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Multitemporal Hyperspectral Image Compression
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Abstract—The compression of multitemporal hyperspectral im-
agery is considered, wherein the encoder uses a reference image
to effectuate temporal decorrelation for the coding of the current
image. Both linear prediction and a spectral concatenation of
images are explored to this end. Experimental results demonstrate
that, when there are few changes between two images, the gain
in rate-distortion performance is achieved over the independent
coding of the current image. In addition, a strategy that explicitly
removes salient temporal changes and stores them losslessly in the
bitstream is proposed, and it is observed that this change-removal
process results in a slight decrease in the rate-distortion perfor-
mance with the benefit of perfect representation of the changed
pixels.

Index Terms—Data compression, hyperspectral imagery, multi-
temporal imagery.

I. INTRODUCTION

FTEN in hyperspectral applications, multiple images are

collected for the same area at different times. From these
multitemporal images, changes can be detected and analyzed.
However, most prior literature on hyperspectral compression
focuses on compression of only a single image. In the multi-
temporal setting though, temporal redundancy can be exploited,
and rate-distortion performance improved when the encoder
has access to a reference image that is highly correlated to
the current image being coded. In this case, salient temporal
changes between the reference and current images are special
features that must be preserved well.

It has been shown that principal component (PC) analy-
sis (PCA) in conjunction with JPEG2000 provides efficient
rate-distortion performance for hyperspectral image compres-
sion, wherein PCA is applied for spectral decorrelation and
JPEG2000 provides spatial coding of PC images. In particular,
PCA outperforms a discrete wavelet transform (DWT) as a
spectral transform for JPEG2000 [1]-[3]. In addition, explicitly
eliminating minor PCs and compressing only major PCs can
yield even better performance than a coding of the full PCA
transform, particularly at low bit rates; this truncated spectral
transform was called SubPCA in [4].

In this letter, we investigate the application of PCA and Sub-
PCA for JPEG2000-based compression of multitemporal hy-
perspectral imagery. In particular, we consider several strategies
in which an encoder exploits a reference image to effectuate
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temporal decorrelation for the coding of the current image;
these include a linear prediction, as well as the concatenation
of two images in the spectral direction. In addition, in order to
preserve salient changes between the reference and current im-
ages, we develop a procedure to explicitly remove changes from
the current image, losslessly storing them in the compressed
bitstream.

The remainder of this letter is organized as follows. First,
in Section II, we overview change detection for hyperspectral
imagery. Then, in Section III, we explore several alternatives
for temporal decorrelation in multitemporal imagery, as well
as explicit removal of changes prior to compression. Finally,
we present experimental results in Section IV and make some
concluding remarks in Section V.

II. CHANGE DETECTION FOR HYPERSPECTRAL IMAGERY

The change vector analysis (CVA) of a difference image
is one of the most widely used classes of change-detection
methods [5]. CVA is of great use because it is not only relatively
simple, straightforward, and highly implementable but also
capable of providing detailed change information [6]. CVA
has been widely used with multispectral data [7] and also
has been employed with hyperspectral imagery [8]. Successful
implementation of CVA requires elimination of changes due to
atmospheric, illuminance, and environmental conditions which
are irrelevant to the actual land-cover change. However, when
precise atmospheric correction is not possible, radiometric nor-
malization can function as a simplified substitute.

In radiometric normalization for hyperspectral imagery, we
have two hyperspectral images, namely, reference image X and
test image Y, each with size L x N, where L is the number of
spectral bands and NN is the number of pixels. Assume that each
band in X is linearly related to all the bands in image Y if there
is no land-cover change. In this case, we have

Y = TyxX ey

where Tyx is an L x L transform matrix [8] with least squares
estimate

Tyx = YXT(XXT). )

With a constant offset dyx for each band, (1) becomes
X ~ o~
Y =[Tyx dyx] LT} =TyxX 3)

where dvyx isof size L x 1, 1is an N x 1 vector of all ones,
and Tyx is an L x (L + 1) transform matrix. In this affine
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case, ’i‘yx is estimated as
Tyx = YXT(XXT) 1. )

TYX constitutes a radiometric normalization between X and
Y, which is assumed to compensate for changing atmospheric
and illuminance conditions. Mathematically, it provides a linear
regression (LR); consequently, the LR residual

=Y -—TyxX=Y — (TyxX +dyx1") (5

is due to any land-cover change.

While (5) can be applied across the entire image, [9] ob-
served significant performance gain when images X and Y are
partitioned into multiple, smaller subsets, or “segments,” using
some segmentation method with Tyx being designed for each
segment independently. However, when areas of change are
large, it may be difficult to determine the correspondence of the
segments between the reference and test images. For compres-
sion purposes, the resulting irregular segment boundaries (loca-
tions) will significantly increase transmission overheads. Thus,
in this research we uniformly partition a hyperspectral image
spatially into a K x K arrangement of rectangular blocks of the
same spatial size with each segment containing all the spectral
bands, and apply (4) and (5) within each segment.

To produce a final map of changed pixels, the difference
image 9 is subjected to a detailed change analysis, the goal of
which being to identify the set of pixels that are “significantly
different” between the reference and test images; these pixels
then comprise a change mask. The change mask may result
from a combination of underlying factors, including appearance
or disappearance of objects, motion of objects relative to the
background, or object-shape changes [10]. Ideally, the change
mask should exclude “insignificantly different” pixels, such as
those induced by seasonal changes. For changes that cannot be
removed by radiometric normalization (e.g., seasonal changes),
classification and anomaly detection are often applied to the
difference image [10]. In particular, Du e al. [8] proposed
kurtosis maximization for change analysis, detecting pixels
with large kurtosis; such pixels are then considered to be
“significantly different.” In the remainder of this letter, we
use this kurtosis-maximization approach to produce the final
change mask from 4.

III. ALGORITHMS FOR MULTITEMPORAL COMPRESSION
A. Temporal Decorrelation

In this section, we explore several strategies for the com-
pression of temporal sequences of hyperspectral imagery vol-
umes; we note that we assume that all image volumes have
been coregistered in a preprocessing step. One conceptually
straightforward approach would be to treat the temporal di-
rection as yet another dimensionality to the data and deploy
a suitable 4-D compression algorithm, e.g., [11]. Such a 4-D
coder would generally be an extension of an existing 3-D
algorithm to the next higher dimensionality, including a 4-D
transform to effectuate decorrelation spatially, spectrally, as
well as temporally. For hyperspectral imagery, which may be
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acquired on computationally constrained platforms such as
airborne and satellite-borne devices, such 4-D coders may be
infeasible from computational and memory-use standpoints.
Instead, we assume that an encoder can store and use only one
prior hyperspectral volume (the reference image) to aid in the
coding of the current image (the test image). With only two
images in the temporal direction, a full 4-D coder like in [11]
is inapplicable since there are not enough data in the temporal
direction to support a 4-D transform; consequently, we consider
modifications to the 3-D coding of hyperspectral volumes to
exploit the availability of the reference image.

One approach is to have the encoder code the LR difference
image 0 from (5) instead of coding the current test image
directly. The decoder, having access to the same reference
image, can make the same prediction as the encoder; this
prediction is added to the coded difference image to result in
a final reconstruction of the current test image. We focus on
the incremental performance of this approach, assuming that
the cost in terms of bit rate of sending a high-quality reference
image to the decoder is amortized over many uses of the same
reference image to code multiple test images.

Prediction, as exemplified by the LR approach mentioned
previously, is one common approach to decorrelation. An alter-
native decorrelation strategy is to deploy a transform. Having
already ruled out the feasibility of a 4-D transform, we instead
consider extending the spectral transform employed in the 3-D
hyperspectral coder to the task of temporal decorrelation.
Specifically, we form an extended 3-D volume by concatenating
the reference and test images spectrally, i.e., if both images
have N pixels of L bands, then the resulting concatenated
image has N pixels of 2L bands. The spectral transform (e.g.,
DWT, PCA, and SubPCA) of the subsequent 3-D coder then
decorrelates the data both spectrally and temporally. Upon
decoding, the L bands of the current test image are extracted
from the reconstructed concatenated image. An advantage of
this “spectral-concatenation” (SC) approach is that, while the
encoder must store and use the reference image, the decoder
does not. On the other hand, SC is redundant in the sense
that, if multiple test images are coded using the same reference
image (as assumed before for the LR approach), the reference
image is transmitted in effect multiple times to the decoder only
to be discarded during reconstruction. However, the following
experimental results demonstrate that this inherent redundancy
does not hinder the competitiveness of the SC approach. We
note that SC has been used extensively with PCA for change
detection in multispectral applications, e.g., [12]-[15].

Finally, the most straightforward strategy is to have the
encoder simply ignore the reference image when coding the
current test image. We refer to this as the “independent” (IND)
approach since the current test image is coded independently of
the reference image in terms of temporal decorrelation. As can
be expected, the following experimental results demonstrate
that such IND coding is not as effective as the more sophisti-
cated LR or SC approaches.

B. Change Detection and Removal

In a multitemporal set of data, changes occurring between
the images are of paramount application importance; thus, it
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is crucial that compression algorithms preserve such temporal
changes with high fidelity. Yet, temporal decorrelation is most
effective when data change little and tend to have difficulty
accommodating abrupt changes. As a consequence, we propose
to have the encoder remove salient changes in the current test
image and replace them with values interpolated from spatially
neighboring pixel vectors. The pixel vectors for the changes, as
well as their spatial location in the current test image, are loss-
lessly transmitted in the header of the compressed bitstream.

This “change-removal” (CR) approach to preserving changes
in multitemporal compression can be deployed in any of the
three (IND, LR, and SC) temporal decorrelation strategies
discussed in Section III-A. Specifically, for the LR and SC
approaches, changes are removed from both the reference and
test images, the changes are replaced in both images by inter-
polation from spatial neighbors, and, finally, the interpolated
reference image is used in the LR- or SC-based coding of the
current test image. Note that the compressed bitstream stores
only the changes removed from the test image in each case.

We note that the CR approach we consider here is similar
to the anomaly removal proposed in [16] and [17] for the
preservation of anomalies in JPEG2000 compression of hyper-
spectral imagery. In particular, the interpolation process we use
is identical to that of [17].

IV. EXPERIMENTAL RESULTS

We consider the incremental coding performance of the
current test image, given that the encoder and decoder both have
access to a reference image. Throughout the following exper-
imental results, we employ JPEG2000 using several different
spectral transforms (PCA, SubPCA, and DWT) along with
the IND, LR, and SC strategies for temporal decorrelation, as
discussed in Section III-A. For a current test image of V pixels
and L bands, the JPEG2000 encoder generates a bitstream of B
bits, yielding a bit rate of R = (B + O)/N/ L bits per pixel per
band (bpppb); this is the case even for the SC-based schemes
which are in effect code 2L bands. Here, O represents the bits
needed for the multiple overheads (i.e., transform matrix, data
mean, change spectra and locations, and LR coefficients for the
LR case). Reconstruction quality is measured with a signal-to-
noise ratio (SNR) in decibels, defined as the log ratio between
the variance of the original data and the variance of the error. In
the following, we present results for data from both CASI and
Hyperspec sensors.

A. CASI Data

Fig. 1 shows a small field at the North Research Farm of
Mississippi State University, as acquired by a CASI sensor.
Seventy-two bands with high SNR were used with 2-m spatial
resolution, and five data sets were acquired in consecutive
months in 2002. As can be observed from the pseudo color-
infrared (CIR) images in Fig. 1, the August and September
images are highly similar due to their both being acquired
during harvest season.

Table I presents the SNR performance at a fixed bit rate
for various test images using the previous month’s image as
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Fig. 1. CASI images taken in different months. (a) May 27, 2002. (b) July 1,
2002. (c) August 3, 2002. (d) September 10, 2002. (e) October 2, 2002.

TABLE 1
SNR (IN DECIBELS) FOR THE CASI DATA AT 1.0 bpppb

Reference Image / Coded Image

May /| Jul/ | Aug/ | Sep/

Algorithms Jul | Aug | Sep Oct
IND | 369 | 41.7 | 38.9 35.0

PCA SC 362 | 415 | 393 33.7
LR | 369 | 414 | 3838 34.8

IND | 37.0 | 41.7 | 389 35.0

SubPCA | SC | 358 | 413 | 394 33.6
LR | 369 | 414 | 389 34.8

IND | 34,6 | 39.0 | 364 32.8

DWT SC | 341 | 39.0 | 36.8 31.4
LR 339 | 36.6 | 359 31.2

reference. We note that the SC temporal-decorrelation strategy
provided the best performance for the August—September pair,
while the no temporal decorrelation (i.e., IND) performs best
for all the other pairs. We conclude that SC is an effective
approach to temporal decorrelation, but only when the degree of
change between the reference and test images is small. For more
substantial amount of change, using no temporal decorrelation
is more effective than either the LR or SC approaches to decor-
relation. We note, too, that, in all cases, both PCA and SubPCA
significantly outperform DWT for spectral decorrelation.

B. Hyperspec Data

We use the multitemporal image data sets from [9], as
acquired with a Hyperspec VS-25 imaging spectrograph. The
first reference image [Fig. 2(a)] was taken on October 14, 2005,
while the second reference image [Fig. 2(b)] was taken on
September 1, 2005. The test image [Fig. 2(c)] was collected on
the same day as the first reference image yet includes two tarp
bundles that are absent in the reference image. All three images
have 124 bands and 768 x 1024 pixels.
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Fig. 2. Reference and test images (CIR) for the Hyperspec data set.
(a) October reference image. (b) September reference image. (c) Test image.

(a) (b)

(e)

Fig. 3. Ground truth and segmented LR-based change masks. (a) 2 X 2 =
4 segments. (b) 4 X 4 = 16 segments. (c) 8 X 8 = 64 segments. (d) 16 X
16 = 256 segments. (e) Ground truth.

Fig. 3 shows the ground-truth map of the changes between
Fig. 2(a) and (c), along with change masks resulting from the
segmented LR-based change detection described in Section II.
Specifically, the ground-truth map [Fig. 3(e)] depicts the 151
true changed pixels, while Fig. 3(a)—(d) shows the masks that
result from using various segment sizes in the segmented LR
change detector. It is clear that a finer spatial segmentation
provides a change mask that is closer to the ground truth.
However, we have observed that using too many segments
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TABLE II
SNR (IN DECIBELS) FOR HYPERSPEC DATA USING
THE OCTOBER REFERENCE IMAGE

Bitrate (bpppb)

without CR with CR
Algorithms 02 ] 05| 10| 02| 05 1.0
IND | 39.5 | 43.3 | 47.9 | 394 | 432 | 47.8
PCA SC | 39.6 | 434 | 479 | 395 | 433 | 479
LR | 39.5 | 433 | 476 | 394 | 432 | 476
IND | 39.5 | 43.3 | 47.9 | 394 | 433 | 47.8
SubPCA | SC | 39.7 | 43.5 | 48.0 | 39.6 | 43.4 | 47.9
LR | 395|433 | 476|394 | 432 | 47.6
IND | 38.6 | 42.5 | 46.7 | 38.5 | 42.5 | 46.7
DWT SC | 383|422 |46.5 | 382 | 422 | 465
LR | 382|421 | 462 | 38.1 | 42.0 | 46.2

TABLE 1II

SNR (IN DECIBELS) FOR HYPERSPEC DATA USING
THE SEPTEMBER REFERENCE IMAGE

Bitrate (bpppb)

without CR with CR

Algorithms 02 | 05 1.0 | 0.2 | 05 1.0
IND | 39.5 | 433 | 47.9 | 394 | 43.2 | 47.8

PCA SC | 39.6 | 43.6 | 48.1 | 39.5 | 43.5 | 48.1
LR | 385 | 42.6 | 47.2 | 384 | 42.5 | 47.1

IND | 39.5 | 433 | 479 | 39.4 | 43.3 | 47.8

SubPCA | SC | 39.7 | 43.6 | 48.2 | 39.6 | 43.6 | 48.1
LR | 38.6 | 42.7 | 47.2 | 38.5 | 42.6 | 47.1

IND | 38.6 | 42.5 | 46.7 | 38.5 | 42.5 | 46.7

DWT SC | 385|425 | 46.7 | 38.4 | 42.4 | 46.7
LR | 348 | 40.0 | 449 | 34.7 | 40.0 | 44.8

may introduce blocking artifacts which appear as lines within
segment boundaries. In addition, since LR coefficients must be
stored losslessly in the compressed bitstream, a large number
of segments will dramatically increase overheads. As a conse-
quence, we focus on the case of 64 segments hereafter.

Table II presents the rate-distortion performance for the
compression of the test image [Fig. 2(c)] when the October
image [Fig. 2(a)] was used as the reference; Table III presents
the same for when the September image [Fig. 2(b)] was used
as the reference. We consider the case in which changes are
explicitly removed prior to compression via the CR approach
outlined in Section III-B, as well as the case in which changes
are left intact in the data set (i.e., “with/without CR” in Tables II
and IIl). For CR, all 151 changed pixels, as indicated by
the ground truth in Fig. 3(e), were removed. We see that,
regardless of which reference image was used, SubPCA using
SC temporal decorrelation achieves the highest SNR at all
bit rates. Moreover, using the more distant reference image
(Table III) produces 0.5-1.0-dB degradation in SNR for the LR-
based temporal decorrelation. In contrast, SC performance is
largely unchanged from Tables II and III, indicating that the SC
approach is more effective at compensating for the irrelevant
atmospheric and seasonal changes.

When changes are explicitly removed from the current test
image using the CR procedure in Section III-B, the decoder
has a lossless representation of the changes and their locations
at its disposal in the bitstream. On the other hand, if CR is
not used, the decoder would need to apply the segmented LR
change detector from Section II in order to locate changes
in the reconstructed data set. The performance of this change
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TABLE IV
CHANGE-DETECTION PERFORMANCE AS AREA UNDER ROC CURVE
FOR HYPERSPEC DATA—SEGMENTED LR-BASED CHANGE
DETECTOR USED WITH 8 X 8 SEGMENTS

Bitrate (bpppb)

Algorithms 02 | 05 1.0

IND [ 091 | 0.87 | 0.88

g| PCA | SC | 089087085
5 LR | 0.84 | 0.90 | 0.85
& IND | 0.83 | 0.86 | 0.85
= | SubPCA | SC | 0.81 | 0.85 | 0.88
g LR | 0.82|0.86 | 0.85
bt IND | 0.88 [ 0.85 | 0.87
©1 pwr | sc | 090|084 | 0.87
LR | 0.84 | 0.88 | 0.87

Y IND | 0.65 | 0.90 | 0.81
S| PCA | SC |085]0.89 086
£ LR | 0.80 | 0.84 | 0.75
k] IND | 075 | 0.78 | 0.85
| SubPCA | SC | 076 | 0.84 | 0.89
E LR | 0.82 | 0.81 | 0.86
£ IND | 0.73 | 0.81 | 0.86
% | DWT | SC | 073|087 | 0.87
LR | 049 | 0.71 | 0.78

detection on the reconstructed test image is presented in
Table IV, wherein detection performance is measured as the
area under the receiver-operating-characteristic (ROC) curve
(a larger area closer to 1.0 indicates better change-detection
performance). This ROC curve was estimated by normalizing
a change mask to the range of [0, 1], changing the threshold
gradually from 0.05 to 0.95, and then counting the resulting de-
tection and false-alarm rates. It can be seen that the performance
falls typically in the range of 0.75-0.90, somewhat short of the
perfect change preservation offered by CR, which is 1.0.

V. CONCLUSION

In this letter, we have investigated multitemporal hyperspec-
tral image compression in the case in which both the encoder
and decoder use a single reference image to aid the compression
of the current test image. When the data set changes little
between the reference and test images, rate-distortion gain can
be achieved as a result of using the reference image to re-
move temporal redundancy. Experimental results revealed that
temporal decorrelation by means of spectrally concatenating
the images, followed by spectral PCA, outperforms the com-
monly used linear prediction. In addition, in order to preserve
temporal changes, we explicitly removed changed pixels prior
to compression, storing them and their locations losslessly in
the compressed bitstream. This CR technique results in only a
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slight decrease in rate-distortion performance while permitting
perfect recovery of the change pixels at the decoder.
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