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Abstract

We study a multitask learning problem in which each task is parametrized by a
weight vector and indexed by a pair of indices, which can be e.g, (consumer,
time). The weight vectors can be collected into a tensor and the (multilinear-)rank
of the tensor controls the amount of sharing of information among tasks. Two
types of convex relaxations have recently been proposed for the tensor multilin-
ear rank. However, we argue that both of them are not optimal in the context of
multitask learning in which the dimensions or multilinear rank are typically het-
erogeneous. We propose a new norm, which we call the scaled latent trace norm
and analyze the excess risk of all the three norms. The results apply to various set-
tings including matrix and tensor completion, multitask learning, and multilinear
multitask learning. Both the theory and experiments support the advantage of the
new norm when the tensor is not equal-sized and we do not a priori know which
mode is low rank.

1 Introduction

We consider supervised multitask learning problems [, B, [Z] in which the tasks are indexed by a
pair of indices known as multilinear multitask learning (MLMTL) ["4, T9]. For example, when we
would like to predict the ratings of different aspects (e.g., quality of service, food, etc) of restaurants
by different customers, the tasks would be indexed by aspects x customers. When each task is
parametrized by a weight vector over features, the goal would be to learn a features x aspects X
customers tensor. Another possible task dimension would be time, since the ratings may change
over time.

This setting is interesting, because it would allow us to exploit the similarities across different cus-
tomers as well as similarities across different aspects or time-points. Furthermore this would allow
us to perform fask imputation, that is to learn weights for tasks for which we have no training exam-
ples. On the other hand, the conventional matrix-based multitask learning (MTL) [, 3, 13, I6] may
fail to capture the higher order structure if we consider learning a flat features x tasks matrix and
would require at least r samples, where 7 is the rank of the matrix to be learned, for each task.

Recently several norms that induce low-rank tensors in the sense of Tucker decomposition or multi-
linear singular value decomposition [8, 9, T4, P5] have been proposed. The mean squared error for
recovering a nj X - -+ X n tensor of multilinear rank (71, ..., rx) from its noisy version scale as
o((+ Zle VTR Zle 1//nx)?) for the overlapped trace norm [23]. On the other hand, the
error of the latent trace norm scales as O(miny, ri,/ ming ny) in the same setting [21]. Thus while
the latent trace norm has the better dependence in terms of the multilinear rank ry, it has the worse
dependence in terms of the dimensions 7.

Tensors that arise in multitask learning typically have heterogeneous dimensions. For example,
the number of aspects for a restaurant (quality of service, food, atmosphere, etc.) would be much



Table 1: Tensor denoising performance using different norms. The mean squared error \||W —
W*||%/N is shown for the denoising algorithms (B) using different norms for tensors.

Overlapped trace norm \ Latent trace norm \ Scaled latent trace norm
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smaller than the number of customers or the number of features. In addition, it is a priori unclear
which mode (or dimension) would have the most redundancy or sharing that could be exploited by
multitask learning. Some of the modes may have full ranks if there is no sharing of information
along them. Therefore, both the latent trace norm and the overlapped trace norm would suffer either
from the heterogeneous multilinear rank or the heterogeneous dimensions in this context.

In this paper, we propose a modification to the latent trace norm whose mean squared error scales as
O(ming (rk/nk)) in the same setting, which is better than both the previously proposed extensions
of trace norm for tensors. We study the excess risk of the three norms through their Rademacher
complexities in various settings including matrix completion, multitask learning, and MLMTL. The
new analysis allows us to also study the tensor completion setting, which was only empirically
studied in [22, 23]. Our analysis consistently shows the advantage of the proposed scaled latent
trace norm in various settings in which the dimensions or ranks are heterogeneous. Experiments on
both synthetic and real data sets are also consistent with our theoretical findings.

2 Norms for tensors and their denoising performance

Let W € R™ % %"k be a K-way tensor. We denote the total number of entries by N := Hszl ng.
A mode-k fiber of W is an n;, dimensional vector we obtain by fixing all but the kth index. The
mode-k unfolding W 1,y of W is the nj, x N/n;, matrix formed by concatenating all the N/n; mode-
k fibers along columns. We say that WV has multilinear rank (1, ..., 7x) if rp = rank(W ).

2.1 Existing norms for tensors

First we review two norms proposed in literature in order to convexify tensor decomposition.

The overlapped trace norm (see [[2, I9, I8, 27]) is defined as the sum of the trace norms of the
mode-k unfoldings as follows:

K
H|W”|ovcrlap = Zk}:l ||W(k)||tr7 (1)

where || - ||¢; is the trace norm (also known as the nuclear norm) [0, 0], which is defined as the
absolute sum of singular values. Romera-Paredes et al. ["/] has used the overlapped trace norm in
MLMTL.

The latent trace norm [21, 22] is defined as the infimum over K tensors as follows:
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Table [0 summarizes the denoising performance in mean squared error analyzed in Tomioka and
Suzuki [2T] for the above two norms. The setting is as follows: we observe a noisy version ) of a
tensor W* with multilinear rank (rq, ..., 7x) and would like to recover W* by solving

. 1
W = angain (5 W - VI3 + ADVL). ®

where |||, is either the overlapped trace norm or the latent trace norm. We can see that while the
latent trace norm has the better dependence in terms of the multilinear rank, it has the worse de-
pendence in terms of the dimensions. Intuitively, the latent trace norm recognizes the mode with
the lowest rank. However, it does not have a good control of the dimensions; in fact, the factor



1/ ming ng comes from the fact that for a random tensor X" with i.i.d. Gaussian entries, the expecta-

tion of the dual norm || X'|[1atent~ = maxy || X (x)|lop behaves like O, (\/maxy N/ny), where || - [|op
is the operator norm.

2.2 A new norm

In order to correct the unfavorable behavior of the dual norm, we propose the scaled latent trace
norm. It is defined similarly to the latent trace norm with weights 1/,/ny, as follows:

Il W ) C)

K
scaled — inf
W o W) = WZ,/

Now the expectation of the dual norm [|X||scaleds = maxy /7x|| X () ||op behaves like O,(VN)
for X with random i.i.d. Gaussian entries and combined with the f0110w1ng relation

Wllscatea < mln\/ ”'W”'F’ ®)

we obtain the scaling of the mean squared error in the last column of Table M. We can see that the
scaled latent norm recognizes the mode with the lowest rank relative to its dimension.

3 Theory for multilinear multitask learning

We consider T = PQ supervised learning tasks. Training samples (Zipq, Yipg)ioy (p,q) € S)
are provided for a relatively small fraction of the task index pairs S C [P] x [Q] Each task is
parametrized by a weight vector w,, € R?, which can be collected into a 3-way tensor W =
(wpy) € RXFPXQ whose (p, q) fiber is w,,. We define the learning problem as follows:

W = argmin L(W), subjectto W], < By, (6)
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where the norm |||, is either the overlapped trace norm, latent trace norm, or the scaled latent trace
norm, and the empirical risk L is defined as follows:

R 1 Mpq
L(W) :|S| Zﬁ Tipg; Wpq) — Yipq) -
(rajes P i=1

The true risk we are interested in minimizing is defined as follows:

QZE @,y)~ Py (T, Wpq) — ),
P
where P, is the distribution from which the samples (., Yipq )y are drawn from.

The next lemma relates the excess risk L(W) — L(W*)
through Rademacher complexity.

Lemma 1. We assume that the output yipq is bounded as |yipq| < b, and the number of samples
Mpq > m > 0 for the observed tasks. We also assume that the loss function £ is Lipschitz continuous
with the constant A, bounded in [0, c] and ¢(0) = 0. Let W* be any tensor such that |W*||, < Bi.
Then with probability at least 1 — 0, any minimizer of (B) satisfies the following bound:

LOW) — LOV®) < 2A <2BO]E||D|| bvp ) o [los(2/0)
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Here 0,4 € {—1,+1} are Rademacher random variables and the expectation in the above inequal-

Mpq

ity is with respect to 0y, the random draw of tasks S, and the training samples (Tipq, Yipq);—1 -



Proof. The proof is a standard one following the line of [5] and it is presented in Appendix @A. [

The next theorem computes the expected dual norm E || D||,. for the three norms for tensors (the
proof can be found in Appendix B).

Theorem 1. We assume that Cq := E[@ipq@ipg || = 214 and there is a constant R > 0 such that
lzipgll < R almost surely. Let us define

Dy:=d+ PQ, Dy:=P+dQ, Ds:=Q+dP.
In order to simplify the presentation, we assume that maxy, Dy, > 3 and dPQ > max(d?, P%, Q?).

For the overlapped trace norm, the latent trace norm, and the scaled latent trace norm, the expecta-
tion B || D||,. can be bounded as follows:

1 R
—E|D <C Dy log D log D 7
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|S\E 1P| scateqs < C (\/m|5| log(m]?XDk) + S| log(mng@) , 9)
where C,C",C" are constants, ny, = d,ny = P, and n3 = Q. Furthermore, if m|S| >

R?(maxy, ng,) log(maxy, Dy,)/k, the O(1/m|S|) terms in the above inequalities can be dropped.

Note that the assumption that the norm of x;,, is bounded is natural because the target y;, is also
bounded. The parameter & in the assumption C,,, < k/dI; controls the amount of correlation in
the data. Since Tr(C) = E||@ipq||> < R?, we have £ = O(1) when the features are uncorrelated;
on the other hand, we have k = = O(d), if they lie in a one dimensional subspace. The number of
samples m/|S| = O(maxy, ny) is enough to drop the O(1/m|S|) term even if & = O(1).

Now we state the consequences of Theorem [ for the three norms for tensors. The com-
mon assumptions are the same as in Lemma [0 and Theorem 0. We also assume m|S| >
R?(maxy, ng,) log(maxy, Dy,)/k to drop the O(1/m/|S|) terms. Let W* be any d x P x (@ tensor
with multilinear-rank (r1, 2, 73) and bounded element-wise as [W*||, < B.

Corollary 1 (Overlapped trace norm). With probability at least 1 — 0, any minimizer of (B) with
IWI l7]l1/2d PQ satisfies the following inequality:

overlap —

LOW) — LOW) < clAB\/ 572 min (D log Dy) + exAb

7 log(2/0)
mlS] \ Tmls]

where ||7||1 /2 = (Zi:l \/Tk/3)? and c1, c2, c3 are constants.

Note that Tomioka et al. [P3] obtained a bound that depends on (22:1 v/D},/3)? instead of
min(Dy log D). Although the minimum may look better than the average, our bound has the
worse constant ' = 3 hidden in ¢;. The log Dy, factor allows us to apply the above result to the
setting of tensor completion as we show below.

Corollary 2 (Latent trace norm). With probability at least 1 — §, any minimizer of (B) with
IV atent < Byv/minyg, 1, dPQ satisfies the following inequality:

log 2/5

mm Tk max(Dk log D) + caAb IS

LOV) — L") < clAB\/ 5
where ¢}, ca, c3 are constants.

Corollary 3 (Scaled latent trace norm). With probability at least 1 — §, any minimizer of (B) with
IWleateq < Bv/ming (ry, /ni,)dPQ satisfies the following inequality:

LONV) — LW*) < c’l’AB\/ TSI min < ) dPQ 1Og(max D) + caAb 1og 2/5
m

where ny = d, no = P, n3g = Q, and ¢, co, c3 are constants.



We summarize the implications of the
above corollaries for different settings
in Table . We almost recover the set-
tings for matrix completion [IT] and
multitask learning (MTL) [If]. Note
that these simpler problems sometimes
disguise themselves as the more general
tensor completion or multilinear mul-
titask learning problems. Therefore it
is important that the new tensor based
norms adapts to the simplicity of the
problems in these cases.

Matrix completion is when d = k =
m = r; = 1, and we assume that
ro =13 =1 < P, Q. The sample com-
plexities are the number of samples |S]|
that we need to make the leading term
in Corollaries [, @, and B equal e. We
can see that the overlapped trace norm
and the scaled latent trace norm recover
the known result for matrix completion
[IT]. The plain latent trace norm re-
quires O(PQ) samples because it rec-
ognizes the first mode as the mode with
the lowest rank 1. Although the rank r
of the last two modes are low relative to
their dimensions, the latent trace norm
fails to recognize this.

In multitask learning (MTL), only the
first mode corresponding to features has
a low rank 7 and the other two modes
have full rank. Note that a tensor is
a matrix when its multilinear rank is
full except for one mode. We also as-
sume that all the pairs (p,q) are ob-
served (|S| = PQ) as in [IA]. The sam-
ple complexities are defined the same
way as above with respect to the number
of samples m because | S| is fixed. The
homogeneous case is when d = P =
. The heterogeneous case is when
P < r < d. Our bound for the over-
lapped trace norm is almost as good as
the one in [[T6] but has an multiplicative
log(PQ) factor (as oppose to their ad-
ditive log(PQ) term) and ||r|;/o > 7.
Also note that the results in [T6] can be
applied when d is much larger than P
and Q. Turning back to our bounds,
both the latent trace norm and its scaled
version can perform as well as knowing
the mode with the lowest rank (the first
mode) (see also [2Z1]) when d = P =
(). However, when the dimensions are
heterogeneous, similarly to the matrix
completion case above, the plain latent
trace norm fails to recognize the low-
rank-ness of the first mode and

completion and multilinear multitask learning. In the heterogeneous cases,
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requires O(d) samples, because the second mode has the lowest rank P.

In multilinear multitask learning (MLMTL) [IZ], any mode could possibly be low rank but it is
a priori unknown. The sample complexities are defined the same way as above with respect to
m|S|. The homogeneous case is when d = P = Q. The heterogeneous case is when the first
mode or the third mode is low rank but P < r < d. Similarly to the above two settings, the
overlapped trace norm has a mild dependence on the dimensions but a higher dependence on the
rank ||7][;/2 > r. The latent trace norm performs as well as knowing the mode that has the lowest
rank in the homogeneous case. However, it fails to recognize the mode with the lowest rank relative
to its dimension. The scaled latent trace norm does this and although it has a higher logarithmic
dependence, it is competitive in both cases.

Finally, our bounds also hold for tensor completion. Although Tomioka et al. [Z2, D3] studied
tensor completion algorithms, their analysis assumed that the inputs x;,, are drawn from a Gaussian
distribution, which does not hold for tensor completion. Note that in our setting x;;,, can be an
indicator vector that has one in the jth position uniformly over 1,...,d. In this case, x = 1. The
sample complexities of different norms with respect to m/|.S| is shown in the last row of Table . The
sample complexity for the overlapped trace norm is the same as the one in [3] with a logarithmic
factor. The sample complexities for the latent and scaled latent trace norms are new. Again we can
see that while the latent trace norm recognize the mode with the lowest rank, the scaled latent trace

norm is able to recognize the mode with the lowest rank relative to its dimension.

4 Experiments

We conducted several experiments to evaluate performances of tensor based multitask learning set-
ting we have discussed in Section B. In Section B, we discuss simulation we conducted using
synthetic data sets. In Sections B2 and B3, we discuss experiments on two real world data sets,
namely the Restaurant data set [26] and School Effectiveness data set [B, &]. Both of our real world
data sets have heterogeneous dimensions (see Figure ) and it is a priori unclear across which mode
has the most amount of information sharing.

4.1 Synthetic data sets

The true d x P x @ tensor YW* was generated by first sampling a 71 X 79 X 73 core tensor and then
multiplying random orthonormal matrix to each of its modes. For each task (p, q) € [P] x [Q], we
generated training set of m vectors (&;pq, Yipg )i by first sampling x;,, from the standard normal
distribution and then computing y;py = (@ipg, Wpq) + Vi, Where v; was drawn from a zero-mean
normal distribution with variance 0.1. We used the penalty formulation of (B) with the squared loss
and selected the regularization parameter A\ using two-fold cross validation on the training set from
the range 0.01 to 10 with the interval 0.1.

In addition to the three norms for tensors we discussed in the previous section, we evaluated the
matrix-based multitask learning approaches that penalizes the trace norm of the unfolding of W at
specific modes. The conventional convex multitask learning [2, B, [[] corresponds to one of these
approaches that penalizes the trace norm of the first unfolding [|[W (1 ||s;. The convex MLMTL in
[7] corresponds to the overlapped trace norm.

In the first experiment, we chose d = P = (Q = 10 and r; = ro = r3 = 3. Therefore, both
the dimensions and the multilinear rank are homogeneous. The result is shown in Figure [[(a). The
overlapped trace norm performed the best, the matrix-based approaches performed next, and the
latent trace norm and the scaled latent trace norm were the worst. The scaling of the latent trace
norm had no effect because the dimensions were homogeneous. Since the sample complexities for
all the methods were the same in this setting (see Table D), the difference in the performances could
be explained by a constant factor K (= 3) that is not shown in the sample complexities.

In the second experiment, we chose the dimensions to be homogeneous as d = P = ) = 10, but
(r1,7r9,73) = (3,6,8). The result is shown in Figure [(B). In this setting, the (scaled) latent trace
norm and the mode-1 regularization performed the best. The lower the rank of the corresponding
mode, the lower were the error of the matrix-based MTL approaches. The overlapped trace norm
was somewhat in the middle of the three matrix-based approaches.
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Figure 1: Results for the synthetic data sets.

In the last experiment, we chose both the dimensions and the multilinear rank to be heterogeneous
as (d, P,Q) = (10, 3,10) and (1, r2,73) = (3, 3, 8). The result is shown in Figure [(c). Clearly the
first mode had the lowest rank relative to its dimension. However, the latent trace norm recognizes
the second mode as the mode with the lowest rank and performed similarly to the mode-2 regulariza-
tion. The overlapped trace norm performed better but it was worse than the mode-1 regularization.
The scaled latent trace norm performed comparably to the mode-1 regularization.

4.2 Restaurant data set

The Restaurant data set contains data for a recommendation system for restaurants where different
customers have given ratings to different aspects of each restaurant. Following the same approach
as in [[/] we modelled the problem as a MLMTL problem with d = 45 features, P = 3 aspects,
and @ = 138 customers.

The total number of instances for all the tasks were 3483 and we randomly selected training set of
sizes 400, 800, 1200, 1600, 2000, 2400, and 2800. When the size was small many tasks contained
no training example. We also selected 250 instances as the validation set and the rest was used as the
test set. The regularization parameter for each norm was selected by minimizing the mean squared
error on the validation set from the candidate values in the interval [50, 1000] for the overlapped,
[0.5, 40] for the latent, [6000, 20000] for the scaled latent norms, respectively.

We also evaluated matrix-based MTL approaches on different modes and ridge regression (Frobe-
nius norm regularization; abbreviated as RR) as baselines. The convex MLMTL in [['7] corresponds
to the overlapped trace norm.

The result is shown in Figure P{a). We found the multilinear rank of the solution obtained by the
overlapped trace norm to be typically (1,3,3). This was consistent with the fact that the perfor-
mances of the mode-1 regularization and the ridge regression were equal. In other words, the effec-
tive dimension of the first mode (features) was one instead of 45. The latent trace norm recognized
the first mode as the mode with the lowest rank and it failed to take advantage of the low-rank-ness
of the second and the third modes. The scaled latent trace norm was able to perform the best match-
ing with the performances of mode-2 and mode-3 regularization. When the number of samples was
above 2400, the latent trace norm caught up with other methods, probably because the effective
dimension became higher in this regime.

4.3 School data set

The data set comes from the inner London Education Authority (ILEA) consisting of examination
records from 15362 students at 139 schools in years 1985, 1986, and 1987. We followed [8] for
the preprocessing of categorical attributes and obtained 24 features. Previously Argyriou et al. [3]
modeled this data set as a 27 x 139 matrix-based MTL problem in which the year was modeled as a
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Figure 2: Results for the real world data sets.

trinomial attribute. Instead here we model this data set as a 24 x 139 x 3 MLMTL problem in which
the third mode corresponds to the year. Following earlier papers, [B, 8], we used the percentage of
explained variance, defined as 100 - (1 — (test MSE)/(variance of y)), as the evaluation metric.

The results are shown in Figure Z{b]. First, ridge regression performed the worst because it was
not able to take advantage of the low-rank-ness of any mode. Second, the plain latent trace norm
performed similarly to the mode-3 regularization probably because the dimension 3 was lower than
the rank of the other two modes. Clearly the scaled latent trace norm performed the best matching
with the performance of the mode-2 regularization; probably the second mode had the most redun-
dancy. The performance of the overlapped trace norm was comparable or slightly better than the
mode-1 regularization. The percentage of the explained variance of the latent trace norm exceeds
30 % around sample size 4000 (around 30 samples per school), which is higher than the Hierarchical
Bayes [8] (around 29.5 %) and matrix-based MTL [3] (around 26.7 %) that used around 80 samples
per school.

5 Discussion

Using tensors for modeling multitask learning [IZ, 9] is a promising direction that allows us to
take advantage of similarity of tasks in multiple dimensions and even make prediction for a task
with no training example. However, having multiple modes, we would have to face with more
hyperparameters to choose in the conventional nonconvex tensor decomposition framework. Convex
relaxation of tensor multilinear rank allows us to side-step this issue. In fact, we have shown that the
sample complexity of the latent trace norm is as good as knowing the mode with the lowest rank.
This is consistent with the analysis of [Z1] in the tensor denoising setting (see Table ).

In the setting of tensor-based MTL, however, the notion of mode with the lowest rank may be
vacuous because some modes may have very low dimension. In fact, the sample complexity of
the latent trace norm can be as bad as not using any low-rank-ness at all if there is a mode with
dimension lower than the rank of the other modes. The scaled latent trace norm we proposed in this
paper recognizes the mode with the lowest rank relative to its dimension and lead to the competitive
sample complexities in various settings we have shown in Table D.
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