668 −4.082 −4.411 −2.601
Arjunetin −6.14 −3.384 −0.886 −5.307

Arjungenin - - −2.534 −1.71
Arjunic acid - −2.774 −2.587 −1.315

Arjunolic acid - - −1.812 −0.803
Arjunone −5.153 −2.701 −1.844 −1.973

beta-Sitosterol −5.092 −2.409 1.034 −1.371
Casuarinin −18.276 −9.216 −10.685 −9.678
Catechin −5.665 −4.501 −4.202 −1.838

Ellagic acid −6.023 −4.192 −2.769 -
Ethyl gallate −6.776 −4.652 −3.616 −3.072
Gallic acid −6.376 −4.95 −4.155 −1.816

Kaempferol −5.498 −5.151 −3.026 −2.473
Leucocyanidin −8.239 −3.649 −5.325 −3.955

Luteolin −7.705 −5.137 −4.134 −2.103
Oleanolic acid - −0.464 −0.457 −0.539

Quercetin −8.355 −5.794 −4.463 −1.79
Rutin −10.668 −6.619 −7.787 −7.684

Terminic acid - - −4.463 −1.066
Lisinopril −7.722 −5.654 −3.573 −4.715

Phosphocholine −5.401 −2.933 −4.565 −4.609
Losartan −5.663 −4.363 −3.48 −3.632

Simvastatin −5.286 −1.434 −1.732 −2.18
Losmapimod −4.687 −3.133 −1.344 −1.582

Casuarinin binding interactions were examined using the Discovery Studio (DS)
visualizer (Figure 1A–H) and were found to have six hydrogen bonds with Tyr(A):35,
Arg(A): 167, Phe(A): 182, Tyr(A): 184, Asp(A): 263, Gln(A): 267 residues of 4YAY protein
(Figure 1A&B), three hydrogen bonds with Lys(A): 249, Ser(A): 251, Arg(A): 256 residues of
4DLI protein (Figure 1C&D), three hydrogen bonds with Asn(A): 567, Arg(A): 571, Glu(A):
719 residues of 1HW9 protein (Figure 1E&F) and two hydrogen bonds with Ala(A): 92, and
Asp(A): 112 residues of 1B09 protein (Figure 1G&H).
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Figure 1. Docked pose of the top-ranked ligand (casuarinin) with target proteins. (A) 3-D interactions
of casuarinin with interacting amino acids of 4YAY; (B) 2-D interactions of casuarinin with interacting
amino acids of 4YAY; (C) 3-D interactions of casuarinin with interacting amino acids of 4DLI; (D) 2-D
interactions of casuarinin with interacting amino acids of 4DLI; (E) 3-D interactions of casuarinin
with interacting amino acids of 1HW9; (F) 2-D interactions of casuarinin with interacting amino
acids of 1HW9; (G) 3-D interactions of casuarinin with interacting amino acids of 1B09 and (H) 2-D
interactions of casuarinin with interacting amino acids of 1B09.
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2.2. MD Simulations Study

Casuarinin was found to have the best binding energy with all selected target proteins;
therefore, complexes of casuarinin with 4YAY, 4DLI, 1HW9, and 1B09 proteins were further
selected for MD simulations for 100 ns to study their protein–ligand interactions. When
performing MD simulations, the root mean square deviation (RMSD) is used to measure
the average change in displacement of a selection of atoms for a particular frame with
respect to a reference frame. It is calculated for all frames in the trajectory. The plots in
Figure 2 show the RMSD evolution of a protein (left y-axis). The docked pose of ligand
and protein as a whole complex is considered the reference starting frame, and then the
movement from this reference position during MD simulation is measured by aligning all
the protein frames obtained during the MD trajectories. For the complexes of casuarinin
with 4YAY (Figure 2A), casuarinin-4DLI (Figure 2B), and casuarinin-1HW9 (Figure 2C),
the protein backbone hovers around the value of RMSD not exceeding 4.8 Å, and for the
casuarinin-1B09 complex (Figure 2D), the value of RMSD stays well under 2.8 Å. Ligand
RMSD (right y-axis, plots in Figure 2) indicates the stability of ligand posture in relation
to the docked position of the ligand in the protein’s binding cleft. “Lig fit Prot” suggests
the RMSD of a ligand for protein backbone. For this, the values slightly larger than the
protein’s RMSD are considered satisfactory, but if the values observed are significantly
larger than the protein’s RMSD, then it is likely that the ligand acquires a different stable
position than the original posture. For casuarinin-4YAY complex (Figure 2A), the Lig fit
Prot stays significantly lower than protein’s RMSD from 0–42 ns and after 70 ns throughout
the simulation, suggesting slight changes in pose between 42 and 70 ns thereafter, the
orientation of ligand remains stable. For the casuarinin-4DLI complex (Figure 2B), the
Lig fit Prot stays significantly lower than the protein’s RMSD throughout the simulation,
suggesting that the orientation of the ligand remains the same. For the casuarinin-1HW9
complex (Figure 2C), the Lig fit Prot value stabilizes after 60 ns, suggesting the casuarinin
changes poses up to 60 ns and then stabilizes to a constant pose. For the casuarinin-1B09
complex (Figure 2D), the Lig fit Prot value stabilizes between 20 and 60 ns, and after 80 ns
throughout the stimulation, suggesting the casuarinin remains stable up to 60 ns and then
slightly changes pose and stabilizing to a constant pose after 80 ns.

The root mean square fluctuation (RMSF) is useful for portraying confined changes
along the protein chain (Figure 3). In the graph, the peaks demonstrate regions of the
protein that vary the most throughout the simulation. Ordinarily, the tails (N-and C-
terminal) change more than other internal regions of the protein. Secondary protein
regions such as alpha helices and beta strands are generally more inflexible and rigid
than unstructured regions and thus vacillate, not exactly like loop-forming protein regions.
α-helical and β-strand areas are featured in red and blue foundations separately. These
districts are characterized by helices or strands that endure over 70% of the whole re-
enactment. Protein deposits that contact ligand is set apart with green-hued vertical bars.
The RMSF of the protein can likewise be related to the exploratory x-beam B-factor (right
Y-hub). Because of the distinction between the RMSF and B-factor definitions, balanced
correspondence ought not to be normal. Notwithstanding, the reproduction results should
resemble crystallographic information. It is seen that both buildings of casuarinin with
4YAY (Figure 3A), 4DLI (Figure 3B), 1HW9 (Figure 3C), and 1B09 (Figure 3D) and trends of
RMSF and B-factor definitions correspond similarly in all protein–ligand complexes.

The interaction of casuarinin with target proteins during the whole course of simula-
tion appears in Figure 4A–D. The RMSD of a ligand with respect to the reference compliance
(ideally, the first frame of the trajectory is used as the reference, and it is viewed as time
t = 0). The radius of gyration (rGyr) evaluates the “extendedness” of a ligand and is equal
to its essential snapshot of idleness. Intramolecular hydrogen bonds (intraHB) show the
number of inner hydrogen bonds inside a ligand atom. Molecular surface area (MolSA)
portrays the sub-atomic surface figure with a 1.4 Å test sweep. This value is proportionate
to a van der Waals surface zone. Solvent accessible surface area (SASA) is the surface zone
of a molecule open for access to water molecules. Every one of these highlights is the
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quality of an individual compound (ligand); subsequently, these estimations of two unique
ligands cannot be compared directly.
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casuarinin with target proteins. (A) 4YAY, (B) 4DLI, (C) 1HW9, (D) 1B09. Color legends: Ca (blue
color), side chains (green color), heavy atoms (yellow color), ligand with protein (dark pink color),
ligand with ligand (pink color).

Molecules 2023, 28, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 3. MD simulation protein–ligand interaction root-mean-square fluctuation (RMSF) profile. 

(A) 4YAY-casuarinin, (B) 4DLI-casuarinin complex, (C) 1HW9-casuarinin complex, (D) 1B09-casu-

arinin complex. 

The interaction of casuarinin with target proteins during the whole course of simu-

lation appears in Figure 4A–D. The RMSD of a ligand with respect to the reference com-

pliance (ideally, the first frame of the trajectory is used as the reference, and it is viewed 

as time t = 0). The radius of gyration (rGyr) evaluates the “extendedness” of a ligand and 

is equal to its essential snapshot of idleness. Intramolecular hydrogen bonds (intraHB) 

show the number of inner hydrogen bonds inside a ligand atom. Molecular surface area 

(MolSA) portrays the sub-atomic surface figure with a 1.4 Å  test sweep. This value is pro-

portionate to a van der Waals surface zone. Solvent accessible surface area (SASA) is the 

surface zone of a molecule open for access to water molecules. Every one of these high-

lights is the quality of an individual compound (ligand); subsequently, these estimations 

of two unique ligands cannot be compared directly. 

Figure 3. Cont.



Molecules 2023, 28, 1046 8 of 19

Molecules 2023, 28, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 3. MD simulation protein–ligand interaction root-mean-square fluctuation (RMSF) profile. 

(A) 4YAY-casuarinin, (B) 4DLI-casuarinin complex, (C) 1HW9-casuarinin complex, (D) 1B09-casu-

arinin complex. 

The interaction of casuarinin with target proteins during the whole course of simu-

lation appears in Figure 4A–D. The RMSD of a ligand with respect to the reference com-

pliance (ideally, the first frame of the trajectory is used as the reference, and it is viewed 

as time t = 0). The radius of gyration (rGyr) evaluates the “extendedness” of a ligand and 

is equal to its essential snapshot of idleness. Intramolecular hydrogen bonds (intraHB) 

show the number of inner hydrogen bonds inside a ligand atom. Molecular surface area 

(MolSA) portrays the sub-atomic surface figure with a 1.4 Å  test sweep. This value is pro-

portionate to a van der Waals surface zone. Solvent accessible surface area (SASA) is the 

surface zone of a molecule open for access to water molecules. Every one of these high-

lights is the quality of an individual compound (ligand); subsequently, these estimations 

of two unique ligands cannot be compared directly. 

Figure 3. MD simulation protein–ligand interaction root-mean-square fluctuation (RMSF) profile.
(A) 4YAY-casuarinin, (B) 4DLI-casuarinin complex, (C) 1HW9-casuarinin complex, (D) 1B09-
casuarinin complex.
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Figure 5 represents how the ligand behaved while interacting with the target proteins
during MD simulation for 100 ns. Protein interactions with the ligand can be monitored
throughout the simulation. These interactions can be categorized by type and summa-
rized, in Figure 5A for the casuarinin-4YAY complex, Figure 5B for the casuarinin-4DLI
complex, Figure 5E for casuarinin-1HW9 complex, and Figure 5F for the casuarinin-1B09
complex. There are four types of protein–ligand interactions: hydrogen bonds, hydrophobic
interactions, ionic interactions, and water bridges. Every connection type contains more
explicit subtypes, which can be investigated through the “simulation interactions diagram”
board. The stacked bar outlines are consistent throughout the direction; for example, an
estimate of 0.8 suggests that collaboration be maintained for 80% of the simulation time.
Qualities greater than 1.0 are possible because some protein aggregates may make multiple
contacts of the same subtype with the ligand. A timetable portrayal of the associations
and contacts (hydrogen bonds, hydrophobic, ionic, water spans) is shown in Figure 5C for
the casuarinin-4YAYcomplex, Figure 5D for the casuarinin-4DLI complex, Figure 5 for the
casuarinin-1HW9 complex, and Figure 5H for the casuarinin-1B09 complex. These figures
depict which deposits communicate with the ligand in every direction. A few residues
make more than one explicit contact with the ligand, which is shown by a hazier shade
of orange, as indicated by the scale on one side of the plot. These plots are very crucial,
suggesting the interaction of casuarinin with amino acids of target proteins throughout
the simulation and that these ligands are not dissociating away from their interacting site;
however, slight variations in the RMSD and RMSF values of the ligand, as showed in
Figures 2 and 3 respectively, suggest that these ligands may be reorienting themselves
during the simulation.

Molecules 2023, 28, x FOR PEER REVIEW 10 of 20 
 

 

Figure 5C for the casuarinin-4YAYcomplex, Figure 5D for the casuarinin-4DLI complex, 

Figure 5 for the casuarinin-1HW9 complex, and Figure 5H for the casuarinin-1B09 com-

plex. These figures depict which deposits communicate with the ligand in every direction. 

A few residues make more than one explicit contact with the ligand, which is shown by a 

hazier shade of orange, as indicated by the scale on one side of the plot. These plots are 

very crucial, suggesting the interaction of casuarinin with amino acids of target proteins 

throughout the simulation and that these ligands are not dissociating away from their 

interacting site; however, slight variations in the RMSD and RMSF values of the ligand, 

as showed in Figures 2 and 3 respectively, suggest that these ligands may be reorienting 

themselves during the simulation. 

 
Figure 5. Cont.



Molecules 2023, 28, 1046 10 of 19Molecules 2023, 28, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 5. Protein–ligand interaction profile of protein–ligand complexes. (A) Interaction profile of 

crucial interacting amino acids of 4YAY with casuarinin. (B) Interaction profile of crucial interacting 

amino acids of 4DLI with casuarinin. (E) Interaction profile of crucial interacting amino acids of 

1HW9 with casuarinin. (F) Interaction profile of crucial interacting amino acids of 1B09 with casua-

rinin. (C) Timeline representation of the interactions of amino acids of 4YAY with casuarinin, (D) 

timeline representation of the interactions of amino acids of 4DLI with casuarinin, (G) timeline rep-

resentation of the interactions of amino acids of 1HW9 with casuarinin, (H) timeline representation 

of the interactions of amino acids of 1B09 with casuarinin. Different types of bar color indicate dif-

ferent types of bonds: hydrogen bond (green), hydrophobic contacts (purple), and water-bridge 

(blue). # in the graphs indicates total number of specific contacts. 

2.3. MM/GBSA Binding Free Energy Calculations 

Post simulation analysis of all four protein–ligand complexes was performed by tak-

ing snapshots of the trajectory profiles developed on performing 100 ns MD simulations, 

as depicted in Table 2. Casuarinin was found to have negative ∆G binding with all target 

proteins. Van der Waals interactions (∆GvdW) of casuarinin with selected target proteins 

were found to be between −12.45 and −68.58 kcal/mol, suggesting that casuarinin tends to 

stay in the vicinity of the interacting amino amides of target proteins. Coulomb energy 

was found to be negative for all complexes, indicating that casuarinin has a low potential 

energy with all target proteins and suggesting that protein–ligand complexes are more 

stable. In addition to the total energy, the contributions to the total energy from different 

components such as hydrogen-bonding correction, lipophilic energy, and van der Waals 

energy are provided in Table 2. 

  

Figure 5. Protein–ligand interaction profile of protein–ligand complexes. (A) Interaction profile of
crucial interacting amino acids of 4YAY with casuarinin. (B) Interaction profile of crucial interacting
amino acids of 4DLI with casuarinin. (E) Interaction profile of crucial interacting amino acids of 1HW9
with casuarinin. (F) Interaction profile of crucial interacting amino acids of 1B09 with casuarinin.
(C) Timeline representation of the interactions of amino acids of 4YAY with casuarinin, (D) timeline
representation of the interactions of amino acids of 4DLI with casuarinin, (G) timeline representation
of the interactions of amino acids of 1HW9 with casuarinin, (H) timeline representation of the
interactions of amino acids of 1B09 with casuarinin. Different types of bar color indicate different
types of bonds: hydrogen bond (green), hydrophobic contacts (purple), and water-bridge (blue). # in
the graphs indicates total number of specific contacts.

2.3. MM/GBSA Binding Free Energy Calculations

Post simulation analysis of all four protein–ligand complexes was performed by taking
snapshots of the trajectory profiles developed on performing 100 ns MD simulations, as
depicted in Table 2. Casuarinin was found to have negative ∆G binding with all target
proteins. Van der Waals interactions (∆GvdW) of casuarinin with selected target proteins
were found to be between −12.45 and −68.58 kcal/mol, suggesting that casuarinin tends
to stay in the vicinity of the interacting amino amides of target proteins. Coulomb energy
was found to be negative for all complexes, indicating that casuarinin has a low potential
energy with all target proteins and suggesting that protein–ligand complexes are more
stable. In addition to the total energy, the contributions to the total energy from different
components such as hydrogen-bonding correction, lipophilic energy, and van der Waals
energy are provided in Table 2.
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Table 2. MM/GBSA profiles of casuarinin while interacting with four targeted proteins.

Target Proteins ∆GBind
(kcal/mol)

∆GvdW
(kcal/mol)

∆GCoulomb
(kcal/mol)

∆GH-bond
(kcal/mol)

∆GLipo
(kcal/mol)

∆GSolv GB
(kcal/mol)

4YAY −79.43 −68.58 −89.27 −6.26 −24.07 103.86

4DLI −14.72 −12.45 −44.26 −1.35 −4.83 48.91

1HW9 −34.20 −32.32 −44.05 −1.81 −7.76 50.75

1B09 −19.68 −14.01 −25.17 −1.63 −5.26 25.01

Coulomb—Coulomb energy. H-bond—hydrogen-bonding correction. Lipo—lipophilic energy, vdW—van der
Waals energy.

2.4. Assessment of Drug Likeness and Toxicity Prediction

Lipinski’s rule of five and the ADMET prediction of the top-ranked compound were
studied to understand the amenability of pharmacokinetic properties and toxicity proper-
ties. Lipinski’s rule of five and the toxicity prediction of casuarinin and drugs are shown in
Table 3. Casuarinin was found to have drug-likeness violations, but toxicity parameters
were successfully met with a lack of hepatotoxicity, carcinogenicity, and cytotoxicity as that
of drugs. The predicted LD50 (mg/kg) for casuarinin was 2170; hence, it was categorized as
toxicity class-5 by Protox-II. However, the predicted LD50 (mg/kg) for drugs with toxicity
classes III-VI was found to be between 300 and 12,900.

Table 3. Drug-likeness and toxicity prediction of top-ranked phytocompound from T. arjuna and
standard drugs.

Compounds Drug-Likeness Toxicity Prediction

cLogP
(<5)

nrot
(<5)

MW
(<500 Da)

HBD
(<5)

HBA
(<10)

Lipinski
Rule

Hepato-
Toxicity

Carcino-
Genicity

Cyto-
Toxicity

LD50
(mg/kg)

Casuarinin −3.23 4 936.65 16 26 No No No No 2170
(Class V)

Lisinopril −1.46 13 405.49 4 7 Yes No No No 8500
(Class VI)

Phosphocholine −4.54 4 184.15 2 4 Yes No No No 12,900
(Class VI)

Losartan 3.36 8 422.91 2 5 Yes No No No 300
(Class III)

Simvastatin 3.77 7 418.57 1 5 Yes No No No 1000
(Class IV)

clogP—measure of molecular hydrophobicity; nrot—number of rotatable bonds; MW—molecular weight;
HBA—H-bond acceptor; HBD—H-bond donor; LD50—lethal dose.

3. Discussion

In pharmaceutical research, computational strategies are of great value as they help in
the identification and development of novel promising compounds especially by molecular
docking methods [34,35]. These methods have been used by various research groups
to screen potential novel compounds against a variety of diseases [36]. Angiotensin-
converting enzyme (ACE) has a significant role in the regulation of blood pressure and
ACE inhibition with inhibitory peptides is considered a major target to prevent hyper-
tension [37]. Several studies have used a docking approach to inhibit the expression
of the ACE protein with natural compounds. Quercetin glycosides showed optimum
binding affinity with angiotensin-converting-enzyme (−8.5 kcal mol−1) as compared to
enalapril (−7.0 kcal mol−1), thereby indicating the role of quercetin glycosides as a potential
candidate to treat hypertension, myocardial infarction, and congestive heart failure [38].
Similarly, methyl gallate and quercetin 3-O-β-D-glucopyranosyl-(1′′′−6′′)-α-rhamnoside
from Phyllanthus niruri herb have been reported as potent ACE inhibitors [39]. Impertonin
from whole fruit extract of Aegle marmelos showed strong interaction with HMG-CoA reduc-
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tase enzyme [40]. Secondary metabolites such as dichloroacetic acid 2, 2-dimethylpropyl
ester, 1, 6, 10-dodecatriene-3-ol, 3, 7, 11-trimethyl-[S-(Z)]-, isopropyl acrylate, and 3, 3-
dimethylacryloyl chloride formed strong binding with active sites of HMG CoA reduc-
tase [41].

Talapatra et al. [42] reported that phytocompounds from Calotropis procera such as
methyl myrisate (−3.0 kcal mol−1) and methyl behenate (−3.2 kcal mol−1), β-sitosterol
(−5.6 kcal mol−1), uzarigenin (−5.5 kcal mol−1) and anthocyanins (−5.4 kcal mol−1)
showed good binding with CRP receptors. Caffeic acid had remarkable interaction with
proteins involved in inflammatory response (COX-2, COX-1, FXa and integrin αIIbβIII),
thereby, having the potential to be developed as cardiovascular-safe anti-inflammatory
medicine [43]. Khan [44] studied the interactions between 4YAY (Angiotensin-I) recep-
tor protein with phytocompounds from Alangium salvifolium. The compound alangum
1 [Alangium1(4(benzoyloxy) methyl-2hydroxyphenoxy tetrahydorxy hexoxone 1,2,3,4,5,
pentaium] showed the best glide docking XP score −8.5 kcal/mol binding energy value
with best fit simulation study. Study conducted by Liu et al. [45] identified novel ACE
inhibitory peptides Ala-Val-Lys-Val-Leu (AVKVL), Tyr-Leu-Val-Arg (YLVR), and Thr-Leu-
Val-Gly-Arg (TLVGR) with IC50 values of 73.06, 15.42, and 249.3 µM, respectively. All
peptides inhibited the ACE activity via a non-competitive mode. The binding free ener-
gies of AVKVL, YLVR, and TLVGR for ACE were −3.46, −6.48, and −7.37 kcal mol−1,
respectively. Docking of HMG-CoA (PDB ID: 3CCZ) with guajavarin, was found to be least
binding energy (−100.092 kcal mol−1) resulted in formation of four hydrogen bonds with
the residues and amino acids SER 684 (3.2 Å), LYS692 (2.4 Å), ASP 690 (2.7 Å), and LYS 691
(3.1 Å) respectively [46]. Study on phytocompounds from T. arjuna with phosphodiesterase
5A, sodium-potassium pump, and β-adrenergic receptor showed that casuarinin showed
multiple inhibitions on phosphodiesterase 5A and sodium-potassium pump, whereas
pelargonidin on phosphodiesterase 5A and β-adrenergic protein targets [47]. Recently,
Murad et al. [48] reported binding of curcumin, quercetin, resveratrol, and eucalyptol
with active sites of chemokine (C-X-C motif) receptor-4 (CXCR4) and CXCR7 receptors.
Although all compounds demonstrated drug-like properties, but eucalyptol has promising
potential because it can be used by inhalation or skin massage.

4. Materials and Methods
4.1. Retrieval of Proteins

With the help of a literature review, we narrowed our focus to four proteins that have
been linked to different cardiovascular disorders (Table 4). In order to better understand
how our targets work, we accessed their three-dimensional crystal structures from the
RCSB protein data library (www.rcsb.org, accessed on 10 November 2022) (Figure 6). The
retrieved structures were pre-processed using Protein Preparation Wizard of Schrodinger
suite (Academic licence, Schrodinger Suite, 2014 founded by Richard A. Friesner, and
William A. Goddard III, New York, NY, USA). Furthermore, restrained minimization was
carried out to obtain a geometrically stable protein conformation. The receptor grid was
generated at the ligand-binding site of selected protein targets by selecting the position
of the co-crystal ligands. This defined grid in the receptor structure was used as the
docking site for the virtual screening of selected phytocompounds. The details of grid box
coordinates of selected target proteins are summarized in Table 4.

www.rcsb.org
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Table 4. Details of target proteins and grid box coordinates for docking.

Target Proteins Amino Acids Resolution Chain Selected for Docking Grid Box Coordinates

Human Angiotensin receptor
(PDB ID: 4YAY) 412 2.90 Å Chain-A x = −22.32; y = 6.81; z = 33.81

P38 Mitogen-activated
protein kinase (MAPK, PDB

ID: 4DLI)
360 1.91 Å Chain-A x = 24.22; y = −16.74; z = −10.1

HMG-Co A reductase
(PDB ID: 1HW9) 467 2.33 Å Chain-A x = −5.94; y = −0.9; z = −19.46

Human C-reactive Protein
(PDB ID: 1B09) 206 2.50 Å Chain-A x = −5.94; y = −0.9; z = −19.46
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4.2. Ligand Preparation

The selected phytochemicals and synthetic drugs were obtained from Pubchem
(https://pubchem.ncbi.nlm.nih.gov/, accessed on 10 November 2022). These selected
molecules were pre-processed and conformers were generated using Schrodinger Ligprep
(LigPrep version 3.2, Schrodinger in 2014 by Richard A. Friesner, and William A. Goddard

https://pubchem.ncbi.nlm.nih.gov/
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III, New York, NY, USA). Pre-processing of ligands included the following tasks: conversion
of 2D structures to 3D format, addition of hydrogen atoms, generation of tautomers and
ionization states, neutralization of charged groups, and finally geometry optimization of
the molecule using OPLS 2005 force field [49] (Table 5).

Table 5. Major phytocompounds present in various parts of T. arjuna for docking studies.

Sr. No Compounds/Drugs Formula Compound ID

1 Arjunetin C36H58O10 21152828
2 Arjunic acid C30H48O5 15385516
3 Arjunolic acid C30H48O5 73641
4 Arjunone C19H20O6 14034821
5 Arjungenin C30H48O6 12444386
6 β-sitosterol C29H50O 222284
7 Casuarinin C41H28O26 13834145
8 Ellagic acid C14H6O8 5281855
9 Ethyl gallate C9H10O5 13250

10 Gallic acid C7H6O5 370
11 Luteolin C15H10O6 5280445
12 Quercetin C15H10O7 5280343
13 Terminic acid C30H48O4 132568257
14 (+)-Catechin C15H14O6 9064
15 Rutin C27H30O16 5280805
16 Kaempferol C15H10O6 5280863
17 Leucocyanidin C15H14O7 71629
18 3-O-Methylellagic acid 3’-rhamnoside C21H18O12 5319609
19 Oleanolic acid C30H48O3 10494
20 Phosphocholine (PC) C5H15NO4P+ 1014
21 Simvastatin C25H38O5 54454
24 Lisinopril C21H31N3O5 5362119
25 Losartan C22H23ClN6O 3961
26 Losmapimod C22H26FN3O2 11552706

4.3. Molecular Docking

Molecular docking of selected phytochemicals of T. arjuna with target proteins was per-
formed using Glide (grid-based ligand docking) program incorporated in the Schrödinger
molecular modeling package with extra precision (XP). Extra-precision (XP) docking and
scoring is a more powerful and discriminating method that takes longer to perform than SP.
XP is intended to be utilized on ligand postures that have been proven to be high-scoring
utilizing SP docking. XP also implements a more complex scoring algorithm that is “harder”
than the SP GlideScore, with higher criteria for ligand–receptor form complementarity. This
filters out erroneous positives that SP allows through. Because XP can penalize ligands that
do not match well to the particular receptor conformation employed, we propose docking
to many receptor conformations whenever feasible. The best pose based on binding en-
ergies for each ligand–protein interaction was further analyzed in Discovery Studio (DS)
visualizer (Accelrys, San Diego, USA). From the interaction profile, the ligands showing
high binding energy were further considered for the molecular dynamic simulations.

4.4. Molecular Dynamics Simulations

In order to investigate the structural stability of the receptor–ligand complexes that
were formed by molecular docking, the Desmond programme version 2.0 (academic version,
D. E. Shaw Research, New York, US) was utilized [50–53]. TIP3P water model with cubic
periodic box including simple point charge (SPC) (10Å×10Å×10Å) was used to prepare
the system [54], along with optimized potentials for liquid simulations (OPLS) all-atom
force field 2005. The system was then neutralized by introducing the required amount of
sodium ions. For the initial energy minimization phase and pre-equilibration in several
restricted steps, receptor–ligand complexes were made available. The OPLS 2005 force field
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parameters, which included a relaxation time of 1 ps at constant temperature of 300 K and
constant volume, were taken into account with the periodic boundary conditions in the NPT
ensemble system in order to perform MD simulations [55,56]. The Smooth Particle Mesh
Ewald (PME) approach (with a 10−9 tolerance limit), with a cut off distance of 9.0, was used
to analyze protein structures every 1 ns. An average structure from the MD simulation that
corresponded to the production phase was used to calculate the stability. Additionally, the
histogram for torsional bonds, the radius of gyration (Rg), the root means square deviation
(RMSD), and the root mean square fluctuation (RMSF) were used to examine structural
alterations in relation to the dynamic role of the receptor–ligand complexes [57–59].

4.5. Binding Free Energy Calculations

The binding free energies of protein–ligand complexes have been calculated using MM-
GBSA and molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) [60,61]. As a
result, the PRIME module of Maestro 11.4 and the OPLS-2005 force field were employed
to calculate the binding energy of the best-docked ligand–receptor complex using the
equation below:

∆GBind = ∆EMM + ∆GSolv + ∆GSA (1)

where ∆EMM is the difference of the minimized energies of the protein–ligand complex,
while ∆GSolv is the difference between the GBSA solvation energy of the protein–ligand
complexes and the sum of the solvation energies for the protein and ligand. ∆GSA indicates
the surface area energies in the protein–ligand complexes and the difference in the surface
area energies for the complexes [62].

4.6. Evaluation of Drug-Likeness and ADME/Toxicity Properties

Lipinski’s rule (rule of five, RO5) was considered the primary factor for screening of the
molecules, and it was evaluated using the SWISS ADME web server
(http://www.swissadme.ch/, accessed on 15 November 2022). Further, the toxicity of
selected compounds was analyzed using the Protox-II tool to ascertain their risk of dru-
gability [63]. Figure 7 shows the workflow scheme adapted in the present investigation.
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5. Conclusions

In the present study, we targeted various cardiovascular proteins through an in-silico
method using phytochemicals with a rationale to block their interactions. This approach
can help block the disease target proteins to prevent cardiovascular diseases. This study
found prominent interactions of casuarinin with multiple protein targets and can be used
as a promising compound to treat different cardiovascular diseases. MD simulations were
depicted as the best binding stability with correlative motions. Moreover, the distribution
of hydrogen bonds and the energy contribution of all simulated complexes of casuarinin
with target proteins were calculated through binding free energy. Most of the studies have
targeted one or two cardiovascular targets, but in our study, we have selected multiple
proteins, and found that casuarinin from T. arjuna which shows strong binding against all
the proteins can be used to develop broad spectrum cardioprotective drug with no adverse
effects. However, further in vitro and in vivo studies are needed to validate these results.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28031046/s1, Figure S1: Docked pose of the
native ligand with target proteins; Table S1: Binding energy of re-docked ligands from T. arjuna
against targeted protein receptors.
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