
Multithreading Strategies for Replicated Objects�

Jörg Domaschka1, Thomas Bestfleisch1, Franz J. Hauck1, Hans P. Reiser2,
and Rüdiger Kapitza3

1 Department of Distributed Systems, Ulm University, Germany
{joerg.domaschka,thomas.bestfleisch,franz.hauck}@uni-ulm.de

2 LaSIGE, Faculdade de Ciências da Universidade de Lisboa, Portugal
hans@di.fc.ul.pt

3 Dept. of Comp. Sciences 4, University of Erlangen-Nürnberg, Germany
rrkapitz@cs.fau.de

Abstract. Replicating objects usually requires deterministic behaviour
for maintaining a consistent state. Multithreading is a critical source of
non-determinism, completely unsupported in most fault-tolerant middle-
ware systems. Recent publications have defined deterministic scheduling
algorithms that operate at the middleware level and allow multithreading
for replicated objects. This approach avoids deadlocks, improves perfor-
mance, and makes the development better resemble that of non-replicated
objects. This paper surveys those algorithms and analyses their differ-
ences. It also defines extensions to two efficient multithreading algorithms
to support nested invocations and condition variables with time-bounded
wait operations similar to the Java synchronisation model. In addition,
we provide an experimental evaluation and performance comparison of
the algorithms, indicating the areas in which each algorithm performs
best. We conclude that replication middleware should implement recon-
figurable multithreading strategies, as there is no optimal one-size-fits-all
solution.

1 Motivation

Object replication is an important mechanism for implementing reliable dis-
tributed applications. Many current object middleware systems support replica-
tion. For example, FT-CORBA [1] and Jgroup [2] are architectures for replicating
CORBA and Java RMI objects, respectively.

In many application domains of replication, such as file systems and data
bases, the aim of replication is data-centric. In contrast, the replication of ob-
jects leads to different requirements, as it not only requires consideration of the
state of the objects, but also of their activity. For example, an object method
can actively interact with external services, and concurrently executing methods
might use mechanisms such as semaphores, monitors, and condition variables for

� This work has been supported by the EC through FP6 Integrated Project IST2006-
0033576 (XtreemOS) and project NoE IST-4-026764-NOE (ReSIST), and by the
FCT, through the Multiannual Funding Programme.

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 104–123, 2008.
c© IFIP International Federation for Information Processing 2008



Multithreading Strategies for Replicated Objects 105

coordination. A replication infrastructure should impose as few constraints as
possible on the object implementations. This way, existing non-replicated imple-
mentations can be re-used directly for replication, and the developer can make
use of the programming model he is used to, without paying a lot of attention
to replication-induced restrictions.

Object replication strategies are typically classified as active or passive. In
active replication, all replicas individually execute all requests, and the assump-
tion of deterministic replica behaviour guarantees state consistency. In passive
replication, only a single primary executes method invocations, and then trans-
fers state updates to secondary replicas. At first sight, this strategy eliminates
the need for determinism. However, sending state updates synchronously after
each state modification is expensive. Often, the primary state is only periodi-
cally transferred to secondary replicas, and a message log is used to store client
requests that the primary has executed since the last checkpoint. A secondary
replica has to have the same deterministic behaviour if it wants to obtain a state
identical to that of a failed primary by re-executing requests from such a log.

Multithreaded execution is a source of non-determinism, as multiple threads
might execute at unknown relative speeds and might modify the object state in
an unpredictable order. Non-replicated objects usually use mechanisms such as
locks to coordinate concurrent state modifications. Nevertheless, different repli-
cas of an object can grant locks in a different order, thus causing inconsistencies
between replicas. Most object replication infrastructures avoid this problem by
executing methods strictly sequentially.

In the past few years several authors have proposed solutions that to some ex-
tent enable deterministic multithreading in replicated objects [3,4,5,6]. The main
motivation for multithreading is either to improve the efficiency of replicated
objects, thus reducing the performance difference between replicated and non-
replicated applications, to avoid inherent deadlock problems of single-threaded
executions [7], or to provide a programming model that is as close as possible
to the non-replicated case. This paper builds upon these previous works by en-
hancing some known algorithms and by providing a comparative analysis. The
specific contributions of this paper are as follows:

– It presents a survey of all existing multithreading strategies for replicated
objects known to the authors, clearly stating their differences in objectives,
assumptions, and achieved properties.

– It augments two previously known algorithms with extensions that permit
the use of these algorithms in a broader application spectrum.

– It provides an experimental evaluation and performance comparison of all
algorithms, indicating the areas in which each algorithm performs best, and
demonstrating that a middleware should provide configurability of the mul-
tithreading strategy, as there is no best algorithm for all situations.

This paper is structured as follows. The next section discusses the necessity
of multithreading in replicated objects. Section 3 discusses and compares the
existing algorithms. Section 4 defines extended variants of two algorithms, PDS



106 J. Domaschka et al.

and LSA. Section 5 presents an experimental evaluation based on several use
cases. Finally, Section 6 concludes.

2 Background and Related Work

Many distributed object replication systems, such as OGS [8] and GroupPac [9],
do not support multithreading in replicated objects. Method invocation requests
from clients are executed in a strictly sequential order; a request is processed
only after the preceding request has been completed. This approach avoids any
non-determinism that can arise from thread scheduling, and it provides implicit
synchronization of state modifications, as multiple threads cannot attempt to
modify the state concurrently.

There are, however, several reasons that argue for the use of multithreading
in replicated objects [7]. First of all, multithreading can enhance performance.
On one hand, the computational power of multi-CPU hardware can be uti-
lized better. On the other hand, multithreading allows the system to process
additional method invocations whenever the system becomes idle because the
current thread has to wait, e.g., during external invocations.

Second, a single-threaded execution excludes coordination via condition vari-
ables. For example, a thread might want to interact with an external service
by first issuing an asynchronous external request, and then wait on a condition
variable for the notification by a call-back of the external service.

Third, nested invocations can cause deadlocks in a single-threaded model, if a
thread synchronously calls an external service, which in turn invokes a method
at the originator.

Using multithreading in replicated objects requires that appropriate steps be
taken to remove non-determinism. This means that in spite of concurrent ex-
ecution of threads, the order of conflicting state manipulations must be made
deterministic. The implementation of the replicated object must use some means
to coordinate state modifications that happen concurrently in multiple threads.
The use of explicit locks or monitors is the most popular model, but other mech-
anisms, such as non-blocking or wait-free synchronization, can also be found [10].
In this paper, we assume that multithreaded objects use lock synchronization; if
these objects are replicated, the replication infrastructure must make sure that
locks are granted in a consistent order on all replicas.

Some existing research projects use a modified Java virtual machine to imple-
ment deterministic replication. For example, Napper et al. (based on a modified
Sun JDK 1.2) [11] and Friedman and Kama (based on a modified JikesRVM)
[12] use this approach. Other systems ensure determinism at an even lower sys-
tem level. For example, MARS [13] is strictly time-driven and periodic at the
hardware level, which makes all functional and timing behaviour deterministic.
The features of such a platform can be used for deterministic replication [14].
All these systems can execute multiple threads concurrently. They all require
specifically designed hardware, operating systems, or Java virtual machines to
achieve determinism.



Multithreading Strategies for Replicated Objects 107

In this paper we focus on means to enforce determinism of multithreaded repli-
cated services purely at the middleware level, without requiring special low-level
support in operating system or virtual machine. Several algorithms have been
proposed in this area. On the basis of work by Jiménez-Peris et al. [15], Zhao
et al. [3] propose a strategy to execute a new request during the idle time caused
by a nested invocation of the main thread. Our ADETS-SAT algorithm [6] ex-
tends this approach with support for reentrant locks, condition variables, and
time bounds on wait operations. These strategies allow the execution of a new
thread only if the previous thread suspends. ADETS-MAT [7] is an improved ver-
sion of ADETS-SAT that enables the concurrent execution of multiple threads.
Basile’s Loose Synchronization Algorithm (LSA) [4] supports true multithread-
ing on the basis of a leader-follower model. Basile’s Preemptive Deterministic
Scheduling algorithm (PDS) [5] allows the concurrent execution of a fixed set
of threads in periodic rounds, without requiring communication for consistency.
We compare these algorithms in Section 3.2.

We use our FTflex replication infrastructure on top of the Aspectix middle-
ware [16,17] for evaluating the multithreading strategies. FTflex supports de-
terministic multithreading on the basis of a plug-in interface for configurable
ADETS (Aspectix DEterministic Thread Scheduler) modules.

3 Comparison of Algorithms

In this section, we define a set of criteria that allow a characterization of the
various algorithms. These criteria include the coordination model, the external
interaction model, the deployment, and the multithreading model. On this basis,
we subsequently provide a systematic comparison of algorithms.

3.1 Criteria

Coordination Model. There are numerous different mechanisms for coordi-
nating multiple concurrent threads. We restrict the discussion to locks, monitors,
and Java synchronization, as these are most prevalent in existing systems.

Locks are a basic coordination mechanism that allows protecting the access
to resources, using two operations lock and unlock. Reentrant locks allow one
thread to acquire the same lock multiple times.

Monitors are a synchronization mechanism defined by Hoare that provides im-
plicit locking around monitor procedures. Condition variables within the monitor
allow threads to suspend and temporarily release the lock while waiting for a
condition. Any thread that causes the condition to be true can signal the wait-
ing thread, which in turn atomically regains the lock and resumes. By mapping
a monitor procedure to a pair of lock/unlock operations, any scheduling al-
gorithm for reentrant locks can be used for applications that use monitors for
coordination. However, monitors in addition require support for condition vari-
ables by the scheduling algorithm.

Native Java synchronization uses a concept similar to Hoare monitors. It re-
stricts the model by defining a single implicit condition variable for each monitor



108 J. Domaschka et al.

(instead of an arbitrary number). On the other hand, it supports time-bound
wait operations, which allow a waiting thread to resume after a specific timeout.

Locks and monitors provide sufficient support to protect state modifications
that should be made atomically. Condition variables are useful in situations in
which threads wait for callbacks from external services and for coordinating in
producer/consumer scenarios.

External Interaction Model. In terms of external interaction, we can dis-
tinguish between scheduling strategies that support none (NO), and strategies
that support nested invocations (NI) and callbacks (CB). A nested invocation
is an invocation of a function of a service B, issued by a service A during the
execution of a client request. A callback is an invocation of a function of service
A triggered by the nested invocation from A to a service B.

If a scheduling algorithm is deadlock-free for arbitrary nested invocations,
it will also be deadlock-free for callbacks, which are a special kind of nested
invocation. On the other hand, a scheduling algorithm can use thread IDs to
detect that an incoming nested invocation belongs to an existing local (blocked)
thread and thus identify it as a callback. Algorithms on this basis can supports
deadlock-free callbacks, but are not necessarily deadlock-free for other nested
invocations.

Deployment. Implementations of objects typically use either language-internal
coordination mechanisms (such as in the case of Java) or invocations of synchro-
nization methods of an external library (such as the pthread library for C++
objects). If such object implementations are deployed in a multithreading replica-
tion infrastructure, the synchronization methods have to be adjusted to interact
with the replication infrastructure.

The simplest way is to provide no support at all, forcing developers to modify
the implementation accordingly to interact with the replication infrastructure.
A better alternative is an automated approach. Either, code transformation can
be applied to alter the replica code automatically (as proposed for ADETS-SAT
[6]). Or, low-level interception can redirect external library calls to the replication
infrastructure (as used in Eternal [18]).

The deployment strategy could be considered as a concern orthogonal to de-
terministic scheduling. However, in ongoing work [19] we demonstrate that code
analysis and transformation allows improving concurrency on the basis of pre-
diction of future synchronization steps.

Multithreading Models. We classify the multithreading support of middle-
ware infrastructures into four categories: single thread (S), single logical thread
(SL), single active thread (SA), and multiple active threads (MA).

The S model is the simplest variant, in which the middleware starts executing
a request Ri+1 only after request Ri has fully completed its execution.

In the SL model, a single logical thread of execution exists. In a chain of
nested invocations, the logical thread may call methods of the same object mul-
tiple times. For example, if a thread that executes mA1 at object A starts a
chain of nested invocations that ultimately calls method mA2 at object A, the



Multithreading Strategies for Replicated Objects 109

object A can detect that the invocation mA2 belongs to the same logical thread
as mA1. Thus, object A can execute mA2 using an additional physical thread.
In a sequential execution model without the logical thread abstraction, nested
invocations finally targeting the same object would cause a deadlock.

In the SA model, multiple independent physical threads can exist within a
replica. Only one of them may be active at a time, while all other threads are
blocked (e.g., waiting for a lock or for the return from a nested invocation). Con-
sistency is obtained by a deterministic selection of the active thread. A running
active thread is not preempted; if the active thread blocks or terminates, a deter-
ministic strategy is required to resume one of the existing threads or to create a
new active thread for handling the next request. If the strategy guarantees that
the same choice is made in all replicas, consistency will be maintained.

The SA model does not require the identification of logical threads. However,
such identification is mandatory if a system wants to support reentrant locks. For
example, a method mA2, called by mA1, might want to acquire a lock already held
by mA1. We denote a SA model with appropriate logical thread identification as
SA+L.

In MA, multiple threads may exist and run in parallel. Multiple threads may
either be simultaneously active in a multi-CPU or multi-core CPU setting, or
a low-level thread scheduler may execute them on a single CPU with preemp-
tion. To maintain consistency in true multithreading, all access to shared data
structure needs to be made in a consistent order. The number of threads may
be restricted by an algorithm.

3.2 Algorithms

This section discusses several different algorithms. Table 1 summarizes their
different properties and models compared to a pure sequential execution.

SL in Eternal. The Eternal middleware was the first system to support the
SL model [18] An infrastructure can support this model by tagging nested invo-
cations with context information that identifies the originating logical thread.

SA and ADETS-SAT. Applying the approach of Jiménez-Peris et al. [15] to
a CORBA middleware, Zhao et al. [3] implemented an algorithm for the SA

Table 1. Overview of multithreading algorithms and their properties

Coordination Deadl.-Free Interaction Deployment Multithreading

SEQ implicit NO – S

Eternal implicit CB interception SL

SAT Locks NI+CB interception SA

ADETS-SAT Java NI+CB transformation SA+L

ADETS-MAT Java NI+CB transformation MA

LSA Locks/Monitor NI+CB manual MA

PDS Locks NO manual MA (restr.)



110 J. Domaschka et al.

model in Eternal. ADETS-SAT [6] is an extension of this algorithm that also
offers support for reentrant locks and for Java condition variables. The algorithm
ensures that threads calling wait() are enqueued in a deterministic manner and
dequeued deterministically at a notify().

ADETS-MAT. The ADETS-MAT algorithm [7] works similar to ADETS-
SAT, but instead of using only a single active thread, it allows additional con-
currency. Beside a primary thread that works similar to the active thread in
ADETS-SAT, multiple secondary threads are executed concurrently as long as
they do not request additional mutex locks. ADETS-MAT requires no communi-
cation for granting locks, threads can be created at any time by client requests,
and no restrictions are made on the number and frequency in which a thread
requests locks. Concurrency is constrained by the fact that only the primary
thread can acquire locks. It fully supports the native synchronization model of
the Java programming language. One of the main objectives of the algorithm is
to use the idle time during nested invocations.

LSA. In LSA [4], a single replica works as primary node. This node can exe-
cute an arbitrary number of threads without restrictions, and records the order
in which locks are granted to threads as a sequence of (lock, thread) pairs. It
broadcasts this data structure to all other replicas periodically. All follower nodes
suspend threads that request a lock until the corresponding broadcast is received.
While the basic operation of LSA is very simple, it requires a strategy to handle
the failure of the primary node. Basile et al. define such a fail-over algorithm for
crash failures as well as for Byzantine failures. Failure handling requires addi-
tional communication between replicas to maintain consistent scheduling. This
is a significant difference to other algorithms that do not need any additional
computation or communication to handle node failures.

PDS. Basile et al. have defined two variants of the PDS algorithm, PDS-1 and
PDS-2 [5]. Both algorithms work in sequential rounds. In PDS-1, each thread can
acquire at most one mutex per round. A thread is suspended when it requests a
mutex; as soon as all threads are suspended, a new round is started. As the mutex
requests of all threads are known at the beginning of the round, the mutexes can
be assigned deterministically to all threads. If multiple threads request the same
lock, they get the lock in increasing thread ID order. For example, if two threads
T1 and T2 have both requested a mutex m, T1 may execute and T2 remains
suspended. As soon as T1 unlocks m, T2 may execute concurrently with T1. If
T1 suspends in the current round without unlocking m, T2 remains suspended.

The PDS-2 variant improves concurrency by allowing threads to acquire up to
two locks per round. A round is divided into two phases. Initially, a round starts
execution in phase-1 in the same way as PDS-1, granting mutexes according to
requests made before the start of the round. If a thread requests a new mutex
during phase-1, it is not immediately suspended (as it would be in PDS-1).
Instead, this second mutex is granted under the condition that it is available
and all threads with lower thread IDs have already acquired such a phase-1
mutex. After the second mutex acquisition, the thread enters phase-2, in which



Multithreading Strategies for Replicated Objects 111

a mutex request suspends a thread as in PDS-1. A new round is started as soon
as all threads are suspended.

In both PDS algorithms, the number of threads is constant during the exe-
cution of a round. New threads may be created or removed only at the start of
a new round. Even then, a deterministic rule for changing the set of threads is
necessary. The state of the incoming message queue cannot be used for deciding
an adjustment of the thread pool size, as the group communication system only
ensures a consistent order of message reception, but no consistent time (i.e., some
replica might already have received a message m, while other replicas have not).
The PDS algorithms work best if all threads repeatedly execute lock requests
followed by computations of approximately identical computation times. It re-
quires no communication for deterministically assigning mutex locks to threads.
The algorithm has two main disadvantages. First, as long as one single thread
fails to request a mutex lock, no new round can be started. Second, the number
of threads must be known deterministically at the start of each round. Incoming
requests have to be mapped to a fixed-size thread pool. This means that in each
round, new requests have to be assigned to threads that have finished executing
their previous requests. If no new requests are available, the system cannot start
a new round (as the idling thread will not acquire a lock). The only way to solve
this problem is to deterministically create artificial requests in case that client
requests do not arrive sufficiently frequently.

4 Extending LSA and PDS

In this section, we define extended versions of the LSA and PDS algorithms.
Their primary goal is to support a system model that includes the following fea-
tures: reentrant locks, nested invocations, condition variables, and time-bounded
wait operations. The ADETS-SAT and ADETS-MAT algorithms already sup-
port all of these features. The semantics for condition variables is based upon
the native Java programming language. In addition, we extend LSA to support
an arbitrary number of mutexes without prior registration at the scheduler.

Reentrant locks can be implemented on the basis of any deterministic schedul-
ing algorithm that supports just simple locks. A reentrant mutex is one that can
be acquired multiple times by one thread. The transformation requires a data
structure that, for each thread, stores the number of times a lock has been ac-
quired. Only on the transitions from 0 to 1 (upon lock) and 1 to 0 (upon unlock),
the lock/unlock functions of the base algorithms are called.

4.1 Extending LSA to ADETS-LSA

Nested invocations do not require any dedicated support in the implementation
of the LSA algorithm. Nested invocations do not influence the order of mutex
assignments. In LSA, a thread waiting for a nested invocation reply does not
have any influence on the progress of other threads.

Condition variables without time bounds cause no problems in LSA. A wait()
operation can be called locally at all replicas. Invocations of wait() and



112 J. Domaschka et al.

notify()/notifyAll() on the same condition variable have to be done in the
same relative order. A deterministic order of such concurrent operations is easily
obtained in all replicas by the LSA algorithm, as all operations on a condition
variable are protected by the acquisition of the corresponding mutex. The ba-
sic LSA algorithm guarantees a deterministic order of these mutex acquisitions.
Hence, the order of operations on the condition variable will be deterministic as
well.

Time bounds on wait operations represent a more difficult source of non-
determinism. For example, two threads T1 and T2 might be waiting on a condition
variable, with thread T1 having specified a time bound. A third thread, T3, might
call a notify() operation. The timeout of T1 and the notification of T3 happen
concurrently; thus, the order in which the two happen is non-deterministic. Two
possible execution sequences are (a) that the timeout happens first, with the
effect that T1 is resumed by the timeout and, after that, T2 is resumed by T3’s
notify operation, and (b) that T3’s notification happens first, which cancels the
timeout and resumes only T1.

Handling such timeouts deterministically requires a non-trivial extension to
LSA. In the solution that we provide in the ADETS-LSA algorithm, a local
timeout of a wait operation does not resume the waiting thread directly. Instead,
it creates a new thread, which is also subject to the ADETS-LSA scheduling.
The thread tries to resume the waiting thread by locking the corresponding
mutex and signalling the wait() operation to resume. Thus the basic scheduling
algorithm guarantees that, due to the lock, the signalling is done in a consistent
order on all replicas.

A sample execution of this extension is shown in Figure 1. Thread T1 calls
wait() with a timeout of 20ms. This call causes the LSA scheduler to create a
timeout thread (TO-Thread), which sleeps for 20ms and then tries to resume the
wait. Concurrently, thread T2 tries to call notify(). Both T2 and TO-Thread

T1 T2 LSA

Leader

lock

wait(20) unlock

sendMT
recvMT

recvMT

recvMT

sendMT

sendMT

sleep 20
lock

lock

notify
unlock

lock
unlock

no
effect

T1 T2 LSA

Follower

lock

wait(20) unlock

sleep 20lock

lock

notify

unlock
lock

unlock
no
effect

TO-Thread
TO-Thread

Fig. 1. Sample execution of timeout handling in ADETS-LSA



Multithreading Strategies for Replicated Objects 113

need to lock the same mutex. On the leader node, T2 is faster, causing the
notify() operation of T2 to resume T1, and the timeout thread has no effect.
On the follower node, the timeout thread requests the lock first, but the LSA
scheduler ensures that the lock is first assigned to T2, resulting in a deterministic
behaviour.

The original LSA algorithm assumes that globally known IDs for mutexes
and for threads exist. Basile et al. describe a method for dynamically adding
new mutexes and new threads by explicitly notifying the scheduler. Adding new
threads is feasible in practice if the middleware infrastructure controls the cre-
ation of threads, as it can notify the scheduler. Mutexes, however, are not created
explicitly. In Java, every object can be used as a mutex, and there are no glob-
ally consistent IDs for these objects. In ADETS-LSA, the leader replica assigns
new mutex IDs automatically on the first lock operation on a not yet known
mutex. Follower replicas instead suspend a thread upon a lock operation with
an unknown ID. On all replicas, the lock operation can uniquely be identified
by the thread ID, as the same thread will lock the corresponding mutex on all
replicas. The leader sends its mutex ID with its periodic mutex table broadcast,
which enables the follower replicas to learn the new mutex ID.

4.2 Extending PDS to ADETS-PDS

The PDS algorithm first raises the question of assigning requests to threads.
The algorithm assumes that a thread pool of a fixed size is given. It does not
allow the asynchronous creation of new threads for each incoming client request.
The original publication simply assumes that sufficiently many requests arrive,
so that all threads can continuously execute, without specifying a strategy for
assigning requests to threads. In a practical middleware infrastructure, however,
such a strategy needs to be implemented. The assignment of requests to threads
must be made consistently in all replicas. We suggest two possible strategies:

– A round-robin strategy assigns incoming requests to all threads such that,
given a thread-pool size of N , the i-th incoming request is assigned to thread
i mod N . This strategy works fine if requests have identical computation
times.

– In a synchronized request assignment strategy, a thread that has just finished
processing of its last request locks the mutex of the incoming message queue.
This mutex lock is granted consistently in all replicas, because this operation
is also under the control of the PDS, and thus each request is assigned to the
same thread in all replicas. Our current implementation uses this strategy.

Nested invocations have no impact on the order of lock assignments and thus
are uncritical for consistency, but they can have a serious impact on performance.
We propose two different strategies:

– First, nested invocations can be used simply without any support by the
scheduling algorithm. In this case, however, a thread that waits for a nested
invocation can block all other threads from starting a new round. This ap-
proach seems favourable if the duration of the nested invocation is short



114 J. Domaschka et al.

compared to the execution time between two mutex locks. This approach is
used in the following experimental evaluation.

– Alternatively, the scheduler can consider a thread that has issued a nested
invocation to be suspended. This enables all other threads to continue ex-
ecuting rounds, but requires a deterministic strategy to resume the thread.
For example, if the reply message is processed within some round, the sus-
pended thread can be scheduled for being resumed in the next round. This
approach adds an additional delay to each nested invocation; thus, it is not
useful with nested invocations that have short duration, like it is the case in
our evaluation.

From a consistency point of view, condition variables can be supported in
the PDS algorithm without much effort. All operations on condition variables
are protected by mutex locks, and thus the relative order of these operations is
deterministic on all replicas. The only requirement is that a notify() operation
selects the thread to resume deterministically. This determinism is not guar-
anteed by the native Java notification mechanisms. By implementing a queue
of waiting threads that is modified deterministically by each wait() operation,
such determinism can easily be achieved though.

The integration into the round execution model is done in the following man-
ner. Once a thread t calls wait() in some round, it is considered suspended. After
a new round has been triggered, t is removed from the set of active threads. Con-
sequently, the scheduling decisions in the subsequent rounds are done without
t. When another thread calls notify() during some round, thread t is resumed
immediately, but has first to aqcuire the corresponding lock. This lets thread t
wait until the start of the next round.

Figure 2 shows a sample execution of two replicas A and B. On replica A the
wait() operation of thread t1 happens before the second mutex acquisition of

T1 T2 PDS

Replica A

lock(m)

lock(x)

lock(y) new round

wait(m)

round n+X

round n

...

unlock(m)

lock(m)

notify(m)

unlock(m)

new round

lock(x)
resume
lock(m)

round n+X+1

T1 T2 PDS

Replica B

lock(m) lock(x)

lock(y)

new round

wait(m)

round n+X

round n

unlock(m)

lock(m)

notify(m)

unlock(m)

new round

lock(x)

resume
lock(m)

round n+X+1
... ... ... ... ...

Fig. 2. Handling of condition variables in ADETS-PDS



Multithreading Strategies for Replicated Objects 115

t2. Thus, the new round is triggered because of t2. On replica B the opposite
happens. The new round is triggered because of the wait() operation.

Having a thread pool of fixed size, however, the use of condition variables can
cause deadlocks. If all available threads suspend in wait() operations, no more
threads are available for handling requests that could resume a waiting thread.
To avoid this problem, we implement a strategy for an automated adjustment of
the thread-pool size. The original PDS algorithm supports changing the set of
threads at the start of a new round. In a deadlock situation, the conditions for the
start of a new round (i.e., all threads are blocked) are met. Thus, at the start of
each round, the number of threads not blocked in a wait() operation is compared
to a minimum threshold. If the number falls below the threshold, additional
threads are added to the thread pool. On the other hand, if there are more non-
waiting threads than the threshold and there are insufficient incoming requests
(i.e., the request assignment strategy has to suspend a thread temporarily due
to the lack of requests), the number of non-waiting threads is reduced to the
minimum threshold.

Timeouts of time-bounded wait operations potentially occur concurrently with
explicit notifications, and thus an extended algorithm has to make sure that any
such non-determinism is avoided. We propose the same concept that is also
used for ADETS-SAT and ADETS-MAT. After a timeout occurs, a timeout
message is sent to all replicas via group communication. This message is handled
by a normal request-handler thread, which notifies the waiting thread. As all
notifications are synchronized by mutexes, a deterministic order is guaranteed.

5 Experimental Evaluation

This section presents an experimental evaluation of the scheduling strategies
discussed in the previous sections. A set of benchmarks capture typical interac-
tion patterns of distributed applications. Each of them is executed with purely
sequential scheduling and with all four multithreaded ADETS variants.

5.1 Implementation Overview

All presented strategies have been implemented on the basis of our FTflex repli-
cation infrastructure [17], which extends the CORBA-based Aspectix middle-
ware [16,17]. FTflex supports multithreading in object replicas using its con-
figurable ADETS (Aspectix DEterministic Thread Scheduler) module. Each
scheduling algorithm is implemented as a separate ADETS plug-in module.

Integrating the scheduling module in the middleware is relatively light-weight.
We added it in between the group communication module, which delivers the
requests, and the object adapter whose task is to enforce at-most-once semantics
and to trigger dispatching and parameter unmarshalling. Thus, the scheduler in-
stances are completely independent of the object implementation. We use code
transformation to intercept calls of synchronisation-related operation in the ob-
ject implementation [6].



116 J. Domaschka et al.

At runtime, the group communication module receives a new request and
passes it on to the scheduler instance. There, a thread that executes the request is
created eventually; the creation happens according to the strategy implemented
by the scheduler. As soon as the thread is running, the scheduler invokes the
object adapter. If the execution of the requested method issues a lock/unlock
operation or an operation on a condition variable, these calls are forwarded to
the scheduler, which in turn handles these operations. The scheduler itself uses
the group communication module to broadcast messages to the other replicas.
Such broadcasts might be timeout messages after a time-bounded operation or
update messages from the primary in case of the LSA scheduling strategy.

5.2 Benchmark Overview

The benchmarks cover three different scenarios: evaluation of local computa-
tions with lock-protected shared state, local computation together with nested
invocations, and usage of condition variables. A final discussion analyses overall
advantages and disadvantages.

All measurements presented in this section were made on a set of PCs with a
AMD Athlon 2.0 GHz CPU and 1 GB RAM. The PCs were using Linux kernel
2.6.17 and were connected by a 100 MBit/s switched Ethernet. The current pro-
totype of the Aspectix middleware was used on the basis of Sun’s Java runtime
environment version 1.5.0 03.

In each benchmark, active replicas of an object were placed on three nodes,
and all clients on separate nodes are started simultaneously in each experiment.
All measurements show the invocation times measured at the client side, aver-
aged over at least 5,000 invocations; to minimize the effects of JIT compilation,
the first 200 invocations of each client are not included in the average. In all
benchmarks the size of the thread-pool in PDS was equal to the number of
clients.

5.3 Local Computations

The first group of benchmarks assumes that the behaviour of object methods is
limited to (a) performing local computations and (b) requesting and releasing
mutex locks. In such a scenario, the only problem of a single-threaded execution
is the lack of parallel execution, which primarily is a disadvantage on multi-CPU
machines. In the benchmarks, a variable number of clients invoke object methods
that have one of the behaviours shown in Figure 3. The measurements for the
invocations were made on the client-side.

(a) compute
(b) compute − lock − state access − unlock
(c) lock − state access and compute − unlock
(d) lock − state access − unlock − compute

Fig. 3. Variants of the local computations benchmark



Multithreading Strategies for Replicated Objects 117

The pattern (a) does not access the shared object state and thus does not
need any mutex access. The pattern (b) first computes and then locks a mutex,
updates the object state, and unlocks the mutex again. This is a typical pattern
for applications that first perform computations on the request arguments such
as verifying digital signatures and preprocessing the client data, and then use this
data to update the object state, using a mutex lock to synchronize the update.
Pattern (c) is typical for applications that require simultaneous access to client
arguments and object state for performing some calculations. The whole request
execution is protected by a mutex lock. Pattern (d) can mainly be found in
practice for methods that read the shared state and then perform computations
(e.g., transformations of state data) to produce the return value for the client.

For the following measurements, it is assumed that the local computations
take 100 ms. The availability of an unlimited number of CPUs on a single-
CPU hardware is simulated by suspending the request-handler thread for the
duration of the computation time instead of performing real computations, thus
freeing the CPU for other threads. Furthermore, it is assumed that the methods
of the replicated object use fine-grained locking. If all methods used the same
mutex lock, this would result in a sequential execution. Instead, the benchmarks
assume that 10 different mutexes are available, with each client invocation using a
randomly selected mutex. The actual state access is assumed to take a negligible
amount of time. Figure 4 shows the result of the benchmarks executed with three
replicas and a variable number of clients.

With pattern (a), SAT executes all requests sequentially, while all other vari-
ants allow a fully concurrent execution. MAT and LSA perform best, as they
can execute all requests immediately in the absence of any synchronization. PDS
shows a slight overhead, because it requires internal synchronization (i.e., mutex
locks for the incoming message queue) for assigning requests to threads.

Pattern (b) results in similar results. While SAT processes all requests se-
quentially, all other variants enable a concurrent execution of the computations.
MAT is the superior variant, as LSA requires communication for the mutex locks,
while PDS uses additional mutex locks for assigning requests to threads.

Pattern (c) produces different results. As all requests start with a lock opera-
tion and do not define internal scheduling points, the MAT algorithm delays all
requests until they become primary and as a result serializes all requests, which
leads to the same poor performance as the SAT algorithm. LSA and PDS both
enable concurrency and show similar behaviour. With an increasing number of
clients, the probability that two requests require the same mutex increases. Such
a collision delays the start of a new round for the PDS algorithm; thus, with
many clients, the LSA algorithm is superior.

Pattern (d) is similar to (c); the only difference is that mutex locks are released
before the computation. The PDS algorithm benefits from this behaviour, as a
collision between two request delays a new round only for the short duration of
the state access, and not for the duration of the computation. As a result, PDS
is the most efficient algorithm for this pattern, while LSA is slightly slower, and
both SAT and MAT achieve no concurrent execution.



118 J. Domaschka et al.

1 2 3 4 5 6 7 8 9 10
number of clients

0

100

200

300

400

500

600

700

800

900

1000

tim
e/

in
vo

ca
tio

n 
(m

s)

SAT

SAT

others

PDS
LSA
MAT

(a) compute

1 2 3 4 5 6 7 8 9 10
number of clients

0

100

200

300

400

500

600

700

800

900

1000

tim
e/

in
vo

ca
tio

n 
(m

s)

SAT

SAT

PDS

PDS

LSA

LSA

MAT

MAT

(b) compute-lock-unlock

1 2 3 4 5 6 7 8 9 10
number of clients

0

100

200

300

400

500

600

700

800

900

1000

tim
e/

in
vo

ca
tio

n 
(m

s)

SAT

SAT & MAT

PDS

PDS

LSA

LSA

MAT

(c) lock-compute-unlock

1 2 3 4 5 6 7 8 9 10
number of clients

0

100

200

300

400

500

600

700

800

900

1000

tim
e/

in
vo

ca
tio

n 
(m

s)

SAT

SAT & MAT

PDS

PDS

LSA

LSA

MAT

(d) lock-unlock-compute

Fig. 4. Measurements with local computations and mutex locks

The different benchmark patterns demonstrate that for each algorithm there
are situations in which it performs well, and others in which it does not. Most
important, the MAT algorithm is the most efficient one in the situations (a) and
(b), while it fails to provide any advantage compared to SAT in the situations
(c) and (d). The latter two situations represent worst-case scenarios for MAT.
The poor performance of MAT can be alleviated by the introduction of yield
operations, which enable a selection of a new primary thread without reaching
an implicit scheduling point. Another approach for optimizing MAT is the use
of source-code analysis to predict synchronization behaviour [19].

5.4 Nested Invocations

The second set of benchmarks adds nested invocations to the patterns. As
explained in Section 2, nested invocations can result in deadlocks and reduce
performance by causing idle time in a single-threaded execution model. Hence,
application patterns with nested invocations are an important scenario even on
a single-CPU machine.

In the first scenario, two replica groups A and B are created with each con-
sisting of 3 replicas. A varying number of clients call a method at group A, which
in turn calls a method at group B. Internally, both requests and the reply from
group B to group A are delivered via group communication.



Multithreading Strategies for Replicated Objects 119

1 2 3 4 5 6 7 8 9 10
number of clients

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

tim
e/

in
vo

ca
tio

n 
(m

s)

SEQ (2ms)

SEQ (2ms)

SAT (2ms)

SAT (2ms)

SEQ

SEQ

SAT

SAT

(a) nested invocations only

NCS CNS NSC CSN SCN SNC
Interaction Patterns

0

500

1000

1500

2000

2500

tim
e/

in
vo

ca
tio

n 
(m

s)

SEQ
SAT
PDS
LSA
MAT

(b) nested invocations, local computa-
tions, and mutex locks

Fig. 5. Measurements with nested invocations

Figure 5(a) shows the average invocation time measured by the clients, us-
ing (i) a strictly sequential execution and (ii) the ADETS-SAT algorithm1. The
solid lines (diamond and triangle symbols) refer to measurements in which the
nested invocation returns immediately. Even in this situation, multithreading
with ADETS-SAT is increasingly better with a rising number of clients. In a
second measurement (dashed lines with circles and squares), the method called
at B suspends for 2ms before it returns. In this case, the benefit from our multi-
threaded approach (which allows to accept new requests at A while the invoca-
tion to B is in progress) is enormous compared to a single-threaded execution.

A comparison of all ADETS scheduling algorithms is provided on the basis
of a set of more complex benchmarks. In each benchmark, the replicas execute
the following operations: a nested invocation (100 . . .150ms, denoted as N), a
local computation (75 . . . 125ms, denoted as C), and a synchronized state update
(lock und unlock operation, denoted as S).

The duration of nested invocations and local computations was simulated to
have a uniform random distribution on the given interval. The three elements
can be combined in six permutations (NCS, NSC, CNS, CSN, SNC, SCN). Fig-
ure 5(b) shows the result of the benchmarks with above parameters, run with
ten clients.

The ADETS-SAT performs better than the single-threaded execution, be-
cause the idle time of a nested invocation is utilized. Local computations cannot
be performed in parallel, however. Thus, the ADETS-SAT performs worse than
the other algorithms. The performance of the ADETS-MAT algorithm heav-
ily depends on the interaction patterns. In some situations (NCS, CSN), the
algorithm performs best of all. In others (NSC, SCN) it offers no significant
advantage compared to the ADETS-SAT algorithm. The problematic pattern is
a state update (S) followed by a computation (C). The ADETS-PDS performs

1 No other algorithms have been evaluated in this nested-invocation-only benchmark.
As there are no lock operations, ADETS-MAT and ADETS-LSA would result in sim-
ilar performance as ADETS-SAT. On the other hand, ADETS-PDS, which assumes
that each thread acquires a lock in each round, would not work appropriately.



120 J. Domaschka et al.

well in all interaction patterns and performs even better than ADETS-LSA. The
performance of neither of them significantly depends on on the pattern.

5.5 Condition Variables

Condition variables are an important mechanism that enables a request to wait
for another request. To examine the performance of the algorithms in combina-
tion with condition variables, we evaluated two scenarios, an unbounded buffer
scenario and a bounded buffer scenario.

A replicated object that implements the unbounded buffer provides two meth-
ods, consume() and produce(). The consume() method returns an available
data item on a condition variable if no item is available. The produce() method
makes an item available, and notifies another request-handling thread that waits
on the condition variable, if such a thread exists. Without support for condition
variables, the consume method needs to be implemented differently; for the eval-
uation we use periodic polling for consume() with pure sequential scheduling.

Figure 6(a) shows the result of this experiment, using a single producer client
and up to ten consumer clients. With an increasing number of consumers, the
single-threaded execution shows an increasing disadvantage. This behaviour is to
be expected due to the periodic polling: the number of unsuccessful iterations of
consume() calls increases with a rising number of consumers competing for the
producer. The other strategies, however, scale linearly because a thread is only
notified if an item in the buffer exists. The ADETS-SAT performs minimally
better than ADETS-MAT and ADETS-PDS. The ADETS-LSA, however, has a
notable overhead due to the leader-follower communication.

The second benchmark for evaluating the scheduler behaviour in combination
with condition variables implements a bounded buffer. In this experiment, both
produce() and consume() block if the buffer is full or empty, respectively. Two
condition variables are used: the first one is used to resume a blocked produce()
call by a consume() call; the second one is used in the reverse direction. Figure
6(b) shows the result of the experiment, in which the same number of producers

1 2 3 4 5 6 7 8 9 10
number of consumers

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

tim
e/

in
vo

ca
tio

n 
(m

s) LSA

MAT

SEQ

SAT

SAT

PDS

PDS

LSA
MAT
SEQ

(a) unbounded buffer

1 2 3 4 5
number of consumers

0

10

20

30

40

tim
e/

in
vo

ca
tio

n 
(m

s)

SAT

SAT

PDS
PDSLSA

LSA

MAT

MAT

SEQ
SEQ

(b) bounded buffer

Fig. 6. Measurements with condition variables



Multithreading Strategies for Replicated Objects 121

and consumers, each ranging from 1–5, have been used. The size of the buffer
was set to 2. The graph shows the average time per consumer invocation; exactly
the same average time was obtained for producer invocations.

Both experiments show that ADETS-SAT and ADETS-MAT are superior to
all other execution strategies. ADETS-PDS and ADETS-LSA, on the other hand,
show poor performance. In the experiment with the bounded buffer, they perform
even worse than the sequential polling-based approach. With the ADETS-LSA
algorithm, this is due to the additional communication caused by the schedul-
ing algorithm. With ADETS-PDS, threads that resume from a wait operation
need to be delayed until the next internal round starts; this delay increases the
invocation times.

5.6 Overall Performance Comparison

Concluding, we state that the ADETS-SAT algorithm always performs better
than the single-threaded execution. On the other hand, the main disadvantage
is that it does not support true multithreading. As a result, when using multiple
CPUs it yields significantly less performance than to the other strategies.

The ADETS-MAT algorithm in contrast supports true multithreading in typ-
ical usage patterns, such as preprocessing some data and then modifying the
local state, but it does not perform well if calculations require a locked mutex,
because different mutexes cannot be locked concurrently by different threads.

The ADETS-LSA strategy works well independent of a certain pattern. The
leader-follower communication, however, is one disadvantage of the ADETS-
LSA. Obviously, this issue is even more important when using the LSA in a
WAN environment. Due to the communication, the ADETS-LSA also showed
a noticeable overhead in scenarios with condition variables. A second disadvan-
tage is the reconfiguration process that is necessary after the failure of the leader.
This failure must first be detected, which leads to a delay until the reconfigura-
tion process can be started. Furthermore, this reconfiguration defeats essential
advantages of active replication, as it is typically used if minimal downtime after
failures is required.

The ADETS-PDS has a good overall performance when all threads execute
the same pattern concurrently. But it does not perform well in other scenarios
when different patterns are executed, because the round execution model can
cause high delays. Also, in conjunction with condition variables the PDS may
perform worse than ADETS-SAT and ADETS-MAT.

6 Conclusions

In this paper, we have revisited the problem of multithreaded execution of meth-
ods at replicated objects. In active replication, multithreading is a potential
source of non-determinism that has to be made deterministic by an adequate
thread-scheduling strategy. Similar consistency problems can arise in passive
replication if the re-execution of methods after a primary failure is inconsistent



122 J. Domaschka et al.

to the first execution of the primary before its failure. In our CORBA-based
FTflex infrastructure for object replication, we have implemented four different
strategies: ADETS-MAT, ADETS-SAT, ADETS-LSA, and ADETS-PDS.

The first contribution of this paper are the ADETS-LSA and ADETS-PDS
algorithms, an extension of Basile’s LSA and PDS algorithms. Our variants
add support for the native Java synchronization model. Beside reentrant locks,
the most important extensions are the support for condition variables and the
deterministic handling of time bounds on wait operations. PDS was also extended
to support nested invocations.

The second contribution is a comparison of the available thread-scheduling
strategies. In a set of experiments, we have analysed the respective benefits
of each algorithm. We show that the performance of an algorithm is highly
dependent on the interaction patterns. No algorithm is clearly superior to all
others. Our evaluation provides information about which algorithm works bet-
ter in which application scenarios. We conclude that replication infrastructures
should support variability of its thread-scheduling strategy. In all cases, however,
a multithreaded strategy is superior to single-threaded request execution.

References

1. OMG: Common object request broker architecture: Core specification, version
3.0.3. Object Management Group (OMG) document formal/2004-03-12 (2004)

2. Montresor, A.: The Jgroup distributed object model. In: Proceedings of the IFIP
WG 6.1 International Working Conference on Distributed Applications and Inter-
operable Systems II (1999)

3. Zhao, W., Moser, L.E., Melliar-Smith, P.M.: Deterministic scheduling for multi-
threaded replicas. In: WORDS 2005 (2005)

4. Basile, C., Whisnant, K., Kalbarczyk, Z., Iyer, R.: Loose synchronization of mul-
tithreaded replicas. In: SRDS 2002 (2002)

5. Basile, C., Kalbarczyk, Z., Iyer, R.: Preemptive deterministic scheduling algorithm
for multithreaded replicas. In: DSN 2003 (2003)

6. Domaschka, J., Hauck, F.J., Reiser, H.P., Kapitza, R.: Deterministic multithread-
ing for Java-based replicated objects. In: PDCS 2006 (2006)

7. Reiser, H.P., Hauck, F.J., Domaschka, J., Kapitza, R., Schröder-Preikschat, W.:
Consistent replication of multithreaded distributed objects. In: SRDS 2006 (2006)

8. Felber, P., Guerraoui, R., Schiper, A.: The implementation of a CORBA object
group service. Theory and Practice of Object Systems 4(2), 93–105 (1998)

9. Bessani, A.N., da Silva Fraga, J., Lung, L.C., Alchieri, E.A.P.: Active replication
in CORBA: Standards, protocols, and implementation framework. In: DOA 2004
(2004)

10. Fich, F.E., Hendler, D., Shavit, N.: On the inherent weakness of conditional syn-
chronization primitives. In: PODC 2004 (2004)

11. Napper, J., Alvisi, L., Vin, H.: A fault-tolerant Java virtual machine. In: DSN 2003
(2003)

12. Friedman, R., Kama, A.: Transparent fault tolerant Java virtual machine. In: SRDS
2003 (2003)

13. Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., Senft, C., Zain-
linger, R.: Distributed fault-tolerant real-time systems — the Mars approach. IEEE
Micro 9(1), 25–40 (1989)



Multithreading Strategies for Replicated Objects 123

14. Poledna, S., Burns, A., Wellings, A.J., Barrett, P.: Replica determinism and flexible
scheduling in hard real-time dependable systems. IEEE Trans. Computers 49(2),
100–111 (2000)

15. Jiménez-Peris, R., Patiño-Mart́ınez, M., Arévalo, S.: Deterministic scheduling for
transactional multithreaded replicas. In: SRDS 2000 (2000)

16. Reiser, H.P., Hauck, F.J., Kapitza, R., Schmied, A.I.: Integrating fragmented ob-
jects into a CORBA environment. In: Proc. of the Net.ObjectDays, Erfurt, Ger-
many (2003)

17. Reiser, H.P., Kapitza, R., Domaschka, J., Hauck, F.J.: Fault-tolerant replication
based on fragmented objects. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006.
LNCS, vol. 4025, pp. 256–271. Springer, Heidelberg (2006)

18. Narasimhan, P., Moser, L.E., Melliar-Smith, P.M.: Enforcing determinism for the
consistent replication of multithreaded CORBA applications. In: SRDS 1999 (1999)

19. Domaschka, J., Schmied, A.I., Reiser, H.P., Hauck, F.J.: Revisiting deterministic
multithreading strategies. In: Int. Workshop on Java and Components for Paral-
lelism, Distribution and Concurrency (2007)


	Multithreading Strategies for Replicated Objects
	Motivation
	Background and Related Work
	Comparison of Algorithms
	Criteria
	Algorithms

	Extending LSA and PDS
	Extending LSA to ADETS-LSA
	Extending PDS to ADETS-PDS

	Experimental Evaluation
	Implementation Overview
	Benchmark Overview
	Local Computations
	Nested Invocations
	Condition Variables
	Overall Performance Comparison

	Conclusions
	References


