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The angle of progression (AoP) for assessing fetal head (FH) descent during labor is measured from the standard plane of
transperineal ultrasound images as the angle between a line through the long axis of pubic symphysis (PS) and a second line
from the right end of PS tangentially to the contour of the FH. This paper presents a multitask network with a shared feature
encoder and three task-special decoders for standard plane recognition (Task1), image segmentation (Task2) of PS and FH,
and endpoint detection (Task3) of PS. Based on the segmented FH and two endpoints of PS from standard plane images, we
determined the right FH tangent point that passes through the right endpoint of PS and then computed the AoP using the
above three points. In this paper, the efficient channel attention unit is introduced into the shared feature encoder for
improving the robustness of layer region encoding, while an attention fusion module is used to promote cross-branch
interaction between the encoder for Task2 and that for Task3, and a shape-constrained loss function is designed for enhancing
the robustness to noise based on the convex shape-prior. We use Pearson’s correlation coefficient and the Bland–Altman graph
to assess the degree of agreement. The dataset includes 1964 images, where 919 images are nonstandard planes, and the other
1045 images are standard planes including PS and FH. We achieve a classification accuracy of 92.26%, and for the AoP
calculation, an absolute mean (STD) value of the difference in AoP (ΔAoP) is 3.898° (3.192°), the Pearson’s correlation
coefficient between manual and automated AoP was 0.964 and the Bland-Altman plot demonstrates they were statistically
significant (P < 0:05). In conclusion, our approach can achieve a fully automatic measurement of AoP with good efficiency and
may help labor progress in the future.

1. Introduction

Cesarean section is an important procedure for both the
mother and the fetus in certain medical conditions [1–4].
However, an unnecessary cesarean section can lead to higher
medical risks for both mothers and infants [3]. Therefore,
proper maternal and fetal monitoring during labor is very
important because this is the only way to assess the progress
of labor and identify deviations from the normal. The clini-
cal variable of the head movement of the fetal is used to
inform decision-making regarding mode of delivery during

active pushing [5]. In clinical practice, digital examination
is a fundamental method for monitoring the descent of the
fetal head (FH), but the method is known to have limited
accuracy [6–8] and repeated screening may lead to vaginal
bacteria entering the cervix and the uterus and causing harm
to the newborn [9].

Recently, several studies have indicated that ultrasound
measurements are more accurate and repeatable than digital
examination [10–17], and angle of progression (AoP) is
found to be the most reproducible ultrasound parameter
when examining FH descent [18–21]. AoP is measured
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transperineally as the angle between a line through the long
axis of pubic symphysis (PS) and a second line from the infe-
rior end of the PS tangentially to the contour of the fetal
skull (Figure 1(a). Barbera et al. are the first to use transper-
ineal ultrasound (TPU) to manually measure AoP [22]. And
AoP has been found to be correlated to the ischial spines in
different studies [23–25]. Tutschek et al. found that the zero
station of FH corresponds to an AoP of 116 degrees [26].
Arthuis et al. researched computed tomographic (CT)
images and found that the ischial spines are associated with
an AoP of 110 degrees [24], while Bamberg et al. related an
AoP of 120 degrees to the ischial spines obtained with mag-
netic resonance imaging (MRI) [25]. Moreover, a compari-
son between the MRI and CT methods showed a mean
difference of only 1.4 degrees [27]. A similar, feasible, and
highly reproducible method was also used to examine FH
descent in breech-presenting fetuses [28]. The use of TPU
to simultaneously assess the FH descent would be desirable;
however, it is technically challenging for nonexperienced
operators to diagnose the FH descent using TPU [29].

Recently, Obstetrics and Gynecology have introduced
new techniques to provide fast and automatic identification
and measurement of normal and abnormal ultrasound
examination results [30, 31]. Conversano et al. reported a
real-time tracking algorithm for noninvasive and automatic
monitoring of AoP during the second stage of labor [32,
33]. In the process of AoP measurement, the initial standard
plane including PS and FH was manually identified accord-
ing to targets within the TPU image and the gray level values
of their pixels. The two substructures (i.e., PS and FH) in the
initial image were automatically segmented and identified as
the two patterns to be searched within the subsequent
images by maximization of similarity or cross-correlation
coefficients [32]. The axis and distal end of PS were seg-
mented in subsequent images, and displacements from the
previous position were also calculated. Simultaneously, the
pattern location of FH was employed to initialize the auto-
matic edge outlining from subsequent images and to calcu-
late the displacement of the rightmost point of the FH
from the previous position. Finally, the coordinates and dis-
placements of the FH for each frame were determined
regarding the reference system associated with the PS distal
end to calculate AoP. Different from the above method
developed by Conversano et al., a deep learning-based
approach was first developed and tested preliminarily on a
small dataset by Zhou et al. [33]. Firstly, the landmark of
PS endpoints was located and areas of PS and FH were seg-
mented by a deep learning network. Secondly, the central
axis of PS was obtained with the two endpoints, which are
physical points that are used for the determination of AoP.
Thirdly, the tangle of FH was determined as it passed
through the lower endpoint of PS. Finally, AoP was calcu-
lated from the central axis and the tangent. All of these
methods are based on the standard planes of the TPU
images. Therefore, an end-to-end method for fully auto-
matic measurement of AoP should be further developed.

This paper presents a fully automatic measurement
framework of AoP for the multitask process that includes
standard plane recognition (Figure 1(b), Task1), image seg-

mentation (Figure 1(c), Task2) of PS and FH, endpoint
detection (Figure 1(c), Task3), and AoP calculation
(Figure 1(d), AoP calculation). In the framework, a multitask
Unet (MT-Unet) with a shared feature encoder and three
task-special decoders is proposed for the above three tasks.
More specifically, the efficient channel attention (ECA) unit
in the shared encoder, attention fusion module (AFM)
between decoders, and a designed shape-constrained loss
function (SLF) are used to improve the performance of our
MT-Unet. Based on the segmented FH of Task2 and the
detected endpoints, the tangent point of FH is determined,
and thereby, AoP is calculated. In brief, our main contribu-
tions include the following:

(1) A two-stage measurement framework of AoP: MT-
Unet is used for standard plane recognition, image
segmentation, and endpoint detection in the first
stage, while tangent point determination and AoP
calculation are conducted in the second stage

(2) Based on the multitask process for AoP calculation
from TPU images, an MT-Unet is designed for this
application. Various modules (including ECA, AFM,
and SLF) are used for improving its performance

(3) Our method outperforms existing deep learning
methods for automatic AoP measurement

The remainder of this paper is structured as follows. Sec-
tion 2 mainly explains our method, experimental details and
dataset, etc. Section 3 presents the experimental results, and
Section 4 provides some discussion, before some concluding
remarks in Section 5.

2. Materials and Methods

An outline of the proposed automatic AoP measurement
algorithm is shown in Figure 2. Firstly, standard ultrasound
images of the original TPU images (i.e., input) are selected,
target areas are segmented, and two endpoints are deter-
mined based on the proposed MT-Unet. Secondly, the con-
tour of the region of the FH is fitted with an ellipse equation,
and then, the right tangent point connected to the right end-
point is determined. Finally, AoP (i.e., output) is calculated
as the angle between a line through two endpoints and a sec-
ond line through the right endpoint and the tangent point.
In short, the automatic AoP measurement algorithm mainly
includes the MT-Unet and postprocessing parts.

2.1. MT-Unet. Taking into account the characteristics of dif-
ferent tags and tasks of the same input image data, we pro-
pose a network with one shared encoder and three task-
specific decoders inspired by Zhou et al. [34]. Three main
modifications are applied to the MT-Unet for accuracy
improvement. The ECA module is used to capture local
cross-channel interaction in the shared encoder, the AFM
module is used to capture cross-branch interaction among
the task-specific decoders, and SLF is designed based on
the prior convex shape.
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2.1.1. Network Architecture. The MT-Unet architecture is
illustrated in Figure 3 which shows one shared encoder
and three decoders (Figure 3(a)).

The encoder is composed of five blocks, each of which
contains two convolutional layers and a downsampling
layer. The convolution layer includes a convolutional opera-
tion (Conv) with a kernel size of 3 × 3, a batch normalization
layer (BN), and a rectified linear unit (ReLU). The down-
sampling layer consists of a maximum pooling (Max-pool-
ing) operation with a kernel size of 2 × 2 and an ECA unit.

Three task-special decoders are designed for standard
plane recognition (i.e., Task1), image segmentation (i.e.,
Task2), and endpoint detection (i.e., Task3). The decoder
for Task1 consists of two ResBlocks, and each of them con-
tains a convolutional layer followed by Conv, BN, an opera-
tion of shortcut connection, and ReLU. The final output is
followed by an average pooling (Avg-pooling) operation, a
fully connected (FC) layer, and a Softmax. The decoder for
Task2 is made up of four upsampling blocks and a Softmax
layer. Each up-sampling block contains an upsampling layer
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Figure 1: A schematic overview of automatic measurement of AoP based on ultrasound images. (a) Schematic diagram of AoP that is
measured transperineally as the angle between a line through the long axis of the PS and a second line from the inferior end of the PS
tangentially to the contour of the FH. (b) A standard ultrasound image including the PS and the FH. (c) Regions of the PS (green) and
the FH (red) are segmented and the endpoints of the PS are determined from the standard ultrasound image. (d) Based on the
segmented FH, the contour of the FH is determined by fitting an ellipse equation. Then, the right tangent connected to the right
endpoint of the PS is retained to calculate AoP.
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Figure 2: Illustration diagram of the proposed algorithm for automatic measurement of angle of progression based on TPU images.
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and two convolutional layers. Inspired by Unet [35], we
introduced skip connections into Task2. Similarly, Task3
has four upsampling blocks as well, but uses Sigmoid as its
activation function. Several AFM units are used to fuse fea-
tures between Task3 and Task2.

2.1.2. ECA Unit. The ECA module is used to capture local
cross-channel interaction considering each channel and its k
neighbors [36]. Given the aggregated feature (C ×H ×W)
using channel-wise global average pooling (GAP), it generates
channel weights by performing a fast 1D convolution of size k
followed by a Sigmoid function (α) (Figure 3(b)).

The kernel size k represents the coverage of the local cross-
channel interaction, i.e., the number of neighbors participating
in channel attention prediction of each channel. k is adaptively
determined via a function of channel dimension C.

k = φ Cð Þ = log2 Cð Þ + b
γ

����
����
odd

, ð1Þ

where jtjodd represents the nearest odd number of t. In the
present study, we set γ and b as 2 and 1, respectively.

2.1.3. AFM Unit. The AFM is designed to allow the network
to learn task-related features. These features include the
shared features (red arrow, Si−1) of the Task2 branch and
task-specific features (green arrow, Li−1) from the previous
layer. The concatenation of task-related features (i.e., Si−1
and Li−1) is the input of the AFM. This input followed by a
1 × 1 convolutional layer (blue block) is used to generate a
feature map (Fi−1), and Fi−1 is input into a block (including
a 1 × 1 Conv, BN, and a Sigmoid activation operation)
(orange block) to generate an attention mask (Mi−1) with
intensity within [0, 1]. A weighted feature map (black arrow,
Wi) of the current layer is generated with the concatenation
of Li−1 and the product of element-wise multiplication of
Mi−1 and the shared features (blue arrow, Si) of the current
layer. Wi is merged into the Task3 branch by channel-
dimensional concatenation.
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Figure 3: The proposed MT-Unet network structure. (a) The MT-Net architecture is composed of an encoder and three decoder tasks
(i.e., Task1: image classification; Task2: image segmentation; Task3: position location). (b) Diagram of the ECA unit. (c) Diagram of the
AFM unit.
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2.1.4. Loss and Optimization. The MT-Unet is trained in a
two-stage manner. In the first stage, the network with the
task-specific decoders (i.e., Task2 and Task3) is trained with
a linear combination of a set of loss functions as a pretrained
model, which is a model created by someone else to solve a
similar problem. Here, Dice loss and shape-constrained loss
are used in Task2 and mean squared error loss [37] in Task3.
In the second stage, the pretrained model with the shared
encoder and the Task1 decoder is trained with the cross-
entropy loss. It is worth noting that the parameters of the
shared encoder are loaded from the pretrained model of
the first stage.

The cross-entropy loss function (LCE) in Task1 for
binary classification is used [38]. It measures the difference
between two probability distributions of the predicted value
and the ground truth label and is equivalent to the negative
log-likelihood loss as follows:

LCE y, ŷð Þ = −y log ŷð Þ − 1 − yð Þ log 1 − ŷð Þ, ð2Þ

where y and ŷ refer to the ground truth label and the pre-
dicted value, respectively.

The loss consists of three components: Dice loss (LD) for
image segmentation of Task2 [39], shape-constrained loss
(LSC) for convex-shape segmentation of Task2 [40], and
mean squared error loss (LMSE) for endpoint location of
Task3 [41]. The total loss is given by

Ltotal =w1 θ1LD + θ2LSCð Þ + 1 −w1ð ÞLMSE, ð3Þ

where θ1 and θ2 are scaling factors determined via the
weight uncertainty method [42]. w1 (0.5) is obtained via
hyperparameter analysis.

Dice loss (LD):

LD = 1 −
2∑N

i=1∑
C
j=1yi,jpi,j

∑N
i=1∑

C
j=1 yi,j + pi,j
� � , ð4Þ

where y is the ground truth map, p is its corresponding pre-
dicted map, N is the number of pixels, and C is the number
of classes (excluding the background).

Shape-constrained loss (LSC):

LSC =〠
i∈I

〠
p,q∈I

〠
r∈lpq

Bi
pqr yip − pip
��� yiq − piq

��� ���pip + piq − 2pir
���, ð5Þ

where Bi
pqr =

1, if yip = yip = yir = 1

0, otherwise

(
, where p, q, and r are

three points. ðp, qÞ is a point pair inside the segmented
region, and r is on the line (lpq) that is bounded by p and q,
yip and yiq are the ground truth labels, while pip, piq, and pir
are the predicted values. LSC can be activated when p, q,
and r have the same label (i.e., Bi

pqr=1) [40].

Mean squared error loss (LMSE):

LMSE = 〠
n

k=1
δk〠

i,j
Hk i, jð Þ − Ĥk i, jð Þ�� ��2, ð6Þ

where n = 3 is the number of points, δk is the loss weight,
and Hk and Ĥk represent the predicted heatmaps [33] and
the ground-truth heatmaps, respectively. Here, δ1, δ2, and
δ3 are set to be 1.0, 0.8, and 0.6 according to the importance
of each heatmap, respectively.

2.2. Postprocessing. The output of MT-Unet includes image
category, segmented regions, and coordinates of the two
endpoints (i.e., right and left endpoints) of the PS. In order
to measure AoP, the line from the right endpoint of the PS
tangentially to the contour of the FH should be determined.
Therefore, the contour of the FH is determined by fitting
an ellipse equation through the least square method [43,
44], and then, the right tangent connected to the right end-
point of the PS is retained to calculate AoP (see Appendix
S1 for details).

2.3. Experimental Setup

2.3.1. Dataset. Our dataset consists of 1964 TPU images of
104 volunteers during labor. These images with a resolution
of 800 × 652 in BMP format were retrospectively collected
from the Zhujiang Hospital of Southern Medical University
between 2020 and 2021. TPU examinations were performed
in standard B-mode ultrasound using Esaote ultrasound
systems. The dataset was divided into two parts (i.e., one
includes 1045 standard plane images, while the other
includes 919 nonstandard plane images) to generate the
image-level labels for image classification. For these standard
plane images, three types of pixel-level labels were annotated
by a team of 4 expert sonographers and then manually vali-
dated. The first type of pixel-level labels is regions of FH and
PS for image segmentation, the second type is two endpoints
of PS for key point positioning, and the third type is AoP.

2.3.2. Preprocessing. This image dataset was randomly
divided into training, validation, and testing sets in a ratio
of 5 : 2 : 3. Since the image dataset includes standard plane
set (1045 standard plane images) and nonstandard plane set
(919 nonstandard plane images), the two sets are also split
into training, validation, and testing sets in a ratio of 5 : 2 : 3.
Since each patient had multiple images, the data was split
so that all images from a patient were only in one of the train-
ing, validation, and testing sets. Furthermore, we adopted a
two-stage training strategy to obtain our MT-Unet. Both
standard and nonstandard plane images were used for Task1
at the second stage, but only standard plane images were used
for Task2 and Task3 at the first stage. Random rotation
(−30°, 30°) and random scaling were used for data augmenta-
tion during training; the input images were resized to a size
416 × 384 and normalized to [−1, 1].

2.3.3. Training Settings. The adaptive moment estimation
optimizer [45] was used for optimization. We used the step
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learning rate scheduler [46] (StepLR) with a step size of 20.
The learning rate scheduler was adopted to decrease the
learning rate from its initial value (0.0001) by a factor
gamma (0.1). The network weights were initialized via the
Kaiming initialization [47] and trained for 200 epochs with
a batch size of 2. All experiments have been carried out
based on PyTorch [48] and run on a Nvidia Titan V GPU.

2.3.4. Evaluation Metrics. Different performance metrics
have been adopted for image classification, image segmenta-
tion, endpoint detection, and AoP calculation.

For the image classification task (Task1), we employed
accuracy (Acc), precision (Pre), Sensitivity (Sen), and Speci-
ficity (Spe).

Acc =
TP + TN

TP + FP + TN + FN
,

Pre =
TP

TP + FP
,

Sen =
TP

TP + FN
,

Spe =
TN

FP + TN
,

ð7Þ

where TP, FP, FN, and TN denote true positive, false posi-
tive, false negative, and true negative.

For the image segmentation task (Task2), we used Acc,
Dice scores of the PS (Dice_PS), the FH (Dice_FH), and both
targets (Dice_ALL).

Dice =
2TP

2TP + FP + FN
: ð8Þ

For the endpoint detection task (Task3), we firstly located
the two pubic symphysis endpoints by regressing Gaussian
heatmaps [49] and then used the Euclidean distance (Dist)
between the predicted endpoint coordinate (xp, yp) and the
corresponding ground-truth coordinate (xt , yt). Two dis-
tances in Dist_L and Dist_R were introduced to evaluate the
performance of Task3 for the left and right endpoints.

Dist = xt − xp
� �2 + yt − yp

� �2
� 	0:5

: ð9Þ

For AoP calculation, we evaluated the angle (APT)

between the predicted line (Lp
!
) through the predicted left

endpoint (xpl, ypl) and the predicted right endpoint (xpr , ypr)
and its the corresponding ground-truth line (Lt

!
) through

two endpoints (i.e. (xtl, ytl) and (xtr , ytr)).

Lp
!= xpr − xpl, ypr − ypl

h i
Lt
!= xtl − xtr , ytl − ytr½ �,

APT = cos−1
Lp
!∙Lt

!

Lp
!��� ��� Lt!��� ��� :

ð10Þ

In addition, the absolute value of the difference in AoP
(ΔAoP) between the predicted AoP (AoPp) and the clinically
acquired one (AoPt) is an important evaluation metric.

ΔAoP = AoPp −AoPt

�� ��: ð11Þ

3. Results

3.1. Fully Automated Measurement of AoP. Experimental
results suggest that our image classification has achieved an
Acc of 92.26% in terms of distinguishing whether an image
is a standard plane image that contains PS and FH.

From standard plane images, image segmentation
(Task2), endpoint location (Task3), and AoP calculations
have been conducted, and the overall performance of the
whole test cases of our method on Acc, Dice_ALL, Dice_
PS, Dice_FH, Dist_L, Dist_R, APT, and ΔAoP is 98.9%,
92.0%, 84.8%, 93.2%, 6.303mm, 5.789mm, 6.500°(±5.121°),
and 3.898°(±3.192°), and examples of the results are shown
in Figure 4 (see Appendix S2 for details).

For Task2, ground truth target masks and segmented
results using our MT-Unet are compared in Figure 4(a).
The ranges of the Dice score for the PS (Dice_PS), the FH
(Dice_FH), and the two targets (Dice_ALL) are 89.0%-
93.4%, 94.7%-98.3%, and 94.2%-97.3%.

For Task3, the predicted coordinate positions of the two
endpoints of the PS are compared to the annotated ones
(Figure 4(b)). For #1, #2, and #3, the distance differences
between the left endpoints (Dist_L) are 1.992mm,
3.365mm, and 2.818mm, whereas the distance differences
between the right endpoints (Dist_R) are 0.342mm,
1.99mm, and 3.485mm. In addition, APT are 1.65°, 3.29°,
and 0.73° for #1, #2, and #3.

For the AoP calculation task (Figure 4(c)), the calculated
AoP is compared to the labeled one and the differences (Δ
AoP) are less than 3°. The predicted/labelled AoP is
118.53°/118.11° for #1, 117.57°/120.45° for #2, and 146.99°/
147.97° for #3.

3.2. Comparative Experiment. To investigate the effective-
ness of key components in our MT-Unet, we conducted a
series of comparative studies. We compare our Task1 with
Vgg16 [50] and Resnet50 [51] for standard ultrasound
images’ identification with Acc, Pre, Sen, and Spe. Further-
more, we removed ECA, AFM, and SLF from the MT-
Unet to form the MT-Unet_A and compared it against two
independent Unet (Unet) used for segmentation and loca-
tion to investigate the effectiveness of the multitask network.
Based on the MT-Unet, we removed ECA and SLF to form
MT-Unet_B, removed AFM and SLF to form MT-Unet_C,
and removed SLF to form MT-Unet_D. Finally, we evaluate
the performance in Acc, Dice_ALL, Dice_PS, Dice_FH, Dist_
L, Dist_R, APT, and ΔAoP to investigate the effectiveness of
the key components of our framework.

3.2.1. Performance of Standard Plane Recognition (Task1).
The performance of our MT-Unet and its variants for stan-
dard plane selection (Task1) are listed in Table 1. Acc, Pre,
Sen, and Spe of our method reached 92.26%, 90.42%,
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86.57%, and 94.72%. Our proposed method outperformed
Vgg16 [50], Resnet50 [51], and ConvNet [52] by approxi-
mately 2% in Acc, Pre, and Spe, but did not show a notice-
able improvement in Sen. And our network is slightly
better than Swin_transformer [53] in terms of Acc and Spe.

3.2.2. Performance of Multitask Learning Network. For Task2
(Figure 5(a)), the FH segmentation results for both methods
(Unet and MT-Unet_A) are composed of multiple discrete
regions that are distributed inside (marked with blue rectan-
gles) and (or) outside (marked with white rectangles) of the

labeled areas. Compare to ground truth target masks (#1 and
#3), the main area segmented by MT-Unet_A was more
accurate than that of Unet, but MT-Unet_A failed to provide
good results in some complex situations (e.g., #2). Dice_FH/
Dice_PS of MT-Unet_A vs. that of Unet is 92.2%/88.7% vs.
89.8%/83.6% for the case #1, 94.9%/90.6% vs. 96.4%/89.7%
for the case #3, 88.9%/86.4% vs. 91.7%/79.3% for the case
#2. The advantage of the multitask method is also reflected
in the whole test dataset (MT-Unet_A/Unet): 97.6%/97.1%
of Acc, 91.2%/90.1% of Dice_ALL, 85.3%/80.0% of Dice_
PS, and 91.9%/91.5% of Dice_FH.
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Dist_R:3.485 mm

Prediction

(b) Endpoint detection (Task3)

118.11∘

AoP

𝛥AoP:0.42∘

118.53∘

12.45∘
𝛥AoP:2.88∘

117.57∘

147.97∘
𝛥AoP:0.98∘
146.99∘

Label Prediction

(c) AoP calculations

Figure 4: Examples of MT-Unet on the PS-FH. (a) Prediction examples (i.e., #1, #2, and #3) of the MT-Unet segmentation task. (b)
Prediction examples of the MT-Unet endpoint detection task. (c) Prediction examples of AoP calculation. Note: Dist_L/Dist_R denotes
the Euclidean distances between the predicted left/right endpoints and the true left/right endpoints. APT denotes the angle between the
true line and the predicted line of two endpoints. ΔAoP denotes the absolute value of AoP difference between the true AoP and the
predicted one.

Table 1: Comparison of the results of standard plane recognition.

Network Acc Pre Sen Spe

Vgg16 [50] 90.87% 88.39% 86.19% 92.67%

Resnet50 [51] 90.28% 87.66% 85.87% 92.97%

ConvNet [52] 91.18% 86.76% 92.68% 90.14%

Swin_transformer [53] 92.18% 91.78% 90.54% 93.5%

Ours 92.26% 90.42% 86.57% 94.72%
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For Task3, the result of the endpoint location of the two
methods is shown in Figure 5(b). The difference was quanti-
fied via Dist_L and Dist_R (i.e., the difference between the pre-
dicted and annotated coordinates). Dist_L/Dist_R achieved by
Unet are 9.660/4.322mm for #2, 3.383/2.488mm for #3 and

2.669/4.322mm for #1, whereas that of MT-Unet_A are
1.367/3.150mm for #2, 2.755/3.383mm for #3 and 3.094/
11.281mm for #1. Overall, the average Dist_L/Dist_R for
MT-Unet_A on the whole test dataset is 8.131/9.109mm,
whereas that for Unet is 6.948/11.414mm.

#1

#2

#3

(a) Image segmentation (Task1)

#1

#2

#3

Dist_L:2.669 mm
Dist_R:4.322 mm

Dist_L:9.660 mm
Dist_R:4.322 mm

Dist_L:3.383 mm
Dist_R:2.488 mm

Dist_L:3.094 mm
Dist_R:11.281 mm

Dist_L:1.367 mm
Dist_R:3.150 mm

Dist_L:2.755 mm
Dist_R:3.383 mm

Dist_L:9.790 mm
Dist_R:1.708 mm

Dist_L:14.420 mm
Dist_R:3.598 mm

Dist_L:1.933 mm
Dist_R:4.647 mm

Dist_L:2.292 mm
Dist_R:3.485 mm

Dist_L:0.764 mm
Dist_R:1.450 mm

Dist_R:3.820 mm
Dist_L:3.150 mm

Dist_L:1.933 mm
Dist_R:5.898 mm

Dist_L:0.483 mm
Dist_R:1.367 mm

Dist_L:2.602 mm
Dist_R:3.866 mm

Dist_L:0.342 mm
Dist_R:0.764 mm

Dist_L:0.683 mm
Dist_R:0.764 mm

Dist_L:2.669 mm
Dist_R:3.696 mm

APT:12.33∘

APT:4.78∘

APT:7.30∘

APT:10.95∘

APT:3.95∘

APT:5.54∘

APT:9.04∘

APT:4.41∘

APT:7.01∘

APT:8.89∘

APT:0.48∘

APT:6.47∘

APT:7.84∘

APT:5.64∘

APT:6.87∘ APT:2.80∘

APT:3.41∘

APT:3.49∘

(b) Endpoint detection (Task2)

#1

#2

#3

Input Label Unet MT–Unet_A MT–Unet_B MT–Unet_C MT–Unet_D MT–Unet

114.52∘ 122.58∘ 121.14∘ 119.32∘119.81° 117.20∘ 115.54∘

140.39∘ 145.46∘151.68∘

127.27∘

150.64∘152.24∘143.49∘151.53∘

129.15∘130.42∘ 132.08∘139.51∘ 129.88∘135.81∘

ΔAoP :8.06∘

ΔAoP :11.14∘

ΔAoP :3.70∘

ΔAoP :6.62∘

ΔAoP :3.10∘

ΔAoP :5.93∘

ΔAoP :5.29∘

ΔAoP :11.29∘

ΔAoP :8.54∘

ΔAoP :4.80∘

ΔAoP :11.85∘

ΔAoP :5.39∘

ΔAoP :2.68∘

ΔAoP :10.25∘

ΔAoP :6.66∘

ΔAoP :1.02∘

ΔAoP :5.07∘

ΔAoP :3.73∘

(c) AoP calculations

Figure 5: Summary of different methods. These methods include Unet, MT-Unet_A, MT-Unet_B, MT-Unet_C, MT-Unet_D, and MT-
Unet. (a) Comparison of the prediction results of different segmentation methods. (b) Comparison of the prediction results of different
location methods. (c) Comparison of AoP results of different methods. Compared with MT-Unet, MT-Unet_D is without SLF, MT-
Unet_C is without SLF and AFM, MT-Unet_B is without SLF and ECA, MT-Unet_A is without SLF, AFM, and ECA. Note: Dist_L/
Dist_R denotes the Euclidean distances between predicted left/right endpoints and true left/right endpoints. APT denotes the angle
between the true line and the predicted line of two endpoints. ΔAoP denotes the absolute value of the AoP difference between the true
AoP and the predicted one (complete and detailed results are provided in Appendix S3).
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For AoP calculation, the effects of the two methods on
AoP calculation can be evaluated via APT and ΔAoP. As
shown in Figure 5(c), AoP obtained with MT-Unet_A/Unet
is 121.14°/122.58° for #1, 143.49°/151.53° for #2, and 129.88°/
139.51° for #3. Compared to the labelled AoPs (114.52° for
#1, 140.39° for #2, and 135.81° for #3), ΔAoP of MT-Unet_
A/that of Unet is 6.62°/8.06° for #1, 3.10°/11.14° for #2, and
5.93°/3.7° for #3. Changes in ΔAoP can be partly attributed
to APT. APT of the MT-Unet_A/Unet is 10.95°/12.33° for
#1, 3.95°/4.78° for #2, and 5.54°/7.30° for #3. The perfor-
mance of the two methods on APT and ΔAoP demonstrates
that the proposed multitasking method outperformed its
task-oriented counterpart. The average APT/ΔAoP on the
whole test dataset of the MT-Unet_A is 9.047°(13.263°)/
5.607°(5.725), whereas that of the Unet is 12.496°(18.756°)/
6.646°(7.541°).

3.2.3. Effectiveness of the ECA Module. The effects of the
ECA module on the performance of MT-Unet were investi-
gated through the following two pairs of experiments: MT-
Unet_A vs. MT-Unet_C and MT-Unet_B vs. MT-Unet_D.

As is shown in Figure 5(a), when the ECA module is
used in the multitask learning, the predicted discrete regions
(white and blue rectangles) inside and outside the labeled
area for the FH drastically shrunk and the resulting target
areas were closer to the annotated regions (e.g., #1 and #3).
These differences manifest as an increase in Dice scores.
For case #2, Dice_PS (88.3% vs. 86.3%), Dice_FH (92.2%
vs. 85.0%), and Dice_ALL (91.8% vs. 85.1%) of MT-Unet_
D are larger than those of MT-Unet_B, and Dice_PS
(88.2% vs. 86.4%), Dice_FH (92.4% vs. 88.9%), and Dice_
ALL (92.0% vs. 88.7%) of MT-Unet_C are higher than that
of MT-Unet_A. Similar results are obtained from the whole
test dataset. Dice_ALL of MT-Unet_C vs. MT-Unet_A and
MT-Unet_D vs. MT-Unet_B are 91.9% vs. 91.2% and
91.0% vs. 91.2% (details for Dice_PS and Dice_FH can be
found in Table 2).

For Task3, Dist_L and (or) Dist_R were found lower in
most cases (#1 and #2) when the ECA module has been used
in the multitask method. For the case #2, Dist_L and Dist_R
(MT-Unet_D vs. MT-Unet_B) are 0.483mm vs. 14.420mm
and 1.367mm vs. 3.598mm. Dist_L and Dist_R (MT-Unet_
C vs. MT-Unet_A) are 0.764mm vs. 1.367mm and
1.450mm vs. 3.150mm. However, Dist_L and (or) Dist_R
were found to be higher in case #3. The performance of these
methods on the whole test dataset demonstrated that the
averages of Dist_L and Dist_R are reduced with the intro-
duction of the ECA module. The average Dist_L is reduced

from 9.105mm to 6.638mm, whereas the average Dist_R is
reduced from 8.198mm to 5.586mm (MT-Unet_B vs. MT-
Unet_D). Similar results were also obtained for MT-Unet_
C vs. MT-Unet_A (Table 2).

For AoP calculation, when the ECA module is used in
the multitask Unet, APT was reduced for #2(3.95°/0.48°)
and #1(10.95°/8.89°) in the case of MT-Unet_A vs. MT-
Unet_C, and it decreased for #3(7.01°/6.87°) and #1(9.04°/
7.84°) in the case of MT-Unet_B vs. MT-Unet_D. Given
the whole test dataset, APT was reduced by 4% and
increased by 2% for MT-Unet_B vs. MT-Unet_D and MT-
Unet_C vs. MT-Unet_A. Meanwhile, in the case of MT-
Unet_C vs. MT-Unet_A, ΔAoPs were reduced for #3 (5.39°

vs. 5.93°) and #1 (4.80° vs. 6.62°) but increased for #2
(11.85° vs. 3.10°). Improvements were obtained in the case
of MT-Unet_B vs. MT-Unet_D. For the whole test dataset,
the predicted AoP was closer to the labeled one, and the
average ΔAoP is slightly reduced (Table 2).

3.2.4. Effectiveness of the AFM Unit. The effects of the AFM
module on the performance of MT-Unet were investigated
through the following two sets of experiments: MT-Unet_
D vs. MT-Unet_C and MT-Unet_B vs. MT-Unet_A. As is
shown in Figure 5, though there are no big differences
between methods without AFM and with AFM, Table 2
shows improvement in Acc, Dist_L, Dist_R, APT, and Δ
AoP, but no noticeable improvement for Dice_ALL, Dice_
PS, and Dice_FH on the whole dataset.

3.2.5. Effectiveness of SLF. The SLF’s effect on the perfor-
mance of MT-Unet was investigated via a comparison with
MT-Unet without SLF (i.e., MT-Unet_D). Figure 5(a) shows
no discrete region inside and (or) outside the labeled area for
the FH has been observed (e.g., #2) and segmented targets
were closer to the annotated areas, especially for #1 and #3,
in the case of MT-Unet_D. APT and ΔAoP were signifi-
cantly improved for #1, #2, and #3. APT of MT-Unet_D
vs. that of MT-Unet is 3.41° vs. 7.84° for #1, 3.49° vs. 5.64°

for #2, and 2.80° vs. 6.87° for #3. And ΔAoP of MT-Unet_
D vs. MT-Unet is 1.02° vs. 2.68° for #1, 5.07° vs. 10.25° for
#2, and 3.73° vs. 6.66° for #3. Further statistical results are
shown in Table 3.

3.3. Comparison of Our Method with the Existing Deep
Learning Approach. To the best of our knowledge, there is
currently only one study that is based on deep learning for
automatic AoP measurement. From the function of the
two methods (ours vs. Zhou et al. [33]), the approach of

Table 2: Comparison of the results of different methods.

Network Acc (-) Dice_ALL (-) Dice_PS (-) Dice_FH (-) Dist_L (mm) Dist_R (mm)
APT mean
(STD) (°)

ΔAoP mean
(STD) (°)

Unet 97.1% 90.1% 80.0% 91.5% 6.948 11.414 12.496 (18.756) 6.646 (7.541)

MT-Unet_A 97.6% 91.2% 85.3% 91.9% 8.131 9.109 9.047 (13.263) 5.607 (5.725)

MT-Unet_B 98.2% 91.2% 85.2% 91.8% 9.105 8.198 6.960 (11.089) 6.696 (6.951)

MT-Unet_C 98.1% 91.9% 83.7% 92.8% 7.486 9.051 8.813 (6.640) 5.428 (5.022)

MT-Unet_D 98.4% 91.8% 85.8% 92.1% 6.638 5.586 6.614 (6.385) 5.053 (5.158)
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Zhou et al. does not have the function of selecting standard
plane images and has not integrated the ECA module and
SLF for accuracy improvement.

As shown in Figure 6(a), no discrete regions outside of
the labeled area for the FH were observed in the case of ours
vs. Zhou et al. Moreover, the area and shape of the segmented
FH of our method are closer to the label. For endpoint
detection (Figure 6(b)) and AoP calculation (Figure 6(c)),
improvements have been found for both APT and ΔAoP in
the three cases. APT of ours vs. Zhou et al. is 0.77° vs. 1.98°

for #1, 0.04° vs. 7.16° for #2, and 0.02° vs. 17.74° for #3, and
ΔAoP of ours vs. Zhou et al. is 1.73° vs. 4.21° for #1, 1.32°

vs. 4.93° for #2, and 0.5° vs. 6.0° for #3. The results on the
whole test dataset show that our methods yielded better per-
formance than Zhou et al. on all metrics except Dice_PS
(details can be found in Table 4).

3.4. Statistical Comparison of Our Method versus Clinical
Manual Measurement. Evaluation of predicted AoP accu-
racy was carried out by making comparisons between maxi-
mum and minimum AoP in the test dataset including 289
images. On average, the absolute error in AoP between our
method and clinical measurement is 3.898°.

The linear regression plot in Figure 7(a) shows that the
AoP estimates of both methods are linearly proportional and
tightly clustered around the line of best fit y = 1:04137x −
4:71874 and the Pearson’s correlation coefficient R = 0:964.
In clinical studies, the standardized difference can determine
a significant difference between the two results. There was
2.26° deviation between our method and clinical measure-
ment, showing a subtle difference between the two methods.

Figure 7(b) is a Bland-Altman plot demonstrating the
interchangeability of clinical measurement and our method

Table 3: Comparison results on SLF.

Network Acc (-) Dice_ALL (-) Dice_PS (-) Dice_FH (-) Dist_L (mm) Dist_R (mm)
APT mean
(STD) (°)

ΔAoP mean
(STD) (°)

MT-Unet_D 98.4% 91.8% 0.858% 92.1% 6.614 6.638 6.614 (6.385) 5.053 (5.158)

MT-Unet 98.9% 92.0% 84.8% 93.2% 6.303 5.789 6.500 (5.121) 3.898 (3.192)

Note: compared to MT-Unet, MT-Unet_D is without SLF.

#1

#2

#3

Input Label Zhou et al. Ours

Fetal head

Pubic
symphysis

(a) Image segmentation (Task2)

Label Zhou et al. Ours

Dist_L:1.450 mm

Dist_R:1.708 mm

Dist_L:2.464 mm

Dist_R:17.886 mm

Dist_L:5.809 mm

Dist_R:1.742 mm

Dist_L:0.764 mm

Dist_R:0.342 mm

Dist_L:14.241 mm

Dist_R:1.840 mm

Dist_L:1.025 mm

Dist_R:2.050 mm

APT:1.98º APT:0.77º

APT:7.16º APT:0.04º

APT:17.74º APT:0.02º

right
endpoint

left
endpoint

The line between
left and right

endpoints

(b) Endpoint detection (Task3)

Label Zhou et al. Ours

99.25º 97.52º95.04º

115.76º 117.08º110.83º

113.35º 107.35º 113.85º

ΔAoP :4.21º

ΔAoP :4.93º

ΔAoP :6.00º

ΔAoP :1.73º

ΔAoP :1.32º

ΔAoP :0.50º

AoP

(c) AoP calculations

Figure 6: Our MT-Unet is compared to Zhou et al. [33]. (a) Compared to the predicted results of Zhou et al. (b) Endpoints obtained from
ours and Zhou et al. are compared to the corresponding labels, respectively. (c) Calculations of AoP between Zhou et al. and ours. Note:
Dist_L/Dist_R denotes the Euclidean distances between the predicted left/right endpoints and the true left/right endpoints. APT denotes
the angle between the true line and the predicted line of two endpoints. ΔAoP denotes the absolute value of the AoP difference between
the true AoP and the predicted one (complete and detailed results are provided in Appendix S4).
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for AoPs. The mean difference is -0.4. The magnitude of the
AoP difference remained relatively constant for all mean
AoP values, indicating that there is a systematic error instead
of a proportional error between the two measurements. The
limits of agreement are defined as Mean ± 1:96 SD, where
SD is the standard deviation of the AoP differences. In this
plot, 95% of the data points are within Mean ± 1:96 SD.

4. Discussions

Compared to the digital examination, the ultrasound exam-
ination is the more accurate and repeatable diagnosis of the
FH position and the prediction of labor cessation. In clinical
practice, doctors use their experience to first determine one
standard plane image that includes the PS and the FH and
then manually identify the three key points (i.e., two end-
points of the PS and the FH tangent point connected to
the right endpoint of the PS) to calculate AoP based on the
contour of the PS-FH. The application needs the experience
in selecting standard section images from a large collection
of TPU images. Furthermore, the identification of key points
based on the contour of the PS-FH may introduce errors in
the doctor’s judgment. To overcome the disadvantages of
manual measurement, we have presented a multitask deep
learning model to achieve end-to-end fully automatic mea-
surement of AoP. The main contributions of this work
include the following: (1) to the best of our knowledge, this
is the first study to achieve a fully automatic measurement
of AoP. (2) We developed a multitask learning framework
for standard plane image recognition, PS-FH segmentation,
and key points identification. For the image classification
task, it is committed to determining the standard plane,

whereas image segmentation and position location tasks
aim to obtain the contour of the PS-FH and endpoints of
the PS, respectively. (3) We introduced attention mecha-
nisms and an SLF in the MT-Unet for performance
improvement. The AFM unit can capture cross-channel
interaction to promote mutual learning between the seg-
mentation branch and the location branch, while the ECA
module can help avoid dimensionality reduction and cap-
ture cross-channel interaction. The convex shape prior loss
can enhance robustness against noise and is of vital impor-
tance to the calculation of AoP, and (4) we adopted a two-
stage training approach to make each branch of the network
focus on its task.

Several steps have to be done to measure AoP: first, the
standard plane images should be selected, then the contour
of the PS-FH is detected, and the three key points of the
detected contour are finally identified for AoP calculation.
These three steps can be automatically conducted with our
end-to-end MT-Unet, and thereby, our method is fully auto-
matic. The other methods are based either fully or partly on
standard plane images and include traditional methods and
deep-learning methods. In the former category, Conversano
et al. [32] proposed an algorithm that manually identifies the
standard plane image first and adopts a pattern tracking
algorithm for subsequent sessions to calculate AoP. Youssef
et al. [54] reported an AoP measurement method based on
commercial software; however, the technical characteristics
of the software are not explained in detail [55]. In the deep
learning-based category, Zhou et al. [33] applied an end-
to-end deep learning method to measure AoP, but this
approach is not fully automatic because it does not include
image classification.

80 100 180120 160140
80

100

180

120

160

140

 AoP prediction of our method (°)

Cl
in

ic
al

 A
oP

 (º
)

y = 1.04137 x – 4.71874
R = 0.96366 

(a) Clinical AoP correlation

80 100 180120 160140
–20

20

–10

10

0

(M
T–

U
ne

t A
oP

–c
lin

ic
al

 A
oP

) /
cl

in
ic

al
 A

oP
 (%

)
Mean AoP (°)

+1.96 SD

–1.96 SD

Mean

7.1

–0.4

–7.9

(b) Bland-Altman plot of clinical AoP

Figure 7: Clinical AoP vs. MT-Unet AoP. (a) Correlation plot of clinical and MT-Unet AoPs. (b) The Bland-Altman plot for comparison
between automatic measurement and manual measurement results about AoP.

Table 4: Comparison results of the proposed model and other deep learning methods.

Network Acc (-) Dice_ALL (-) Dice_PS (-) Dice_FH (-) Dist_L (mm) Dist_R (mm)
APT mean
(STD) (°)

ΔAoP mean
(STD) (°)

Zhou et al. [33] 98.2% 91.2% 85.2% 91.8% 9.105 8.198 6.960 (11.089) 6.696 (6.951)

Ours 98.9% 92.0% 84.8% 93.2% 6.303 5.789 6.500 (5.121) 3.898 (3.192)
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The high accuracy of our method is attributed to the use of
ECA, AFM, and SLF. In the encoder of our network, the ECA
module and Max-pooling are stacked together to capture the
relation between adjacent channels and to compensate for
the loss of information caused by downsampling. The perfor-
mance of all branches is improved by the ECA module. In the
decoders for Task2 and Task3, an AFM unit is used to capture
cross-branch interaction between the segmentation branch
(Task2) and the location branch (Task3). The segmented
results include the areas of the PS and FH in Task2, while
the predicted points are the two endpoints of the PS in Task3.
Therefore, the AFMmodule can promotemutual learning (see
Table 2). In addition, the accuracy of our method is further
improved by SLF. The ideal shape of the FH appears elliptic
in TPU images. We relax the elliptic-shape condition to the
convex prior that enforces the segmentation result to be a con-
vex polygon. The proposed SLF brings better results, which is
helpful to perform ellipse fitting and find the tangent point.
The AoP difference between predicted AoP and ground truth
AoP is reduced by using the SLF (see Table 3). It should be
mentioned that the accuracy (evaluated with ΔAoP) of the
AoP calculation is higher than the existing deep learning
method of Zhou et al. The fact that our results are more con-
sistent with the experts’ suggests that our method has the
potential to be adopted in practice in the future.

Another cause of our outperforming multitask network is
that different loss functions were applied for different tasks.
This is because prior works showed that their best perfor-
mance can only be achieved if the tuning is guided by task-
specific loss functions and in turn by different evaluation
metrics. For Task1, standard plane recognition is regarded
as a binary classification problem, which is measured by
accuracy. Considering that accuracy is a nonderivable equa-
tion, cross-entropy loss is chosen as the loss function. Dice
loss is chosen as the loss function for Task2, similar to most
prior medical image segmentation tasks. Additionally, we
introduce SLF based on a convex polygon before modeling
the area of PS and FH as a near-oval shape, which helps the
calculation of AoP. For Task3, endpoint detection is an object
localization problem, where Euclidean distance (e.g., MSE) is
usually used to evaluate the deviation between the predicted
object and the real object. MSE loss is chosen as the loss func-
tion accordingly. The training curves of MT-Unet are shown
in Figure 1 of Appendix S5, which shows that our network is
neither over- nor underfitting. In order to explore the effect
of batch size on experimental results, we experimented with
a higher batch size of 4 and 8. But we found that when batch
size increased, the performance of Acc, Pre, and Spe dropped,
so we still chose the batch size of 2 for our network (details
are shown in Appendix S6).

Despite the better performance, the proposed approach
still has pitfalls for future improvement: (1) different from
other multitasking networks, a two-stage training strategy
is adopted to obtain our MT-Unet due to the lack of labels
for segmentation and location tasks in nonstandard plane
images. (2) The effectiveness of this method on more data
remains unknown. While random rotation and random
scaling have been used for data augmentation during train-
ing to increase the number of limited data, the precision

and generalization of this method remain to be investigated
if given a much larger training dataset; (3) In this paper, the
parameters of MT-Unet are 12.47MB, and the computa-
tional complexity in GFLOPs of MT-Unet is 37.39, and we
focus on accuracy improvement without considering com-
putation complexity. In future research, we will work on
the development of lightweight models without sacrificing
accuracy; (4) inspired by the method of Conversano et al.
[32], the accuracy of our method could be further improved
by considering the relevance between images of a patient.

5. Conclusions

To the best of our knowledge, our method is an important step
toward the fully automatic measurement of AoP. In the work,
the proposedMT-Unet can perform the three tasks (i.e., image
classification, image segmentation, and endpoint detection)
for AoP calculation in a parallel manner. Our proposed neural
network outperformed existing deep learning results.
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