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Multitemporal Very High Resolution From Space:

Outcome of the 2016 IEEE GRSS Data

Fusion Contest
L. Mou, Student Member, IEEE, X. Zhu, Senior Member, IEEE, M. Vakalopoulou, Student Member, IEEE,

K. Karantzalos, Senior Member, IEEE, N. Paragios, Fellow, IEEE, B. Le Saux, G. Moser, Senior Member, IEEE,

and D. Tuia, Senior Member, IEEE

Abstract—In this paper, the scientific outcomes of the 2016 Data
Fusion Contest organized by the Image Analysis and Data Fusion
Technical Committee of the IEEE Geoscience and Remote Sensing
Society are discussed. The 2016 Contest was an open topic com-
petition based on a multitemporal and multimodal dataset, which
included a temporal pair of very high resolution panchromatic
and multispectral Deimos-2 images and a video captured by the
Iris camera on-board the International Space Station. The prob-
lems addressed and the techniques proposed by the participants
to the Contest spanned across a rather broad range of topics, and
mixed ideas and methodologies from the remote sensing, video
processing, and computer vision. In particular, the winning team
developed a deep learning method to jointly address spatial scene
labeling and temporal activity modeling using the available image
and video data. The second place team proposed a random field
model to simultaneously perform coregistration of multitemporal
data, semantic segmentation, and change detection. The method-
ological key ideas of both these approaches and the main results
of the corresponding experimental validation are discussed in this
paper.
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I. INTRODUCTION

P
UBLIC awareness about Earth observation has raised dra-

matically during the latest years. Among the main driving

forces, we can mention the increased availability of very high

spatial resolution (VHR) data acquired by sensors on-board

drones, aircrafts, and satellites. These data make it possible to

address new monitoring tasks, such as object detection and clas-

sification in urban areas (which are nowadays approached at a

global scale using satellite acquisitions [1]), urban area classifi-

cation [2], and detailed mapping at decimeter scale for precision

agriculture [3]. On one hand, very high spatial resolution im-

plies new or more complex problems, typically dealing with

spatial smoothness [4], [5], misregistrations [6], changes in illu-

mination, acquisition conditions, or sensor properties [7]–[10],

and increased complexity of the signatures of the classes [11],

[12]. These challenges generally raise the need for more and

more sophisticated methodologies. On the other hand, the ad-

vances in hardware and the increased availability of data makes

it possible to use training models that are increasingly able to

extract complex and abstract features. Prominent examples are

deep learning methods, which train feature extraction filters

directly and nonparametrically from the data [13], [14], or fea-

ture learners, which mine the parameter spaces of existing filter

banks [15], [16] or of their combinations [17].

While VHR image processing is an active field of investiga-

tion, the processing of video data taken from satellite platforms

is still in its infancy. On one hand, video from space (also known

as “space video”) is not currently widespread. A more common

approximation is represented by sensors that can retarget a spe-

cific region and provide a multiangular sequence. For example,

the hyperspectral CHRIS/PROBA sensor can provide angular

sequences, which were used for chlorophyll [18] and leaf area

index retrieval [18], [19], and the multiangular multispectral

WorldView-2 sensor was used for height retrieval [20], detec-

tion [21], land use classification [22], and tracking [23]. On the

other hand, with the increasing development of small and cheap

1939-1404 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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commercial satellites, such as the SkySat-constellation of Sky-

box Imaging, wide area spaceborne remote sensing videos are

becoming increasingly accessible at a reasonable cost. Indeed,

while the processing of aerial videos collected by sensors on-

board terrestrial vehicles or drones is not yet a major trend in

remote sensing, first applications can be found in the recent lit-

erature. These applications include tracking or navigation using

videos from web cameras [24], terrestrial vehicles [25], [26],

aircrafts [27], and satellites [28]. Information extraction from

space videos remains a major challenge, although the acquisi-

tion technology is available, as demonstrated by the Iris camera

operated by Urthecast on the International Space Station (ISS).1

The Data Fusion Contest (DFC) 2016 addressed this challenge.

Since 2006, the Image Analysis and Data Fusion Technical

Committee (IADF TC2) of the IEEE Geoscience and Remote

Sensing Society (IEEE-GRSS) has organized an annual DFC,

in which a dataset has been released free of charge to the inter-

national community along with a data fusion competition [29]–

[37]. To tackle the aforementioned challenges implied by new

VHR data with very high temporal resolution, the DFC 2016

proposed a competition related to the multimodal processing of

image sequences and video streams acquired from space.

The DFC 2016 released to the international community an

image dataset involving VHR multiresolution and multisensor

imagery and video information. The dataset was composed of a

series of two VHR multispectral and panchromatic images and

of a video stream acquired by the Iris camera over the city center

of Vancouver, Canada (see Section II). The data were provided

by the Deimos Imaging and Urthecast companies.

The competition was framed as follows: each participating

team was invited to submit an original open-topic manuscript ad-

dressing an information extraction problem based on the dataset

provided. All submissions were evaluated by an Award Com-

mittee, composed of the organizers of the Contest, of industrial

representatives of Deimos Imaging and Urthecast, and of sev-

eral past Chairs of the IADF TC. The manuscripts were ranked

on the basis of scientific novelty and originality, methodological

approach, experimental discussion, and quality of presentation.

In this paper, after describing the dataset of the DFC 2016

(see Section II), we will discuss first the overall scientific out-

come of the contest as a whole (see Section III). Then, we will

focus in more detail on the approaches proposed by the first

and second place teams (see Sections IV and V, respectively).

Finally, conclusions will be drawn in Section VI.

II. DATASET OF THE DFC 2016

The dataset of the DFC 2016 included VHR imagery and

video from space covering an urban and harbor area in Vancou-

ver, Canada (49◦15’N, 123◦6’W; see Fig. 1).

1) VHR Images: A temporal pair of VHR acquisitions

(Deimos-2 standard products), each composed of a panchro-

matic image at 1-m point spacing and a multispectral image at

4-m point spacing, was included in the dataset. The two acquisi-

tion dates were March 31 and May 30, 2015. Deimos-2 operates

1https://www.urthecast.com/data#iris
2http://www.grss-ieee.org/community/technical-committees/data-fusion/

Fig. 1. Ground coverage of the Deimos-2 multispectral (full frame) and
panchromatic images (yellow frame) and of the Iris video (red frame).

Fig. 2. Level 1B (i.e., calibrated and radiometrically corrected, but not or-
thorectified) data for both dates and both the panchromatic (Pan) and multispec-
tral (MS) modes.

from a Sun-synchronous orbit at a mean altitude of 620 km. The

spacecraft design is based on an agile platform for fast and pre-

cise off-nadir imaging (up to ±30◦ over nominal scenarios and

up to ±45◦ in emergency cases), and carries a push-broom VHR

camera with five spectral channels: one panchromatic channel

and four multispectral channels corresponding to red (R), green

(G), blue (B), and near-infra-red (NIR) bands.

For each date, four image products were provided for the

contest: the panchromatic and the multispectral images were

made available at both levels 1B and 1C. A level 1B product is

calibrated and radiometrically corrected but is not resampled,

and geometric information is provided separately (see Fig. 2).

A level 1C product is calibrated, radiometrically corrected, and

manually orthorectified and resampled to a map grid, while the

geometric information is contained in the GeoTIFF tags (see

Fig. 3). As a consequence, the two level 1C images cover exactly

the same ground area.

2) Video From Space: A full-color ultrahigh definition (UHD)

video acquired by the Iris camera on-board the ISS was

provided. The acquisition took place on July 2, 2015, over
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Fig. 3. Level 1C (i.e., calibrated, radiometrically corrected and manually
orthorectified, and resampled to a map grid) data for both dates and both the
panchromatic (Pan) and multispectral (MS) modes.

Fig. 4. Two frames of the UHD video acquired by the Iris camera on-board
the International Space Station. (a) Iris video frame at t = 1 s, (b) Iris video
frame at t = 30 s.

the harbor of Vancouver (see Fig. 4). Iris is a high-resolution

camera installed on the Zvezda module of the ISS. It uses a

complementary metal oxide semiconductor (CMOS) detector

to capture RGB videos with a ground sample distance as fine as

1 m at three frames per second. In the Iris video of the contest,

image frames were fully orthorectified and resampled to 1 m.

The resulting frame format was 3840 × 2160 pixels and covered

approximately 3.8 km × 2.1 km.

For the first time in the history of the DFC, the dataset in-

cluded a video captured from space. This made it possible to

explore new exciting applications of Earth observation, such

as tracking or live monitoring. Along with the imagery that

was made available at the aforementioned processing levels,

the dataset allowed participants to demonstrate a broad variety

of innovative methods including registration, pan-sharpening,

multitemporal analysis, change detection, object detection, and

image classification.

III. SUBMISSIONS AND RESULTS

A. Submissions

Twenty-four papers were submitted to the DFC 2016. They

proved to be of great diversity, because they addressed hetero-

geneous topics and proposed various methodological solutions

for each topical area. Fig. 5 summarizes both these aspects.

1) Topic-wise, a majority of papers dealt with two the-

matic areas: Classification / change detection and tracking.

While the former had been mainstream for years for the

DFC, the latter emerged as a new topical area. Indeed, it

also attracted most of the participants’ efforts, essentially

because the data were well suited for this task. Further-

more, in addition to the two aforementioned main topics,

participants also considered some other classical fusion

problems (pan-sharpening and registration) as well as new

topical areas such as population modeling or estimation

of human activities.

2) Methodologically speaking, we observed a wide spectrum

of proposals. Approaches that were quite established in re-

mote sensing (e.g., feature extraction or sparse methods)

were challenged by techniques issued from the video pro-

cessing literature (e.g., optical flow and tracking) and from

the deep learning and computer vision literature (e.g., con-

volutional neural networks (CNNs) and structured output

modeling). This trend was expected because deep learn-

ing is becoming more and more prominent in the remote

sensing area as well (e.g., [13] and [14]), and allows robust

models to be learned even through simple fine tuning of

existing architectures drawn from other methodological

areas [36], [38].

Another interesting observation can be made when consider-

ing the data types used by the participating teams. Three separate

sources of data (multispectral VHR, panchromatic VHR, and

video) were provided but no fixed topic was imposed. There-

fore, each team was free to use the most relevant sources to

address their problem. Fig. 6 summarizes the choices made by

the teams: 14 out of 24 teams used the video, which confirms the

interest and potential of this new data modality. Only three teams

used all the data at their disposal, but 15 teams used more than

one data source. Another relevant point is that five teams further

enriched the dataset with ancillary data (e.g., building footprints

from OpenStreetMap, road maps form Google Street View, dig-

ital elevation models, and areal statistics). Indeed, this choice

reminded that data of great quality are available at no cost on

the Internet and can be included in processing pipelines to either

make them more effective or decrease their computational load.

B. Winners

The 24 submissions were evaluated by the Award Committee

and four papers were awarded. They were presented during

the 2016 IEEE International Geoscience and Remote Sensing

Symposium (IGARSS) in Beijing, China. The papers awarded

were as follows.
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Fig. 5. Problems studied (each paper can cover more than one; left panel) and main methodological approaches adopted in the submitted papers (right panel).

Fig. 6. Use of the data sources in the 24 submitted manuscripts.

1) First Place: Lichao Mou and Xiaoxiang Zhu from the

German Aerospace Center (DLR), for the paper entitled

Spatiotemporal scene interpretation of space videos via

deep neural network and tracklet analysis [39].

2) Second Place: Maria Vakalopoulou, Christos Platias,

Maria Papadomanolaki, Nikos Paragios, and Konstanti-

nos Karantzalos from the National Technical University of

Athens, Greece, and the Ecole Centrale de Paris, France,

for their paper entitled Simultaneous registration, segmen-

tation and change detection from multi-sensor, multitem-

poral satellite image pairs [40].

3) Third Place: Dave Kelbe, Devin White, Andrew Hardin,

Jessica Moehl, and Melanie Phillips, from the Oak Ridge

National Laboratory, USA, for their paper entitled Sensor-

agnostic photogrammetric image registration with appli-

cations to population modeling [41].

4) Fourth Place: Zuming Huang, Guangliang Cheng,

Hongzhen Wang, Haichang Li, Limin Shi, and Chun-

hong Pan from the Institute of Automation of the

Chinese Academy of Sciences, China, for their paper enti-

tled Building extraction from multi-source remote sensing

images via deep deconvolution neural networks [42].

In the following two sections, the approaches proposed by

the first and second ranked teams are discussed, and their main

results are summarized. More details can be found in the corre-

sponding papers in the IGARSS 2016 proceedings [39], [40].

IV. SPATIOTEMPORAL SCENE INTERPRETATION OF SPACE

VIDEOS VIA DEEP NEURAL NETWORK

AND TRACKLET ANALYSIS

This section discusses the approaches proposed by the win-

ners of the Contest. The work focused on a novel framework

for spatiotemporal analysis of spaceborne remote sensing video

data. For this purpose, a deep neural network was proposed

to make use of high resolution satellite imagery in order to

achieve a fine-resolution spatial scene labeling map. Moreover,

a sophisticated approach was proposed to analyze activities and

estimate traffic density from 150 000+ tracklets produced by a

Kanade–Lucas–Tomasi (KLT) keypoint tracker. Both visual and

quantitative analysis of the experimental results demonstrated

the effectiveness of the proposed approach.

A. Motivation

In comparison with the widely used static satellite imagery

or video data acquired from unmanned aerial vehicles, space

videos have remarkable advantages. For instance, a space video

gathered from the ISS or by small satellites provides an opportu-

nity to observe the dynamic states at urban or suburban scale and

usually covers large areas. However, due to the relatively coarse

spatial resolution, the poor appearance of moving targets (e.g.,

cars) creates ambiguities in tracking and challenges scene inter-

pretation tasks, such as activity analysis and density estimation.

In this paper, the focus was the semantic scene interpretation of

space videos, using spatiotemporal analysis. More specifically,

the aim was to answer the following three questions.

1) What land-use categories are observed in the video and

where do they appear (spatial scene labeling)?

2) Which activities can be observed in the video (temporal

activity analysis)?

3) And how dense is the traffic flow (traffic density estima-

tion)?
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Fig. 7. Overview of the pipeline proposed by the first ranked team. A novel deep neural network architecture tailored to pixel-wise spatial scene labeling was
proposed for spatial analysis and a tracklet-based temporal parsing method was introduced for activity analysis and traffic density estimation (from [39]).

Fig. 8. Foreground mask yielded by the frame differencing method with an
estimated background model [43]. It can be seen that the camera movement
makes it difficult to obtain a valid background model.

Owing to their rich temporal information, video data can be

exploited for activity analysis and traffic density estimation,

which are classical computer vision applications. Since videos

from space have only recently become available, their use to

augment the semantic interpretation of covered geographic areas

has rarely been addressed in the remote sensing community so

far. In a pioneering work moving from static image analysis

to video parsing, Kopsiaftis and Karantzalos [28] developed

an automatic vehicle detection and traffic density estimation

model for VHR satellite video data. This model was based on

background estimation followed by background subtraction in

every video frame. However, it could not obtain the trajectories

of moving objects for further analysis of temporal activities.

In addition, it was almost impossible to automatically obtain

a stationary background model, since the camera was moving

during the video acquisition (see Fig. 8). In this paper, the goal

was to develop a sophisticated spatio-temporal scene analysis

approach for space videos that was for the first time capable of

performing spatial scene labeling and temporal activity analysis

on multimodal image data.

In the following, the proposed approach will be summarized

(see the processing chain in Fig. 7): first, a deep neural net-

work architecture tailored to pixel-wise spatial scene labeling

was proposed for spatial analysis (see Section IV-B); then, a

tracklet-based temporal parsing method was introduced for ac-

tivity analysis and traffic density estimation (see Section IV-C).

B. Spatial Scene Labeling via Deep Neural Network

For spatial scene labeling, the recent study [38] on the use

of typical CNNs such as VGG16 [44] was extended to classify

category-independent regions sampled from VHR images. In

particular, unpooling and oversegmentation were exploited to

refine the typically low resolution (LR) results produced by the

CNN.

1) CNN: A typical convolutional network interleaves con-

volutional layers and pooling layers often followed by one or

more fully connected layers. The specific architecture of the

network was topologically identical to VGG16 [44].

The VGG16 network makes use of a stack of convolutional

layers with a very small receptive field of 3 × 3, rather than

using larger ones, such as 5 × 5 or 7 × 7. The reason is that

3 × 3 convolutional filters are the smallest kernels to capture

patterns in different directions, such as center, up/down, and

left/right, and bring multiple advantages. First, the use of stacks

of small convolutional filters separated by rectified linear units

(ReLUs) increases the nonlinearities inside the network. Then,

the number of parameters to be learned decreases. The con-

volution stride in the network is fixed to 1 pixel. The spatial

padding of the convolutional layer input is such that the spa-

tial resolution is preserved after convolution, i.e., 1 pixel for

the 3 × 3 convolutional layers. Spatial pooling is achieved by

carrying out several max pooling layers, which follow some of

the convolutional layers. Max pooling is performed over 2 × 2
pixel windows with stride 2. After several convolutional and

pooling layers, the high-level reasoning in the neural network is

achieved via fully connected layers.
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Fig. 9. Spatial analysis: Example of region refinement for resolution improvement. The first and second row show the coarse and refined probability maps of
different scenes, respectively (from left to right: urban, vegetation, harbor, and river).

Fig. 10. Illustration of pooling (left) and unpooling (right).

2) Fine Tuning: Here, a fully connected layer was added and

the new network was fine-tuned using the patches sampled from

the multispectral image, which made the network significantly

easier to train than a CNN trained from scratch. Fine tuning

was performed by retraining the final fully connected layer.

Fine tuning the ImageNet-trained VGG16 model for the spe-

cific task addressed here was clearly advantageous and yielded

decent results, since the amount of labeled training data for

the Vancouver images was insufficient. Finally, the fine-tuned

network was applied to the first video frame for spatial scene

labeling.

3) Refinement: Using pretrained architectures was very well

suited at extracting features from data by spatially shrinking

the feature maps. Pooling was necessary to allow gradually

gathering information over the feature maps, and, to make the

network computationally feasible. However, this produced a

scene labeling map with a reduced spatial resolution. To obtain a

high-resolution fine-edged scene labeling map, it was necessary

to refine the LR probability maps produced by the CNN.

Several strategies have been proposed to perform this step,

ranging from excluding spatial pooling in convolutional lay-

ers [45] to learning a deconvolution network to upsample

the maps [14]. A simpler approach, shown in Fig. 7, was

applied. The main ingredients were unpooling and region

refinement.

Unpooling extended the feature maps, as opposed to pool-

ing (see Fig. 10), and took the LR probability maps as input to

produce VHR but grainy maps called coarse probability maps.

Then, these coarse maps were projected to superpixels3 by as-

3A superpixel can be defined as a set of locally connected similar pix-
els that preserve detailed edge structures for a fine segmentation. The
code used for generating superpixels is available at http://coewww.rutgers.
edu/riul/research/code/EDISON/ [46]. In this paper, spatial and range band-
width parameters were set to 7 and 6.5, respectively.

signing, to each superpixel, the average value of its correspond-

ing region in the coarse probability maps as

p(si) =
1

|si |

∑

c∈si

p(c) (1)

where si represents the ith superpixel, |si | is the number of pix-

els belonging to si , c stands for a generic pixel in the superpixel,

and p(·) denotes probability map entries. In this way, the refined

fine-edged probability maps were obtained. Fig. 9 compares the

original LR output (top) with the refined one obtained by the

proposed approach (bottom).

C. Temporal Analysis Using Tracklets

Object tracking for temporal analysis has been well studied in

computer vision for more than two decades. Video from space,

however, brings new methodological challenges, such as 1) the

low frame rate, which undermines the common motion smooth-

ness assumption; and 2) the limited spatial resolution of moving

objects, which prevents the use of robust and discriminative

appearance-based tracking algorithms.

1) Extracting Valid Tracklets: In this paper, tracklets, instead

of the trajectories obtained by the object tracking algorithms,

were used to analyze the activity. A tracklet is a fragment of

a trajectory obtained by a tracker with a short period. Com-

pared to long-term object tracking, they are more reliable. In

our approach, a KLT keypoint tracker [47] was used to ex-

tract 150 000+ tracklets from the space video [see Fig. 11(a)].

If the camera was stationary, the tracklets would have been

entirely caused by real object movements (positive tracklets).

Unfortunately, the camera kept slightly moving throughout the

entire video acquisition (see the effect of such movements over

30 s in Fig. 4), which meant that the obtained tracklets included

many negative samples caused by parallax. Therefore, it became

necessary to remove negative tracklets before carrying out any

follow-up activity analysis. Here, a prior constraint on the track-

let denoising was enforced according to the observation that the

displacements of moving object tracklets were usually larger

than the displacements of still object tracklets (e.g., buildings)

caused by the camera movement. In this paper, the threshold

value was fixed to 11 pixels, which corresponded to a minimum

car speed of 20 km/h, given the spatial resolution of the video
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Fig. 11. Visualization of (a) all tracklets produced by the KLT keypoint tracker
and (b) positive tracklets (from [39]).

and the duration time of the tracker. Fig. 11(b) shows the result

of tracklet denoising.

2) Activity Analysis and Traffic Density Estimation: For the

remaining tracklets, the angle of motion θ = arctan(ζ/ε) was

calculated according to the displacement vector (ε, ζ) of the

tracklet, and 2-D information was transformed into the (ε, ζ, θ)
space, in which k-means was used for clustering. The output

could be interpreted as activity information of every cluster. The

traffic density was estimated on the superpixels superimposed on

the scene. For every superpixel, the number of positive tracklets

was calculated and the density was estimated for the whole scene

at every frame. Finally, the normalized density estimation map

was obtained by dividing the number of positive tracklets in each

superpixel by the maximum number among all superpixels.

D. Results and Discussion

In order to quantitatively evaluate the performance of the pro-

posed approach, a ground truth for spatial scene classification4

was built by manually labeling the first frame of the video to

four land-use scene categories, according to a detailed visual

analysis and some prior information. The spatial scene label-

ing result is illustrated in the left panel of Fig. 12. Cyan, red,

yellow, and blue represent urban, vegetative cover, harbor, and

river, respectively. 400 labeled patches (100 in each category)

with a size of 224 × 224 were randomly selected from the mul-

tispectral image as the training set. On the held out test data, the

developed approach can achieve an average accuracy of 90.5%,

overall accuracy of 96.5%, and Kappa of 0.9353.

4The manually labeled ground truth for spatial scene labeling and the
corresponding code for visualization can be found at http://www.sipeo.
bgu.tum.de/downloads/gt4dfc16video.rar.

Regarding activity analysis, the standard quantitative mea-

sure of precision is based on the number of true positives

(TP) and false positives (FP) and is computed as precision =
TP/(TP + FP). For quantitative evaluation, the whole visible

area of the video was used and tracklet ground truth was manu-

ally determined for 30 s. The precision of the temporal activity

result reached 95.3%. Fig. 13 provides a close zoom of the ac-

tivity analysis in which two moving cars were detected and their

moving directions and speeds could be estimated. In addition,

the traffic density estimation result is presented in the bottom

right image of Fig. 12. The estimated density highly correlates

with the actual traffic situations, e.g., high values in main roads

and intersections.

It is also worth noting that, here, the focus was on addressing

two relatively independent problems, i.e., spatial scene labeling

and temporal activity analysis. Accordingly, an “open-loop” so-

lution in which the scene labeling was accomplished without

making use of the temporal analysis results was designed. In-

deed, a “closed-loop” system, in which the spatial scene labeling

is further refined using the outcome of the temporal analysis,

will represent an interesting future extension of this work.

V. SIMULTANEOUS REGISTRATION, SEMANTIC SEGMENTATION,

AND CHANGE DETECTION FROM MULTISENSOR,

MULTITEMPORAL SATELLITE IMAGE PAIRS

This section details the method proposed by the second ranked

team of the Contest.

A. Motivation

The current generation of space-borne and airborne imaging

sensors are generating nearly continuous streams of massive,

multitemporal, high-resolution remote sensing data. However,

in order to efficiently exploit these datasets, their accurate coreg-

istration is the first indispensable processing step along with any

further analysis and change detection procedures. In the frame-

work of the DFC 2016, a methodology was proposed that was

able to ingest information from multisensor and multitempo-

ral satellite image pairs, by addressing concurrently the tasks

of registration, semantic segmentation, and change detection.

These three tasks are usually addressed separately.

A number of studies were focused on jointly tackling the

problem of registration and semantic segmentation for mainly

video sequences or medical images [48]–[51]. Similar re-

search efforts were focused on jointly addressing the tasks of

segmentation and tracking in image video sequences [52]–[54].

However, such formulations cannot exploit sparse multitem-

poral datasets with changes in-between the various acquisition

dates. To tackle such problems, a framework was designed for

jointly register images, detect changes, and producing semantic

segmentation maps at the same time.

In particular, the formulation of [6] and [55], was extended

by adding a graph tackling the semantic segmentation problem.

The developed method jointly integrated the following three

types of energies into an energy minimization framework:
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Fig. 12. Final results. From left to right: spatial scene labeling (cyan, red, yellow, and blue represent urban, vegetative cover, harbour, and river, respectively.),
temporal activity analysis (each color corresponds to a cluster), and traffic density estimation (from [39]).

Fig. 13. Zoomed area. From left to right and top to bottom: frame #1, frame
#61, a red-cyan color composite used to illustrate the pixel-wise difference, all
tracklets, positive tracklets, and final activity analysis including their moving
speeds (from [39]).

1) data-driven costs issued from classification scores5 (vari-

ous classification algorithms can be employed, e.g., [56]);

2) registration metrics (e.g. similarity metrics);

3) change detection scores.

These energies were efficiently coupled with local geometric

constraints in the context of a higher order graph. Reduction

methods were used to map this graph into a pairwise one, which

was optimized using efficient linear programming. The experi-

mental results were very promising: less than 2 pixels in terms of

mean displacement error for the registration; above 77% in most

cases regarding the completeness and correctness rates of the

semantic segmentation; and change detection accuracy higher

than 70%.

B. Methodology

1) Graph Formulation: Without loss of generality, three dis-

tinct graphs with exactly the same topology/geometry and of

lower resolution than the image dimensions were considered.

They corresponded to a lower resolution grid than the input im-

age and every original pixel was assigned to the closest graph

node to compute the related energy contributions. Following the

notations of [6] and [55], the first graph, Greg, involved nodes

where the labels corresponded to deformation vectors from the

registration process, i.e., a mapping between the source and the

5Throughout Section V, we will use the word classification for the scores
issued from this independent classification and semantic segmentation for those
obtained by the proposed energy minimization method.

target images. The second graph, Gch, referred to nodes with

binary labels expressing changes in the temporal domain. The

third graph, Gseg, which was the one introduced in this work,

referred to the labels representing the semantic segmentation of

the image. In terms of connectivity, each graph was endowed

with a first-order neighborhood system accounting for local

consistency on the corresponding label space. Furthermore, two

intergraph connections were considered, one associating the cor-

responding nodes in the detection and registration graphs, and

the other involving hypercliques that linked the corresponding

nodes of all graphs.

This graph structure was superimposed on the image in such

a way that each node of the graph depended on a subset of pixels

in its vicinity. The objective function was defined on the entire

image domain, and every pixel contributed to the graph with

a weight depending on its distance from a node in the support

domain. The graph structure defined the support domain and the

computational complexity of the implementation, thus, a finer

grid generated a higher computational load. In particular, the

dimensions of the graph were related to the image size, thus

representing a tradeoff between accuracy and computational

complexity.

2) Energy Formulation: By integrating the three graphs

in a single framework, the proposed energy was a function

Ereg,ch,seg(l
reg, lch, lseg), in which the labels of each node p of the

coupling graph were lp = [lch
p , lseg

p , lreg
p ]. The term lch

p ∈ {0, 1}

represents the label for change detection, lseg
p ∈ {0, 1} repre-

sents the label for binary semantic segmentation, and lreg
p ∈ ∆

is the registration label. ∆ = {d1 , . . . , dn} corresponds to all

possible displacements. The label space could be described as

L = {0, 1} × {0, 1} × ∆. In the next section, we detail the key

ideas of all the terms used to calculate the energy function.

C. Energy Terms

The energy was composed of a series of terms related to

the three tasks of change detection, registration, and semantic

segmentation. The energy terms could be either singletons (i.e.,

functions of the score of one specific node), pairwise (i.e., de-

pending on the spatial neighborhood for one single task), or

coupled (i.e., using the results of two or more tasks on a single

node simultaneously).

1) Singleton and Pairwise Terms: Both the registration and

change detection terms depended on the two considered images

simultaneously, and therefore, only had pairwise energy contri-

butions. Regarding the semantic segmentation process, the goal
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was to assign the correct semantic segmentation label to each

node of the target image. In particular:

1) the registration (Vpq ,reg(l
reg
p , lreg

q )) and change detection

(Vpq ,ch(l
ch
p , lch

q )) pairwise terms followed the same formu-

lation as in [6] and [55] and penalized neighboring nodes

with different registration or change detection labels;

2) the semantic segmentation graph contained a term with

the classification score for each node (i.e., a singleton

term) (Vseg(l
seg
p )) and a pairwise term (Vpq ,seg(l

seg
p , lseg

q )),
which penalized different semantic segmentation labels

in neighboring nodes. The two terms followed the same

formulation as in [40].

2) Coupled Intergraph Energy Terms: As stated previously,

two intergraph connections were considered. They translate

into two coupled terms addressing two and three tasks

simultaneously.

1) The coupling between the registration and change de-

tection terms (Vreg,ch(l
reg
p , lch

p )) was achieved through the

interconnection between the two graphs. In the absence

of change, the cost was calculated using a similarity func-

tion, while in the presence of change, a fixed cost was

used.

2) The coupling between the three terms was performed us-

ing one potential term (Vreg,ch,seg(l
reg
p , lch

p , lseg
p )) that penal-

ized different semantic segmentation labels in the source

and target images for all possible displacements in cases

of no-change and the same ones in cases of change.

3) Final Global Energy: The global energy function was

a linear combination of the aforementioned energy terms,

weighted by six nonnegative weight parameters w1 , w2 , . . . , w6 .

These parameters should be optimized prior to the minimization

of the energy with respect to the labels lch
p , lseg

p , and lreg
p of all

nodes p. Details on the specific formulation of the energy can

be found in [40].

D. Experimental Results and Evaluation

The evaluation of the developed framework was performed

on all the data described in Section II. From now on, we will

refer to the first Deimos-2 acquisition (March 2015) as [D1],

to the second Deimos-2 image (May 2015) as [D2], and to the

Iris video as [V]. The level 1C image products were used, and

were further radiometrically corrected, and then, pan-sharpened

based on the standard high-pass filter method, resulting into

an overlapping image pair of approximately 12 760 × 11000
pixels. The area of the overlap between the image pairs and the

Iris video frames was approximately 4 720 × 2 680 pixels. In

order to employ an additional image/map, which could serve as

a reference/target map while contributing to the automation of

the subsequent training procedure, an image mosaic [G] and the

corresponding land map6 were downloaded from Google Maps

APIs.7

6By “land map” we intend the raster simplified view that can be used in
Google Maps as an alternative to the satellite image.

7All the considered raw unregistered data and ground truth data,
and several experimental results can be viewed at: http://users.ntua.
gr/karank/Demos/DemoContest16.html

Algorithm 1: General formulation of the algorithm pro-

posed by the second ranked team.

Require: param: parameters of the algorithm

Ensure: Registration, Semantic Segmentation, and

Detection labels.

1: i ← param.mingridlevel

2: while i++ < param.maxgridlevel do

3: G ← create graph

4: U ← unary potentials

5: B ← pairwise potentials

6: η(·) ← projection function (see [40])

7: for all node p ∈ G do

8: for all pixel j in the vicinity of p do

9: zpj ← η(j)
10: end for

11: end for

12: for all label lp ∈ {0, 1} × {0, 1} × ∆ do

13: for all pixel j do

14: sumj = w1Vreg,ch(lp) + w3Vseg(lp)+
w2Vreg,ch,seg(lp)

15: Up(lp) + = zpj · sumj

16: end for

17: end for

18: for all label lp do

19: for all label lq do

20: Bpq (lp , lq ) = w4Vpq ,reg(lp , lq )
+w5Vpq ,ch(lp , lq ) + w6Vpq ,seg(lp , lq )

21: end for

22: end for

23: l ← FastPD-Optimization(U, B)

24: for all node p do

25: for all pixels j in the vicinity p do

26: lj + = zpj · lp
27: end for

28: end for

29: Transform the source image

30: end while

1) Implementation Details: The parameters of the developed

framework were not constant across different datasets. Grid

search over a small area of the dataset was used for fine tuning

all the parameters. Then, this set of parameter values was ap-

plied to the entire dataset. This was of course a limitation of the

developed method, however, with satellite or aerial data of sim-

ilar spatial and spectral resolution, significant differences were

not expected. Details on techniques and implementation can

be found in [40], while for the optimization procedure, FastPD

was employed [57]. For an overview of the method, see the

pseudocode in Algorithm 1.

2) Classification Scores: In order to estimate the classifica-

tion scores, a patch-based deep learning framework was used.

It reported high classification accuracy rates for a number of

cases [56], [58], [59]. These deep architectures require a large

number of training data. To this end, the Roads, Buildings, Sea,

and Vegetation classes were automatically extracted from the
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Fig. 14. Chessboard visualization with the unregistered inputs (left) and the registered results (right) multisensor data. From [40].

TABLE I
QUANTITATIVE EVALUATION OF THE REGISTRATION RESULTS (MEAN

DISPLACEMENT ERRORS IN PIXELS; FROM [40])

Method of [60] Proposed

D1 to G D2 to G V to G V Frame to Frame D1 to D2 V to D2

Dx 1.09 1.22 0.93 0.84 1.12 1.04

Dy 1.62 1.49 1.73 0.92 1.59 1.61

DS 1.95 1.93 1.97 1.24 1.94 1.92

Google land map (based on the different colors). To do so, all

datasets were registered to the Google image mosaic in order

to relate every pixel to one of the Google land map colors. Fur-

thermore, polygons for the Vessels, Building shadow, Vegetation

shadow, Soil, and Clouds classes were manually annotated. For

the Iris video sequence, Vegetation shadows was merged with

Vegetation. Spectral analysis on the derived numerous polygons

and probabilities was employed (as in [58]) in order to create

the final training and validation sets for the eight terrain classes,

i.e., Roads, Buildings, Building Shadows, Soil, Sea, Ship/vessels,

Vegetation, and Vegetation shadows.

The training for the experiment considering the D1 and D2

images was performed on the large (12 760 × 11000 pixels)

overlapping region with eight classes. On the contrary, seven

classes were employed for V. Based on the derived polygons,

numerous patches of size 21 × 21 including all the spectral

bands were created by centering each patch on the annotated

pixels [59]. Approximately 200 000 randomly selected patches

per class were used for the Deimos-2 data, while 50 000 were

used for the Iris video. A CNN with ten layers was trained: the

network was made of two convolutional layers, each followed by

tangent and max pooling layers, and ended with two fully con-

nected, a tangent, and a linear layer. The model was trained with

a learning rate equal to 1 for 40 epochs; afterwards, the learning

rate was halved every 2 epochs. The same CNN architecture and

configuration settings were used for the classification of the Iris

video frames.

3) Registration Results: For the validation of the registra-

tion results (see Fig. 14), several ground control points were

manually collected in all resulting image pairs. In Table I, the

TABLE II
QUANTITATIVE EVALUATION OF THE SEMANTIC SEGMENTATION RESULTS (PER

CLASS RESULTS FROM [40])

Deimos-2 March [D1]–Deimos-2 May [D2]

Completeness Correctness Overall Quality

Ship/vessel 81.4% 78.0% 66.2%

Vegetation 83.9% 88.3% 75.6%

Buildings 68.9% 77.4% 57.4%

OA 85.3%

AA 81.2%

Iris July [V]–Deimos-2 May [D2]

Completeness Correctness Overall Quality

Ship/vessel 79.0% 77.9% 65.6%

Vegetation 82.5% 86.2% 72.8%

Buildings 78.8% 72.2% 60.5%

OA 80.2%

AA 78.8%

mean displacement errors for both axis (Dx and Dy) and the dis-

tance (DS) in pixels are presented. It should be mentioned that

the registration process did not manage to address the largest

relief displacements of the tallest buildings/skyscrapers of this

part of Vancouver, and these errors hindered the results of both

semantic segmentation and change detection. All other building

rooftops, roads, and terrain classes were registered with subpixel

accuracy. A quantitative comparison is also provided in Table I:

These results are compared with those obtained by the algorithm

in [60] for both tasks of registering the different sources to the

Google mosaic and registering each frame of the video sequence

to the first frame. One can observe that both methods resulted

in subpixel accuracy, indicating that the coupling of registration

priors with semantic segmentation and change detection priors

does not harm the quality of the registration.

4) Semantic Segmentation Results: The framework was val-

idated for the detection of three different classes out of the

original eight, namely: Buildings, Ship/vessels, and Vegetation.

For the semantic segmentation and change detection results,

the quantitative evaluation of the framework was performed

using the completeness, correctness, and overall quality crite-

ria at the object level. In particular, after an intensive manual
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Fig. 15. Semantic segmentation of the multitemporal multisensor data: (left) Deimos-2 March 2015 and Deimos-2 May 2015 images (D1–D2, from [40]), (right)
Iris video sequence (first frame) and Deimos-2 May 2015 image (V–D2).

Fig. 16. Change Detection from multitemporal multisensor data (from [40]): (left) Deimos-2 March 2015 and Deimos-2 May 2015 images (D1–D2), (right) Iris
video sequence (first frame) and Deimos-2 May 2015 image (V–D2).

photointerpretation procedure, ground-truth/reference data were

created for the three aforementioned classes in four different

smaller regions. The resulting true positives, false negatives, and

false positives were calculated on the validation dataset after the

application of the developed framework. The overall accuracy

(OA) and average accuracy (AA) were also calculated. After the

optimization and based on the polygons of the Sea class, which

were derived automatically from Google Maps, all objects seg-

mented as Buildings in the Sea and as Ship/vessels in the land

areas were neglected.

As one can observe in Fig. 15, although the original classifi-

cation scores constrained significantly the result, the developed

framework could improve the semantic segmentation results in

several image regions as compared with the classification ac-

curacies obtained by the CNN.8 In particular, the quantitative

evaluation (see Table II) indicated that the detection complete-

ness rates were above 78% (apart from the Buildings class in

the D1–D2 pair), and the detection correctness rates were above

72% in all cases. The highest rates were for the Vegetation

class, indicating that the NIR Deimos-2 band significantly con-

tributed to class separation. Most semantic segmentation errors

were due to false alarms near the port, pier, and ship wake on the

8http://users.ntua.gr/karank/Demos/DemoContest16.html

TABLE III
QUANTITATIVE EVALUATION OF THE CHANGE DETECTION RESULTS (PER

CLASS RESULTS FROM [40])

Deimos-2 March [D1]–Deimos-2 May [D2]

Completeness Correctness Overall Quality

Ship/vessel 68.6% 66.7% 66.2%

Vegetation 88.2% 82.3% 75.6%

Buildings 69.2% 67.4% 57.4%

Overall (proposed) 75.3% 72.1% 66.4%

OA, method of [6] 70.3% 67.1% 52.3%

Iris July [V]—Deimos-2 May [D2]

Ship/vessel 70.6% 69.5% 53.8%

Vegetation 81.1% 79.6% 67.2%

Buildings 71.3% 65.6% 51.9%

Overall (proposed) 74.3% 71.6% 57.6%

OA, method of [6] 70.4% 66.3% 51.8%

sea. Moreover, the Buildings and Roads classes were confused

in certain cases.

5) Change Detection Results: Similar qualitative errors

were observed on the change detection results (see Fig. 16)

obtained from both image pairs. Quantitative results (see Ta-

ble III) suggested lower completeness and correctness rates

as compared to the semantic segmentation task, as expected.

These results were mainly due to a number of false positives
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in the dense urban regions where the relief displacements were

significant due to the tallest buildings and skyscrapers.

Additionally, experiments with the unsupervised change de-

tection method in [6] were also performed to compare the

performance with and without semantic segmentation labels.

The proposed method not only provided additional information

(i.e., semantic segmentation maps and from-to change trajectory

maps) but also resulted in higher accuracy rates. In particular,

the developed system led to an improvement of at least 6% in

the mean overall quality compared to the method in [6], indicat-

ing that the use of the semantic segmentation labels allows the

number of false alarms to be reduced and more accurate change

maps to be produced.

Finally, the results of the proposed method were compared

with those of [6] and [60] in terms of computational perfor-

mance. For the proposed higher order formulation, reduction

methods were employed to reformalize as a pairwise model,

which is indeed quite computationally demanding. In particu-

lar, for a 1000 × 1000 pixel image, the deformable registration

component alone (see [60]) required 2–3 min. Then, the regis-

tration and the unsupervised change detection (like in [6]) con-

verged after 6 min. The proposed framework converged after

approximately 12 min with the same configuration setting.

VI. CONCLUSION

In this paper, we discussed the scientific results of the 2016

IEEE GRSS DFC organized by the IEEE GRSS Image Analysis

and Data Fusion Technical Committee. We described the dataset

and described the overall scientific outcomes of the competition,

by first presenting its overall results, and then, focusing on the

strategies proposed by the first and second place teams. These

teams made use of all the data available and developed method-

ologies rooted in the latest advances in computer vision and

machine learning: The winners proposed a CNN and a tracking

algorithm, while the second place team developed a random field

model performing multiple tasks simultaneously. Both method-

ologies were effective and tailored to the peculiarities of the

new generation remote sensing data that were released for the

contest, including in particular video from space (introduced for

the first time in this annual competition).

Moreover, the results of the DFC 2016 also exceeded

these two individual methods: The organizers appreciated the

originality of all the submissions and the hard work of all

the participating teams. The participants’ efforts in stretch-

ing the current limits of the discipline were remarkable, both

methodologically—by integrating advanced video processing

and computer vision techniques—and application wise. It also

was highly appreciated that new challenging fields of study,

such as population density estimation (proposed by the third

place team [41]) and human activity modeling (from the win-

ning team), were addressed within the contest.

The data will remain downloadable for free from the IEEE

GRSS website.9 Ground references were made available by the

two winning teams (see Sections IV and V for the URLs). We do

hope that these data will serve to push the boundaries of remote

9http://www.grss-ieee.org/community/technical-committees/data-fusion, un-
der the ‘Past Contests’ tab.

sensing data fusion even further and make video form space a

new valuable data source for remote sensing applications.
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