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Multi-tier Fog Computing with Large-scale IoT
Data Analytics for Smart Cities
Jianhua He, Jian Wei, Kai Chen, Zuoyin Tang, Yi Zhou, and Yan Zhang

Abstract—Analysis of Internet of Things (IoT) sensor data
is a key for achieving city smartness. In this paper a multi-
tier fog computing model with large-scale data analytics service
is proposed for smart cities applications. The multi-tier fog is
consisted of ad-hoc fogs and dedicated fogs with opportunistic
and dedicated computing resources, respectively. The proposed
new fog computing model with clear functional modules is able
to mitigate the potential problems of dedicated computing infras-
tructure and slow response in cloud computing. We run analytics
benchmark experiments over fogs formed by Rapsberry Pi com-
puters with a distributed computing engine to measure computing
performance of various analytics tasks, and create easy-to-use
workload models. QoS aware admission control, offloading and
resource allocation schemes are designed to support data analyt-
ics services, and maximize analytics service utilities. Availability
and cost models of networking and computing resources are
taken into account in QoS scheme design. A scalable system
level simulator is developed to evaluate the fog based analytics
service and the QoS management schemes. Experiment results
demonstrate the efficiency of analytics services over multi-tier
fogs and the effectiveness of the proposed QoS schemes. Fogs can
largely improve the performance of smart city analytics services
than cloud only model in terms of job blocking probability and
service utility.

Keywords: Internet of Things; Smart Cities; Fog Comput-
ing; Quality of Services; Data Analytics; Spark; Raspberry Pi

I. INTRODUCTION

With greater access to public resource such as education
and health and more job opportunities, more and more people
leave villages to live in cities. A rapid urbanization of the
world’s population was witnessed in the last decade. The
global proportion of urban population was reported by United
Nation to be 49% (3.2 billion) in 2005, and is expected to rise
to 60% (4.9 billion) by 2030. However, the fast increasing
urban population exacerbates the existing problems faced by
modern cities, such as traffic congestion, pollution, low quality
public services, insufficient public resource and budget for
health and education. Smart cities is an ambitious vision to
tackle the above city problems by making more efficient use
of city resource and infrastructure and improve the quality
of life for citizens. It is proposed to capitalize on the latest
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technology advances of Internet of Things (IoT), communi-
cation and networking, computing and big data analytics, to
provide smartness on many sectors, such as transport and
traffic management, health care, water, energy, and waste
management.

IoT provides a vital instrument to sense and control the
physical city environment [1]–[3]. IoT data analytics is a key
in achieving and delivering the city smartness. With virtually
unlimited computing and storage resource, clouds are thought
to be the natural places for big data analytics [4] [5]. and
can provide easy management of IoT services [5]. However,
with expansion of IoT systems and emerging big data from
smart city applications and fast response requirement from
applications such as public safety and emergency response,
there are problem with cloud based solution due to real-
time and reliable transport of enormous IoT traffic over
communication networks, especially wireless access networks,
which is well known with features of low bandwidth and high
communication cost.

There are several edge computing models (including
Cloudlet, mobile edge computing and fog computing) pro-
posed to tackle the data analytics problems in the cloud
computing based solution [3], [6]–[9]. The principle is moving
computing and caching resources and analytics services closer
to the things where data is generated. However it is noted
that for the cloudlet, mobile edge computing and fog radio
access networks based solutions [7] [9], computing facilities
are provided by the third party at fixed locations, which can
be powerful for big data analytics but may not be flexible
enough for on demand deployment when there is a need.
And the wireless access bottleneck problem still exist for
the IoT data traffic. Fog computing is gaining increasing
research and development momentums but still in a very early
stage. According to [3], [8] end devices such as smart phones
and WiFi access points can be used for data analytics when
available and needed. But they are expected to take only very
simple time-sensitive data processing tasks. Less time sensitive
analysis and big data analytics are performed in the clouds.
The original fog computing model does not solve the large
scale data analytics problems faced by the IoT applications.
In addition, its network architecture and service model are not
clearly specified.

It is noted that within the last several years we witnessed an
explosive growth of mobile smart personal devices (e.g. smart
phones and tablets). These smart personal devices with in-
creasingly available computing and communication resources
can be utilized to form small ad-hoc fogs. On the other hand,
the number of small cell base stations and WiFi based home
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hotspots are also expected to grow fast. Dedicated computing
resource can be deployed alongside these small base stations
and home hotspots in addition to the macro cellular base
stations to form dedicated fogs. With properly design QoS
management schemes these multi-tier fogs can complement
to each other and remote clouds to provide more effective
and prompt response to fast changing circumstances of smart
cities.

In this paper we propose a multi-tier fog computing based
large scale data analytics service for smart city applications.
There are three main contributions:

• A multi-tier fogs computing framework is proposed,
which include both ad-hoc fogs with distributed oppor-
tunistic computing resources and dedicated fogs with
specifically deployed computing resources. The fogs can
utilize opportunistic and dedicated computing resources
to mitigate the problem of huge initial fog infrastructure
investment. Large scale analytics service can be run
over multi-tier fog computing system with support of
distributed computing engines.

• Analytics benchmarking over multi-fogs is run over small
size Rapspberry Pi computers with Spark computing
engine to create workload models of various analytics
jobs. In the existing offloading schemes the workload of
computing jobs were usually represented by the instruc-
tions per second (e.g., [6]). By contrast, in this paper
easy-to-use job level working load models are created and
utilized in the design of practical QoS aware management
schemes.

• QoS aware service and resource management schemes are
designed and developed for admission control, offloading
and resource allocation, to provide real-time analytics
services to smart city applications and improve utility
for fog computing operators. The network bandwidth
and latency, communication and computing costs, and
computing time are all taken into account. to satisfy the
QoS constraint of real time job completion and improve
computing utility for the QoS aware analytics services.
To the best of our knowledge, QoS issues for mobile edge
computing and fog computing have rarely been touched
in the literature.

In the rest of the paper we present a framework of multi-
tier fog computing system for smart city applications and the
large-scale analytics service model in Section II. In Section III
design and results on the benchmarking experiments over both
ad-hoc fogs and dedicated fogs are reported. Design of QoS
aware service and resource management schemes is presented
in Section IV. In Section V, analytics services and the QoS
schemes are evaluated and QoS performance is analyzed.
Section VI concludes the paper.

II. MULTI-TIER FOGS MODEL AND SCALABLE ANALYTICS
SERVICE FOR SMART CITIES

A. Proposed Multi-tier Fog Computing Model

In the Cisco fog computing model, fog aggregation nodes
are not clearly defined. For example, it is not clear where these
nodes are located, how much computation power and storage

resources they have, and by whom they may be deployed.
The fog nodes are expected to analyze and act on the large
volume of data generated by thousands of things across a large
geographic area in less than one second [3]. It is not likely
that the small size fog nodes like smart phones and video
cameras can deliver the expected analytics services. But there
is no discussions in the literature if dedicated fog nodes can
complete the tasks. If the fog computing relies on the dedicated
fog nodes and fog aggregation nodes for fast and reliable data
analytics services, then there is little difference between fog
computing and cloudlet models.

On the other hand, the fog nodes in the Cisco fog computing
model are not expected to take complex and advanced data
analytics. The majority of IoT data traffic still goes to the
traditional data centers for big data analytics, which does not
solve the bandwidth and prompt response problems faced by
real time smart city applications. In addition, the connections
of IoT devices to the Internet may not exist or have very lim-
ited network bandwidth, such as in the scenarios of emergency
response and anti-terrorism events. Under theses conditions
data analytics services for smart city applications may not be
effectively delivered through the public clouds.

We propose a new multi-tier fogs computing model for
smart city applications, which includes both ad-hoc fogs and
dedicated fogs. Fig. 1 presents the architecture for the multi-
tier fog computing model. In the hierarchical architecture, the
Tier 1 fogs are dedicated fogs, which include the MEC and
fogs supported by the dedicated routers and cellular network
base stations. Tier 2 fogs are ad-hoc fogs, which are formed
by opportunistic devices with computing and networking re-
sources, such as smart phones, laptops and vehicles.

Fog nodes can share unused computing resources to provide
data analytics services for both IoT applications and mobile
applications. They can participate in a hierarchical cloud
computing system, working with traditional remote clouds and
optional cloudlets. They can also work in a stand alone mode.

With data analytics services from multi-tier fogs, analytics
results are sent to the interested users of the analytics services.
A large volume of IoT data from smart city applications
may not need to be sent to the remote clouds. Therefore the
response latency and bandwidth consumption problems could
be solved.

B. Fog Functional Model

Next we present the function model for the fog nodes.
Each fog is formed by a cluster of computers with a pool
of computing resources. There are two types of fog nodes,
i.e., fog master and fog worker. The functionalities of these
nodes are illustrated by the functional models shown in Fig. 2.

In the ad-hoc fogs, fog workers are usually interconnected
devices which join the fogs by invitation, e.g., from fog
masters. The fog workers are responsible for sharing their
computing resources, undertaking computing jobs, monitor-
ing and reporting available computing and communication
resources to fog masters etc.

Each fog has at least one fog master. Multiple masters can
be present in one fog for improved reliability. The masters may
physically co-locate with the normal fog workers, or locate
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Fig. 1. A multi-tier fog cloud architecture.

separately. The masters have the main responsibilities such as
fog creation, service management and job scheduling.

Fig. 2. Function model for fog nodes.

1) Resource Module: The resource module is at the bottom
of the function models for both fog master and fog workers. It
represents physical resources of fog nodes, which may include
sensing resources, computing resources and communication
resources for connection to other fog nodes. It is noteworthy
that apart from WiFi technology, other communication tech-
nologies such as cellular radio and visible light communication
technologies can also be used for fog node communication.

2) Networking and Virtualization Module: Networking is
a critical part of fog, especially for the scenarios where ad-
hoc fogs nodes are mobile and the wireless link bandwidth
is limited. The fog master should keep tracking the mobility
and network connection of the fog workers, and adaptively
allocate the computing tasks to the fog workers to maximize
the computing QoS.

In the fogs resource virtualization is optional but very
important for the fog nodes which may have their own heavy

computing tasks. With virtualization a part of computing re-
sources can be reserved for the local computing tasks. And fog
computing tasks can be run only in the isolated resources, by
which local computing and security performance are ensured.
The existing virtualization technologies can be applied with
modifications for both ad-hoc and dedicated fogs.

3) Fog and Resource Management Module: Fogs can be
formed on demand and managed by fog master nodes. Each
fog has a life cycle of formation, maintenance and release. Fog
workers are responsible of monitoring and reporting comput-
ing resources and communication conditions to fog masters.
Fog masters maintain the status of the available computing
resources and communication conditions of the members in the
fogs. Special incentive and reward schemes can be applied by
fog masters to encourage interconnected devices to join fogs
and share their unused computing resources. It is noted that
mobility and security can have large impact on ad-hoc fogs.
With the centralized fog and resource management framework,
fog worker mobility and security could be handled effectively
to achieve high level QoS.

4) Job Admission and Scheduling Module: When a com-
puting job request is received (from smart city applications
or other IoT applications), a fog master needs to assess
the computing resources required to complete the job, and
admit or reject the job request according to the available
compute resources. If a job is accepted, it is scheduled to run
over one or more fog workers depending on their available
compute resources and network conditions. The fog master
may communicate with other fog masters to jointly work on
analytics tasks, or make decisions on offloading jobs to other
fogs or remote clouds.

5) Services Module: There are three standard service mod-
els provided by traditional clouds, namely infrastructure as
a service (IaaS), platform as a service (PaaS), software as a
service (SaaS). If the fog nodes are static and have powerful
computing resources, a large computation resource pool can
be created for fogs and the standard cloud service models
can be offered by the fogs. However, due to the limitations
on the computing power, bandwidth of wireless connections
and mobility of fog nodes, ad-hoc fogs may not be ideal to
provide these standard cloud computing services. We propose
to provide large scale analytics service over fogs. With the
analytics service model the users of IoT applications can
request analytics services from fog masters. The masters
analyze the analytics service request, choose the required ana-
lytics algorithm and computing engine, and assess the service
requirements on computing and communication resources. If
the service request is admissible, fog member nodes and com-
puting resources are scheduled to provide the service. Multiple
fog member nodes may work collectively with distributed
computing engines to provide advanced analytics if needed.

III. BENCHMARKING EXPERIMENTS FOR ANALYTICS
APPLICATIONS OVER FOGS

As the multi-tier fog and cloud systems will undertake
various analytics services from smart city applications with
diverse QoS requirement, it is important to design and imple-
ment QoS aware service and resource management schemes
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for the analytics services. However, in order to do so, a key
is to measure and model the workloads of different analytics
services over the fogs with various computing and commu-
nication resources. In this section we present benchmarking
experiments over ad-hoc fogs (A-Fogs) and dedicated fogs
(D-Fogs), to provide basis for QoS scheme design.

A. Overall Experiment Methodology

For the benchmarking of analytics systems there could be
three major dimensions of diversities that need to consider
[10]: analytics computing platform, analytics algorithm and
analytics job dataset. In our previous work, we have performed
an intensive benchmarking of analytics systems over both
private and public clouds, with various computing platforms
and analytics algorithms. It was found from our previous work
that Spark and GraphLab perform the best over the other
computing platforms [11]–[13]. As GraphLab has not been
updated for a long time, we use Spark as the only computing
platform for benchmarking. The overall benchmarking exper-
iment framework is shown in Fig. 3.

For the analytics algorithms, we present only experiments
with Logistic regression (LR) and support vector machine
(SVM) for demonstration purpose only. LR and SVM are
two typical machine learning algorithms for classification
applications, which identify the category an object belongs
to. It is noted that we have tested fog computing performance
with various analytics algorithms as done in [10]. It is trivial
to include more analytics algorithms and computing platforms
to the benchmarking experiments.

Fig. 3. Overall benchmarking framework.

B. Computing System Setup for A-Fog Benchmarking

In the benchmarking with A-Fogs, we consider a pool of
computing resources with one desktop PC and 8 Raspberry Pi
3 credit card sized micro computers, which forms an A-Fog
environment [14]. The Raspberry Pis are connected to a WiFi
ad hoc network through their built-in wireless 802.11 module.
One of the computers acts as fog master, while the rest act as
fog workers. Virtual machines are installed on the computers
and each is allocated 700 MB RAM. Spark with the latest

version 2.0 is installed in the virtual machines. Analytics job
requests are sent from one of the fog nodes to the master
node, which dispatches the jobs to the fog member nodes. Job
completion time and resource consumption of the analytics
jobs over Spark are recorded and used in the QoS aware
resource management.

Raspberry Pi is a single-board computer with a 1.2 GHz
64-bit quad-core ARMv8 CPU and 1 GB RAM [14]. A 32
GB micro SD card with operating system Raspbian installed
is slotted on each machine. Raspberry Pi has the features of
low cost, low power consumption, small size but still good
computing power. It has been used for many cost-effective
entertainment, surveillance, mobile and IoT applications. In
addition computing power and storage of Raspberry Pi have
the similar features of A-Fog nodes such as smart phones,
tablets, but has a better user-friendly programming environ-
ment. Therefore Raspberry Pi is selected in our benchmarking
instead of laptops.

Spark is an open source fast and general distributed com-
puting engine for large scale data analytics [11]. It is very
popular for big data analytics with significant performance
enhancement over Hadoop [12], [13]. Spark has been evaluated
and mainly used in large centrally controlled computer clus-
ters. To the best of our knowledge, it has not been tested and
evaluated in highly resource (computing and communications)
constrained distributed computing environments.

Experiment datasets for analytics jobs are generated by the
Spark datasets generator. The synthetic datasets are used for
performance evaluation in our study mainly for easy control of
the dataset size. Datasets generated from real IoT applications
can be used as well. For the benchmarking over A-Fogs, five
datasets with different data sizes are used, with labels DS-A-
1, DS-A-2, DS-A-3, DS-A-4 and DS-A-5. The letter ‘A’ in
the labels designates to the A-Fogs. Table I summarizes the
datasets used for the algorithms LR and SVM. In this set of
experiments the largest file size is 1.77 G, which is believed
to be large enough for A-Fogs mainly consisted of devices
with limited computing resource and energy. Larger datasets
should be offloaded to and processed by dedicated fogs or
remote clouds.

TABLE I
SUMMARY OF DATASETS FOR AD-HOC FOG EXPERIMENTS.

Application Datasets Size (MB) # of vertices (106)
LR DS-A-1 58.3 1

DS-A-2 145.8 2.5
DS-A-3 291.6 5
DS-A-4 583.3 10
DS-A-5 1770 30

SVM DS-A-1 61.3 1
DS-A-2 153.3 2.5
DS-A-3 306.6 5
DS-A-4 590 10
DS-A-5 1770 30

C. Benchmark Results with A-Fogs

Benchmarking results with Spark are presented over 14 A-
Fog computer settings as shown in Table. II. It is noted that the
letter ‘A’ in the computer setting labels designates to A-Fogs.
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TABLE II
COMPUTER SETTINGS USED IN THE A-FOG EXPERIMENTS.

Label A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 A-10 A-11 A-12 A-13 A-14
Desktop 0 0 0 0 0 0 0 1 1 1 1 1 1 1
Raspberry 1 2 3 4 5 6 7 1 2 3 4 5 6 7

As A-Fog nodes have only very limited computing resources,
they should work together cooperatively and efficiently to pro-
cess large datasets. It is unclear if Spark can run over distribute
compute environment with small size and resource constrained
micro computers, and how scalable it is to support large scale
data analytics services over A-Fogs. Here scalability is referred
to the ability of a computing platform or fogs to improve its
computing performance with increasing computing resources
[15].

Ideally a scalable platform is supposed to improve its
performance linearly with addition computing resources. As
single fog node with computers like Raspberry Pi has limited
computing power, a scalable computing platform is important
to extend the analytics capabilities over fogs. We can study
the feasibility of large scale analytics and system scalability
from two different aspects: the size of datasets that can be
processed and the service completion (or running) time with
increasing number of fog nodes.

Fig. 4 presents the job completion time for LR and SVM
jobs with DS-A-2, DS-A-3 and DS-A-4 datasets over the
14 A-Fog computer settings. It can be observed that the
job completion time of both LR and SVM applications re-
duces quickly with increasing computing resources. The large
datasets requires much more service time, and the computer
setting A-1 fails to complete the jobs with dataset DS-A-
4. The results show clearly the feasibility of running large
scale analytics service over A-Fogs but also the necessity
of distributed computing to process large analytics jobs. In
addition the desktop computer shows a large impact on the
analytics service capacity, which substantially reduces job
completion time and extends the size of datasets that can be
processed.

D. Benchmark Performance over Dedicated Fogs

For the benchmarking experiments over D-Fogs, it is as-
sumed that more powerful computing resources (including
processing, memory and storage) are available. We use four
DELL R620 servers to set up a computer cluster to represent
a D-Fog. In practical D-Fogs more powerful servers may be
used to provide a much larger pool of computing resources.
Each server consists of an Intel Xeon E5-2680v2 2.8GHz CPU
(dual core), a total memory of 256 GB and a standard 240G
SSD drive. An extra NFS server with 16 TB to store and access
the input and output files consistently for all configurations.

In order to test the computing performance of the D-
Fog, a pool of 16 virtual machines (VM) is created. The
operation system installed on each VM is CentOS release 6.5
with the kernel version 2.6.32. To evaluate and compare the
analytics computing performance under different experiment
configurations, 12 computer settings representing the number
of CPU cores and the memory size are used, which are shown

ID of computer setting.
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(a) Dataset DS-A-2.
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(c) Dataset DS-A-4.

Fig. 4. Job completion time of LR and SVM algorithms versus A-Fog
computer settings over different datasets. Letter ‘A’ in the dataset labels
designates to A-Fogs.

in Table. III. It is noted that the letter ‘D’ in the computer
setting labels designates to D-Fogs.

Similar to the experiments over A-Fogs, Spark datasets
generator and GTgraph are used to generate synthetic datasets
for benchmarking experiments over D-Fogs. Table. IV shows
the labels of the datasets, number of vertices and dataset
size used for LR algorithm and SVM algorithm. The dataset
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TABLE III
COMPUTER SETTINGS USED IN THE D-FOG EXPERIMENTS.

Label D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 D-9 D-10 D-11 D-12
CPU cores 4 4 4 8 8 8 12 12 12 16 16 16
Memoery (GB) 4 8 16 4 8 16 4 8 16 4 8 16

size can be adjusted by changing the number of vertices for
machine learning algorithms. In total 8 datasets with different
data sizes are used for the experiments with D-Fogs, ranging
from 1.14 GB to 35.38 GB.

Similar performance trends with D-Fogs benchmarking re-
sults are obtained as these for A-Fogs. Firstly the job com-
pletion time decreases with computing resources (CPU and
memory) scaling up. The size of dataset that can be processed
by the D-Fogs also increases largely due to more computing
power and memory. However for the largest datasets DS-D-7
and DS-D-8, only the highest computer settings can complete
the analytics jobs successfully.

IV. QOS AWARE SERVICE AND RESOURCE MANAGEMENT

In this section we presents the design of QoS aware job
and resource management schemes for analytics services over
multi-tier fogs, which is a core intelligent management module
of fog masters introduced in Section II.

Fig. 5. Service management framework.

The overall service and job management framework is
presented in Fig. 5. There are two major blocks, one for offline
benchmarking and the other for online analytics service and
jobs management.

• Offline benchmarking: In Section. III, we have run
extensive benchmarking experiments, which sent sam-
ple analytics jobs with different type of applications
and dataset sizes to A-Fogs and D-Fogs with different
computer settings. Workload models in terms of job
completion time, computing and communication resource
consumption are created in relation to the job properties
(e.g., analytics algorithm and dataset size) and computing
resource settings. A table is created for each analytics
algorithm from the workload models. In the tables each
entry stores a job completion time for one dataset size
and one computing resource setting.

• Online analytics service and resource management: real
analytics jobs and computing resources are managed
in this block. Each A-Fog has a cluster of fog work-
ers, forming a pool of computing resources. For each
arriving job request with associated QoS targets (e.g.,
target job completion time) admission control scheme is
applied to decide if the job request can be accepted or
rejected, based on the cost models for computing and
communication resources, job completion time tables,
available computing resource and network conditions. If
a job request is accepted, computing resources at the A-
Fog, D-Fog or cloud are allocated. The computing and
QoS performance is recorded, and also feedback to the
benchmarking block to update and enhance the workload
models as well as the tables.

A. System Model
We consider the problem of managing analytics jobs over

two tiers of fogs and a cloud. An example scenario is shown in
Fig. 6. The A-Fog has a fog master and a cluster of computers
as workers, which form a computing resource pool of Nd
desktop computers and Nr raspberry pi computers, The D-Fog
has a fog master and a computing resource pool of Nc CPU
cores and Nm GB memory. The specification of computing
resources for allocation to the analytics jobs is assumed to
be the same as those used in the benchmarking experiments
presented in Section. III for A-Fog and D-Fogs, respectively.
The remote clouds are assumed to have unlimited computing
resources.

Fig. 6. Fog system scenario.

1) Job and Service Models: Analytics jobs are generated
by a group of smart city IoT sensors and mobile devices.
An analytics job is jointly characterized by the analytics
algorithms and the dataset size. Let (g, s) denote a job type
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TABLE IV
SYNTHETIC DATASETS FOR DEDICATED FOG EXPERIMENTS.

Application Datasets DS-D-1 DS-D-2 DS-D-3 DS-D-4 DS-D-5 DS-D-6 DS-D-7 DS-D-8
# of vertices (M) 20 50 100 175 250 350 450 600

LR Size (GB) 1.14 2.81 5.7 9.97 14.24 19.94 25.63 34.18
SVM Size (GB) 1.18 2.98 5.9 10.32 14.74 20.64 26.53 35.38

with g representing analytics algorithm, g ∈ [1, NG], and s
representing the ID of dataset interval, s ∈ [1, NS]. NG and
NS denote the number of analytics algorithms and intervals,
respectively. There are NG=8 analytics algorithms, which are
mentioned in Section. III. There are 13 dataset intervals (NS =
13), corresponding to the 5 datasets used for A-Fog benchmark
in Table I and the 8 datasets used for D-Fog benchmark
experiments in Table IV. The first dataset interval (s=1)
corresponds to the range of dataset sizes from 0 to the size of
dataset DS-A-1.

Let Jg,s,j denote the jth job of type (g, s). We assume the
jobs generated from the IoT sensors and mobile devices follow
Poisson distribution for all job types. The job generation rate
per second for job type (g, s) is denoted by λg,s. The actual
dataset size for a job Jg,s,j is denoted by Dg,s,j in bytes,
which is assumed to be uniformly distributed in the dataset
interval s.

Consider the target job completion time as the QoS metric
of interest for analytics jobs, Each job is associated with a
target job completion time and a service completion charge.
The job completion time is counted from the time the job
request is received to the completion of the job at a fog or
the cloud, including the network latency, data communication
time, possible queue delay and job computation time. Data
communication time is determined by network bandwidth and
dataset size, while job computation time is determined by
the analytics algorithm, dataset size and allocated computing
resource for the job. Let T e

g,s,j denote the target completion
time in seconds, and Rg,s,j denote the service completion
charge in dollars, for job Jg,s,j , respectively. The service
completion charge of a job is set proportional to the dataset
size of the job. For the analytics service model, consider a
simple business model: if a job request is accepted and is
completed within the target completion time, the user of the
analytics service for the job is charged by the operator (A-Fog,
D-Fog or the cloud) running the job, otherwise the service is
not charged.

2) Networking Price Models: The round trip delay from the
analytics jobs to the A-Fog, D-Fog and the cloud is denoted
by Ta, Td and Tc, respectively. The bandwidth of bottleneck
link in the paths from the the sensors to the A-Fog, D-Fog
and the cloud is denoted by Ba, Bd and Bc, respectively. In
general we have Ta ≤ Td ≤ Tc.

Let Cu,z
g,s,j denote the communication cost for the job Jg,s,j ,

which depends on the dataset size and the networking price.
The letter z designates to the type of computing environments
where the job is executed, with z = a for the A-Fog, z = d
for the D-Fog, and z = c for the cloud. Let Pu,z denote the
communication price in dollars per bytes, with z designating
the type of computing environments. Then communication
cost can be computed by Cu,z

g,s,j = Dg,s,jPu,z. As the A-Fog is

close to the IoT and mobile devices, the communication cost
to the A-Fog is much lower than that to the D-Fog and the
cloud.

3) Computing Price Models: Let Cq
g,s,j(k) denote the com-

puting resource cost for the job Jg,s,j under the kth computer
setting option. A computer setting option k implicitly deter-
mine the computing environment (the A-Fog, the D-Fog or
the cloud). The computing cost depends on the computing
resource price and the time used by the given analytics job.
Let Pq,d and Pq,r denote the computing price per seconds
for using a desktop and a raspberry computer in the A-Fog,
respectively. Let Pq,c and Pq,m denote the computing price
per seconds for using a VM CPU core and one GB memory
in the D-Fog or cloud, respectively. The computing resource
price for the D-Fog and the cloud are set to be the same. Let
Tg,s,j(k) denote the computation time (in seconds) if the job
Jg,s,j is processed with computer setting option k. Then the
computing cost for a given job can be computed according to
the computing resource allocated for this job, the computation
time with the allocated resources, and the computing resource
price.

Let us define the overall cost for job Jg,s,j processed with
computer setting option k, which is denoted by Cg,s,j(k), as
the sum of the communication and computing costs for the
job. We have Cg,s,j(k) = Cu,z

g,s,j + Cq
g,s,j(k).

B. Job and Resource Management Schemes

For a new analytics job, the request is sent to the A-Fog
master node. If an A-Fog is not available, the job request can
be sent to the D-Fog or the cloud.

The fog masters need to make the following three decisions:
• Admission control decision: decide if to accept a job

according to the existing computing resources, the target
job completion time and the benefit of accepting a job.

• Offloading decision: decide where to run the job, the A-
Fog, the D-Fog or the cloud.

• Resource allocation decision: decide how many and
which computers for the A-Fog, or CPU cores and
memory for the D-Fog and the cloud to run the job.

The three decisions are made by the A-Fog master. The
A-Fog and D-Fog masters regularly exchange resource avail-
ability and resource prices models. The objective of decision
making is to maximize the service utility of processing an
analytics job. Let No denote the total number of computing
resource configuration options. Let Ug,s,j(k) denote the utility
(or revenue) of completing a job Jg,s,j with the kth computer
setting, for k ∈ [1, No], which is defined as:

Ug,s,j(k) =

{
Rg,s,j − Cg,s,j(k), Tk ≤ T e

g,s,j

−Cg,s,j(k), Tk > T e
g,s,j

, (1)
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where Tk denotes the actual job completion time with com-
puter setting k, including the data communication time and
job computation time.

When a new request for job Jg,s,j is received by the A-
Fog master, it simply computes the utility Ug,s,j(k) with (1)
over all the possible computing resource configuration options
with the available computing resources, and then find the best
option k∗ which maximizes Ug,s,j(k) over these possible com-
puting resource configuration options. If the utility Ug,s,j(k

∗)
with the option k∗ is positive, then the job request is accepted;
otherwise, the job is rejected.

It is noted, if following the above procedure, a job request is
accepted with option k∗, the offloading and resource allocation
decisions are made implicitly as well, as the corresponding
computing environment (A-Fog, D-Fog or cloud) and the
resource allocation strategy are uniquely determined by the
global computer setting option k∗.

C. Evaluation of Job Management Scheme

The proposed job management scheme and the analytics
services over multi-tier fogs are evaluated. A discrete-event
driven system level simulator is developed, which can be used
to perform fast simulations with a large scale of computing
resources in the A-Fogs and D-Fogs. Based on the simulator
extensive experiments are run to obtain simulation results.

Table. V shows the main system configurations. No is set
to 38 in this paper. The first 14 computer settings are used
at the A-Fog, corresponding to computer settings for A-Fog
experiments shown in Table. II and the following 12 computer
setting are used at the D-Fog, corresponding to the settings in
the D-Fog for the D-Fog experiments shown in Table. III and
the last 12 settings are used at the cloud, corresponding to the
same computer settings used in the D-Fog.

The A-Fog computing resource prices are set higher than
those of D-Fog and cloud. The computing resource prices for
the D-Fog and cloud are set in line with the current Ama-
zon EC2 service prices, where virtually unlimited computing
resources are available. The main consideration is that the
A-Fog nodes are usually energy constrained and computing
resource limited. Higher computing resource price is used to
provide incentives for sharing unused computing resources. On
the other hand, the price of communication to the D-Fog and
clouds are much higher than that to A-Fog. According to our
market research, the currently cheapest mobile broadband data
tariff in the UK is 2 pounds per GB mobile data traffic. The
communication price for the job to D-Fog is set according
to the market price. Part of the analytics job data may
be delivered to the D-Fogthrough low cost wireline access
networks.

Analytics job arrival rates λg,s are set to decrease with
dataset s, but remain the same for any given algorithm g.
For simplicity the traffic arrival rates for dataset types except
the dataset DS-A-2 are fixed and set to be relatively small,
representing background traffic in the simulations. The main
analytics jobs are generated from different algorithms with
dataset DS-A-2. The traffic arrival rates λg,1 is varied to
generate light and heavy traffic loads. Each job has a random
target completion time, which is the communication time to

TABLE V
SYSTEM CONFIGURATION ON DATA RATE AND RESOURCES.

Variable Values Meaning
Nd 10 Number of desktops in A-Fog pool
Nr 40 Number of A-Fog Raspberry Pi
Nc 500 Number of D-Fog cores
Nm (GB) 1000 Size of D-Fog memory
Ta (ms) 30 Job to A-Fog end to end delay
Td (ms) 50 Job to D-Fog end to end delay
Tc (ms) 500 Job to cloud end to end delay
Ba (Mbps) 10 Job to A-Fog bandwidth
Bd (Mbps) 2 Job to D-Fog bandwidth
Bc (Mbps) 1.5 Job to cloud bandwidth
Pu,a ($/GB) 0.1 Job to A-Fog communication price
Pu,d ($/GB) 1 Job to D-Fog communication price
Pu,c ($/GB) 2 Job to cloud communication price
Pq,d ($/hour) 2 A-Fog usage price per desktop
Pq,r ($/hour) 1 A-Fog usage price per Raspberry Pi
Pq,c ($/hour) 0.1 / 0.04 D-Fog / cloud usage price per CPU core
Pq,m ($/hour) 0.05 / 0.03 D-Fog / cloud usage price per GB memory

the cloud times a uniformly distributed random number in the
range of [1, 3]. The job service charge in dollars is assumed to
be the communication cost to the cloud times a random value
in the range [1, 2].

With the above system parameters configuration, we can
compute the communication costs for jobs to the A-Fog, D-
Fog and cloud, and the computing cost for the sample jobs
running with all the 38 computer settings. The total costs of
communication and computing versus the computer settings
are sorted in increasing order and stored in a table for each
job type. In the simulations we can simply pick the best option
for a given job as the first available computer setting from the
corresponding cost table, which can significantly speed up the
simulation process.

Four different cloud computing architectures are compared:
1) with A-Fog only (label ‘A-Fog’ in the following figures); 2)
with all the three computing systems (labelled ‘All’); 3) with
only D-Fog and cloud (labelled ‘D-Fog+cloud’) and 4) with
only cloud.

For the data analytics service and the QoS aware job man-
agement schemes, the major concern from the data analytics
service users is on the service quality such as job blocking
probability; while for the service operators of the fogs and
the clouds they are more concerned on the utility (or revenue)
generated from the analytics services. Job blocking probability
and service utility are chosen as the main performance metrics.
Typical results of blocking probability and service utility are
presented in Fig. 7(a) and Fig. 7(b), respectively. It is noted
that each result shown in the figures is obtained by averaging
over 10 simulations. Each simulation stops until 10000 jobs are
successfully completed. Further details on the proportion of the
jobs completed at the A-Fog under the computing architecture
‘All’ is presented in Fig. 8.

From the results presented in Fig. 7 and Fig. 8, we have the
following observations:

• Fog computing can provide good analytics service qual-
ity. Although the cloud has virtually unlimited computing
services, it does not provide satisfactory service quality.
The job blocking probability with cloud only architecture
is larger than 0.2 irrespective of job arrival rates.
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• On the other hand, the A-Fog only computing architecture
can provide quite good service quality until job arrival
rate is larger than 0.2 jobs per second. Due to the
limited computing resources at the A-Fog, the blocking
probability increases fast with job arrival rates larger than
0.2, which indicates strong need of dedicated computing
resources at D-Fog and/or clouds.

• When the multi-tier computing architecture is used (with
A-Fog, D-Fog and cloud), the overall analytics service
has the lowest blocking probability, which is less than
0.03 for most job arrival rates.

• The multi-tier fog computing system achieves the highest
servie utility for most job arrival rates, which is almost
double of the cloud only system. The A-Fog only com-
puting system can also deliver a high service utility rate
with job arrival rate of less than 0.2.

• Compared to the A-Fog only architecture, the ‘D-
Fog+cloud’ architecture has lower utility rate with low
job arrival rates, but higher utility rate at high job rates.
The job blocking rate is relatively high, which is more
than 0.15 for most job arrival rates. According to Fig. 8,
the jobs offloaded to the D-Fog or the cloud increase
linearly with job arrival rate due to the limited computing
resource at the A-Fog.

According to the results, we can conclude that large scale
analytics service over fogs computing is feasible. The A-
Fogs formed with opportunistic distributed computing resource
can provide good analytics service quality alone when the
analytics job arrival rate is low. With increasing analytics
service popularity additional D-Fogs with dedicated and larger
pool of computing resources can be deployed to provide better
analytics services.

V. CONCLUSIONS

In this paper we proposed a multi-tier fog computing model
based analytics service for smart city applications. In the
multi-tier fog computing model there are both ad-hoc fogs with
opportunistic computing resources and dedicated fogs with
dedicated computing resources. Detailed functional modules
of fog nodes are designed. QoS aware job admission control,
offloading and resource allocation schemes were designed
and developed to provide QoS support for large scale data
analytics services over multi-tier fogs. To support the QoS
aware resource management schemes, extensive benchmark
experiments over both ad-hoc and dedicated fogs were run to
measure computing performance of analytics jobs over fogs
and create workload models for QoS management schemes.
Analytics services over fogs and the proposed QoS aware
resource management schemes were evaluated with various
computing architectures with and without fogs. Simulation
results demonstrated the efficiency of analytics services model
over multi-tier fogs and the effectiveness of the proposed QoS
schemes.
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Fig. 7. Analytics services performance over multitier fog computing platform
against job arraival rate. a) job blocking probability; b) service utility.
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