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Abstract. Empirical success of kernel-based learning algorithms is very
much dependent on the kernel function used. Instead of using a single
fixed kernel function, multiple kernel learning (MKL) algorithms learn a
combination of different kernel functions in order to obtain a similarity
measure that better matches the underlying problem. We study multi-
task learning (MTL) problems and formulate a novel MTL algorithm
that trains coupled but nonidentical MKL models across the tasks. The
proposed algorithm is especially useful for tasks that have different input
and/or output space characteristics and is computationally very efficient.
Empirical results on three data sets validate the generalization perfor-
mance and the efficiency of our approach.

Keywords: kernel machines, multilabel learning, multiple kernel learn-
ing, multitask learning, support vector machines.

1 Introduction

Given a sample of N independent and identically distributed training instances
{(xi, yi)}N

i=1, where xi is a D-dimensional input vector and yi is its target output,
kernel-based learners find a decision function in order to predict the target output
of an unseen test instance x [10,11]. For example, the decision function for binary
classification problems (i.e., yi ∈ {−1, +1}) can be written as

f(x) =
N∑

i=1

αiyik(xi, x) + b

where the kernel function (k : R
D × R

D → R) calculates a similarity metric
between data instances. Selecting the kernel function is the most important issue
in the training phase; it is generally handled by choosing the best-performing
kernel function among a set of kernel functions on a separate validation set.

In recent years, multiple kernel learning (MKL) methods have been proposed
[4], for learning a combination kη of multiple kernels instead of selecting one:

kη(xi, xj ; η) = fη({km(xi, xj)P
m=1}; η)
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where the combination function (fη : R
P → R) forms a single kernel from P base

kernels using the parameters η. Different kernels correspond to different notions
of similarity and instead of searching which works best, the MKL method does
the picking for us, or may use a combination of kernels. MKL also allows us to
combine different representations possibly from different sources or modalities.

When there are multiple related machine learning problems, tasks or data
sets, it is reasonable to assume that also the models are related and to learn
them jointly. This is referred to as multitask learning (MTL). If the input and
output domains of the tasks are the same (e.g., when modeling different users
of the same system as the tasks), we can train a single learner for all the tasks
together. If the input and/or output domains of the tasks are different (e.g.,
in multilabel classification where each task is defined as predicting one of the
labels), we can share the model parameters between the tasks while training.

In this paper, we formulate a novel algorithm for multitask multiple kernel
learning (MTMKL) that enables us to train a single learner for each task, bene-
fiting from the generalization performance of the overall system. We learn similar
kernel functions for all of the tasks using separate but regularized MKL param-
eters, which corresponds to using a similar distance metric for each task. We
show that such coupled training of MKL models across the tasks is better than
training MKL models separately on each task, referred to as single-task multiple
kernel learning (STMKL).

In Section 2, we give an overview of the related work. Section 3 explains the
key properties of the proposed algorithm. We then demonstrate the performance
of our MTMKL method on three data sets in Section 4. We conclude by a
summary of the general aspects of our contribution in Section 5.

We use the following notation throughout the rest of this paper. We use
boldface lowercase letters to denote vectors and boldface uppercase letters to
denote matrices. The i and j are used as indices for the training instances, r and
s for the tasks, and m for the kernels. The T and P are the numbers of the tasks
and the kernels to be combined, respectively. The number of training instances
in task r is denoted by N r.

2 Related Work

[2] introduces the idea of multitask learning, in the sense of learning related
tasks together by sharing some aspects of the task-specific models between all
the tasks. The ultimate target is to improve the performance of each individual
task by exploiting the partially related data points of other tasks.

The most frequently used strategy for extending discriminative models to
multitask learning is by following the hierarchical Bayes intuition of ensuring
similarity in parameters across the tasks by binding the parameters of separate
tasks [1]. Parameter binding typically involves a coefficient to tune the similarity
between the parameters of different tasks. This idea is introduced to kernel-based
algorithms by [3]. In essence, they achieve parameter similarity by decomposing
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the hyperplane parameters into shared and task-specific components. The model
reduces to a single-kernel learner with the following kernel function:

k̂(xr
i , x

s
j) = (1/ν + δs

r)k(xr
i , x

s
j)

where ν determines the similarity between the parameters of different tasks and
δs
r is 1 if r = s and 0 otherwise. The same model can be extended to MKL using

a combined kernel function:

k̂η(xr
i , x

s
j ; η) = (1/ν + δs

r)kη(xr
i , x

s
j ; η) (1)

where we can learn the combination parameters η using standard MKL al-
gorithms. This task-dependent kernel approach has three disadvantages: (a) It
requires all tasks to be in a common input space to be able to calculate the
kernel function between the instances of different tasks. (b) It requires all tasks
to have similar target outputs to be able to capture them in a single learner.
(c) It requires more time than training separate but small learners for each task.

There are some recent attempts to integrate MTL and MKL in multilabel
settings. [5] uses multiple hypergraph kernels with shared parameters across the
tasks to learn multiple labels of a given data set together. Learning the large
set of kernel parameters in this special case of the multilabel setup requires a
computationally intensive learning procedure. In a similar study, [12] suggests
decomposing the kernel weights into shared and label-specific components. They
develop a computationally feasible, but still intensive, algorithm for this model.
In a multitask setting, [9] proposes to use the same kernel weights for each task.

[6] proposes a feature selection method that uses separate hyperplane param-
eters for the tasks and joins them by regularizing the weights of each feature over
the tasks. This method enforces the tasks to use each feature either in all tasks
or in none. [7] uses the parameter sharing idea to extend the large margin nearest
neighbor classifier to multitask learning by decomposing the covariance matrix
of the Mahalanobis metric into task-specific and task-independent parts. They
report that using different but similar distance metrics for the tasks increases
generalization performance.

Instead of binding different tasks using a common learner as in [3], we pro-
pose a general and computationally efficient MTMKL framework that binds the
different tasks to each other through the MKL parameters, which is discussed
under multilabel learning setup by [12]. They report that using different kernel
weights for each label does not help and suggest to use a common set of weights
for all labels. We allow the tasks to have their own learners in order to capture
the task-specific properties and to use similar kernel functions (i.e., separate
but regularized MKL parameters), which corresponds to using similar distance
metrics as in [7], in order to capture the task-independent properties.

3 Multitask Learning Using Multiple Kernel Learning

There are two possible approaches to integrate MTL and MKL under a general
and computationally efficient framework: (a) using common MKL parameters
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for each task, and (b) using separate MKL parameters but regularizing them in
order to have similar kernel functions for each task. The first approach is also
discussed in [9] and we use this approach as a baseline comparison algorithm.

Sharing exactly the same set of kernel combination parameters might be too
restrictive for weakly correlated tasks. Instead of using the same kernel function,
we can learn different kernel combination parameters for each task and regularize
them to obtain similar kernels. Model parameters can be learned jointly by
solving the following min-max optimization problem:

mininimize
{ηr∈E}T

r=1

Oη =
{

maximize
{αr∈Ar}T

r=1

Ω({ηr}T
r=1) +

T∑

r=1

Jr(αr, ηr)
}

(2)

where Ω(·) is the regularization term calculated on the kernel combination pa-
rameters, the E denotes the domain of the kernel combination parameters, Jr(·, ·)
is the objective function of the kernel-based learner of task r, which is generally
composed of a regularization term and an error term, and the Ar is the domain
of the parameters of the kernel-based learner of task r.

If the tasks are binary classification problems (i.e., yr
i ∈ {−1, +1}) and the

squared error loss is used implying least squares support vector machines, the
objective function and the domain of the model parameters of task r become

Jr(αr, ηr) =
Nr∑

i=1

αr
i −

1
2

Nr∑

i=1

Nr∑

j=1

αr
i α

r
jy

r
i yr

j

(
kr

η(xr
i , x

r
j ; η

r) +
δj
i

2C

)

Ar =
{

αr :
Nr∑

i=1

αr
i y

r
i = 0, αr

i ∈ R ∀i

}

where C is the regularization parameter. If the tasks are regression problems
(i.e., yr

i ∈ R) and the squared error loss is used implying kernel ridge regression,
the objective function and the domain of the model parameters of task r are

Jr(αr, ηr) =
Nr∑

i=1

αr
i y

r
i − 1

2

Nr∑

i=1

Nr∑

j=1

αr
i α

r
j

(
kr

η(xr
i , x

r
j ; η

r) +
δj
i

2C

)

Ar =
{

αr :
Nr∑

i=1

αr
i = 0, αr

i ∈ R ∀i

}
.

If we use a convex combination of kernels, the domain of the kernel combination
parameters becomes

E =
{

η :
P∑

m=1

ηm = 1, ηm ≥ 0 ∀m

}

and the combined kernel function of task r with the convex combination rule is

kr
η(xr

i , x
r
j ; η

r) =
P∑

m=1

ηr
mkr

m(xr
i , x

r
j).
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Similarity between the combined kernels is enforced by adding an explicit regu-
larization term to the objective function. We propose the sum of the dot products
between kernel combination parameters as the regularization term:

Ω({ηr}T
r=1) = −ν

T∑

r=1

T∑

s=1

〈ηr, ηs〉. (3)

Using a very small ν value corresponds to treating the tasks as unrelated, whereas
a very large value enforces the model to use similar kernel combination parame-
ters across the tasks. The regularization function can also be interpreted as the
negative of the total correlation between the kernel weights of the tasks and we
want to minimize the negative of the total correlation if the tasks are related.
Note that the regularization function is concave but efficient optimization is
possible thanks to the bounded feasible sets of the kernel weights.

The min-max optimization problem in (2) can be solved using an alternat-
ing optimization procedure analogous to many MKL algorithms in the literature
[8,13,14]. Algorithm 1 summarizes the training procedure. First, we initialize the
kernel combination parameters {ηr}T

r=1 uniformly. Given {ηr}T
r=1, the problem

reduces to training T single-task single-kernel learners. After training these learn-
ers, we can update {ηr}T

r=1 by performing a projected gradient-descent steps to
order to satisfy two constraints on the kernel weights: (a) being positive and
(b) summing up to one. For faster convergence, this update procedure can be
interleaved with a line search method (e.g., Armijo’s rule) to pick the step sizes
at each iteration. These two steps are repeated until convergence, which can be
checked by monitoring the successive objective function values.

Algorithm 1. Multitask Multiple Kernel Learning with Separate Parameters

1: Initialize ηr as
(
1/P . . . 1/P

)� ∀r
2: repeat

3: Calculate Kr
η =

{
kr

η(xr
i , x

r
j ; η

r)
}Nr

i,j=1
∀r

4: Solve a single-kernel machine using Kr
η ∀r

5: Update ηr in the opposite direction of ∂Oη/∂ηr ∀r
6: until convergence

If the kernel combination parameters are regularized with the function (3), in
the binary classification case, the gradients with respect to ηr are

∂Oη

∂ηr
m

= −2ν

T∑

s=1

ηs
m − 1

2

Nr∑

i=1

Nr∑

j=1

αr
i α

r
jy

r
i yr

jk
r
m(xr

i , x
r
j)

and, in the regression case,

∂Oη

∂ηr
m

= −2ν

T∑

s=1

ηs
m − 1

2

Nr∑

i=1

Nr∑

j=1

αr
i α

r
jk

r
m(xr

i , x
r
j).
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4 Experiments

We test the proposed MTMKL algorithm on three data sets. We implement the
algorithm and baseline methods, altogether one STMKL and three MTMKL
algorithms, in MATLAB1. STMKL learns separate STMKL models for each task.
MTMKL(R) is the MKL variant of regularized MTL model of [3], outlined in (1).
MTMKL(C) is the MTMKL model that has common kernel combination parame-
ters across the tasks, outlined in [9]. MTMKL(S) is the new MTMKL model that
has separate but regularized kernel combination parameters across the tasks,
outlined in Algorithm 1.

We use the squared error loss for both classification and regression problems.
The regularization parameters C and ν are selected using cross-validation from
{0.01, 0.1, 1, 10, 100} and {0.0001, 0.01, 1, 100, 10000}, respectively. For each data
set, we use the same cross-validation setting (i.e., the percentage of data used in
training and the number of folds used for splitting the training data) reported
in the previous studies to have directly comparable results.

4.1 Cross-Platform siRNA Efficacy Data Set

The cross-platform small interfering RNA (siRNA) efficacy data set2 contains
653 siRNAs targeted on 52 genes from 14 cross-platform experiments with cor-
responding 19 features. We combine 19 linear kernels calculated on each feature
separately. Each experiment is treated as a separate task and we use ten ran-
dom splits where 80 per cent of the data is used for training. We apply two-fold
cross-validation on the training data to choose regularization parameters.

Table 1. Root mean squared errors on the cross-platform siRNA data set

Method RMSE

STMKL 23.89 ± 0.97

MTMKL(R) 37.66 ± 2.38
MTMKL(C) 23.53 ± 1.05
MTMKL(S) 23.45 ± 1.05

Table 1 gives the root mean squared error for each algorithm. MTMKL(R) is
outperformed by all other algorithms because the target output spaces of the
experiments are very different. Hence, training a separate learner for each cross-
platform experiment is more reasonable. MTMKL(C) and MTMKL(S) are both better
than STMKL in terms of the average performance, and MTMKL(S) is statistically
significantly better (the paired t-test with the confidence level α = 0.05).

1 Implementations are available at http://users.ics.tkk.fi/gonen/mtmkl
2 Available at http://lifecenter.sgst.cn/RNAi

http://users.ics.tkk.fi/gonen/mtmkl
http://lifecenter.sgst.cn/RNAi
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4.2 MIT Letter Data Set

The MIT letter data set3 contains 8 × 16 binary images of handwritten letters
from over 180 different writers. A multitask learning problem, which has eight
binary classification problems as its tasks, is constructed from the following pairs
of letters and the number of data instances for each task is given in parentheses:
{a,g} (6506), {a,o} (7931), {c,e} (7069), {f,t} (3057), {g,y} (3693), {h,n}
(5886), {i,j} (5102), and {m,n} (6626). We combine five different kernels on
binary feature vectors: the linear kernel and the polynomial kernel with degrees
2, 3, 4, and 5. We use ten random splits where 50 per cent of the data of each task
is used for training. We apply three-fold cross-validation on the training data
to choose regularization parameters. Note that MTMKL(R) cannot be trained for
this problem because the output domains of the tasks are different.

{a,g} {a,o} {c,e} {f,t} {g,y} {h,n} {i,j} {m,n} Total
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Fig. 1. Comparison of the three algorithms on the MIT letter data set. Left: Average
accuracy differences. Right: Average kernel weights.

Figure 1 shows the average accuracy differences of MTMKL(C) and MTMKL(S)
over STMKL. We see that MTMKL(S) consistently improves classification accuracy
compared to STMKL and the improvement is statistically significant on six out
of eights tasks (the paired t-test with the confidence level α = 0.05), whereas
MTMKL(C) could not improve classification accuracy on any of the tasks and it
is statistically significantly worse on two tasks. Figure 1 also gives the aver-
age kernel weights of STMKL, MTMKL(C), and MTMKL(S). We see that STMKL and
MTMKL(C) use the fifth degree polynomial kernel with very high weights, whereas
MTMKL(S) uses all four polynomial kernels with nearly equal weights.

4.3 Cognitive State Inference Data Set

Finally, we evaluate the algorithms on a multilabel setting where each label is
regarded as a task. The learning problem is to infer latent affective and cog-
nitive states of a computer user based on physiological measurements. In the
3 Available at http://www.cis.upenn.edu/~taskar/ocr

http://www.cis.upenn.edu/~taskar/ocr
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experiments, we measure six male users with four sensors (an accelerometer, a
single-line EEG, an eye tracker, and a heart-rate sensor) while they are shown 35
web pages that include a personal survey, several preference questions, logic puz-
zles, feedback to their answers, and some instructions, one for each page. After
the experiment, they are asked to annotate their cognitive state over three nu-
merical Likert scales (valence, arousal, and cognitive load). Our features consist
of summary measures of the sensor signals extracted from each page. Hence, our
data set consisted of 6 × 35 = 210 data points and three output labels for each.
We combine four Gaussian kernels on feature vectors of each sensor separately.
We use ten random splits where 75 per cent of the data of each task is used
for training. We apply three-fold cross-validation on the training data to choose
regularization parameters. Note that MTMKL(R) cannot be applied to multilabel
classification.

Learning inference models of this kind, which predict the cognitive and emo-
tional state of the user, has a central role in cognitive user interface design. In
such setups, a major challenge is that the training labels are inaccurate and
scarce because collecting them is laborious to the users.
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Fig. 2. Comparison of the three algorithms on the cognitive state inference data set.
Left: Average accuracy differences. Right: Average kernel weights.

Figure 2 shows the accuracy differences of MTMKL(C) and MTMKL(S) over STMKL
and reveals that learning and predicting the labels jointly helps to eliminate the
noise present in the labels. Two of the three output labels (valence and cognitive
load) are predicted more accurately in a multitask setup, with a positive change
in the total accuracy. Note that MTMKL(S) is better than MTMKL(C) at predicting
these two labels, and they perform equally well for the remaining one (arousal).
Figure 2 also gives the kernel weights of STMKL, MTMKL(C), and MTMKL(S). We
see that STMKL assigns very different weights to sensors for each label, whereas
MTMKL(C) obtains better classification performance using the same weights across
labels. MTMKL(S) assigns kernel weights between these two extremes and further
increases the classification performance. We also see that the features extracted
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from the accelerometer are more informative than the other features for pre-
dicting valence; likewise, eye tracker is more informative for predicting cognitive
load.

4.4 Computational Complexity

Table 2 summarizes the average running times of the algorithms on the data
sets used. Note that MTMKL(R) and MTMKL(S) need to choose two parameters,
C and ν, whereas STMKL and MTMKL(C) choose only C in the cross-validation
phase. MTMKL(R) uses the training instances of all tasks in a single learner and
always requires significantly more time than the other algorithms. We also see
that STMKL and MTMKL(C) take comparable times and MTMKL(S) takes more time
than these two because of the longer cross-validation phase.

Table 2. Running times of the algorithms in seconds

Data Set STMKL MTMKL(R) MTMKL(C) MTMKL(S)

Cross-Platform siRNA Efficacy 7.14 114.88 4.78 16.17
MIT Letter 9211.60 NA 8847.14 18241.32
Cognitive State Inference 5.23 NA 3.32 20.53

5 Conclusions

In this paper, we introduce a novel multiple kernel learning algorithm for multi-
task learning. The proposed algorithm uses separate kernel weights for each task,
regularized to be similar. We show that training using a projected gradient-
descent method is efficient. Defining the interaction between tasks to be over
kernel weights instead of over other model parameters allows learning multitask
models even when the input and/or output characteristics of the tasks are dif-
ferent. Empirical results on several data sets show that the proposed method
provides high generalization performance with reasonable computational cost.
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