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Multitask Learning Mechanism for Remote Sensing

Image Motion Deblurring
Jie Fang , Xiaoqian Cao, Dianwei Wang , and Shengjun Xu

Abstract—As a fundamental preprocessing technique, remote
sensing image motion deblurring is important for visual under-
standing tasks. Most conventional approaches formulate the image
motion deblurring task as a kernel estimation. Because the kernel
estimation is a highly ill-posed problem, many priors have been ap-
plied to model the images and kernels. Even though these methods
have obtained relatively better performances, they are usually time-
consuming and not robust for different conditions. To address this
problem, we propose a multitask learning mechanism for remote
sensing image motion deblurring in this article, which contains
an image restoration subtask and an image texture complexity
recognition one. First, we consider the image motion deblurring
problem as a domain transformation problem, from the blurred
domain to a clear one. Specifically, the blurred domain represents
the data space consisted of blurring images, and the definition
of clear domain is similar. Second, we design a novel weighted
attention map loss to enhance the reconstruction capability of the
restoration subbranch for difficult local regions. Third, based on
the restoration subbranch, a recognition subbranch is incorporated
into the framework to guide the deblurring process, which provides
the auxiliary texture complexity information to help the optimiza-
tion of restoration subbranch. Additionally, in order to optimize
the proposed network, we construct three large-scale datasets, and
each sample in the dataset contains a clear image, a blurred image,
and its texture label obtained by corresponding texture complexity.
Finally, the experimental results on three constructed datasets
demonstrate the robustness and the effectiveness of the proposed
method.

Index Terms—Domain transformation, image deblurring,
multitask learning mechanism.
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I. INTRODUCTION

W
ITH the rapid development of satellite imaging technol-

ogy, remote sensing imagery interpretation has attracted

much attention during the last decade since its vital scientific

research value and wide range of practical applications. Actually,

motion blur of images can be caused by several factors such as

camera shakes, object motions, and depth variations [1]–[4], so

its inverse restoration process is of difficulty. Remote sensing

image motion deblurring aims to restore sharp image from a

blurred one, which is an important preprocessing technique for

many tasks, and some examples are shown in Fig. 1. Through

an in-depth investigation, we found that most existing methods

are based on the conventional blur model [5], which is defined

as follows:

Ib = KbIs +N (1)

where Ib denotes the blurred image, Kb denotes the blur kernel,

Is denotes the latent sharp image, and N denotes the uncon-

trolled noise. Our goal is to exploit an available method to get

the best latent sharp image Is. According to (1), the most difficult

problem of image deblurring is the blur kernel estimation, which

is highly relevant to the quality of the restored image. In practice,

both blur kernel and latent sharp image are unknown. As a result,

blind deblurring approaches need to infer blur kernel Kb and

latent sharp image Is simultaneously.

At the beginning, image deblurring methods can be divided

into two main branches, one is based on variational Bayesian

inference, and the other is based on maximum a posteriori

(MAP) estimation. Fergus et al. [6] proposed an approach using

a mixture of Gaussians to learn an image gradient prior through

variational Bayesian inference. Levin et al. [7] analyzed the

method based on variational Bayesian inference further. How-

ever, the optimization process of variational Bayesian inference

is computationally expensive. Afterwards, MAP equipped with

different likelihood functions and image priors [8], is widely

used for image deblurring task.

Recently, benefited by the rapid progress of computa-

tional load and storage resource, convolutional neural net-

works (CNNs) have achieved competitive performances on

many computer vision tasks, such as semantic segmentation [9]

and object detection [10]. As for image motion blurring task,

Chakrabarti [11] proposed to use a network to estimate the

sharp image from blurred one by an unknown motion kernel.

Chen et al. [12] proposed to use the popular generative ad-

versarial network (GAN) equipped with inceptionresdensenet
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Fig. 1. Remote sensing image deblurring is a fundamental preprocessing
technique, which can improve the performances of several image understanding
tasks such as scene recognition, object detection, tracking, and image captioning.

Fig. 2. Visualized results when apply different blur kernels to images with
different texture complexities. Specifically, the texture complexity level of image
is gradually increased from left to right, and the blur factor applied on the third
row is more severe than that of the second row. In addition, the D-score represents
the sharpness differences between images in the second row and corresponding
ones in the third row, it can be calculated with Brenner gradient function and
Vollath function. From which we can find that, images with higher complexity
texture are more sensitive to the blur factor especially the severe ones.

strategy to obtain more accurate results. Even though these

CNN-based methods have achieved relatively satisfactory per-

formances compared to traditional machine learning-based ones,

they often ignore the effect of image complexity on deblurring

performances. This negligence may lead to the significantly dif-

ferent deblurring performances on images with different texture

complexities, specifically, well performance on simple images

but poor performance on complex ones [13]. The reason is that,

mapping relationships of paired images with simple textures

are much easier to learn, compared to ones with complex tex-

tures [14]. In addition, pixel-wise norm loss can not explicitly

depict this point effectively [12], and hence, the trained model

tend to fit well for simple samples. Actually, when the same

motion kernel act on images with different textures complexities,

the degradations are different. As shown in Fig. 2, images with

more complicated texture structures are more sensitive for blur

factors, even if these factors are the same. In addition, the

increment of the blur factor leads to more severe influence to

the images with complex textures, and we use the differential

score of texture information loss under blur factors with different

degrees (D-score) to demonstrate this point, which is defined as

follows:

D − Score =
Bre(I b1)− Bre(I b2)

2Bre(I c)
+

Vol(I b1)− Vol(I b2)

2Vol(I c)
,

(2)

where Ic denotes the clear image. Ib1 and Ib2 denote the corre-

sponding slight blurred and severe blurred image, respectively.

Bre(·) and Vol(·) denote two conventional image quality as-

sessment functions, Brenner gradient and Vollath, and they are

formulated by (3) and (4), respectively

Bre(I) =
W
∑

w=1

H
∑

h=1

|Iw+2,h −Iw,h|
2 (3)

V ol(I) =
W
∑

w=1

H
∑

h=1

Iw,h

⊙

Iw+1,h −µ 2

s.t. µ =
1

WH

W
∑

w=1

H
∑

h=1

Iw,h (4)

where W and H denote the width and height of the image I,

respectively, and
⊙

represents the element-wise multiplication.

In particular, we define the texture structure complexity of

image according to the richness of its edge information. Partic-

ularly, texture complexities of images with more high-contrast

edges are increasingly higher than those with fewer ones. Ab-

stractly, image motion blurring is a filtering process [15], which

is to represent each pixel by all ones in its neighbourhood. Based

on this point, the differences of high-contrast pixels or regions

in clear images and corresponding blurred ones are much signif-

icant than those of flat regions. In other words, images with high

texture complexities are influenced more severely by motion

blur kernels, and the conventional models without considering

the texture complexities can not fit well for these samples. In

these cases, incorporate the texture complexity information into

the existing method as a prior seems like a reasonable choice to

improve their deblurring capability for complex images.

According to the aforementioned analysis, we propose a

multitask learning-based mechanism for remote sensing image

motion deblurring, which contains an image restoration subtask

and an image texture complexity recognition subtask. The pro-

posed mechanism considers the motion blur kernels and texture

complexity of image simultaneously. Specifically, the first sub-

task considers the remote sensing image deblurring problem as

a domain transformation one, and restore sharp images from

blurred ones through a U-Net-based architecture. Additionally,

based on the mse loss, we design a novel weighted attention map

loss term to enhance the reconstruction capability of the image

restoration subbranch for difficult local regions. The second sub-

task considers the relationships of image texture complexity and

debluring complexity, which provides the auxiliary information

to guide the optimization of the first subtask. Finally, to optimize
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the proposed network, we build three large-scale datasets for

remote sensing image debluring, each sample in the dataset

contains a clear image, a blurred image, and its corresponding

texture complexity label. Summarily, the contributions of this

article can be listed as follows.

1) We propose a multitask learning mechanism for image

deblurring, which contains a texture complexity classifi-

cation subtask and an image restoration subtask.

2) We find the relationship of blur kernel sensitivity and

texture complexity for different images, more complicated

more sensitive.

3) We design a weighted attention map loss for the restoration

subbranch, which enhances the reconstruction capability

for difficult local regions.

4) We construct three large scale datasets for remote sensing

image motion deblurring task, each sample in the dataset

contains a clear image, a blurred image, and its texture

label.

The remainder of this article is organized as follows. Section II

reviews some related works about image deblurring. Section III

details the proposed method. Section IV provides the dataset.

Section V reports and analyzes the experimental results. Sec-

tion VI concludes the article.

II. RELATED WORKS

Image debluring is an important fundamental problem in vi-

sual understanding field, especially for mobile imaging process

equipments [16]–[19]. During the imaging process, because of

the air noises, camera shakes, and other unpredicted influence

factors, photographed pictures might be blurred in different ex-

tents [20]–[22]. For humans, the quality-dropped images are not

a feast for the eyes, but humans still can analyze their contents,

due to experimental knowledge, such as imagination, reasoning

ability [23]–[25], etc. However, for machines or computers,

all knowedge of the model are learned from the very training

dataset [26]. In this case, the interferences of the training data are

severe for the performance of the models. For instance, models

trained with blurred images are not sensitive for clear images

and the performance indicators must be decreased.

According to aforementioned reasons, image deblurring plays

a vital role in imagery understanding field. During the last

decade, many comparative approaches were proposed for this

task, mainly including two subbranches, nonblind image de-

blurring and blind image deblurring. Nonblind image deblur-

ring [27] has been studied for many years, which aims to restore

latent sharp image from blurred one with known blur kernels.

Nonblind image deblurring task is an ill-posed problem because

the inverse is unstable to interference and noise, even a small

amount of noise may lead to severe distortions. Classic methods

to tackle this problem mainly consist of Wiener filter [28]

and Richardson–Lucy algorithm [29], [30]. Nonblind image is

considered as an optimization problem. Many classical priors,

such as sparse priors [31], [32], have been incorporated for

regularization. Blind image deblurring [33], [34] aims to restore

latent sharp image from blurred one without knowledge of blur

kernels. Traditional gradient-based priors of natural images tend

to fail [34] because they often favor blurry images with most low

frequencies in the Fourier domain. With the development of reg-

ularization and optimization, some sophisticated priors have also

been used to address this problem. For instance, l0-norm-based

prior [8], [35], framelet-based prior [36], dark channel prior [37],

sparse coding-based prior [38], and low rank prior [39]. Even

though these methods have achieved obvious improvements for

image deblurring task, each one has its own limits. l0-norm-

based prior is nonconvex, and its convex relaxation, l1 norm,

is parameter-sensitive and thus not robust [40]. Framelet-based

prior depends on hand-crafted wavelet functions, since they are

not general enough to tackle real-world blurred images [41].

Sparse coding prior is based on an assumption that, the statistical

distributions between training set and target set are similar, but

this may not be real in practice [41]. Additionally, low-rank

prior and dark channel prior often suffer from high computation

complexity [40].

Recently, deep neural networks especially CNNs have

achieved significant performances in many tasks such as image

recognition [42], [43], object detection [44], semantic segmen-

tation [45], etc. As for image deblurring, it is actually an image

projection task, from blurred domain to clear one. Generative ad-

versarial networks (GAN) [46], [47] especially conditional gen-

erative adversarial network (cGAN) have achieved significant

performances on image transformation, due to the discrimina-

tive mechanism being incorporated into the generative models.

Specifically, pix2pix GAN [46] and ResGAN [47] have achieved

satisfactory performances on image transformation task. Based

on the aforementioned superiorities of GAN, Ramakrishnan

et al. proposes deep generative filter (DGF) [48] for motion

deblurring. DGF integrates global skip connection and dense

architecture into the network to tackle the ill-posed nature prob-

lem in this challenging task. Even though GAN-based methods

surpasses the most existing ones, its training process is not stable

and the generative ability is usually limited. Additionally, remote

sensing images have abundant texture information, which makes

it difficult to train a robust GAN model. In these cases, we

propose weighted attention map loss, the replacement of the

adversarial loss, to encode the detailed information of the image

into the representation and obtain more clear deblurred images.

III. PROPOSED METHOD

A. Overview

As is shown in Fig. 3, the proposed remote sensing image

deblurring approach mainly contains of two components: 1)

U-Net-based image restoration sub-branch; and 2) multilayer

perception-based image texture complexity recognition

subbranch. For 1), we consider the image deblurring task

as an image-to-image transformation one, from blurred domain

to deblurred domain. Specifically, the deblurring subbranch

is based on U-Net, which can propagate sufficient spatial

details from shallow layers to deep ones through the skip

connection strategy. For 2), we find the texture complexity is an

important factor for image deblurring, and incorporate image

texture complexity recognition into the deblurring framework.

Specifically, a conventional classification network is utilized to
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Fig. 3. Multitask learning mechanism for image quality improvement, which mainly contains two important components, reconstruction branch, and texture
complexity recognition branch. Specifically, the reconstruction is used to finalize the projection of blur domain and clear domain, and the texture complexity
recognition branch is to guide the optimization of the reconstruction, which gives images different attention according to theirs texture information. Besides, ℓre is
the classical reconstruction loss. ℓen is the proposed weighted attention map loss, which can assist the system to improve its sensitivity for the difficult regions in
the image. ℓc is the classification-based texture complexity recognition branch, which can provide auxiliary global priors to the reconstruction branch. In addition,
α, β, and γ are three hyperparameters to balance the relative importance of the three loss terms.

recognize the texture complexity of the input image, which takes

the output of the third convolution layer of image restoration

subbranch as its input.

B. Network Architecture

This subsection details the network architecture of the pro-

posed method, which mainly contains two components: Image

deblurring network and image texture complexity recognition

network. Specifically, the former is based on U-Net, a decon-

volution network with satisfactory performance on structured

prediction task, such as boundary detection and semantic seg-

mentation, etc. The latter is a multilayer perception network,

which realizes the secondary feature coding and image texture

complexity recognition simultaneously.

1) Image Deblurring Network Architecture: Because of the

multilayer nonlinear mappings and weights shared strategy,

CNNs can obtain more discriminative representations than hand-

crafted feature descriptors [49], [50], and further achieve satis-

factory performances on many recognition tasks in computer

vision field. However, large-receptive-field convolution kernels

and pooling operations often lead to the fragmented outputs of

CNNs, which limits their applications in structured prediction

tasks.

Different from simple traditional recognition task, image-

to-image transformation pay more attention to detailed texture

information but not the discriminative ones, especially for the

image deblurring task. In these cases, a structure-preserving

network is very important for images deblurring, which must

preserve sufficient detailed texture information from the orig-

inal image to predicted image. Recently, U-Net have shown

satisfactory performance in this point because of the skip con-

nection mechanism [51], [52], and hence we use it as the

backbone network of our restoration branch.

2) Image Texture Complexity Recognition Network Archi-

tecture: Besides the image reconstruction branch, a multilayer

perception-based classification branch is used to recognize tex-

ture complexity level of the image. As is demonstrated in

Section I, images with different texture complexity have dif-

ferent sensitivity level when they are interfered by the same

motion blur kernel. Specifically, image with complex boundary

texture structure and detailed information are more sensitive to

the blur interference, compared to image full of flat regions.

Because of the aforementioned reasons, we insist that texture

complexity level is an important factor that influence the deblur-

ring quality. In these cases, we incorporate a texture complexity

level recognition branch into the framework. Through joint

learning, feature maps from reconstruction branch are more

representative, because the loss function contains image texture

complexity explicitly and makes the features more texture-

complexity-specific. The inner architecture of contexture com-

plexity recognition branch is shown in Table I.

In this article, we use a small-scale CNN to predict the image

texture complexity. Specifically, the input to this recognition

network is the middle layer output from the image reconstruction

branch. The reason why we use the middle layer output of the

image reconstruction layer is that, feature maps with small size

often can depict the global information of the image well. Addi-

tionally, in order to improve the representation capability of the

texture complexity recognition branch, we design a three-layer

perception network but not only a classifier to predict the texture

information of the image.
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TABLE I
TEXTURE COMPLEXITY RECOGNITION BRANCH

C. Loss Function

Besides the network architecture, loss function to optimize the

model is also important for the proposed method. Specifically,

similar to the network architecture, loss function for the model

also contains two important components: Reconstruction loss

term and texture complexity level recognition loss term.

1) Reconstruction Loss Term: Reconstruction branch is

mainly to finalize the domain transforming, from blurred image

domain to clear image domain. In this case, the Frobenius norm

is used as the basic loss to optimize the network, and the function

is defined as follows:

ℓre =
1

N

N
∑

n=1

∥

∥I
n
out − I

n
gt

∥

∥

2

F
(5)

where N is the total number of the samples, Inout is the output

of the nth image, I
n
gt is the groundtruth of the nth image.

Additionally, ‖ · ‖F represents the conventional Frobenius norm

function.

Even though the Frobenius norm can reflect the similarity

of two images to a large certain extent, it gives same weights

to each local region in the image. In other words, Frobenius

norm can not classify the sample complexity well and give them

different attentions. However, the reconstruction complexities

for different local regions have large differences. For instance,

regions with rigid boundary and other complex textures are

more sensitive for blur interference, while the flat regions are

more robust to the blur kernel. In this case, we propose a

weighted attention map loss term to enhance the reconstruction

capability of these regions. Specifically, the weighted attention

reconstruction loss is defined as follows:

ℓen =
1

N

N
∑

n=1

∥

∥

∥

∣

∣I
n
in − I

n
gt

∣

∣

⊙

∣

∣I
n
out − I

n
gt

∣

∣

∥

∥

∥

2

F
(6)

where |Inin − I
n
gt| is the absolute difference between nth input

image and corresponding groundtruth, which reflects the inter-

ference level of the blur kernel for the nth image. The bigger

element in the matrix depicts the heavier blur interference, and

the regions with heavier blur interference are more difficult to

reconstruct. To obtain a robust model for image deblurring task,

we use the absolute difference matrix as the weighted attention

map to improve the reconstruction capability for difficult re-

gions, some visualized parameter maps of the weights are shown

in Fig. 4. This loss term is based on a reasonable and obvious

Fig. 4. Visualized parameter maps of the attention weights. Images in the first
column denote the blurred images, and ones in the second and third columns,
respectively, denote the corresponding clear images and reconstruction attention
weights.

assumption that, if the difficult regions are reconstructed well,

other regions can also be reconstructed well.

2) Texture Complexity Level Recognition Loss Term: Texture

complexity level recognition branch is to estimate the texture

information of the image, and use it to guide the representation

learning of the reconstruction branch. Specifically, we consider

the texture complexity information estimation task as a classi-

fication one. In order to train this branch, we design a texture

measurement approach and label setting rule for the dataset, the

details are demonstrated clearly in Section IV. The loss function

of texture complexity level recognition branch is a conventional

softmax one, which is defined as follows:

ℓc = −
1

N

[

N
∑

n=1

C
∑

c=1

I {yn = c} log
eθ

T
c xn

∑C
l=1

eθ
T

l
xn

]

(7)

whereN is the samples of the dataset,C is the number of texture

complexity levels of the dataset. I{·} is the indictor function,

which equals to 1 when the condition in {} satisfies and 0

otherwise. yn is the predicted label of nth image, c represents

the real label of nth image. θ represents the parameters of the

softmax layer, and xn is the nth input to the softmax layer.

In general, the overall loss of the framework contains the

aforementioned three components, which is defined as follows:

ℓ = α · ℓre + β · ℓen + γ · ℓc+ (8)

where α, β, and γ are three hyperparameters, which are used

to balance three loss components. The details of this point are

demonstrated clearly in the Section V.

IV. DATASET

To validate the superiority of our method, we construct three

novel texture-label-based motion deblurring datasets. Specif-

ically, we add motion blurs with different levels to three

public and challenging remote sensing classification datasets,

Sydney [53], UC-Merced [54], and AID [55]. Additionally,

we give each image a specific texture label according to its

complexity. These two points are detailed in Section IV-A and

IV-B, respectively.
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A. Blurred Images

This subsection mainly introduces how to obtain the blurred

image according to the clear image. Specifically, we apply

different motion blur kernels to the images in the dataset to

construct the clear-blurred pairs. To make it more concrete, the

linear motions of the blur kernels are randomly distributed in

the closed range [5, 25], while the angle degrees are randomly

distributed in the closed range [2, 20]. Based on this construction

strategy, deblurring complexities of the constructed datasets are

dramatically increased because of the motion diversity, and

hence the methods applied on them can be validated more

radical.

B. Texture Complexity Labels

To verify the assumption that, texture complexity can influ-

ence the deblurring quality to a certain extent, we construct three

texture-label-based datasets, SydeneyBlurred dataset, UCM-

Blurred dataset, and AIDBlurred dataset. These three datasets

are based on three classification ones, Sydney, UCM, and AID.

The differences mainly contains two aspects, 1) different motion

blurs are added to each image in the traditional classification

datasets, which constructs a corresponding clear-blurred image

recovery ones. 2) We attach a specific label to each image in

the dataset according to its texture complexity, and the detailed

definitions are shown as follows.

1) Texture Complexity Calculation: First of all, a reasonable

texture complexity descriptor should be applied. In this article,

we utilize the value of adjacent-pixel-difference to obtain the

texture complexity of the image, which is defined as follows:

T =
1

HWC

W
∑

i=1

H
∑

j=1

C
∑

c=1

(Trow(i, j, c) +Tcol(i, j, c)) (9)

where H, W, and C represent the height, width, and channel

of the image, respectively. Additionally, Trow and Tcol repre-

sent the row-difference matrix and column-difference matrix,

respectively. These two difference matrix are defined as (10)

and (11), respectively

T
i
row =

∣

∣I
i
row − I

i−1
row

∣

∣ (10)

T
j
col =

∣

∣

∣
I
j
col − I

j−1

col

∣

∣

∣
(11)

where T
i
row represents the ith row of Trow, T

j
col represents the

jth column of Tcol. Similarly, Iirow and I
j
col are defined in the

same way.

2) Label Definition: Through the aforementioned proce-

dures, we can obtain the texture complexity of each image.

Next, we should give each image a specific label according

to its corresponding T. In this article, we utilize a simple

truncation division strategy to generate the texture complexity

label of each image in the datasets. The detailed definition

regulars are demonstrated as follows. First, calculate the tex-

ture complexity of each image in the dataset. Second, set the

truncation threshold of different complexity levels. Specifically,

T th
i = Tmin + i · Tmax−Tmin

NL

, i ≤ 0 ≤ NL. In which, T th
i is the

ith threshold of the complexity, Tmin and Tmax are the minimum

and maximum of the texture complexities of the image in the

Fig. 5. Samples of images with different texture complexity label.

Fig. 6. Experimental results of UCMBlurred set under different
hyperparameters.

dataset, respectively. NL is the number of the complexity levels,

and i represents the index. Third, attach the specific label to

each image according to the corresponding threshold, which is

formulated as

Lc (Ik) = j

s.t.T th
j−1 ≤ T (Ik) ≤ T th

j
1≤j≤NL

(12)

where Ik represent the kth image in the dataset, Lc(Ik) rep-

resents its label, and T (Ik) is the corresponding texture com-

plexity value. Some examples of images with different texture

complexity labels are shown in Fig. 5.

V. EXPERIMENTS

This section details the experiments, including experiment

settings, evaluation metrics, and experiment results and analysis.

A. Experiment Settings

In this subsection, we will demonstrate the experimental

settings, including data participation, hyperparameter settings,

and data transformation.

1) Data Partition: In this article, we randomly divide each

dataset into three parts, training set, validation set, and testing

set. The proportions of these three parts are 60%, 20%, and 20%,

respectively.

2) Hyperparameter Settings: Besides the participation pro-

portion, there are still three extra hyperparameters to be set,

α, β, and γ in 8, which are used to balance three loss terms.

Considering the relative other than absolute importance of these

three hyperparameters make sense, we fix α = 10.0, and utilize

the cross validation strategy to obtain corresponding optimal

β and γ. The quantitative results on UCMBlurred dataset are

shown in Fig. 6. From which we can see that, when β and γ
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are, respectively, set to 1 and 0.2, our method achieves the best

performance.

3) Data Transformation: This section introduces the details

of the data transformation. First of all, the raw images are

whitened. On one hand, which can avoid the interferes from

noises. On the other hand, it can help us to control the relative

importance of three terms in (8). Additionally, PSNR and SSIM

are two metrics for grayscale images. In this case, we trans-

form generated deblurred images and the raw clear images to

grayscale ones when the performances of different methods are

evaluated. The transformation formulation is defined as follows:

Gray = 0.2989 ·R+ 0.5870 ·G+ 0.1140 ·B (13)

where R, G, and B represent three channel information of

the image, respectively, and Gray represents the transformed

grayscale image.

B. Evaluation Metrics

In this article, we use peak signal-to-noise ratio (PSNR)

and structural similarity index measurement (SSIM), which

are widely used in many image quality assessment tasks [56],

to evaluate the methods, which are defined as (14) and (16),

respectively

PSNR (X,Y) = 10log10

(

(

2N − 1
)2

MSE (X,Y)

)

(14)

where MSE is the mean square error, which is formulated in

(15). N is the number of the bit, which is set to 8 in this article

MSE (X,Y) =
1

HW

H
∑

i=1

W
∑

j=1

(X(i, j)−Y(i, j))2. (15)

In (14) and (15),X,Y are two grayscale images to be measured,

which represent blurred image and clear image, respectively,

in this article. Additionally, H represents the height and W

represents the width of the image

SSIM (X,Y) = l (X,Y) · c (X,Y) · s (X,Y) (16)

where l(X,Y), c(X,Y), and s(X,Y) are defined as (17), (18),

and (19), respectively.

l (X,Y) =
2µXµY + C1

µ2
X + µ2

Y + C1

(17)

c (X,Y) =
2σXσY + C2

σ2
X + σ2

Y + C2

(18)

s (X,Y) =
σXY + C3

σXσY + C3

. (19)

In which, µX and µY represent the mean values of X and Y,

respectively. σX and σY represent the variance of X and Y,

respectively, and σXY represents the covariance of X and Y.

Additionally,C1,C2, andC3 are three constants to avoid divided

by zero, which are set to 0.01, 0.03, and 0.015, respectively. In

(18) to (19), the mean value, variance, and covariance can be

calculated with (20) to (22), respectively

µX =
1

HW

H
∑

i=1

W
∑

j=1

X(i, j) (20)

σ2
X =

1

HW − 1

H
∑

i=1

W
∑

j=1

(X(i, j)− µX)2 (21)

σXY =
1

HW − 1

H
∑

i=1

W
∑

j=1

(X(i, j)− µX) (Y(i, j)− µY ).

(22)

C. Contrasting Approaches

To demonstrate the superiority of our method, we compare it

with five existing ones, including a traditional method and four

deep neural network-based ones.

Graph-based blind image deblurring from a single photograph

(GSP) [40] interprets an image patch as a signal on a weighted

graph to strengthen its effectiveness.

Blind deconvolution for image deblurring based on edge

enhancement and noise suppression (BDS) [57] improves its

performance through emphasizing edge regions and suppressing

noises.

Gated fusion network (GFN) [58] is a deep gated fusion CNN

to generate a clear high-resolution frame from a single natural

image with severe blur.

Deep generative filter (DGF) [48] is a deep architecture in-

tegrated with global skip connection and dense architecture for

image deblurring.

Deblur generative adversarial network (DeblurGAN) [59]

combines the content loss and adversarial framework to exploit

the latent information of the image.

D. Experimental Results and Analysis

This section depicts the experiments, mainly including

hypothesis validation, ablation experiments, and contrasting

experiments.

1) Hypothesis Validation: First, to verify the assumption that

texture complexity can influence the image debluring quality

to a certain extent, we design a direct contrasting experiment.

Specifically, we apply an existing deblurring method [60] to

images with different texture complexity, and then evaluate the

performances of the same methods to different images. The

experimental results are shown in Table II, where TCL is the

abbreviation of texture complexity level.

From Table II we can see that, texture complexity is an im-

portant factor for remote sensing image deblurring. Specifically,

images with complex textures are more difficult to restore, com-

pared to those with simple textures. For instance, compared to

the restored 1st-complexity-level image with SSIM 0.8154, SSIM

of the restored image of 10th-complexity-level is only 0.5203. In

this case, it is necessary for incorporating the texture complexity

information of image into the deblurring architecture. Addition-

ally, because the estimation of image texture complexity may
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TABLE II
HYPOTHESIS VALIDATION RESULTS

The bold entities represent the best per-

formance under the corresponding exper-

imental settings and algorithms.

TABLE III
ABLATION EXPERIMENTS

The bold entities represent the best performance

under the corresponding experimental settings and

algorithms.

inaccurate, we utilize classification mode but not regression

mode to depict its information, which has higher fault tolerance.

2) Ablation Experiments: Second, the proposed method

mainly contains two aspects, texture complexity label informa-

tion and weighted attention map loss term, both of them should

be verified contributory to the image deblurring. In this case, we

design a simple ablation experiment, train the network without,

with one of them, or with both of them, and then evaluate the

performances in different conditions. The experimental results

are shown in Table III, where WithoutB means the model trained

only by the traditional reconstruction loss, OnlywithT means the

model trained by reconstruction loss term and texture complexity

valuation loss term, OnlywithW means the model trained by

reconstruction loss term and weighted attention map loss term,

WithB means the model trained by reconstruction loss term,

texture complexity valuation loss term, and weighted attention

map loss.

From Table III, we can see that, both the texture complexity

evaluation loss term and weighted attention loss term are helpful

for the restore quality of remote sensing images. Specifically,

when the texture complexity evaluation loss term is added to

the traditional reconstruction Frobenius norm, 0.0526 improve-

ment in terms of SSIM is obtained, which demonstrates that

the texture information is very relative to the image deblurring

task. Additionally, weighted attention loss term improves the

performance further. Generally speaking, these two proposed

terms are effective for deblurring.

TABLE IV
RESULTS ON THREE CONSTRUCTED DATASETS

The bold entities represent the best performance under the corresponding experi-

mental settings and algorithms.

Fig. 7. Samples of visualized results of different methods. Images in the first
column denote the blurred ones. Images in the second to fourth column denote
the results of GSP, DeblurGAN, and our method, respectively. Images in the last
column denote the corresponding clear images.

3) Contrasting Experiments: Third, to verify the superiority

of our method, we apply the proposed method and the con-

trasting methods to the constructed datasets, respectively. The

experimental results are shown in Table IV, and some samples

of the visualized results are shown in Fig. 7.

From Table IV we can see that, the proposed multitask

learning mechanism achieves the best performances on all three

testing datasets. Specifically, on SydneyBlurred dataset, MTLM

achieves 0.6937-dB improvements in terms PSNR, and 0.0219
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improvement in terms of SSIM respectively, compared with

DeblurGAN. On AIDBlurred dataset, MTLM gains 0.2097 dB

improvement in terms of PSNR and 0.0258 increment in terms of

SSIM, respectively. According to the experimental results, com-

pared with other contrasting methods, especially DeblurGAN,

the superiority of MTLM is unconspicuous on AIDBlurred

dataset. The main reason is that, besides the architecture itself of

the model, we utilize the proposed weighted attention loss term

to depict the detailed structure of the image, while DGF uses a

adversary loss term. As is known, adversary loss usually results

in the unstable and even not-convergent phenomenon during the

training process, especially when the scale of the training set is

not sufficiently large. Additionally, when the training set scale

is large enough, the adversary loss often can depict the details

of images well. In these cases, the weighted attention loss term

is superior than adversary loss in small scale training set, and

so the results on AIDBlurred dataset is not so significant as

we expected (the AIDBlurred dataset is a relatively larger one),

compared with DeblurGAN.

Additionally, from Fig. 7 we can see that the visualized

results of DeblurGAN are more significant than those of GSP,

especially ones in the last two rows. This is because that the

deep neural network can dig out more sufficient projection in-

formation between blurred domain and clear domain, compared

to the tradition kernel estimation-based methods. Besides, the

visualized results of the MTLM are more satisfactory than those

of DeblurGAN, especially the example in the third row. The

main reasons contain two aspects: 1) The adversarial model can

not be trained well with limited samples, hence DeblurGAN is

sensitive to even small uncontrollable noise, and further lead

to the distortion. 2) The proposed method uses texture prior

and attention prior to replace the adversarial mechanism to

exploit the latent information of the image, which can ensure

the robustness of the proposed method to a certain extent.

VI. CONCLUSION

In this article, we propose a multitask learning mechanism-

based method for remote sensing image motion deblurring. First,

we find that the texture complexity is a relatively important

factor for the image-deblurring task. In this case, we incorporate

a texture complexity recognition branch into the traditional re-

construction network to improve the deblurring quality. Second,

we design a weighted attention map loss term to enhance the de-

blurring capability of difficult regions. Finally, through a series

of experiments on three constructed datasets, we verify both the

proposed components can contribute to the performance of the

deblurring to a certain extent. Generally speaking, compared to

the conventional methods, the proposed method can effectively

and efficiently realize single-step deblurring in time through

adaptive matching filters.

Even though the proposed method achieves relatively satisfac-

tory performance for remote sensing image motion deblurring

task, there is still an important issue to be addressed: How to

generalize the proposed method to other remote sensing image

quality improve tasks such as denoising? In the future, we intend

to incorporate the partition strategy into our network according

to different quality reduction factors, and try to construct an uni-

fied architecture for remote sensing image quality improvement

and improve its generalization capability further.
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