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T
he ability to track targets is essential in many applications. Well-established military
applications include missile defense and battlefield situational awareness. Civilian
applications are ever-growing, ranging from traditional applications such as air traf-
fic control and building surveillance to emerging applications like supply chain
management and wildlife tracking. In all of these applications, target tracking

addresses the problem of combining sensed data and target history to provide accurate and
timely knowledge of the location of one or more moving objects.

Current technology has enabled the development of sensor networks, distributed ad-hoc net-
works of hundreds or thousands of nodes, each capable of sensing, processing, and communica-
tion. Much of the theory of tracking was developed for centralized processing of data from a
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relatively small number of radars or similar large devices
endowed with plenty of power and high-bandwidth communica-
tions. Sensor networks demand a somewhat different approach,
focused on scalable performance and the management of limit-
ed resources.

Tracking in distributed sensor networks has gained popularity
for several major reasons: 1) As the cost of sensors and devices
rapidly decrease, they can be deployed in large numbers to
achieve wide area coverage, and
their increased density allows
sensors to reside far closer to the
objects being sensed, improving
sensing quality and discrimina-
tion; 2) dense sensors enable overlapping coverage, which may
result in increased robustness and improved accuracy; 3) diverse
sensing modalities provide complementary information; for
example, certain types of sensors (e.g., laser range-finders) pro-
vide good ranging data, while others (e.g., microphone arrays)
provide good directional data, and yet others (e.g., cameras) are
ideal for object classification. This diversity in sensing modali-
ties can be exploited to provide accurate and rich information
about the target; and 4) spatial sensing diversity greatly miti-
gates the effects of obstructions on line-of-sight sensors. 

In this article, we provide a survey of techniques for track-
ing multiple targets in distributed sensor networks and intro-
duce some recent developments. In the traditional
centralized setting, multitarget tracking (MTT) is difficult.
There is a combinatorial explosion in the space of possible
multiple target trajectories due to the uncertainty in the
association of observed measurements with known targets at
each timestep. This data association problem has been the
primary focus of the MTT literature. Tracking is also compli-
cated by the fact that, for many sensing modalities, targets in
close proximity tend to interfere with sensing one another.
Compensating for this problem often requires sensing in a
higher-dimensional joint space, again increasing computa-
tional complexity. Due to the above challenges, MTT is still
an open problem even in centralized systems. 

In distributed sensor networks, we have the additional
challenge of mapping an MTT solution onto a sensor network
platform with diverse resource limitations, including power,
sensing, communication, and computation. Because data col-
lection, processing, and dissemination all come at the cost of
resource expenditure, MTT algorithms must make judicious
use of resources while simultaneously addressing computa-
tional complexity issues. The more recent concepts intro-
duced later in this paper are techniques for addressing these
problems by appropriately partitioning the problem into local
tasks tracking single targets, which may periodically be com-
bined into small sets of interfering targets. This is combined
with other techniques which maintain long-term identity
information, explicitly tracking any unresolved confusion
between targets and other approaches to resource manage-
ment based on metrics of the expected usefulness of sensor
data for each task. 

In this article, we begin by reviewing single target tracking
in distributed sensor networks. The tracking and resource
management issues can be readily extended to MTT. We also
briefly review the MTT problem and describe the traditional 
approaches in centralized systems. We then focus on MTT in
resource-constrained sensor networks and present two dis-
tinct example methods demonstrating how limited resources
can be utilized in MTT applications. The first example distrib-

utes MTT in a sensor network
with limited communication and
computation. The main idea is to
maintain localized, compact tar-
get representations at the cost of

mixing target identities. The second example extends the MTT
problem to scenarios where sensor resources are scarce rela-
tive to the number of targets or to the desired area of cover-
age. In this situation, sensing resources need to be
multiplexed intelligently to maximize the overall perform-
ance. Finally, we discuss the most important remaining prob-
lems and suggest future directions.

TARGET TRACKING IN SENSOR NETWORKS

ESTIMATION ALGORITHMS FOR TARGET TRACKING
Tracking can be formulated as obtaining an estimate of target
state x t from a measurement history z t. Here, z t denotes the
collection of measurements from initial time to the time t, i.e.,
z t = {z(0), z(1), · · · , z t}. Without loss of generality, we assume
tracking is in a two-dimensional (2-D) plane, i.e., x t ∈ X , and
X = R2 or X = R4 if velocity is included. Extending the track-
ing techniques presented in this article to three-dimensional (3-
D) space or more general state spaces is straightforward.

For simplicity of illustration, we adopt the common assump-
tion that the target’s dynamics are characterized by a stationary
Markov model p(x t|x t−1). Each sensor measurement z t is
related to the target state x t via a given observation model
p(z t|x t) and are conditionally independent given the state.
Under these assumptions, tracking can be performed by sequen-
tial Bayesian filtering:

p(x t|z t) ∝ p(z t|x t) ·
∫
X

p(x t|xt−1) · p(xt−1|zt−1)dx t−1. (1)

The integral performs a prediction step, computing the distribu-
tion of likely states at time t from the target belief at t − 1.
Then, the multiplication by the likelihood incorporates the con-
tribution of observation z t.The filter equation (1) is recursiven
in the sense that the current filter distribution p(x t|z t) is com-
puted from the previous filter distribution p(x t|zt−1) and the
new observation z t. 

The well-known Kalman filter is a special case of sequential
Bayesian filtering under the assumption that the object
dynamics and the observation model are both linear in x t and
the uncertainty in both models are Gaussian. Under these two
assumptions, the posterior belief p(x t|z t) is also Gaussian.
Because Gaussians are completely characterized by their mean
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and covariance, the Kalman filter equations update the mean
x̂ � E [x t|z t] and covariance P � E [(x t − x̂)(x t − x̂) T]
recursively as measurements are observed. The Kalman filter
is computationally efficient, but its performance is limited by
its modeling assumptions. Variations such as the extended
Kalman filter (EKF) and the unscented Kalman filter (UKF) [2]
have been proposed to push this beyond the linear Gaussian
assumptions. Another alternative gaining popularity recently
is the particle filter [3], a nonparametric Monte Carlo sam-
pling-based method, representing a probability distribution as
a set of weighted point samples, {xi, wi}n

i =1, referred to as a
particle set. The particle filter
algorithm updates the sample
points {xi} and their weights
{wi} based on the target dynam-
ics p(x t|xt−1) and the observa-
tion likelihood model p(z t|x t).
This representation has the flexibility to accommodate nonlin-
ear dynamics and multimodal observation models but at the
cost of more computation and storage requirements. See [3]
for more details.

MANAGING LIMITED SENSOR NETWORK RESOURCES
We categorize sensor network resources into four broad cate-
gories: power, sensing, communication, and computation. For
example, imagine a typical sensor network consisting of a
large number of battery operated tiny sensor nodes, each with
a wireless antenna and inexpensive CPU, mixed with a smaller
number of high-end sensors. Prolonging the period of time
these sensors can operate is desirable, so power is likely to be
a key constraint. Sensors (especially the high-end ones) may
need to be shared among multiple coexisting applications.
The wireless communication medium has limited throughput
capacity [4], so applications must limit their communication
requirements to avoid overloading the network. Finally, tiny
inexpensive sensor nodes are often limited in computational
capability, so developers may need to implement computa-
tionally lightweight algorithms that sacrifice sensing quality
but take advantage of the distributed computation resources
of the sensor network. Here we give a high-level sampling of
the quickly accumulating sensor network literature and
describe a few examples of target tracking under power, sens-
ing, communication, and computation constraints. 

POWER CONSERVATION
Sleep scheduling has been a major topic for power conserva-
tion. The basic idea is that sensors can be selectively ordered to
sleep or wake up. One idea is to develop a special low-power
wakeup channel to wake up a sleeping node, but Fuemmeler
and Veeravalli [5] have made the argument that these wakeup
channel ideas are impractical given the current state of tech-
nology. They propose an alternative strategy where the sensor
network plans its sleep schedule based on the available infor-
mation about target locations and trajectories. In their
approach, sleep scheduling is formulated as a partially observ-

able Markov decision process (POMDP) problem and solved via
dynamic programming.

Example 1
Power conservation for surveillance and tracking. In [6], two
operation modes are defined for target tracking: 1) a surveil-
lance mode when there is no target present and 2) a tracking
mode when a target emerges. In the surveillance mode, a set of
novel metrics for optimality is proposed, such as the quality of
surveillance (QoS), defined as the inverse of the expected length
that a target can travel without being detected. Optimal sleep

schedules have been derived to
minimize power usage while
maintaining a level of QoS. This is
similar to the concept of main-
taining peripheral awareness in
the MTT example shown in a fol-

lowing section. Similar tradeoffs have been proposed in [7]. In
the tracking mode, the sensor network has more detailed infor-
mation about where the target is and can infer where the target
is going to be. Hence, nodes can schedule their sleep with better
temporal and spatial precision. This idea is common and found
in various tracking schemes such as in [8] and [9]. �

SENSOR TASKING
The idea of sensor tasking is to activate the minimum num-
ber of sensors while maintaining an acceptable level of sens-
ing quality [10]–[12]. We give an example of sequential
sensor selection, which tasks a single sensor at a time.
Extensions of this idea include tasking a cluster of sensors
within a local scope. 

Example 2
Information-driven sensor querying (IDSQ) [10] is a sequential
tracking scheme where, at any given point of time t, there is
only one sensor active. All the other nodes remain in power-con-
serving sleep states. The active sensor takes a measurement and
updates the belief p(x t|z t). It then decides which sensor in its
neighborhood is the the most informative, hands the belief off to
that sensor, and returns to the sleep state. The sensor receiving
the handoff becomes active, and this operation repeats.
Intuitively, by selecting the most informative neighbor, the
active sensor is seeking good quality data. In [10], the sensor
selection criterion is described as 

kIDSQ = arg max
k∈N

I
(

X (t+1); Z (t+1)

k

∣∣∣Z t = z t
)

, (2)

where N is the neighborhood, and I(·) measures the mutual
information between a sensor’s measurement and the underly-
ing target state. This criterion seeks the best complementary
data: i.e., the sensor whose measurement z(t+1)

k combined with
the current measurement history z t provides the most informa-
tion about the target location x(t+1). In this way, target tracking
takes advantage of sensing modality and spatial diversity while
keeping sensor usage to a minimum. �
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EFFICIENT COMMUNICATION
Efficient communication has always been a major focus of net-
working research. Recent advances in ad-hoc wireless network-
ing have generated a large body of literature that is also
applicable to sensor networks. In this article, we will not focus
on such pure communication problems, but rather on efficient
communication specifically in support of tracking applications.
In sensor networks, communication is often not the end goal
but rather a tool serving certain applications. Hence, communi-
cation needs to be optimized not just with respect to its own
metrics but also with respect to the application performance.
For example, in the survey paper summarizing the interplay
between signal processing and networking [13], a few tech-
niques to optimize communication to support detection and
parameter estimation are presented (see the references therein).
Representative work that optimize communication efficiency in
target tracking include [7], [11], [14], and [15]. 

DISTRIBUTED COMPUTATION
Sequential Bayesian filtering (1) is recursive and can be imple-
mented in a distributed fashion. One consequence of distributed
tracking is that one target can be tracked by multiple sensors
(or multiple clusters of sensors) independently. For example,
two target beliefs are derived, i.e., p(x t|z t

S1
) and p(x t|z t

S2
), each

from a sensor set (S1 and S2, respectively). Suppose we know
that the two beliefs correspond to the same target. Now, how
should one consolidate the two beliefs into one? This is known
as the distributed fusion problem and has been addressed in a
number of publications. The basic idea is to discount the contri-
bution from overlapped sensors [16] if the overlap between S1

and S2 is known. 

TRACKING MULTIPLE TARGETS
MTT is not a trivial extension of single target tracking but rather
a challenging topic of research. The foremost difficulty is the
problem known as the data association problem. To elaborate,
consider the simple case of tracking two targets, shown in
Figure 1(a). At time t − 1, say that target A is believed to be
located at point xt−1

A , and that target B is believed to be located
at point xt−1

B , as shown in Figure 1(a).
At time t, the system observes two
measurements z t

1 and z t
2 . The extra

ambiguity in multiple target tracking is
the question of which measurement was
generated by target A and which was
generated by target B. Assuming that
each target will generate exactly one
measurement and there are no false
alarms, there are two possible associa-
tions between tracks and measure-
ments: z1 corresponding to target A and
z2 corresponding to B, shown in Figure
1(b); or vice versa as in Figure 1(c). 

If we generalize to the case of N tar-
gets generating exactly N measure-

ments with no false alarms or missed detections, the number of
possible associations is combinatoric, N !, and becomes compu-
tationally unwieldy for large N. Furthermore, if we consider the
number of possible associations over a window of T scans, the
number of possible associations is exponential in the number of
scans, (N !) T. The computational complexity is even worse when
we relax the assumption to allow false alarms, missed measure-
ments, and multiple measurements to be generated from each
target. 

GENERAL BAYESIAN FORMULATION OF MTT
MTT is an estimation problem with data association ambiguity.
We can formulate MTT rigorously as a sequential Bayesian filter-
ing problem of a Markov process with noisy measurements, just
as in the single target case in the previous section. The main dif-
ference is that the state space and observation space are more
complex. This general formulation provides a theoretical foun-
dation to understand how the various techniques found in the
literature are approximate solutions.

The analog of the single target state x ∈ X is the multitarget
state of N targets, which can be represented by an N-tuple
(x1, . . . , xN) ∈ X N . Since we do not know the number of tar-
gets, the state space is given by

S = ∅ ∪ X ∪ X 2 ∪ X 3 ∪ · · · ,

which is the union of the possibility that there are no targets
(∅), that there is one target (X ), that there are two targets (X 2),
and so on for any finite N number of targets (X N). 

The transition model from a multitarget state st−1 at time
t − 1 to s t at time t can be modeled by a transition probability
p(s t|s t−1), which is analogous to the single target dynamics
model with extra modeling of how targets enter and disappear.
To illustrate, one of the simplest examples of specifying this
transition probability is given in [17], which is derived from
the assumptions that all targets follow the same motion
model p(x t|x t−1), the probability that a new target enters the
scan area is given by pn ∈ [0, 1], the distribution of a new tar-
get’s location is given by pnew(x), and the probability that a
target disappears is given by pd ∈ [0, 1]. Application-specific

[FIG1] Data association example. (a) Two target (circles) with two measurements (triangles)
to associate. (b) and (c) Two possible data associations when each target generates exactly
one measurement and there are no false alarms.
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information like how targets enter and exit an area can be
encoded into p(s t|s t−1), which makes this formulation appli-
cable to a wide range of scenarios.

In the multitarget case, measurements are a collection of
observations generated by the multiple targets and false alarms.
Thus, if Z is the measurement space of a single target, the
space of measurements in the multitarget case is the collection
of all subsets of Z , which we will denote by M. Then, the
measurement model is given by a likelihood function p(m t|s t),
where m t is the observation collection taking values in M. In
the two target examples of Figure 1, the multitarget measure-
ment is the set m t = {z t

1, z t
2}. The data association problem

arises because the space of measurements is unordered subsets
of points, which do not reveal the association between target
and measurement. 

Theoretically, the standard recursive Bayesian filtering tech-
niques can be applied directly to the above general Bayesian for-
mulation for multitarget tracking by computing the filtered
distribution p(s t|m0, . . . , m t). However, computing the fil-
tered distribution over the multitarget state space S and dealing
with the combinatorial explosion of possible states due to the
data association ambiguity is difficult in practice. Therefore, the
main challenge of realizing an MTT system is to manage the
computational complexity of the problem while still providing
reasonable tracking performance.

OVERVIEW OF THE TRADITIONAL MTT APPROACHES
No discussion on multiple target tracking would be complete
without mentioning the following two predominant approaches.

Multiple hypothesis tracking (MHT) was proposed by Reid
[18]. The idea is to exhaustively enumerate recursively the set
of all associations, called hypotheses, of measurements to
existing tracks, new tracks, and false alarms while respecting
the mutual exclusion association constraint. An advantage of
this approach is that the number of tracks need not be known
a priori because track initiations and terminations are explicit-
ly hypothesized. Furthermore, data association decisions are
effectively delayed until more data is received since multiple
hypotheses are kept. Thus, MHT can address low detection
probability, high false alarm rates, initiation and termination
of tracks, and delayed measurements. However, this approach
suffers from large storage space requirements and exponential-
ly increasing processing, so that a key part of making this
approach practical is to prune bad hypotheses or combine sim-
ilar hypotheses as in [19]. 

The joint probabilistic data association filter (JPDAF) [20]
was proposed by Fortmann, Bar-Shalom, and Scheffe. The
approach is to update each individual track state with weighted
combinations of all measurements. Thus, the key part of this
approach is computing the probability that measurements can
be associated with tracks so that the mutual exclusion con-
straint is respected. A disadvantage of this approach is that the
number of targets needs to be known a priori.

Both approaches are approximations of the true filtered
distribution p(s t|m0, . . . , m t) .  MHT is a brute force

approach, which can only approximate the true filtered distri-
bution due to the need for pruning and/or combining
hypotheses to limit the combinatorial explosion. On the other
hand, JPDAF makes soft data association decisions by incorpo-
rating a weighted effect of all measurements to each track,
which avoids the combinatorial explosion of MHT but suffers
in track quality.

The relationship between JPDAF and MHT has been under-
emphasized in the literature, although there was brief men-
tion of this relationship as early as Reid’s original paper [18].
JPDAF is a particular way of combining the multiple hypothe-
ses generated by MHT into a single hypothesis at each time
step and, therefore, can be viewed as an instance of MHT. We
will elaborate on this relationship now because all approaches
to data association can be viewed as instances of MHT, and the
idea of combining hypotheses is the conceptual foundation
behind new resource-aware representations to be discussed in
the following section.

Example 3—Relationship Between MHT and JPDAF
Consider the two target cases, where track A and B are
independently  distr ibuted according to pt−1

A (x) and
pt−1

B (x) ,  respectively.  There are two measurements
observed at time t given by z t

1 and z t
2. Assuming that there

are no false alarms or missed measurements for the sake of
simplifying the discussion, there are two hypotheses gener-
ated by MHT.

■ H0:  track A associates with z t
1, and track B associates with z t

2
■ H1:  track A associates with z t

2, and track B associates with z t
1

To compute the association probabilities, we must first pre-
dict each track’s belief forward to the current time t,

p̂ t
j (x) =

∫
X

p(x t|xt−1)pt−1
j (xt−1)dxt−1

for j ∈ {A, B}. Then, we can compute the probability that track
A and B generate z t

1 and z t
2 for each hypothesis. 

γ0 = P
(

A generates z t
1 and B generates z t

2

)
(3)

=
∫
X 2

P
(

z t
1

∣∣∣xA

)
· P

(
z t

2

∣∣∣xB

)
· p̂ t

A(xA) · p̂ t
B(xB)dxAdxB (4)

γ1 = P
(

A generates z t
2 and B generates z t

1

)
(5)

=
∫
X 2

P
(

z t
2

∣∣∣xA

)
· P

(
z t

1

∣∣∣xB

)
· p̂ t

A(xA)

· p̂ t
B(xB)dxAdxB. (6)

Since we are given that the observed measurement is the set
{z t

1, z t
2},the association probabilities are given by the following:

P(H0) = γ0

γ0 + γ1
, P(H1) = γ1

γ0 + γ1
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Note that these association
probabilities are computed based
solely on the the measurement
model P(Z|X) and the predicted
distributions of the tracks p̂ t

A(x)
and p̂ t

B(x) .  Thus, the target
dynamics play a key role in
determining the association
probabilities. 

Under each hypothesis, the
track states of A and B can be
updated using Bayes’ Rule with
the measurement that is associated with it. In particular, the
belief of track A under hypothesis H0 and H1 is given by

pt
A(x|H0) = α0 · P

(
z t

1

∣∣∣x) · p̂ t
A(x),

pt
A(x|H1) = α1 · P

(
z t

2

∣∣∣x) · p̂ t
A(x),

where α0 and α1 are the usual normalization constants. Note
that the track state is updated with different measurements
under different hypotheses. Thus, MHT maintains a separate
track state under each hypothesis. 

JPDAF combines these multiple hypotheses into a single one
by mixing the beliefs of the same track over all hypotheses.

pt
JPDAF, j(x) = pt

j (x|H0) · P(H0) + pt
j (x|H1) · P(H1)

for each track j ∈ {A, B}. This marginalization by track is the
soft data association approach of JPDAF. In the following sec-
tion, this idea of combining hypotheses is expanded to new tech-
niques of generalized marginalization for the purposes of
minimizing resource usage.                                                         �

NEW GENERATION OF MTT APPROACHES
Monte Carlo-based sampling methods and graphical models have
spawned new techniques to deal with the computational com-
plexity of the data association problem. Rather than generating
hypotheses, these approaches search the space of hypotheses. We
describe a Monte Carlo-based method called Markov chain Monte
Carlo data association (MCMCDA) here and refer the reader to
[21] for a graphical model approach due to space limitations.

Example 4
Markov chain Monte Carlo (MCMC) methods are a class of
algorithms that sample from complex probability distribu-
tions by constructing a Markov chain so that the desired dis-
tribution is its stationary distribution. Applying an
MCMC-based approach to data association was first proposed
in [22]. By considering the space of association hypotheses
from a window of scans, the constructed Markov chain sets up
five types of transitions between hypotheses that correspond
semantically to 1) birth/death, 2) split/merge, 3)
extension/reduction, 4) track update, and 5) track switch
moves. The transition probabilities are chosen in a way so that

the stationary distribution of this
Markov chain is the true associa-
tion probabilities. Samples are
drawn from this distribution, and
the sample with the highest
probability is considered the best
association hypothesis. This
approach can be considered a
kind of simulated annealing at a
constant temperature and has
only probabilistic guarantees of
finding the best hypothesis. The

advantage of this approach is that there is no longer the need
to have a large memory store since hypotheses are never
explicitly enumerated although there must be enough memo-
ry to store all measurements from the window of scans. 

MANAGING RESOURCES: SWITCHING
BETWEEN SINGLE TARGET TRACKING AND MTT
MTT is generally an expensive task in terms of sensing, computa-
tion, and communication. One natural idea to reduce resource
expenditure is to reduce to single target tracking when targets are
far apart and switch to MTT only when data association becomes
ambiguous. Figure 2 illustrates the idea. Initially, targets T1 and
T2 are well-separated. Tracking them separately provides nearly
optimal performance. All the resource-aware techniques
described previously can be applied. As T1 and T2 approach each
other, tracking should switch to the MTT mode. Resource expen-
diture is higher but can be confined to the local vicinity around
the targets. As the targets separate, tracking returns to single tar-
get tracking mode. This common idea has been implemented in
distributed sensor networks as in [1] and [23]. 

Due to the uncertainty in data association, track beliefs of
each physical target (T1 or T2) may be noncompact. For example,
in Figure 2, after the two targets cross over, by marginalizing
data association hypotheses for track T1 (see Example 3), the
belief may be a bimodal distribution like the two blobs in the fig-
ure. L and R in the figure stand for left and right, respectively. As

[FIG2] Decomposition of multitarget tracking problem in close
range and long range.

Target 1 Target 2

Single Target
Tracking

MTT

Single Target
Tracking

L R

IN DISTRIBUTED SENSOR NETWORKS,
MTT HAS THE ADDITIONAL
CHALLENGE OF MAPPING A

TRACKING ALGORITHM ONTO A
SENSOR NETWORK PLATFORM WITH

DIVERSE RESOURCE LIMITATIONS,
INCLUDING POWER, SENSING,

COMMUNICATION, AND
COMPUTATION.
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T1 and T2 move away from each other, the two blobs correspon-
ding to target T1 also move away from each other since there is
no information to distinguish the correct association.
Representing the track belief in this bimodal form makes sense
in centralized systems since we retain all likely locations of target
T1. However, this representation is very expensive in distributed
sensor networks because sensors around both blobs must be
tasked to obtain measurements, and the measurements need to
be communicated to the node updating the track belief. As tar-
gets move farther and farther apart, this communication can be
very long range. Thus, it is desirable to design a representation
where track beliefs are compact around a local region of sensors. 

LOCAL COMPACT REPRESENTATION
ABOUT LOGICAL TARGETS
One way to maintain compact track belief representations is to
move away from representing the physical targets T1 and T2 to a
representation of the logical targets [1], [24], [25]. For example,
we could represent the track belief of the left target L or the
right target R in Figure 2. The effect is that the target state rep-
resentation is compact but with the consequence that the target
identities are now mixed. That is, logical target L can be target
T1 with some probability or target T2 otherwise.

For ease in illustration and visualization, we use a simplified
example of tracking two targets along a one-dimensional (1-D)
line. Target T1 could be located at location a or b (a < b), and so
is T2. In the joint space X1 × X2, there are two blobs, around
(a, b) and (b, a). The marginal belief for target T1 is bimodal
[Figure 3(a)]. Instead, we can consider the distribution for the
logical left target xL = min(x1, x2) and the logical right target
xR = max(x1, x2). This marginalization is given by 

p(xL) =
∫

x1≥xL

p(x1, xL)dx1 +
∫

x2≥xL

p(xL, x2)dx2, (7)

p(xR) =
∫

x1<xR

p(x1, xR)dx1 +
∫

x2<xR

p(xR, x2)dx2. (8)

Figure 3(b) shows the marginalization slices for xL. It is an inte-
gral over an L-shaped line. Since by definition,
xL = min(x1, x2), the integral is over a vertical line x1 when
x1 ≥ x2, and over horizontal line x2 when x2 ≥ x1. Similarly,
Figure 3(c) shows the marginalization slices for the right target
xR = max(x1, x2). This nonlinear operation produces compact
representations for the logical target locations. For tracking in
2-D, one needs to define logical targets properly. In our work
[1], we define a separation plane by collecting particles from
both targets into one collection and computing its minor axis.
The logical targets are then defined as the target on each side of
the separation plane. This works well for two-target crossing.
When more than two targets cross each other, one may use
other techniques such as k-means clustering. This is the gener-
alized marginalization we alluded to in Example 3, which is con-
ceptually a novel way of combining the tracks of multiple data
association hypotheses.

As for when one should switch between single target
tracking and MTT, several factors need to be considered.
From the pure estimation performance point of view, per-
forming MTT in the joint target state space more accurately
estimates track states because it can explicitly take into
account interactions between targets. On the other hand,
tracking a single target is an estimation problem in a lower
dimensional state space X , while MTT in the joint space is an
estimation problem in X N . This higher dimensionality
means 1) more data samples are needed to support the esti-
mation, and 2) if a particle filter (or similar nonparametric
methods) is used for tracking, more particles will have to be
used. This has implications on computational complexity and
communication cost. 

SIMPLIFYING TARGET MIXING INTO BELIEF MATRIX
Switching the representation to logical targets circumvents
the problem of sensing around spatially wide-spread bimodal
target beliefs and eliminates the need for frequent long
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[FIG3] State space representation. (a) For physical target T1, (b) for logical left target, and (c) for logical right target. Dashed lines with
arrow show marginalization path.
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range communication, but it creates an additional problem:
how do we know which physical target corresponds with
each logical target? This problem is called the identity man-
agement problem.

Traditional MHT-type approaches keeps the entire data
association history to perform Bayesian inference on target
identity. While this is theoretically optimal, it is too expensive
with O(N !) computation complexity, where N is the number
of targets. If one wants to store all MHT hypotheses and carry
that from node to node, storage and communication may also
become a problem. This calls for suitable approximation to
reduce resource cost. We refer to the identity management
method proposed by Shin et al [24]. Similar approaches
include [23], [25]. The idea is to maintain an approximation of
identity ambiguity at a low cost and postpone the identity
clarification until classification evidence is collected. Target
identity is represented using an N × N identity belief matrix
B, whose elements are defined by

Bi, j = Prob(estimate xj comes from target i ), (9)

for all i, j = 1, . . . , N. This formulation assumes no emerging
or disappearing targets, but these assumptions have been loos-
ened in [25]. In this identity belief matrix: 

■ Each column j represents the possible identity of a track,
i.e., it could be target T1, T2, or TN respectively with proba-
bility B1, j, B2, j, or BN, j. 

■ Each row i represents where target i can be, i.e., target i
can be track 1 with probability Bi,1, track 2 with probability
Bi,2, and so on. 
Each row and column add up to 1, known as the doubly sto-

chastic property. This comes from the fact that there is a one-to-
one mutually exclusive association between physical targets and
logical targets. 

The identity belief matrix summarizes the identity informa-
tion up to the current time and evolves as targets mix and sepa-
rate. The mixing of identity is modeled as a mass flow: when two
targets cross, mass will be redistributed between the two tracks,
causing the effect of smearing track identity. Mathematically, it
is formulated as 

B(t + 1) = B(t)M(t + 1), (10)

where M is a mixing matrix, which can be derived from the data
association history (for example, see [23]). 

When targets split apart and classification evidence is collect-
ed, one needs to de-mix and restore target identity. This is done
by redistributing identity mass to restore the doubly stochastic
property of B (see the reference in [24]). Again, this is an
approximation but works well in practice, reducing the compu-
tational complexity to O(N 2). For comparison, an exact
Bayesian inference method needs to keep track of all possible
identity assignments, and the worst case complexity is O(N !).
The savings are significant. 

[FIG4] Tracking two crossing targets.

(a) (b) (c)
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This identity management scheme is suitable for imple-
mentation in a distributed sensor network. The identity belief
matrix B has the structure that each column encapsulates the
identity of a track, and can be stored in a single node along
that track (the track leader). The god’s eye view of the sensor
network is as follows: When tar-
gets are far apart, they each have
a track leader in their vicinity,
carrying information regarding
the track belief and the respec-
tive identity information, which
is simply a column in B. As tar-
gets mix, the track leaders modi-
fy their belief and identity. As
targets separate, the leaders also
separate but maintain a link
among themselves [26]. When one leader receives identity evi-
dence, for example, from a sensor with good classification
results, it notifies the other leaders, and they adjust their
identity information accordingly. The communication
between these leaders is long range but infrequent. 

EXAMPLE: TRACKING MTT IN A DISTRIBUTED 
ACOUSTIC SENSOR
Figure 4 demonstrates tracking of two targets crossing in a
rectangular sensor field. The targets (red and green) start at
the top-left and top-right corners and move down along the
diagonals. The trajectories are shown in grey lines. The field
is covered by acoustic energy sensors (marked with little
squares in the figures). Each sensor picks up acoustic ener-
gy from any targets within its sensing range (Rsense = 120
ft), together with some random background noise, modeled
as Gaussian noise. 

Initially, the targets are well separated at the two corners of
the sensor field. Figure 4(a) shows a snapshot. The targets are
tracked individually, each with a particle filter with 100 particles
(visualized in red and green color, respectively). Sensors within
a sensing range Rsense, shown as shaded disks centered at the
estimated target locations, are organized into a cluster and elect
a leader. The leader is responsible for collecting measurements
from the group members, updating the track, and maintaining
the cluster structure. 

When two targets move closer, their clusters collide.
Collision is flagged when a sensor finds itself led by two dis-
tinct  cluster leaders. At this time, tracking switches to MTT
mode, and two clusters merge into one. A node closest to
the centroid of the original two clusters is elected to be the
new leader. Figure 4(b) shows the snapshot when the two
targets are exactly at the same location. Target positions are
tracked fairly accurately, but target identities are mixed. In
Figure 4(b), the color of the particles are also blended pro-
portionally and result in a range of gray to black. At this
point, it is impossible to distinguish one from the other.
After the two targets cross over, the estimated locations
start to diverge. We set Rseparate = 140 as the switching

point to go back to single target tracking mode, slightly
larger than the sensing range Rsense = 120. After the switch,
the two tracks are maintained separately. Interested readers
may refer to [1] for multitarget tracking in more complicat-
ed target crossing scenarios. 

MTT WITH SCARCE SENSORS
The previous examples showed
how resource use may be mini-
mized in sparse target scenarios
by limiting activity to the subset
of sensors near the targets. Two
other classes of sensor network
MTT problem are: 1) those with
too many targets to track simulta-
neously and 2) those with too few

sensors for full coverage. These are triage situations, where it is
impossible to handle all of the data from all sensors or to fully
cover the area using the available sensors. 

An example is shown in Figure 5, in which several moving
targets are tracked by a set of pan-tilt cameras. These cameras
may select from a subset of fixed fields of view (FOVs) A-F, and
are marked with letters indicating their viewable FOVs. Each
target is labeled with a value, and may appear or disappear at
any time. In Figure 5(a), no targets are present, and the cameras
will switch from FOV to FOV, searching for a new target. In
Figure 5(b), a single target has been detected, and cameras must
trade off the surveillance task against tracking the target.
Passing the tracking task between sensors, or even ignoring the
target momentarily may be optimal. In Figure 5(c), more tar-
gets than cameras are present, and the system must pick the
most valuable. This requires global cooperation. With a greedy
approach, the top cameras might have chosen to view region E
but would have missed the targets in regions A and C which
only they can view. 

In this resource allocation problem, cameras are scarce and
must prioritize their tasks according to some utility function
giving the relative value of viewing a particular FOV. Such a
utility function might be based on the expected information
gain of a sensor configuration, as the IDSQ [10] metric, or
even based on tactical considerations, as in [27]. Regardless of
the utility function, the goal of these systems is to allocate
sensing resources so as to maximize the total utility achieved. 

In sensor networks, it is often impractical to allocate
resources centrally, due to issues of scalability and latency. As a
result, we cannot guarantee global optimality. In practice, how-
ever, local sensor allocation decisions rarely have effects over
long distances, and local approximations can be solved by decen-
tralized methods such as auction methods [28] or the max-sum
algorithm [29]. 

In a real-world experiment [30], we used pan-tilt cameras
to track a number of abnormal vehicles hiding among robotic
vehicles behaving in a orderly fashion. The system contained
two classes of tasks: 1) peripheral awareness tasks, searching
for new targets that may emerge, and 2) a particle-filter-based

AS SENSOR NETWORKS MOVE AWAY
FROM TRACKING TANKS IN THE

DESERT AND SHIPS AT SEA, AND INTO
CROWDED HUMAN ENVIRONMENTS,

TRADITIONAL MULTIPLE TARGET
TRACKING APPROACHES WILL HIT

THEIR LIMITS.
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tracking task once a vehicle is detected. Utility functions are
assigned to each class of tasks based on the uncertainty level of
detection and tracking. FOVs were then chosen to optimize the
total utility across all tasks, according to a variant of max-sum
[30] in which a factor graph captured the relationships
between each term of the utility
function and the relevant sen-
sors. In practice, this system
demonstrated many of the prop-
erties we desired: when no tar-
gets were present, it slightly
exceeded the detection perform-
ance of a random search pattern.
As the number of targets
increased, it detected new targets
quickly while still keeping a cam-
era on each target a significant
fraction of the time, outperform-
ing a random search pattern in nearly every case.

DISCUSSION
With the advent of sensor networks, the MTT problem moves
from a centralized task performed on a handful of radar
tracking stations to a ubiquitous function in networks of
thousands of inexpensive sensor nodes. In these systems,
resource management is even more critical than in tradition-
al tracking systems due to the limited bandwidth of the
shared wireless channel, the limited availability of battery
energy or solar power, and the limited computational capabil-
ities of sensor nodes. This article has presented an end-to-
end tutorial of how multiple target tracking can be
implemented for a resource-limited distributed sensor net-
work platform. By selecting an appropriate fusion mecha-
nism, sensor utility metric and a sensor tasking approach,
one can produce a system which efficiently tracks targets as

independent entities while they are widely separated. By
adding algorithms for tracking in the joint space for targets
in close proximity to each other and an identity management
scheme to handle potential confusions between crossing tar-
gets, we need consider only a small number of targets at a

time, avoiding the exponential
complexity when possible. 

In adapting the MTT paradigm
for sensor networks, the centrality
of sensor management has become
clear. Researchers need to begin
considering the larger problem of
resource management. Resources
include sensor resources, network
resources, computational resources
and energy/power resources. What
is critical to understand here is that
these resources can be traded off

between categories. For example, one might substitute a bank of
fixed cameras for a pan-tilt unit. If tracking is performed locally,
then local processing can be allocated to perform tracking for a
particular direction—a virtual pan-tilt. Similarly, if tracking is
performed offboard, a unit of network bandwidth spent in trans-
porting data from an additional camera is equivalent to another
virtual pan-tilt. In the past, these tradeoffs have been common-
place in hardware and system design, but in a resource managed
system, they may be varied dynamically according to the sys-
tem’s current capabilities and requirements.

As sensor networks move away from tracking tanks in the
desert and ships at sea, and into crowded human environ-
ments, traditional multiple target tracking approaches will hit
their limits. These systems will need to know their power,
computation and communication limits, focus their sensing
resources, and partition their inference tasks appropriately.
This is how they can tame a complex world.

[FIG5] Example MTT Scarce Sensor Management Problem.
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