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ABSTRACT Sound source localization (SSL) is an important technique for many audio processing systems,

such as speech enhancement/recognition and human–robot interaction. Although many methods have been

proposed for SSL, it still remains a challenging task to achieve accurate localization under adverse acoustic

scenarios. In this paper, a novel binaural SSL method based on time–frequency convolutional neural

network (TF-CNN) with multitask learning is proposed to simultaneously localize azimuth and elevation

under unknown acoustic conditions. First, the interaural phase difference and interaural level difference are

extracted from the received binaural signals, which are taken as the input of the proposed SSL neural network.

Then, an SSL neural network is designed to map the interaural cues to sound direction, which consists of

TF-CNN module and multitask neural network. The TF-CNN module learns and combines the time–

frequency information of extracted interaural cues to generate the shared feature for multitask SSL. With

the shared feature, a multitask neural network is designed to simultaneously estimate azimuth and elevation

through multitask learning, which generates the posterior probability for candidate directions. Finally,

the candidate direction with the highest probability is taken as the final direction estimation. The experiments

based on public head-related transfer function (HRTF) database demonstrate that the proposed method

achieves preferable localization performance compared with other popular methods.

INDEX TERMS Sound source localization, time-frequency, convolutional neural network, multitask

learning.

I. INTRODUCTION

Sound source localization (SSL) is a key component of com-

putational auditory scene analysis, which can be applied to

many audio applications, such as hearing-aids, teleconfer-

encing, human-robot interaction, etc [1]–[4]. In the last few

decades, various approaches have been proposed for SSL, and

they can achieve favorable performance under certain spe-

cific acoustic conditions [5]–[7]. Despite decades of research,

the task of robustly localizing sound sources in adverse

acoustic scenarios still remains a challenging problem for

machines.

A great amount of sound localization models have

been proposed for SSL under different acoustic condi-

tions. The representative techniques are time difference of

arrival (TDOA) via generalized cross correlation (GCC) [8],

and high-resolution spectral or beamforming method based
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on multiple signal classification (MUSIC) [9], steered

response power (SRP) [10]. Most of these methods are

based on microphone arrays, their performance depends on

the array configuration and generally increases with the

number of microphones [5]. Unlike microphone array-based

approaches, the performance of the human auditory system is

very robust against noise and reverberation for SSL through

exploring the acoustic signals arriving at both ears. Motivated

by the robust sound localization performance of human audi-

tory, the localization based on binaural signals (termed as

binaural SSL) has been widely researched in recent years,

which has been a prevalent branch of SSL in computational

auditory scene analysis (CASA) [6].

In binaural SSL, two primary physical cues are widely

used [7], which include interaural time (or phase) difference

(ITD and IPD, respectively) and interaural level difference

(ILD). The two cues are caused by the sound propaga-

tion delay between the two ears and the head shadow-

ing effect. The SSL is achieved according to the mapping
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relationship between binaural cues and sound direction. The

azimuth, elevation and distance of sound source relative to

binaural microphones, are used to describe its position in

three-dimensional space. In order to mimic the SSL of

human auditory, gammatone filter is introduced to process

the received binaural signals into a set of narrow-band sig-

nals [11]. One classical method to estimate ITD is to search

the maximum in the GCC function, nevertheless it is suscep-

tible to reverberation and noise for the assumption of the ideal

single-path sound propagation. Different weighting functions

are proposed to enhance the estimation of GCC, such as

phase transform (PHAT) [8], smoothed coherence transform

(SCOT) [12], etc. ILD is obtained through calculating the

logarithmic energy ratio between binaural signals, which is

proved to be available for SSL alone [13]. A comprehensive

review of binaural cues for SSL was shown in [14].

Different from ideal anechoic rooms, realistic indoor

environment is generally acoustically disturbed, where the

extracted ITD and ILD becomes distorted in general. A com-

bined evaluation of binaural cues has been applied for ane-

choic SSL [15], where a joint feature space consisting of ITDs

and ILDs was constructed based on time-frequency binary

mask and trained to localize sound under noisy conditions.

A parametric model was proposed to achieve a robust SSL

under noisy conditions through combining the estimation of

ITD and ILD over frequencies [16]. For human audition,

ITD is more robust at low frequencies (lower than 1.5 kHz),

whereas ILD is more reliable at high frequencies [17], so the

ITD and ILD can operate in complementary ranges of fre-

quencies for SSL. Motivated by this theory, a Bayes-rule

based localization framework was proposed to hierarchically

combine ITD and ILD for the noisy SSL [18]. In [19],

the probability density functions of interaural cues were mea-

sured by histograms to perform SSL in nonstationary noise

conditions. Based on the interdependency of ITD and ILD,

a new binaural feature space was designed for SSL [20]. For

reverberation, themulti-path reflections disturb the extraction

of interaural cues, whichwas analyzed in [21].Manymethods

have also been proposed to achieve the robust extraction of

interaural cues, such as cepstral prefiltering [22], interaural

coherence [23], direct-path dominance test [24].

In order to efficiently combine interaural cues for SSL,

different localization models have been proposed to achieve

robust SSL under different acoustic conditions [25]. A bio-

logically inspired binaural SSLmethodwas proposed through

extracting interaural cues from cochleagrams generated by a

cochlear model [26]. Model-based methods were proposed

to robustly localize sound under noisy and reverberant con-

ditions [27], [28]. Probabilistic model based on normal dis-

tribution was proposed to estimate sound direction according

to the activity maps of interaural cues [26]. Gaussian mix-

ture model (GMM) was applied to model the binaural fea-

ture space for each gammatone subband [20], [29]. The

learning-based method with artificial neural network [30]

was also introduced to SSL by training the interaural cues in

each candidate direction under the acoustic conditions with

different signal-to-noise ratios (SNRs) and reverberation

times. Although these methods can achieve favorable

SSL performance in noisy and reverberant environments,

they should be trained for different SNRs and reverberation

times, which makes them sensitive to the changes of the room

configuration or acoustic conditions used in training.

Recently, along with the development of neural network,

machine learning approaches with different types of neu-

ral networks have been developed for SSL, such as deep

neural network (DNN), convolutional neural network (CNN)

[31]. A multilayer perceptron neural network was firstly

introduced to model the GCC coefficients weighted by

phase transform [32]. GCC features were also input into a

probabilistic neural network for robust SSL [33]. A prob-

abilistic neural network was proposed to model interaural

cues [34], MUSIC eigenvectors [35] for SSL. CNN was

adopted for SSL with short time Fourier transform (STFT)

phase as localization feature [36]. In [37], CNN was also

applied to a beamformer to improve localization accuracy.

Although these neural networks can achieve favorable per-

formance under some acoustic conditions, most of them aim

at estimating azimuth in the median plane.

As the sound position information is jointly described by

azimuth and elevation, the estimation of the exact sound

direction, including elevation, is an essential prerequisite for

many other acoustic techniques, such as speech enhance-

ment [38], speech separation [39], etc. For binaural SSL,

elevation estimation is essential for many applications. For

example, in human-robot interaction, a robot is usually

required to localize not only the horizontal direction but also

the vertical direction of speakers, since most of commercial

robots do not have a similar height with human speakers.

However, elevation localization has been rarely considered,

because the traditional interaural differences are insufficient

for localizing elevation, due to the ‘‘cones of confusion’’

exhibiting similar interaural cues [40]. In the past methods,

some additional cues are proposed for elevation estimation,

such as spectral cues [41], head-related transfer function

(HRTF) [42], interaural matching filter [4], etc. As spectral

cues are difficult to extract, energies coming from cochlear

filter-banks are exploited as well [11]. In recent methods,

DNN is applied to estimate azimuth and elevation [43], [44].

In [43], separate neural networks are trained for azimuth and

elevation. The localization of azimuth and elevation in [44] is

achieved with first-order Ambisonic (FOA) signals obtained

by a spherical array. Motivated by these methods, simultane-

ously localizing azimuth and elevation with binaural signals

is investigated in this paper.

In this work, a novel binaural SSL method based on

time-frequency convolutional neural network (TF-CNN)with

multitask learning, is proposed to simultaneously estimate

azimuth and elevation under different acoustic conditions.

IPD and ILD are extracted from the received binaural sig-

nals, then each or both of them are taken as the input of

the proposed SSL neural network. TF-CNN is designed to

robustly model and combine the interaural cues, which aims
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FIGURE 1. Flowchart of the proposed SSL system. Time-frequency interaural cues, i.e. IPD and ILD, are extracted as localization cues. SSL neural network
consists of TF-CNN and multitask neural network. Multitask learning is introduced to learn and estimate azimuth and elevation simultaneously.

to learn the time-frequency information of interaural cues,

and to generate the shared feature for both azimuth and eleva-

tion estimations. With the shared feature, a multitask neural

network is adopted to simultaneously estimate azimuth and

elevation throughmultitask learning, which produces the pos-

terior probability for each azimuth and elevation candidates.

Finally, the candidate direction with the highest probability

is taken as the final direction estimation. Experiments based

on the CIPIC HRTF database [45] demonstrate that the pro-

posed method achieves preferable localization performance

compared with other popular methods.

The rest of this paper is organized as follows: Section II

illustrates the framework of the proposed localization

method. In Section III, binaural signal model and inter-

aural cue extraction are illustrated. TF-CNN is explained

in Section IV. Section V illustrates the multitask learning

strategy for sound source localization. Section VI shows

experimental results and analyses, conclusions are drawn

in Section VII.

II. PROPOSED LOCALIZATION SYSTEM

In binaural audition, two typical interaural cues (i.e. ITD/IPD

and ILD) are commonly used for SSL based on the

microphone-array geometry or clustering algorithms. Since

original interaural cues are sensitive to strong noise condi-

tions, most of traditional binaural SSL methods focused on

extracting robust interaural cues, and how to effectively com-

bine them for SSL. Besides, most of these methods estimated

only the azimuth angle, few of them estimated the azimuth

and elevation jointly. In this work, we target the problem

of localizing azimuth and elevation of a single-sound source

using binaural microphones, under various noise conditions.

Multitask learning of CNN is introduced tomodel the original

interaural cues for robust joint estimation of azimuth and

elevation.

In this paper, SSL is taken as a classification problem

by using a SSL neural network consisting of TF-CNN and

multitask neural network to model the relationship between

time-frequency interaural cues and sound directions (namely

azimuth and elevation). The flowchart of the proposed

SSL system is shown in Fig. 1, which includes three main

components:

• Time-Frequency Feature Extraction: The phase and

magnitude of binaural signals are computed by applying

STFT to binaural signals. At each time-frequency bin,

IPD and ILD are obtained by calculating the difference

of phase and magnitude between binaural signals. The

extracted IPD and ILD are separately stacked over mul-

tiple frames and all frequencies into larger IPD and ILD

matrices with a fixed size, which are taken as the input

of SSL neural network.

• TF-CNN: TF-CNN is designed to transfer and combine

the extracted TF interaural cues over time and frequency

domains. TF-CNN learns the time-frequency informa-

tion by doing the 2D convolutional operation on the

input interaural feature, which generates the discrimina-

tive shared feature for later multitask SSL.

• Multitask Neural Network: A multitask neural network

is designed to simultaneously estimate azimuth and ele-

vation with the shared feature. Multitask learning is

introduced to train the proposed SSL neural network

through combining the losses of azimuth and eleva-

tion estimations. After training, the SSL neural network

model is used to estimate the posterior probability for

each candidate direction with the input of frame-stacked

IPD/ILD features. The candidate direction with maxi-

mum posterior probability is taken as the final direction

estimate.

Overall, these three components lead to an effective

and robust SSL system for both azimuth and elevation

localization.

III. BINAURAL MODEL AND CUE EXTRACTION

A. BINAURAL SIGNAL MODEL

The azimuth and elevation of sound source are respectively

denoted as θ and ϕ, which follows the definition of sound

direction in the CIPICHRTF database [45]. The CIPICHRTF

database collected by the U. C. Davis CIPIC Interface Labo-

ratory is used to simulate the binaural signals in this work,

which contains HRTFs for 45 different subjects including

27 males, 16 females, and KEMAR with large and small

pinnae. For each subject, its HRTFs are measured at source-

to-sensors distance of 1 m for 25 different azimuths and

50 different elevations. In the CIPIC HRTF database,

the range of azimuth is [−80◦, −65◦, −55◦, −45◦:5◦:45◦,

55◦, 65◦, 80◦], and elevation ranges from−45◦ to+230.625◦

in steps of 5.625◦. Note that the angles are defined in
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interaural-polar coordinates, where the back side of one

subject are found at [90◦, 230.625◦] elevation.

In the binaural hearing scene, let s(m) denote the sound

source signal, the binaural signals received by the two ‘‘ears’’

under noisy condition can be modeled as

yi(m) = s(m) ⋆ hi(m) + vi(m), i = l, r, (1)

where i represents the microphone index, l and r denote

the left-ear and right-ear channels, m is the time index,

hi(m) denotes the impulse response from sound source to ears,

namely head-related impulse responses (HRIRs), ⋆ denotes

the time-domain convolution operation, vi(m) denotes the

additional noise. Here, vi(m) is assumed as a temporally

uncorrelated, zero-mean, stationary Gaussian random pro-

cess. The HRIR hi(m) involves the effect of dummy head and

ears, which varies with sound direction, namely θ and ϕ.

By applying STFT, (1) is transformed to the time-

frequency (TF) domain, which can be formulated as

Yi(κ, ω) = S(κ, ω)Hi(ω) + Vi(κ, ω), (2)

where Yi, S and Vi are the STFT coefficients of their cor-

responding time-domain forms, κ is the time frame index,

ω denotes the frequency bin index, Hi is the frequency-

domain representation of HRIR, namely HRTF.

B. INTERAURAL CUE EXTRACTION

In this part, IPD and ILD are extracted as localization cues,

which are taken as the input of SSL neural network. With the

TF binaural signals in (2), IPD can be extracted as

φ(κ, ω) = 6
Yr (κ, ω)

Yl(κ, ω)
, (3)

where φ(κ, ω) denotes the IPD at κ-th audio frame and

ω-th frequency bin. ILD can be calculated as

λ(κ, ω) = 20log10
|Yr (κ, ω)|

|Yl(κ, ω)|
, (4)

where λ(κ, ω) denotes the ILD at κ-th audio frame and

ω-th frequency bin.

The IPD distribution and ILD distribution as a function

of azimuth and elevation are shown in Fig. 2. In Fig. 2 (a)

and (b), it is obvious that IPD and ILD are changing with

the variation of azimuth. When azimuth = 0◦, IPD and

ILD should theoretically be zero, while there are some small

fluctuations along frequency for them. This phenomenonmay

be mainly caused by that the HRTF used for calculating the

IPD and ILD distributions is from subject #21 in the CIPIC

HRTF database, which is measured from a real person in a

realistic environment. In Fig. 2 (c) and (d), the IPD and ILD

distributions at azimuth = 40◦ are presented, which also

have some small fluctuations. It can be observed that the IPD

distribution is similar for different elevations, while ILD is

more sensitive to elevation variation.

FIGURE 2. IPD distribution (a) and ILD distribution (b) versus azimuth
where elevation is 0◦, IPD distribution (c) and ILD distribution (d) versus
elevation where azimuth is 40◦, which are calculated based on the HRTFs
of subject #21 in the CIPIC HRTF database.

IV. TIME-FREQUENCY CNN

In this section, the form of input feature for the SSL neural

network is firstly explained. Then, the architecture of the

time-frequency CNN module is illustrated to generate the

shared feature for both azimuth and elevation estimation.

A. INPUT FEATURE

With the extracted time-frequency IPD and ILD, they are

stacked over constant K time frames and all of the frequency

bins. Without loss of generality, let κ ∈ 1, 2, · · · ,K denote

the constant K frames, and ω ∈ 1, 2, · · · ,F all the frequency

bins. So the input IPD feature can be formulated as

φ =











φ(1, 1) φ(1, 2) · · · φ(1,F)

φ(2, 1) φ(2, 2) · · · φ(2,F)
...

...
. . .

...

φ(K , 1) φ(K , 2) · · · φ(K ,F)











In the same way, the input ILD feature is formulated as

λ =











λ(1, 1) λ(1, 2) · · · λ(1,F)

λ(2, 1) λ(2, 2) · · · λ(2,F)
...

...
. . .

...

λ(K , 1) λ(K , 2) · · · λ(K ,F)











.

According to the definition of IPD matrix φ and ILD

matrix λ, the two interaural features involve the time and

frequency information with the size of K × F . In this work,

interaural features are extracted from the binaural signals

with sampling rate of 16 kHz using STFT with a hamming

window. The window length is 40 ms (640 samples) with a

hop length of 20 ms. The interaural features are extracted

for the frequency bins from 0 to 320, which represent the
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FIGURE 3. Architecture of time-frequency CNN module includes four convolutional layers, four batch normalization layers followed by ReLU activation,
and one flatten layer, which generates the shared feature for azimuth and elevation localization.

frequencies from 0 to 8 kHz. Here, the time-domain input

size is 200 ms corresponding to 10 frames. In this work,

the IPDmatrix φ, ILDmatrix λ and their concatenation along

time (labeled as IPD+ILD) are taken as the input feature,

respectively. The size of the input interaural feature K × F

is 10 and 321 for IPD matrix or ILD matrix, 20 and 321 for

IPD+ILD. Let A denote the input of the SSL neural network,

A can be φ, λ and [φ, λ].

B. TF-CNN MODULE

With the interaural features constructed in Section IV-A as

input, a 2D CNN is proposed to model the time-frequency

information of the input feature, which is called time-

frequency CNN (TF-CNN). The architecture of TF-CNN is

shown in Fig. 3, which includes four convolution layers with

different numbers of filters (namely ‘Channel’ in Fig. 3), four

batch normalization (BN) layers and one flatten layer. Rec-

tified Linear Unit (ReLU) activation [46] is used after each

batch normalization layer. The kernel size of the convolution

layer is presented as R × S, where R and S represent the

dimensions of time and frequency, respectively.

As shown in Fig. 3, the interaural feature is first put into

a 2D convolution layer with squared kernel size of 5 × 5

and stride of 3. Then, a batch normalization [47] layer is

used to improve the stability of the SSL network. After the

batch normalization operation, a 2D convolution layer with

squared kernel size of 3 × 3 and stride of 2, and a batch

normalization layer are used to weight the input interaural

features. Next, the same 2D convolution and batch normal-

ization operations are repeated twice with different numbers

of filters. ReLU activation is utilized after each batch nor-

malization layer. Finally, a flatten layer is used to flatten the

output of the previous layer to a feature vector. The feature

vector output from the TF-CNNmodule is taken as the shared

feature for the following multitask SSL (will be presented in

Section V).Let Convj denote the j-th convolution block in the

TF-CNN module, namely Convj(·) = ReLU(BN(Convj(·))),

where Convj(·) denotes the convolution layer shown in Fig. 3,

j = 1, 2, 3, 4. The shared feature generated by the TF-CNN

module can be mathematically presented as

Fs = Flatten(Conv4(Conv3(Conv2(Conv1(A)))). (5)

In the 2D convolution layers, small-size local filters are

applied to learn the correlation of interaural features across

neighboring time frames and frequency bins. The squared

FIGURE 4. Architecture of multitask neural network for azimuth and
elevation estimation.

2D local filters in TF-CNN are able to potentially improve

the robustness of SSL system. Regarding the number of con-

volution layers, we have done various pilot experiments with

multitask learning for both azimuth and elevation estimation.

The number of convolution layers is set to 3, 4 and 5, respec-

tively. The training (and also prediction) cost in terms of

computational and memory resources is linearly proportional

to the number of layers. The localization accuracy (averaged

over azimuth and elevation) of the 4-layer network exceeds

the one of the 3-layer network by about 4%. The accuracy of

the 5-layer network exceeds the one of the 4-layer network

less than 1%. Thence, we use 4 convolution layers in this

work.

V. MULTITASK SOUND SOURCE LOCALIZATION

A. MULTITASK NEURAL NETWORK FOR SSL

Multitask learning is able to train a ‘universal’ model for

several different but related tasks using a shared representa-

tion, which has been applied to many speech/audio process-

ing systems, such as ASR [48], speech enhancement [49].

In multitask learning, internal representations learned for

one task can be helpful for the other related tasks, and vice

versa. In this work, the multitask for SSL includes azimuth

localization and elevation localization.

The architecture of themultitask learning network is shown

in Fig. 4, which includes two branches for azimuth and ele-

vation estimation, respectively. In the upper branch of Fig. 4,

four fully connected (FC) layers, i.e. [FC11, FC12, FC13]

with ReLU activation and FC14, are used to combine the

local structures in the shared feature learned by TF-CNN

for azimuth estimation, whose output size is the number of

azimuth candidates. Since the number of azimuth candidates

is same with elevation in this work, the same neural network

architecture is designed for elevation. As shown in the lower

part of Fig. 4, four FC layers, i.e. [FC21, FC22, FC23]

with ReLU activation and FC24, are utilized to combine
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the learned local structures in the same shared feature for

elevation estimation, whose output size is the number of

elevation candidates. The outputs of FC14 and FC24 can be

respectively formulated as

Fa = FC14(FC13(FC12(FC11(Fs)))), (6)

Fe = FC24(FC23(FC22(FC21(Fs)))). (7)

Then, Fa and Fe are passed through two softmax layers,

respectively. The outputs of the two softmax layers are taken

as the posterior probabilities for the candidates of azimuth

and elevation, respectively, which can be obtained as

P(θp|A,Wa) =
e[Fa]p

∑P
n=1 e

[Fa]n
, p = 1, 2, · · · ,P, (8)

P(ϕq|A,W e) =
e[Fe]p

∑Q
n=1 e

[Fe]n
, q = 1, 2, · · · ,Q, (9)

where [·]n, [·]p and [·]q separately represent the n-th, p-th and

q-th element in the vector, Wa and W e denote the the learn-

able weight matrix of the SSL neural network for azimuth

and elevation estimation, θp and ϕq denote the p-th candidate

azimuth and q-th candidate elevation, P and Q represent the

number of azimuth and elevation candidates, respectively.

The final azimuth/elevation estimation is achieved by finding

the candidate direction with the maximum posterior proba-

bility, which can be achieved by

θ̂ = argmax
p

P(θp|A,Wa), (10)

ϕ̂ = argmax
q

P(ϕq|A,W e), (11)

where θ̂ and ϕ̂ denote the estimated azimuth and elevation,

respectively.

In the following experimental section, for comparison

purpose, we also test the single-task training scheme,

in which the training is applied to the single branch of

the multitask network for individual aimuth/elevation esti-

mation. The azimuth/elevation can be individually achieved

by (10)/(11). In the context, the TF-CNN with multi-

task neural network is called multitask TF-CNN, and the

TF-CNN with single branch of multitask neural network is

called single-task TF-CNN.

B. LOSS FUNCTION

For the single task of azimuth (or elevation) estimation,

the SSL neural network is trained by minimizing the cross-

entropy loss between the predicted azimuth (or elevation) and

the ground truth. For single-task TF-CNN, the cross-entropy

function [50] used for training is formulated as

La = −

P
∑

p=1

[

ta log
(

P(θp|A,Wa)
)]

, (12)

Le = −

Q
∑

q=1

[

te log
(

P(ϕq|A,W e)
)]

, (13)

whereLa andLe denote the azimuth and elevation estimation

loss, ta and te denote the ground-truth azimuth and elevation

labels, respectively.

Sound direction can be represented by azimuth and eleva-

tion, which can be simultaneously estimated by using mul-

titask learning [51], [52]. In order to achieve the multitask

learning, the losses of azimuth and elevation estimations are

jointly minimized. For multitask TF-CNN, the parameters

of the whole neural network for SSL, denoted as 2, are

randomly initialized between -1 and 1, which are trained

by optimizing the following combined loss function using

back-propagation:

min
2

(αLa + (1 − α)Le) , (14)

where α is the mixing weight with the value ranging from

0 to 1. In the same way, the single-task TF-CNN for azimuth

(or elevation) estimation is trained with the corresponding

single loss function La (or Le).

VI. EXPERIMENTS AND ANALYSES

A. EXPERIMENTAL SETUP

1) THE DATASET

To evaluate the effectiveness of the proposedmethod, the sub-

ject #21 (i.e., Kemar head) in the CIPIC HRTF database [45]

is used to simulate the SSL environment in the following

experiments. The SSL in the front area is considered in this

work, the range of azimuth localization is from −80◦ to 80◦,

and elevation localization from−45◦ to+90◦. The number of

candidate azimuth and elevation for localization is 25 and 25,

respectively, which leads to a total of 25 × 25 = 625

directions.

Audio signals from the TIMIT dataset [53] are taken

as the sound source signals, which are convolved with the

HRIRs to generate the binaural signals. Four types of spatially

uncorrelated noises (white Gaussian noise, speech babble

noise, pink noise and f16 noise) from Noisex92 database [54]

are used as interference signals to generate the noisy bin-

aural signals, which are directly added to binaural signals

with signal-to-noise ratios (SNRs) ranging from −5 dB to

35 dB in steps of 5 dB. The sampling rate of binaural

signals is 16 kHz. For each SNR, 15 sets of 625 binau-

ral signals were generated as training data by randomly

selecting 15 different speech signals from the train set from

TIMIT dataset and convolving each of these 15 signals

with each of the 625 BRIRs. Similarly, with the audio

signals from the test set in TIMIT dataset, 5 sets and

10 sets are generated as validation and test data. In this way,

the speakers and utterances used for training and test in our

SSL system are different, namely our SSL experiments are

speaker/content-independent.

In order to evaluate the robustness of the proposed local-

ization system for different types of noises, cross-validation

is conducted: i) the data of [0:10:30] dB are used for training

and evaluation, and the data of [-5:10:35] dB for test; ii) the

data from the three of four types of noises, i.e. Gaussian,
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FIGURE 5. The localization accuracy of azimuth, elevation and the
average of them for the multitask TF-CNN method with IPD+ILD input,
as a function of α. The accuracy is averaged over four types of spatially
uncorrelated noise and over all test SNRs, under the noise-unmatched
condition.

babble, pink and f16, are used to train and validate the pro-

posed SSL neural network, the data of remaining one is used

to test the adaptability of the trained SSL neural network.

In addition to the cross-validation experiments (under the

noise-unmatched condition), we also test the noise-matched

condition, namely the same type of noise is used for training

and test. Note that the noise-matched condition also uses

the different SNRs for training and test, as for the cross-

validation experiments. Similar with the setting for the spa-

tially uncorrelated noise, the spatially diffuse noise version

of the above four types of noise are also tested. The diffuse

noise is generated by convoluting different noise slices with

the HRIRs of all 625 directions, and then summing up them.

2) EVALUATION SETTING

The proposed SSL neural network is trained with IPD, ILD

and IPD+ILD under different noise conditions by single-task

(azimuth/elevation) training and multi-task (azimuth and ele-

vation) training. The localization performance is measured by

localization accuracy with the 0◦ localization error, namely

one source is said to be correctly localized only when the esti-

mated direction index is identical to the ground truth index.

In this work, the training and evaluations for all net-

works are conducted by Tensorflow [55] using one NVIDIA

GeForce Titan XP GPU. The batch size is set to 128 for all

the experiments. The stochastic gradient descent [56] with

a momentum of 0.9 is adopted for training the SSL neural

network. The learning rate is set to 0.0001.

In order to determine the optimal mixing weight α, differ-

ent values of α were evaluated with multitask TF-CNN based

on IPD+ILD under different spatially uncorrelated noise con-

ditions. The localization results are shown in Fig. 5. It can be

seen that the best localization performance is achieved when

α = 0.5, which may be due to the same number of azimuth

FIGURE 6. Average azimuth localization accuracy over four types of
spatially uncorrelated noise, under the noise-unmatched condition.
(a) single-task training (b) multitask training, with IPD, ILD
and IPD+ILD, respectively.

and elevation candidates, as well as the same neural network

structure for azimuth and elevation estimation. Therefore,

the mixing weight α is set to 0.5 in the following experiments.

B. AZIMUTH LOCALIZATION RESULTS

1) RESULTS FOR SINGLE-TASK AND MULTITASK TRAINING

The average azimuth localization accuracy over the four

types of spatially uncorrelated noise with different SNRs

is shown in Fig. 6, under the noise-unmatched condition.

Fig. 6 (a) presents the results of single-task training with

IPD, ILD and IPD+ILD as localization features. It can be

seen that the average azimuth localization performance for

each type of localization feature degrades with the decrease

of SNR, since the strong noise seriously harms the extrac-

tion of interaural features. The IPD feature achieves better

azimuth localization performance than ILD, which is due

to that IPD is more discriminative than ILD for azimuth

localization, as shown in Fig. 2. Through taking both IPD

and ILD as the input feature, better azimuth localization

accuracy is achieved compared with each of IPD or ILD,

especially under strong noise conditions, which demon-

strates that TF-CNN can effectively combine IPD and ILD
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FIGURE 7. Average azimuth localization accuracy over four types of
spatially uncorrelated noise and diffuse noise, for single-task and
multitask TF-CNN based on IPD+ILD under the noise-unmatched
condition.

for azimuth localization. Fig. 6 (b) shows the results of

multitask training. It can be seen that the azimuth local-

ization performance is obviously improved by multitask

TF-CNN compared with the single-task TF-CNN. For exam-

ple, the azimuth localization accuracy of single-task TF-CNN

with IPD is 88.52% at SNR=15 dB, while that of multi-

task TF-CNN reaches 92.55%. IPD achieves similar per-

formance with IPD+ILD through multitask TF-CNN when

SNR≥5 dB. It can also be seen that IPD obtains slightly

better azimuth localization performance than ILD when

SNR>15 dB. This phenomenon may be caused by that, for

multitask training with IPD+ILD, the trained network gives

more emphasis to ILD (relative to single-task training), which

will improve the performance for elevation estimation.

Fig. 7 shows the average azimuth localization accuracy

over four types of spatially uncorrelated noise and diffuse

noise with different SNRs, for single-task and multitask

TF-CNN based on IPD+ILD under the noise-unmatched

condition. It can be seen that, based on IPD+ILD, multitask

TF-CNN achieves better performance than single-task

TF-CNN under both spatially uncorrelated and diffuse noise

conditions, which mainly owes to the multitask learning

for joint azimuth and elevation estimation. The performance

gap between multitask TF-CNN and single-task TF-CNN is

small, which is attributed to the fusion estimation based on

IPD and ILD.

2) RESULTS FOR EACH TYPE OF NOISE

The azimuth localization results of multitask TF-CNN for

each type of noise with different SNRs are shown in Fig. 8.

In detail, Fig. 8 (a) shows the results under spatially uncor-

related noise conditions. It can be seen that the azimuth

localization accuracy of TF-CNN exceeds 90% for the four

types of noise when SNR≥25 dB, while degrades with the

decrease of SNR. The azimuth localization performance for

FIGURE 8. Azimuth localization accuracy of multitask TF-CNN based on
IPD+ILD under (a) spatially uncorrelated and (b) diffuse noise conditions,
and under the noise-unmatched condition.

the four types of noise are similar at SNR=35 dB. For other

SNRs, the performance ranking for the four types of noise

is: babble, f16, pink and Gaussian. This phenomenon may be

caused by the wide-band property of white Gaussian noise,

which makes the local filter in convolutional layers difficult

to compensate the information in the high frequency region.

Fig. 8 (b) shows the results under diffuse noise condition.

Compared with the spatially uncorrelated noise case, the per-

formance degrades more rapidly under the diffuse noise con-

dition with the decrease of SNR. The reason is that the spatial

correlation of diffuse noise reduces the accuracy of interaural

feature extraction, especially for the IPD.

3) NOISE-MATCHED/UNMATCHED RESULTS

To evaluate the generalization capability of the proposed

localization system with respect to the noise type, we com-

pare the localization results under noise-matched and noise-

unmatched conditions, which are shown in Fig. 9. We remind

that noise-matched refers to that training and test use the
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FIGURE 9. Azimuth localization accuracy (averaged over four types of
noise) of multitask TF-CNN under noise-matched and noise-unmatched
conditions, respectively.

FIGURE 10. Comparing the azimuth estimation accuracy with three
baseline methods under the spatially uncorrelated noise conditions. The
proposed method, i.e. multitask TF-CNN, uses the IPD+PLD feature, and is
tested under the noise-unmatched condition.

same type of noise, while noise-unmatched refers to that

training and test use different types of noises, i.e. Gaussian,

babble, pink and f16. For the spatially uncorrelated noise,

the performance of the noise-matched and noise-unmatched

cases are comparable, which demonstrates the good noise

type generalization capability of the proposed system when

the noise is spatially uncorrelated. However, for the diffuse

noise, the noise-matched case noticeably outperforms the

noise-unmatched case, which indicates the bad noise type

generalization capability. To overcome this, the neural net-

work training should use many different types of noises to

cover the unseen test noise type as much as possible.

4) COMPARISON WITH BASELINE METHODS

To evaluate the effectiveness of the proposed method, three

baseline methods are compared, i.e. DNN [34], Interaural

Matching Filter (IMF) [4] andHierarchical System (HS) [18].

FIGURE 11. Average elevation localization accuracy over four types of
spatially uncorrelated noise, under the noise-unmatched condition.
(a) single-task training (b) multitask training, with IPD, ILD
and IPD+ILD, respectively.

DNN uses the GCC-PHAT coefficients and ILD computed

from the outputs of gammatone filters as localization cues.

Note that, different from the proposed method that SSL is

conducted for each 200 ms signal segment, DNN uses the

whole signal sequence. IMF and HS are the hierarchical

methods. The former uses ITD, ILD and IMF, and the latter

uses ITD and ILD, as localization cues.

Fig. 10 presents the comparison of azimuth localization

accuracy. The HS-based method gets the lowest azimuth

estimation performance among the three methods. The

IMF-based method obtains better localization performance

than HS, since the extra localization feature over HS, i.e. IMF,

is effective to discriminate directions. The proposed method

prominently outperforms IMF for all the SNR conditions,

although IMF uses ITD, ILD and IMF, the proposed method

only uses IPD (equivalent to ITD) and ILD. The DNN-based

method performs slightly better than the proposed method

when SNR>15 dB, but noticeably worse than the proposed

method under low SNR conditions, even if DNN-based

method uses the whole signal sequence. Overall, the pro-

posedmethod shows great performance superiority than other
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FIGURE 12. Average elevation localization accuracy over four types of
spatially uncorrelated noise and diffuse noise, for single-task and
multitask TF-CNN based on IPD+ILD under the noise-unmatched
condition.

three methods, especially under strong noise conditions. This

preferable azimuth localization performance of TF-CNN is

attributed to two aspects: one is the local filters in CNN,

which can compensate the information influenced by low

SNR, since the weight sharing in CNN provides robustness

to local distortions in the input; the other is multitask training

and localization, which combines and benefits both azimuth

and elevation localization.

C. ELEVATION LOCALIZATION RESULTS

In this section, themultitask TF-CNNmodel used for azimuth

localization is directly used to estimate elevation, the single-

task TF-CNN model for elevation localization is trained with

the corresponding single cross-entropy loss.

1) RESULTS FOR SINGLE-TASK AND MULTITASK TRAINING

The average elevation results for different SNRs are shown

in Fig. 11. Fig. 11 (a) presents the results for single-task

TF-CNN. Similar with the azimuth localization, the eleva-

tion localization accuracy of TF-CNN decreases with the

increasing noise intensity. However, the TF-CNN with ILD

as localization cue performs better elevation localization than

IPD, which is due to that ILD is more discriminative than IPD

for elevation localization. The single-task TF-CNN gets the

best elevation localization performance by combining IPD

and ILD as localization feature, which also demonstrates that

TF-CNN can effectively combine IPD and ILD for eleva-

tion localization.

In addition to the single-task TF-CNN, multitask TF-CNN

is also applied, whose results are shown in Fig. 11 (b).

It can be observed that the elevation localization performance

for different interaural cues is improved with the multitask

TF-CNN. The elevation localization accuracy of the single-

task TF-CNN with IPD is lower than 40% at SNR = 5 dB,

while that of multitask TF-CNN reaches over 40%. This

phenomenon verifies that the multitask learning can take the

FIGURE 13. Elevation localization accuracy of multitask TF-CNN based on
IPD+ILD under (a) spatially uncorrelated and (b) diffuse noise conditions,
and under the noise-unmatched condition.

full advantage of interaural features for elevation localization.

Fig. 12 shows the average elevation localization accuracy

over four types of spatially uncorrelated noise and diffuse

noise with different SNRs, for single-task and multitask

TF-CNN based on IPD+ILD under the noise-unmatched

condition. It can be seen that multitask TF-CNN outperforms

single-task TF-CNN under both spatially uncorrelated and

diffuse noise conditions, and this advantage is similar to the

azimuth localization.

2) RESULTS FOR EACH TYPE OF NOISE

The elevation localization results for each type of noise

with different SNRs are shown in Fig. 13. The results

under the spatially uncorrelated noise condition are shown

in Fig. 13 (a). It can be observed that the elevation local-

ization accuracy reaches above 80% at SNR = 35 dB for

white Gaussian noise, and it reaches above 90% for other

three types of noise. Similar with the azimuth localization,

the performance ranking for the four types of noise is: babble,

f16, pink and Gaussian.

For the diffuse noise condition, the elevation localization

performance for each type of noise with different SNRs are

shown in Fig. 13 (b). It can be observed that, for white
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FIGURE 14. Elevation localization accuracy (averaged over four types of
noise) of multitask TF-CNN under noise-matched and noise-unmatched
conditions, respectively.

FIGURE 15. Comparing the elevation estimation accuracy with three
baseline methods under the spatially uncorrelated noise conditions. The
proposed method, i.e. multitask TF-CNN, uses the IPD+PLD feature, and is
tested under the noise-unmatched condition.

Gaussian noise, the elevation localization performance also

reaches above 80% at SNR = 35 dB, and degrades sharply

with the decrease of SNR, which is similar with the uncorre-

lated noise case. TF-CNN achieves similar performance for

each SNR for other three types of noise. Compared with the

spatially uncorrelated noise case, the elevation localization

performance has a larger degradation with the decrease of

SNR under the diffuse noise condition, due to the spatial

correlation of diffuse noise.

3) NOISE-MATCHED/UNMATCHED RESULTS

With the same noise-matched and noise-unmatched settings

for azimuth localization, the average elevation localization

results are shown in Fig. 14. It is not surprising that the noise-

matched setting outperforms the noise-unmatched setting for

all the conditions. However, under the diffuse noise condition,

different from the azimuth localization results that the perfor-

mance gap between the two settings is very large, the ele-

vation performance gap is much smaller between the two

settings. This means that, under the diffuse noise condition,

the noise type generalization capability of the proposed SSL

system is good for the elevation localization. Since ILD is

the dominant cue for elevation, this phenomenon indicates

that the ILD extraction does not largely rely on the noise

type.

4) COMPARISON WITH BASELINE METHODS

The comparison of elevation localization performance

between the baseline methods and the proposed method is

shown in Fig. 15. Although DNN is only used for azimuth

estimation in [34], we changed its training target for elevation

estimation. The proposed method systematically outperforms

the DNN-based method for elevation estimation. The main

reason is the use of the multitask training in the proposed

method. Besides, the DNN is possibly not very suitable for

elevation estimation. It can be seen that the proposed method

prominently outperforms the other three methods, and the

superiority is similar to the azimuth localization results.

VII. CONCLUSION

In this paper, a novel binaural sound source localization

method based on time-frequency convolutional neural net-

work (TF-CNN) with multitask learning was proposed to

simultaneously estimate azimuth and elevation. IPD and ILD

extracted from the received binaural signals are taken as

localization feature, which are combined for both azimuth

and elevation localization. For single interaural feature,

IPD is more effective for azimuth localization, and ILD is

more effective for elevation localization. TF-CNN robustly

modeled the noise-influenced interaural features by learn-

ing their time-frequency information. Besides, TF-CNN also

behaves effectively for the unseen noise, except for the

azimuth localization under the diffuse noise condition. Mul-

titask learning simultaneously estimated azimuth and eleva-

tion with the same neural network, which is demonstrated

to effectively improve the localization performance over the

single-task training scheme. Experiments based on the CIPIC

HRTF database under spatially uncorrelated and diffuse noise

conditions demonstrated that the proposed method achieves

preferable localization performance compared with other

popular methods. Since the proposed method only consid-

ers the azimuth and elevation localization of a single sound

source under noise conditions, the future works may focus on

the localization under reverberant conditions andmulti-sound

source localization.
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