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Sequential region labelling, also known as connected components
labelling, is a standard image segmentation problem that
joins contiguous foreground pixels into blobs. Despite its long
development history and widespread use across diverse
domains such as bone biology, materials science and geology,
connected components labelling can still form a bottleneck in
image processing pipelines. Here, I describe a multithreaded
implementation of classical two-pass sequential region labelling
and introduce an efficient collision resolution step, ‘bucket
fountain’. Code was validated on test images and against
commercial software (Avizo). It was performance tested on
images from 2 MB (161 particles) to 6.5 GB (437 508 particles)
to determine whether theoretical linear scaling (O(n)) had been
achieved, and on 1–40 CPU threads to measure speed
improvements due to multithreading. The new implementation
achieves linear scaling (b = 0.905–1.052, time∝ pixelsb; R2 =
0.985–0.996), which improves with increasing thread number
up to 8–16 threads, suggesting that it is memory bandwidth
limited. This new implementation of sequential region labelling
reduces the time required from hours to a few tens of seconds
for images of several GB, and is limited only by hardware
scale. It is available open source and free of charge in BoneJ.
1. Introduction
Region labelling is a standard segmentation problem in two-
dimensional (2D) and three-dimensional (3D) image processing,
in which groups of pixels that form contiguous domains are
identified and each discrete domain is given a unique label [1].
Region labelling is needed across disciplines, for example, to
identify pores in sintered polymers [2], soil [3], rock [4,5],
cement [6], noodle dough [7], teeth [8] or bone [9], from images
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obtained by modalities such as X-ray microtomography (XMT), confocal microscopy or serial sectioning
microscopy. It is also useful to perform region labelling to remove small particles from images prior to
calculating the Euler characteristic of a connected structure, for example, to calculate trabecular bone’s
connectivity density (Conn.D), a measure of the number of trabecular struts [10]. XMT images on
contemporary instruments are often ca 20483 pixels, or larger after stitching of projections or image
stacks. Parallelized connected components labelling algorithms have existed for at least the last 30
years [11,12], yet slow region labelling can still be an obstruction to measuring features of interest in a
timely manner, especially on large 3D image data.

Various multithreaded, chunked, single-threaded and mapped region labelling algorithms were
included in BoneJ [13] from its earliest releases and improvements made in subsequent years. The
starting point for these algorithms was the 3D Object Counter ImageJ plugin [14] published open
source by Cordelières and Jackson (reported in [15]). The 3D Object Counter was a naive and
recursive implementation that scaled as approximately O(n2) because every time a label change
occurred, all the image pixels were iterated to update matching labels. For small images on the order
of a few tens of MB, processing times were tolerable, but for larger images of hundreds of MB and
above, processing times became prohibitive.

Alternative approaches that avoid recursion such as breadth-first and depth-first flood fill algorithms [1]
record the coordinates of foreground pixels and may function adequately for small images, but used on
large images can consume an excessive amount of memory. In these algorithms, every 1-byte foreground
pixel is represented by 12 bytes of coordinate data (3 dimensions × 4-byte integers), which can easily
exceed available system memory for larger images. More complex two-pass approaches record
collisions between neighbouring pixel subregions during the first pass, resolve the collisions in an
intermediate step and merge connected subregions in the second pass. The network of collisions may
be visualized as a graph, with subregion labels as nodes and the collision as an edge connecting two
adjacent subregion labels [1]. Because each pixel is accessed a fixed number of times, two-pass
approaches have the potential to scale linearly (as O(n)) and thus perform well on large data,
provided that label collision resolution is efficient. Improvements to linear speed should also be
possible by multithreading the two-pass algorithm; however, collisions between threads during label
collision recording and resolution require either synchronization of data access or careful design to
ensure threads never read and write the same data at the same time.

This report proposes a multithreaded implementation of two-pass sequential region labelling with
efficient collision resolution and tests the hypotheses (i) that linear scaling (O(n)) is achieved and (ii)
that further linear speed improvements may be achieved as the number of processor threads increases.
2. Installation and code availability
The current implementation has been developed in the Java programming language for the popular
scientific image processing platform ImageJ [16]. The simplest and recommended way to install the
software is by installing the Fiji Is Just ImageJ (Fiji) [17] bundle from https://fiji.sc/, and adding the
BoneJ update site [18] to Fiji according to the instructions at https://imagej.github.io/BoneJ. This
installs the command Particle Analyser in the user menus, which can be found using the
keyboard shortcut [L] or using the search bar in the ImageJ GUI.

Code changes are tracked using Git [19] and published at GitHub (https://github.com/bonej-org/
BoneJ2), while release version code is archived at Zenodo under a BSD 2-clause licence (see Data
accessibility). In BoneJ1, all methods were contained in a single class, ParticleCounter. The current
release achieves separation of concerns by creating three new classes: ConnectedComponents (labels
regions); ParticleAnalysis (measures region features); Particle Display (handles graphical
output); leaving ParticleCounter as a ‘master’ plugin that coordinates user input and output with
ImageJ’s API and the three new classes. ConnectedComponents is intended to be reused by other
ImageJ plugins via its public run() method.
3. Description of the algorithm
3.1. Input data
The algorithm expects a 2D or 3D image that has been segmented into foreground and background. In
ImageJ this is an 8-bit binary image that contains only 0 (background) and 255 (foreground). Other

https://fiji.sc/
https://fiji.sc/
https://imagej.github.io/BoneJ
https://imagej.github.io/BoneJ
https://github.com/bonej-org/BoneJ2
https://github.com/bonej-org/BoneJ2
https://github.com/bonej-org/BoneJ2
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numbers of dimensions could conceivably work with the current approach, provided that suitable
neighbourhoods and multithreading chunking strategies are devised.

3.2. First pass
The first pass proceeds as described in the classical algorithm [1] with some important variations. An ID
value is initialized with a value of 1 to increment region labels. Label 0 is reserved for background. A
neighbourhood that reads only the previously visited pixels iterates through all the pixels in a raster
pattern, labelling the current foreground pixel with the smallest label value found among the
neighbouring pixels. Only the 4 pixels new to the 13-neighbourhood are read from the label image
and the other 9 pixels are reused by shifting them one to the left in the neighbourhood array. If no
smaller label than ID is found, the current pixel is set to ID and ID incremented by 1. Label pixels are
stored in a primitive integer array that has the same dimensions as the input image (figure 1a).

In preparation for later collision resolution, the neighbourhood pixel values are added to an
ArrayList of HashSets, which can be visualized as a column of numbered buckets (figure 1b).
Java’s standard ArrayList and HashSet were replaced by the more efficient MutableList and
IntHashSet implementations from Eclipse Collections [20], and are referred to for the remainder of
this document as ArrayList and HashSet because the functionality is the same as Java’s. The
position (index) of a bucket (HashSet) in the column (ArrayList) relates to a region label. The
contents of each bucket are neighbouring labels. Each bucket is initialized containing one label
matching the bucket’s position in the column. During the first pass, the bucket with its position
matching each neighbour pixel is looked up and the current pixel’s label added to it. Efficiency is
gained by skipping background neighbours, neighbours matching the current pixel and neighbours
that are the same as the last neighbour to be added. Because the current pixel’s label is always less
than or equal to the neighbours’ labels, buckets receive only labels that have lower values than the
buckets’ positions. Use of HashSets prevents the same label from being added to a bucket more than
once. It is not necessary to store pairs of labels as nodes and edges, as described in the classical algorithm.

3.3. Collision resolution
The presence of labels within a bucket means that all the labels belong to the same region. Although it
helps to consider the underlying graph structure of the labels in a region, there is no need to reconstruct
the specific connections among labels and these individual relations are ignored. If a label is found in
more than one bucket, then the contents of all buckets containing that label can be aggregated into a
single bucket. The first step in this algorithm’s collision resolution allows labels to flow downwards
into lower buckets, merging buckets’ contents on the way, which is somewhat like the flow of water
in the kinetic sculpture Bucket Fountain by Burren & Keen [21] installed in Cuba Mall, Wellington,
New Zealand. Starting from the highest bucket and proceeding to the lowest bucket, all the labels in
each bucket are checked (figure 1c–f ). If labels are found that are lower than the bucket’s position, the
bucket is emptied into the lower bucket whose position equals the lowest label in the upper bucket.
Later in the iteration, the lower bucket will have all its labels checked, and all of the labels that have
accumulated in it from higher buckets may be emptied into another, lower, bucket. Implementing
buckets as HashSets means that each time a bucket pours its labels into another bucket by the
HashSet.addAll(HashSet) method, redundant labels are eliminated. In the final state, all the
buckets have been checked and the labels in a bucket are all greater than or equal to the bucket
position, which is the opposite of the starting state.

The bucket fountain does not always merge labels that are transitively connected (figure 1f ). A second
step checks consistency by iterating back up through the buckets ensuring that labels are always bigger
than the bucket number, and that each label appears exactly once within the whole set of buckets. If either
condition is not satisfied, the offending bucket is emptied as before, into the bucket matching the lowest
label. Consistency is checked in this manner in a while() loop, until no inconsistencies are found,
typically with two and sometimes three iterations. During this process, labels are paired with the
lowest label in their bucket, and a look-up table (LUT) is constructed that translates the first pass label
to a final label. Each bucket (HashSet) is paired with its minimum label in a HashMap. A second
HashMap associates first pass labels and the minimum replacement label. The hashMap’s set of first
pass labels is checked against the replacement label stored in the lutMap to ensure that the first pass
label is being minimized. Once the labels are minimized within buckets, the content of each bucket
represents the complete set of first pass labels that represent each region. Gaps between buckets are
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Figure 1. Visual summary of the first pass and of bucket fountain collision resolution. (a) Half-neighbourhoods, one per thread and
one thread per image chunk, raster over the image pixels. (b) Each thread addresses its own column of buckets, adding to the bucket
that matches the neighbourhood centre pixel the labels of the other neighbours, which always have lower values than the centre pixel.
Each bucket always contains its own label, and is created only once needed. In this example, a total label range of 100 is split over four
chunks giving each chunk a label range of 25, and offsets of 0, 25, 50 and 75, which keep each chunk’s label range separate from the
others’ ranges. (c) The bucket fountain starts on the highest valued bucket and descends towards 0, pouring labels into the bucket
matching the lowest label contained in the bucket. Redundant labels (here, 75) are eliminated. Intermediate steps (d,e) demonstrate
the state after emptying all buckets from the 3rd column and down to the first bucket of the first column. ( f ) The state after
completion of bucket fountain. Note the orphaned label 50 with red outline in column 2, which is picked up by the subsequent
consistency and look-up table (LUT)-creation step. In this toy example, bucket fountain results in simplification of 40 labels
spread over 19 buckets into 23 labels in seven buckets, with one orphan.
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removed by assigning consecutive labels to a new HashMap lutLut, which is then copied to a final LUT
that is implemented as a primitive integer array for efficient storage and addressing. Making a LUT from
the collision resolution diverges from the Burger & Burge pseudocode [1], which looks up replacement
labels from the HashSet during pixel iteration.
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3.4. Second pass
In the second pass, each first pass label is read from the label array and replaced by the value held at the
label’s position in the LUT.

3.5. Multithreading
Because this algorithm contains minimal recursion through pixels there is little need for synchronization,
leading to the ability to implement a multithreading strategy exploiting the representation of xy image
slices as independent arrays within the 2D image stack array (figure 1a,b). In the first pass, the label
image is considered as a series of chunks, each chunk relating to a discrete range in z. Each chunk or
z-range is processed in a separate thread. To ensure that the label space of each chunk does not
interfere with the label space of the other chunks, each chunk is assigned a range of labels, calculated
as the maximum label divided by the number of chunks. A special neighbourhood that does not
check the previous chunk’s last slice is used on the zeroth slice of each chunk, then the usual half-
neighbourhood is used for the rest of the chunk. After the whole chunk is processed, the zeroth slice
is processed again using the half-neighbourhood, which detects collisions between particle labels in
the last slice of the previous chunk and particle labels in the zeroth slice of the current chunk.

Each chunk’s collisions are stored in an independent list (ArrayList<ArrayList<HashSet<

Integer>>>) to avoid synchronization overhead and concurrent modification of elements
(figure 1b). A label offset equal to the minimum of the chunk’s label space is used to relate bucket
positions, which have zero-based numbering, to labels, which are label offset indexed. This allows the
full range of labels to be used without creating unneeded HashSets. During collision resolution,
labels belonging to the prior chunk are readily recognized because they are less than the chunk’s label
offset. Collision resolution is performed in a single thread, and the second pass is performed in
multiple threads using the same chunked z-range strategy as in the first pass. The final LUT is a 2D
int array, with each chunk having its own 1D LUT, and the index for the look-up value being
calculated by subtracting the chunk label offset from the label being replaced.

3.6. Foreground versus background
This algorithm can work with any neighbourhood configuration. The current implementation assumes a
26-connected foreground. Its complementary 6-connected background is used during a particle filtering
step prior to calculating connectivity, implemented as Purify in BoneJ [13,22].

3.7. Analysis and display
Analysis and display options are selected by the user in a single step via a GUI dialog, called on an open
image by a single menu command. All user options are displayed in one set-up dialog and no further user
interaction is required to generate output images and data. The intention is to minimize menu clicking and
GUI interaction, which can represent a substantial time cost to users. Reproducibility and efficiencymay be
enhanced by recording and running amacro script, which avoids repeatedGUI clicking and can be run as a
batch over many input images or incorporated into a larger workflow.

Individual particles are identified by their unique label in the label array and a binary copy, limited to
the particle’s extent in x, y and z, is used for input to BoneJ’s other analysis methods. These include
connectivity [22], local thickness [23], volume, surface area, moments of inertia, skeleton branch count
and total length [24], and best-fit ellipsoids, as described and validated elsewhere for single structures
[13]. Any 3D binary operation available in the ImageJ plugin ecosystem could readily be applied to
each particle. Particles may be displayed in stacks by their label, size, thickness, or in 3D as voxel
volumes or surface meshes. Analysis results, such as best-fit ellipsoids, may also be displayed as
stacks or in the 3D viewer [25].
4. Validation and performance testing
Simple validation was performed with a test script that generated a stack containing cubes, some with
voids. An image of a single spiral in xz passing through multiple image chunks several times
(figure 2a) was used to ensure that merging discrete particle subregions across image chunks



(a) (b)x

z

Figure 2. Test images. (a) A spiral in xz (image dimensions 1024 × 3 × 1024 pixels) passing through multiple chunks tests the
ability of the algorithm to connect subregions that are connected through multiple transitive steps via multiple chunks. Chunks are
indicated by pale grey and white horizontal stripes. (b) s10up, a binarized XMT scan of a particulate material (2103 × 2103 ×
1585 pixels) that contains one large particle and 437 507 smaller particles. Smaller cubic image stacks of 1024, 512, 256 and 128
pixels wide that were used to test performance scaling behaviour are indicated on the parent volume as red squares.
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completed successfully. A 7 × 109-pixel XMT image of particles (s10up) was obtained from the BoneJ
user community and cropped into four smaller volumes, of 2, 16, 128 and 1024 MB (figure 2b), to
cover 4–5 orders of magnitude of pixel number, with which the scaling characteristics of the algorithm
were measured. All test images and scripts are available online (see Data accessibility).

The number of active CPU threads was set using the -XX:ActiveProcessorCount=n Java option
(where n = 1, 2, 4, 8, 16, 32, 40, 20, 10, 5) in combination with the ImageJMemory & Threads setting, where
the maximum n = 40 was the number of CPU threads present in the test system (Dell T7910, 282 GB
DDR4 2400 MHz RAM in 16 DIMMs, dual Intel Xeon Silver 4114 CPUs at 2.20 GHz × 20 cores/40
threads, Ubuntu 16.04, OpenJDK 1.8.0_265; Dell Hong Kong). For all tests, two to three warm-up runs
were performed to allow the just-in-time (JIT) compiler to optimize code and the mean of five
subsequent runs was recorded. Time t to complete particle labelling for each number of active CPU
cores was plotted against image size in pixels p, power curves (t∝ pb) fitted and the coefficient of
determination (R2) estimated (LibreOffice Calc v. 5.1.6.2). For comparison, times were recorded for the
s10up image series with no hardware throttling using BoneJ’s previous release (v. 6.1.1) and for the
current code (commit 718c7e) on a laptop (Latitude 7370, Dell UK, Ubuntu 20.04, OpenJDK 1.8.0_265).

Running code was sampled with Java VisualVM (Oracle; v. 1.8.0_221) to determine which methods
were most expensive in terms of CPU time.

Each image from the s10up image series was opened in Avizo (v. 2020.2, ThermoFisher), and a
Connected Components analysis module attached to the opened data (image.am > Image
Segmentation > Connected Components) with settings as close as possible to the new code’s
conditions (grey image; intensity: 20–255; connectivity: corner; size: 1–0; output: label image; output
type: label field (32 bit)). Performance comparisons were made on the 1 and 6.5 GB test images using
BoneJ in Fiji and Avizo’s multithreaded connected components module, ‘Labeling’, with a 3D 26-
connected neighbourhood. Avizo tests and performance comparisons were performed on a Dell
Precision T5820 tower with a single Intel Xeon W-2123 (4 cores, 8 threads) 3.6 GHz CPU, 64 GB
2666 MHz DDR4 RAM in 4 modules, and an 8 GB NVIDIA Quadro RTX4000 GPGPU, running Java
1.8.0_172 (Oracle) on Windows 10 (Microsoft).
5. Performance results
Particles are all correctly identified with no gaps between label numbers. The total number of particles in
the test images agrees with the number expected, with previously validated versions of the software
(figure 3a), and with Avizo’s Connected Components module. The xz spiral is labelled as a single
particle, demonstrating correct label collision resolution among chunks. Scaling of the complete
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Figure 3. (a) Volumetric rendering of the 2 MB s10up test image demonstrating correct labelling of regions, including those
with complex connections that span multiple chunks. (b) Performance scaling of two-pass multithreaded approach with bucket
fountain collision resolution. Time to complete increases about linearly (O(n)) with increasing image size, and decreases with
increasing number of active CPU threads. Note the slight decrease in gradient as number of CPU threads increases, indicating
improving scaling to less than linear, but the overlapping of regression lines for greater numbers of CPU threads cores
indicating diminishing returns above 8–10 threads.

Table 1. Scaling exponents (b), coefficients of determination (R2) and completion times, calculated on the five s10up test
images from 2 × 106 pixels ( p) to 7 × 109 pixels, where time to complete t = x + apb. Scaling remains close to or below the
theoretical optimum of O(n) and in general improves as number of active threads increases. For all but the largest image,
performance gains are marginal for more than 8–10 threads.

active CPU threads

scaling t∝ pb time to complete (s)

b R2 2 MB 16 MB 128 MB 1 GB 6.5 GB

1 1.052 0.996 0.107 0.699 6.112 51.12 574.2

2 1.004 0.996 0.090 0.437 4.237 34.27 285.6

4 0.991 0.995 0.057 0.289 2.114 21.81 161.4

5 0.956 0.995 0.055 0.283 1.686 17.05 121.2

8 0.947 0.988 0.051 0.185 1.210 13.13 95.8

10 0.939 0.987 0.050 0.176 1.113 12.08 88.5

16 0.905 0.985 0.058 0.206 1.028 11.38 79.9

20 0.947 0.992 0.040 0.183 1.065 11.32 80.7

32 0.910 0.987 0.053 0.217 1.013 10.94 80.0

40 0.913 0.986 0.051 0.201 0.954 10.78 77.5
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labelling process as a function of image size is approximately linear, i.e. O(n), with b = 0.905–1.052 and
R2 = 0.985–0.996 (table 1 and figure 3b). First (b = 0.89, R2 = 0.982) and second (b = 0.79, R2 = 0.972)
passes scale as less than O(n), while bucket fountain scales at slightly more than O(n) (b = 1.03, R2 =
0.993; figure 4). Scaling exponents less than 1 indicate that larger images may be processed at a
greater rate than smaller images.

Sampling indicated that HashSet.add() within addNeighboursToMap() is the biggest single
user of CPU during first labelling pass (5–20%), while ‘self time’ within firstIDAttribution()

also contributes a large fraction (80–95%).
Processing speed in particles s−1 and pixels s−1 and overall finishing time saturates at around 8–16

CPUs on the test machine, depending on data size. The 128 MB test image was consistently fastest in



image size (million pixels)

1 10 100 1000 10 000

tim
e 

to
 c

om
pl

et
e 

(s
)

100

10

1

0.1

0.01

0.001

first pass
bucket fountain

second pass

Figure 4. Timer code on the first pass, bucket fountain, and second pass sections of the implementation reveals the amount of time
spent in each, tested on 40 threads. First (b = 0.89, R2 = 0.982) and second (b = 0.79, R2 = 0.972) passes scale as less than O(n),
while bucket fountain scales at slightly more than O(n) (b = 1.03, R2 = 0.993). In the second pass, a very simple pixel LUT operation
is applied and may be considered a minimal time to iterate the image once. The first pass is 10–20× slower than the second pass
due to multiple pixel accesses and the expensive operation of adding HashSet elements to the collision map during iteration
through each pixel neighbourhood. Reducing the cost of building the collision map during the first pass will be the focus of further
optimizations.
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pixels per second, perhaps because the image array size (512 × 512 pixels, 256 kB slices) neatly matches
the memory configuration leading to efficient data transfer.

The new implementation is 35–60× faster than the previous release (128 MB: 57 s; 1024 MB: 422 s;
6.5 GB: 2891 s). On the laptop, completion times were tolerable (16 MB: 0.322 s; 128 MB: 2.6 s; 1024 MB:
21 s), but the 6.5 GB image caused an out-of-memory exception. Completion times were about 15× less
than Avizo’s multithreaded Labeling module, (1 GB: 9.5–11 s versus 165 s; 6.5 GB: 65–72 s versus 1220 s).
6. Discussion
This implementation of sequential region labelling achieves scaling at or better than the theoretical
optimum of O(n). It may be relatively more efficient on larger images than on smaller images,
perhaps through an accelerated rate of complexity reduction in larger more connected particles during
the first pass as it populates the HashSets used by bucket fountain, or due to Java’s JIT compiler and
adaptive optimization increasing data throughput of larger arrays during first and second passes.
Alternatively, smaller images may incur a penalty related to constant-time features of the algorithm,
such as setting up threads, which are less well amortized over their shorter sequential reads during
first and second passes. Bucket fountain belongs to a class of algorithms known as union-find and is
similar to the optimized array-based union-find by Wu et al. [26]. Here, the number of times data is
retrieved from or written to RAM is minimized by accessing pixels non-recursively. Data reduction is
achieved early by not storing redundant label collisions, and merging transitively connected labels
efficiently with Java’s HashSet. HashSet.add() is the most consuming of CPU wall-clock time,
which may relate to instantiating and writing new Java Objects, or calculating hashes. HashSet
operations are minimized by the bucket fountain, which attempts to aggregate labels with the least
handling of each HashSet’s contents by merging to the lowest bucket possible, with the side effect
that some transitively linked labels are orphaned and must be recovered by a subsequent consistency
check. An alternative, more careful implementation that joins all subregions in a single pass snowballs
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through consecutive buckets, merging each bucket’s contents to the next lower (not the lowest) bucket
referred to by its labels. The snowball approach makes completion times 20–100% longer than the
bucket fountain in practice, presumably because each label is handled multiple times as the regions
are aggregated while they pass through a larger number of buckets. Fast and sloppy with a small
amount of recursive error correction notably outperforms slow and careful with no error correction in
this case.

This multithreaded implementation of sequential region labelling displays memory-bound rather
than CPU-bound behaviour and on the test system hits the so-called memory wall [27] at around 8–10
threads for smaller images of 1 GB and below. Performance would increase most readily as a function
of increasing memory frequency and parallelism, which may require entirely new hardware
architectures [28]. Future optimizations that reduce RAM access, for example, by reducing pixel
lookups and HashSet.add() operations with a decision tree [26], and that improve utilization of fast
CPU cache memory, may ameliorate the current bottleneck. Alternative implementations exist in
programming languages that can be more efficient than Java at accessing large amounts of array data,
such as C and C++ [26,29], or that store particle label collisions in primitive arrays that can be faster
to create and access than the Java (Eclipse) Collections used here. This Java implementation far
exceeds the performance of the commercial C++ implementation included in Avizo’s Labeling
module, with further optimizations still possible such as a kernel decision tree (after [26,29]). A major
goal of this project was to produce an implementation that is trivial to install and run for users of the
popular ImageJ platform [16]. The Fiji distribution makes it convenient for users to install and operate
the plugin, and ImageJ is written in Java, hence the design decision to implement this algorithm in Java.

The redesign of the code to be more modular addresses concerns expressed in previous work, such as
Mader et al. [30] who complained that the prior implementation in BoneJ ‘lacks the flexibility to perform a
number of different analyses, necessary for large-scale studies and detailed analysis of distribution, alignment, and
other osteocyte lacunar measures’. Once the label image is created, any range of analyses could be
performed on the labels, by adding analytic methods to BoneJ’s new ParticleAnalysis class, by
obtaining the label image programmatically by calling the ConnectedComponents.run() method
from client code, or by running custom analysis code such as a Python script or ImageJ plugin on the
label image that is displayed in the ImageJ GUI. The label image could also be saved and opened in
other software.

Contemporary computers have benefited from algorithms implemented for general-purpose
computing on graphical processing units (GPGPU) via NVIDIA’s CUDA library or the OpenCL
library. The main advantage of GPGPU processing is the large number of parallel data streams that
can be processed and the high transfer rate within video RAM (VRAM; GDDR6 at ca 400 GB s−1

versus DDR4 RAM at ca 20 GB s−1). It is, therefore, tempting to consider porting the current memory
bandwidth-limited algorithm to exploit the GPGPU’s parallel architecture. Unfortunately, at the time
of writing OpenCL does not have a HashSet implementation, which is a core part of the label
collision recording and resolution strategy. In addition, the time taken to read data from RAM into
VRAM for GPGPU processing is unlikely to be substantially less than to read from RAM during CPU
processing; however, this cost may be mitigated by the multiple pixel accesses during first pass
labelling occurring on VRAM rather than RAM. Finally, available VRAM is typically much less than
system RAM, with contemporary machines being able to hold up to 3 TB of RAM on a single
motherboard (Dell 7920), but GPGPUs typically contain one or two orders of magnitude less
VMRAM (NVIDIA QUADRO TX: 48 GB), limiting the maximum image size that could be handled by
GPGPU compared to CPU. Given the high performance of the CPU implementation, the cost : benefit
of developing a GPU implementation requires careful consideration.

Java integers are 4-byte signed values. Using 0 as the background label and 1 as the minimum label
gives a range of 231 – 1 = 2 147 483 647 possible labels. It is possible to double the label range if
Integer.MIN_VALUE (−2 147 483 648) was used as the background value, and labels started from
Integer.MIN_VALUE + 1; however, in practice there are usually several orders of magnitude fewer
particle labels required than pixels in the image: the 1 GB test image contains over 1 × 109 pixels and
fewer than 1 × 105 particles (about one particle per 10 000 pixels, which is one particle per cubic box
of 21.5 pixels edge length). A practical consideration is that ImageJ displays integer arrays as RGB,
which is unhelpful for later analysis: to avoid this, the label image is converted to a 32-bit float, which
is displayed as raw values with a colour LUT. Unfortunately, float loses integer precision for values
higher than 223, which dramatically reduces the possible label range to a maximum of 8 388 608. Eight
million labels is still sufficient for most images up to around 8 × 106 × 104 or 8 × 1010 pixels, about
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80 GB. Should users have a need to process larger images containing more particles than these limits, the
float precision restriction could be worked around.
oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:20178
7. Conclusion
This report describes an optimized implementation of sequential region labelling that fully exploits
computational hardware resources and achieves theoretically optimum linear (O(n)) or slightly better
than linear scaling, providing connected components labelling of multi-GB images in a time scale of
seconds to minutes instead of hours to days. It is provided as a working, easy-to-use package in
BoneJ for ImageJ, as source code, and has an API for other developers to use.

Data accessibility. BoneJ source code and changes: https://github.com/bonej-org/BoneJ2. BoneJ release on Zenodo [31]
doi:10.5281/zenodo.3726422. Test images and performance testing results doi:10.6084/m9.figshare.11860542. Test
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