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Abstract Maximal (k + 1)-crossing-free graphs on a planar point set in convex po-
sition, that is, k-triangulations, have received attention in recent literature, motivated
by several interpretations of them.

We introduce a new way of looking at k-triangulations, namely as complexes of
star polygons. With this tool we give new, direct proofs of the fundamental properties
of k-triangulations, as well as some new results. This interpretation also opens up
new avenues of research that we briefly explore in the last section.

Keywords Generalized triangulation · Crossing-free graph · Star polygons · Flips ·
Associahedron

1 Introduction

A multitriangulation of order k, or k-triangulation, of a convex n-gon is a maximal
set of edges such that no k + 1 of them mutually cross.

Example 1.1 For k = 1 these are simply triangulations. For n ≤ 2k + 1, the complete
graph Kn on n vertices does not contain k +1 mutually intersecting edges, and thus it
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Fig. 1 The three 2-triangulations of the hexagon

Fig. 2 A 2-triangulation of the
octagon

is the unique k-triangulation of the n-gon. So, the first nontrivial case is n = 2k +2. It
is easy to check that there are k +1 k-triangulations of the (2k +2)-gon, each of them
obtained from the complete graph K2k+2 by deleting one of the diagonals [i, i + k]
(see Fig. 1). See Lemma 8.8 for a discussion of the next case, n = 2k + 3.

Figure 2 shows another example; a 2-triangulation of an octagon.

As far as we know, multitriangulations first appear in the work of Capoyleas and
Pach [5], who proved that a k-triangulation of the n-gon cannot have more than
k(2n−2k−1) edges. Nakamigawa [28], and independently Dress, Koolen and Moul-
ton [10] then proved that all k triangulations actually have that number of edges (for
n ≥ 2k + 1). Both proofs use the concept of flip between k-triangulations. As the
name suggests, a flip creates one k-triangulation from another one, removing and in-
serting a single edge. In fact, Nakamigawa [28] showed that essentially every edge of
a k-triangulation can be flipped (our Corollary 5.4).

The following list summarizes these and other nice properties of k-triangulations
that have been proved in the literature.

Theorem 1.2 ([5, 10, 13, 21, 28])

(a) All k-triangulations of a convex n-gon have the same number of edges, equal to
k(2n − 2k − 1) [5, 10, 28].

(b) Any edge of length at least k + 1 can be flipped and the graph of flips is regular
and connected [10, 28].

(c) The set of k-triangulations of the n-gon is enumerated by the same Catalan de-
terminant counting families of k mutually noncrossing Dyck paths [21, 22].
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(d) Any k-triangulation has at least 2k edges of length k+1 [28] (this is the analogue
of “every triangulation has at least two ears”).

(e) There exists a “deletion” operation that allows one to obtain k-triangulations of
an n-gon from those of an (n + 1)-gon, and vice-versa [21, 28].

(f) The simplicial complex whose facets are the k-triangulations of an n-gon is a
vertex-decomposable sphere of dimension k(n − 2k − 1) − 1 [13, 21].

In these statements the length of an edge [pi,pj ] between n points p1, . . . , pn

in convex position and labeled cyclically is defined as min{|j − i|, |i − j |} modn.
Only edges of length greater than k are relevant, since the rest cannot be part of a
(k + 1)-crossing (hence they show up in all k-triangulations).

It is interesting that k-triangulations admit several different interpretations: as par-
ticular cyclic split systems [9, 11]; as line arrangements in the hyperbolic plane [10];
and as certain fillings of triangular polyominoes [22] (see also [24, 34]). Another very
close subject is the study of topological k-quasi-planar graphs [1]. That is, graphs
without k + 1 mutually intersecting edges, but where the edges are not forced to be
straight line segments.

In this paper we introduce a new way of looking at k-triangulations. Namely, as
complexes of star polygons of type { 2k+1

k
}. If p and q are two coprime integers, a star

polygon of type {p/q} is a polygon formed by connecting a set V = {sj | j ∈ Zp} of
p points of the unit circle with the set E = {[sj , sj+q ] | j ∈ Zp} of edges of length
q (see [6, pp. 36–38], [7, pp. 93–95] and Fig. 3). The natural generalization of the
triangle that is relevant for k-triangulations is:

Definition 1.3 A k-star is a star polygon of type { 2k+1
k

}.
Our main new result is:

Theorem 1.4 Let T be a k-triangulation of the n-gon (with n ≥ 2k + 1). Then:

(1) T contains exactly n − 2k k-stars (Corollary 4.4).
(2) Each edge of T belongs to zero, one or two k-stars, depending on whether its

length is smaller, equal or greater than k (Corollary 4.2).
(3) Any common edge f of two k-stars R and S of T can be “flipped” to another

edge e so that T �{e, f } is a k-triangulation. Moreover, the edges e and f depend
only on R ∪ S, not the rest of T (Lemma 5.1 and Corollary 5.4).

Fig. 3 Star polygons of type {5/2}, {8/3} and {11/5}. The first is a 2-star and the last is a 5-star
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But k-stars in k-triangulations are not only interesting per se. Rather, we think they
are the right way of looking at k-triangulations, in much the same way as triangles,
instead of edges, are the right way of looking at triangulations. As evidence for this, in
this paper we give new proofs of the basic properties of k-triangulations (parts (a), (b),
(d) and (e) of Theorem 1.2). Our proofs are direct and based on simple combinatorial
properties of the mutual disposition of k-stars in a (k + 1)-crossing-free graph (see
Sect. 3). In contrast, the way these basic results are proved in [10, 21, 22, 28] is more
indirect:

(1) First, a “deletion” operation that relates k-triangulations of the n-gon and the
(n + 1)-gon is introduced. (We introduce this operation in Sect. 7.)

(2) Second, this operation is used to prove that k-triangulations admit flips (either in
full generality or only for particular cases, as in [10]).

(3) Finally, flips are used to show that every k-triangulation has the same number of
edges as certain special ones constructed explicitly, namely k(2n − 2k − 1).

The structure of this paper is as follows: After introducing some notation in Sect. 2
we discuss basic properties of k-stars in Sect. 3. Section 4 proves parts (1) and (2)
of Theorem 1.4, as well as part (a) of Theorem 1.2. Section 5 finishes the study
of fundamental properties of k-triangulations, by introducing the graph of flips. We
have to mention that another advantage of k-stars is that they allow for a much more
explicit (and algorithmically better) way of understanding flips.

In Sect. 6 we look at a particularly nice and simple family of k-triangulations.
They are the analogue of “triangulations with only two ears” and admit several dif-
ferent characterizations. To emphasize that none of our proofs so far make use of
the recursive operation relating k-stars of the n-gon and the (n + 1)-gon we only in-
troduce this operation in Sect. 7. The operation is almost literally the same one as
in previous papers, but again it is more natural to look at it as the “flattening” (and,
conversely, “inflation”) of a single k-star.

Finally, in Sect. 8, we discuss further properties and questions about k-triangula-
tions that may be easier to analyze using k-stars and which could be developed further
in future papers. Among them:

• Dyck multipaths: as mentioned in Theorem 1.2, k-triangulations of the n-gon are
counted by the same determinant of Catalan numbers that counts certain families of
noncrossing Dyck paths [21, 22] (see also [24, 34]). An explicit bijection between
these two combinatorial sets has only been found for k = 2 [14].

• Multiassociahedron: we also said that the simplicial complex �n,k whose facets
are k-triangulations of the n-gon is a combinatorial sphere [21]. It is natural to
think that this sphere is polytopal, as happens for k = 1 where it is the polar of the
associahedron [25].

• Rigidity: the number of edges of a k-triangulation of the n-gon is exactly that of
a generically minimally rigid graph in dimension 2k. We conjecture that all k-
triangulations are minimally rigid in dimension 2k and prove it for k = 2.

• Surfaces: regarding a k-triangulation T as a complex of star polygons naturally
defines a polygonal complex associated to it. This complex is an orientable surface
with boundary. It seems interesting to study the action of flips on this surface. In
particular, we can think of the fundamental group of the graph of flips as acting on
the mapping class group of the surface.
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• Chirotope: there is also a natural chirotope of rank 3 defined on the set of k-stars of
a k-triangulation. This is the analogue of the chirotopes (or pseudo-line arrange-
ments) that Pocchiola and Vegter introduced on pseudotriangulations ([29], see
also [30]).

2 Notation

Let k and n be two integers such that k ≥ 1 and n ≥ 2k + 1.
Let Vn be the set of vertices of a convex n-gon, i.e. any set of points on the unit

circle, labeled counterclockwise by the cyclic set Zn. All throughout the paper, we
will refer to the points in Vn by their labels to simplify notation. For u,v,w ∈ Vn,
we will write u ≺ v ≺ w meaning that u, v and w are in counterclockwise order
on the circle. For any u,v ∈ Vn, let �u,v� denote the cyclic interval {w ∈ Vn | u �
w � v}. The intervals �u,v�, �u,v� and �u,v� are defined similarly. Let |u − v| =
min(|�u,v�|, |�v,u�|) be the cyclic distance between u and v.

For u �= v ∈ Vn, let [u,v] denote the straight edge connecting the vertices u and v.
We say that [u,v] is of length |u − v|. Let En = (

Vn

2

)
be the set of edges of the com-

plete graph on Vn. Two edges [u,v] and [u′, v′] are said to cross when u and v lie one
in each of the open cyclic intervals �u′, v′� and �v′, u′�. Observe that this definition
is symmetric in the two edges involved and that it corresponds to an intersection of
the straight open segments (u, v) and (u′, v′).

For � ∈ N, an �-crossing is a set of � mutually intersecting edges.

Definition 2.1 A k-triangulation of the n-gon is a maximal (k + 1)-crossing-free
subset of En.

Obviously, an edge [u,v] of En can appear in a (k+1)-crossing only if |u−v| > k.
We say that such an edge is k-relevant. We say that an edge [u,v] is a k-boundary
if |u − v| = k and that it is k-irrelevant if |u − v| < k. Every k-triangulation of the
n-gon consists of all the kn k-irrelevant plus k-boundary edges and some k-relevant
edges.

An angle ∠(u, v,w) of a subset E of En is a pair {[u,v], [v,w]} of edges of E

such that u ≺ v ≺ w and for all t ∈ �w,u�, the edge [v, t] is not in E. We call v the
vertex of the angle ∠(u, v,w). If t ∈ �w,u�, we say that t is contained in ∠(u, v,w),
and that the edge [v, t] is a bisector of ∠(u, v,w). An angle is said to be k-relevant
if both its edges are either k-relevant or k-boundary edges.

As said in the introduction, a k-star is a set of edges of the form {[sj , sj+k] | j ∈
Z2k+1}, where s0 ≺ s1 ≺ · · · ≺ s2k ≺ s0 are cyclically ordered. Observe that there are
two natural cyclic orders on the vertices of a k-star S: the circle order, defined as the
cyclic order around the circle, and the star order, defined as the cyclic order tracing
the edges of S. More precisely, if s0, . . . , s2k are the vertices of S cyclically ordered
around the circle, we rename the vertices ri = sik to obtain the star order r0, . . . , r2k .
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3 Mutual Positions of k-Stars

In this section, let R and S denote two k-stars of a (k + 1)-crossing-free subset E

of En. We study their mutual position.

Lemma 3.1 (1) Any angle of S (or R) is also an angle of E and is k-relevant.
(2) For any vertex t not in S, there is a unique angle ∠(u, v,w) in S that is bisected

by [v, t].

Proof Let V = {sj | j ∈ Z2k+1} denote the vertices of S in star order. Suppose that E

contains an edge [sj , t] where j ∈ Z2k+1 and t ∈ �sj+1, sj−1 �. Then the set of edges

{[sj+1, sj+2], [sj+3, sj+4], . . . , [sj−2, sj−1], [sj , t]
}

forms a (k + 1)-crossing. Thus ∠(sj−1, sj , sj+1) is an angle of E.
Since any edge of S separates the other vertices of S into two parts of size k − 1

and k, it is at least a k-boundary. Consequently, the angle ∠(sj−1, sj , sj+1) is k-
relevant. This finishes the proof of part (1). Part (2) is obvious from the definition of
bisector. �

Corollary 3.2 R and S cannot share any angle.

Proof By the first point of the previous lemma, the knowledge of one angle
∠(sj−1, sj , sj+1) of S permits the recovery of all the k-star S: the vertex sj+2 is
the unique vertex such that ∠(sj , sj+1, sj+2) is an angle of E (i.e. the first neighbor
of sj+1 after sj when moving clockwise), and so on. �

Since the number of edges of a k-star is 2k + 1, this corollary implies that R and
S cannot share more than k edges. Note that, for example, the two k-stars of any
k-triangulation of a (2k + 2)-gon share exactly k edges (see Fig. 1).

Corollary 3.3 For any edge [u,v] of E, the number of vertices of S between u and
v and the number of vertices of S between v and u are different.

Proof Suppose that S has the same number of vertices on both sides of an edge
f = [u,v]. Since the number of vertices of S is 2k + 1, one of the two vertices of
f is a vertex of S, say u. Then v is contained in the angle of S of vertex u, which
implies that f is not in E. �

Let V be the set of vertices of the k-star S. If |�u,v� ∩ V | < |�v,u� ∩ V |, then we
say that S lies on the positive side of the oriented edge from u to v (otherwise we say
that S lies on the negative side of the oriented edge from u to v). The k-star S is said
to be contained in an angle ∠(u, v,w) of E if it lies on the positive side of both the
edges [u,v] and [v,w] oriented from u to v and from v to w, respectively.

Lemma 3.4 Let ∠(u, v,w) be an angle of E containing the k-star S. Then
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(i) either v is a vertex of S and ∠(u, v,w) is an angle of S; or
(ii) v is not a vertex of S and ∠(u, v,w) has a common bisector with an angle of S.

Proof Suppose first that v is a vertex of S. Let ∠(x, v, y) denote the angle of S at
vertex v. Since ∠(u, v,w) contains S, we have w � y ≺ x � u. But since ∠(u, v,w)

is an angle of E, we have x = u and y = w, so that ∠(u, v,w) is an angle of S.
Suppose now that v is not a vertex of S. Then, by Lemma 3.1(2) there exists

a unique angle ∠(x, y, z) of S containing v. If y ∈ �u,v�, then �u,v� contains all
the k + 1 vertices of S between y and z, which is not possible (because S lies on the
positive side of the edge [u,v], oriented from u to v). For the same reason, y �∈ �v,w�.
If y = u or y = w, then [u,v] or [v,w] is a bisector of ∠(x, y, z), which contradicts
Lemma 3.1. Consequently, ∠(u, v,w) contains y, so that [v, y] is a common bisector
of ∠(u, v,w) and ∠(x, y, z). �

In the following statement and the rest of the paper, a bisector of S is a bisector of
an angle of S.

Theorem 3.5 Every pair of k-stars whose union is (k + 1)-crossing-free have a
unique common bisector.

Proof Let {rj | j ∈ Z2k+1} denote the vertices of R in star order. Note that for any
j ∈ Z2k+1, if S lies on the negative side of the edge [rj−1, rj ] oriented from rj−1 to
rj , then it lies on the positive side of the edge [rj , rj+1] oriented from rj to rj+1.
Since 2k + 1 is odd, this implies that there exists j ∈ Z2k+1 such that S lies on the
positive side of both the edges [rj−1, rj ] and [rj , rj+1] oriented from rj−1 to rj and
from rj to rj+1, respectively. That is, in the angle ∠(rj−1, rj , rj+1). The previous
lemma thus ensures the existence of a common bisector.

Suppose now that we have two different common bisectors e and f of R and S,
and let {rj | j ∈ Z2k+1} and {sj | j ∈ Z2k+1} denote the vertices of R and S in star
order labeled so that e = [r0, s0]. Let a, b ∈ Z2k+1 such that f = [ra, sb]. Note that
certainly, a �= 0, b �= 0, and a and b have the same parity. By symmetry, we can
assume that a = 2α, b = 2β with 1 ≤ β ≤ α ≤ k. But then the set

{[r2i , r2i+1] | 0 ≤ i ≤ α − 1
} ∪ {[s2j , s2j+1] | β ≤ j ≤ k

}

forms a (k + 1 + α − β)-crossing, and k + 1 + α − β ≥ k + 1. This proves unique-
ness. �

In the following lemmas, {rj | j ∈ Z2k+1} and {sj | j ∈ Z2k+1} denote the vertices
of R and S, in star order, and with e = [r0, s0] being the common bisector of R and S.

Lemma 3.6 For every 1 ≤ i ≤ k, r2i−1 ∈ �r0, s2i � and s2i−1 ∈ �s0, r2i �. In particular,
for every i ∈ Z2k+1 the edges [ri , ri+1] and [si , si+1] do not cross.

Proof Suppose that there exists 1 ≤ i ≤ k such that r2i−1 ∈ �s2i , s0 � or s2i−1 ∈
�r2i , r0 �. Let γ be the highest such integer, and assume for example that r2γ−1 ∈
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Fig. 4 The common bisector of two 2-stars (left) and a 2-crossing that crosses it (right)

�s2γ , s0 �. Then the definition of γ ensures that s0 ≺ s2γ+1 � r2γ+2 ≺ r2γ−2 so that
the set

{[r2i , r2i+1] | 0 ≤ i ≤ γ − 1
} ∪ {[s2j , s2j+1] | γ ≤ j ≤ k

}

forms a (k + 1)-crossing. �

The previous lemma can be read as saying that corresponding edges of R and S

are parallel. It is easy to see that k of these 2k + 1 pairs of parallel edges, the ones
of the form ([r2i−1, r2i], [s2i−1, s2i]), with 1 ≤ i ≤ k, separate R from S, meaning
that R and S lie on opposite sides of both. The next lemma says that any k-crossing
that, in turn, crosses the common bisector e = [r0, s0] has one edge parallel to and
between each such pair (see Fig. 4).

Lemma 3.7 Let F be a k-crossing of E such that all its edges cross e = [r0, s0].
Let f1 = [x1, y1], . . . , fk = [xk, yk] denote the edges of F , with r0 ≺ x1 ≺ · · · ≺ xk ≺
s0 ≺ y1 ≺ · · · ≺ yk ≺ r0. Then for any 1 ≤ i ≤ k, we have xi ∈ �r2k−2i+1, s2k−2i+2 �
and yi ∈ �s2k−2i+1, r2k−2i+2 �.

Proof Suppose that there exists 1 ≤ i ≤ k such that r0 ≺ xi ≺ r2k−2i+1 and let

� = max{1 ≤ i ≤ k | r0 ≺ xi ≺ r2k−2i+1}.
If � = k, then the set {e1, . . . , ek, [r0, r1]} is a (k + 1)-crossing of E, thus we assume
that � < k. In order for

{e1, . . . , e�} ∪ {[r0, r1], . . . , [r2k−2�, r2k−2�+1]
}

not to be a (k + 1)-crossing, we have r2k−2� � y� ≺ r0, so that r2k−2� ≺ y�+1 ≺ r0.
But the definition of � implies that r2k−2�+1 ≺ r2k−2�−1 � x�+1 ≺ s0, so that the set

{[r2k−2�, r2k−2�+1], . . . , [r2k−2, r2k−1], [r2k, r0]
} ∪ {e�+1, . . . , ek}

is a (k + 1)-crossing of E.
By symmetry, the lemma is proved. �
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Fig. 5 The flip of an edge

The following lemma is at the heart of the concept of flips, that will be studied
further in Sect. 5. As usual, we use the symbol � for the symmetric difference.

Lemma 3.8 Let f be a common edge of R and S. Let {rj | j ∈ Z2k+1} and {sj |
j ∈ Z2k+1} be the vertices of R and S, in star order, and with e = [r0, s0] being the
common bisector of R and S. Then

(i) there exists 1 ≤ i ≤ k such that f = [r2i−1, r2i] = [s2i , s2i−1];
(ii) E�{e, f } is a (k + 1)-crossing-free subset of En;

(iii) the vertices

s0, . . . , s2i−2, s2i−1 = r2i , r2i+1, . . . , r2k, r0

(resp. r0, . . . , r2i−2, r2i−1 = s2i , s2i+1, . . . , s2k, s0) are the vertices of a k-star X

(resp. Y ) of E�{e, f }, in star order;
(iv) X and Y share the edge e and their common bisector is f .

Proof Let u and v denote the vertices of f . Lemma 3.6 ensures that {r0, s0}∩{u,v} =
∅ so that we can assume r0 ≺ u ≺ s0 ≺ v ≺ r0. Consequently, there exists 1 ≤ i, j ≤ k

such that u = r2i−1 = s2j and v = r2i = s2j−1. Suppose that i > j . Then according to
Lemma 3.6, we have r0 ≺ r2i−1 � s2i ≺ s2j = r2i−1 which is impossible. We obtain
that i = j and f = [r2i−1, r2i] = [s2i , s2i−1].

Lemma 3.7 then proves that any k-crossing of T that prevent e being in T contains
f , so that T �{e, f } is (k + 1)-crossing-free.

Let L be the list of vertices (s0, . . . , s2i−2, r2i , . . . , r2k, r0). Between two consec-
utive elements of L lie exactly k − 1 others points of L (for the circle order). This
implies that L is in star order. The point (iii) thus follows from the fact that any edge
connecting two consecutive points of L is in E�{e, f }.

The edge e is clearly common to X and Y . The edge f is a bisector of both angles
∠(r2i−2, r2i−1, s2i+1) and ∠(s2i−2, s2i−1, r2i+1), so that it is the common bisector of
X and Y . �
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Fig. 6 [a, b] is v-farther than
[c, d] (left) and {[ai , bi ]} is
v-farther than {[ci , di ]} (right)

4 k-Triangulations as Complexes of k-Stars

In this section, T is a k-triangulation of the n-gon, i.e. a maximal (k + 1)-crossing-
free subset of En.

Theorem 4.1 Any k-relevant angle of T belongs to a unique k-star contained in T .

Proof In this proof, we need the following definition (see Fig. 6): let ∠(u, v,w)

be a k-relevant angle of T and let e and f be two edges of T that intersect
∠(u, v,w) (i.e. that intersect both [u,v] and [v,w]). If a, b, c and d denote their
vertices such that u ≺ a ≺ v ≺ b ≺ w and u ≺ c ≺ v ≺ d ≺ w, then we say that
e = [a, b] is v-farther than f = [c, d] if u ≺ a � c ≺ v ≺ d � b ≺ w. Let E

and F be two (k − 1)-crossings that intersect ∠(u, v,w). Let their edges be la-
beled e1 = [a1, b1], e2 = [a2, b2], . . . , ek−1 = [ak−1, bk−1] and f1 = [c1, d1], f2 =
[c2, d2], . . . , fk−1 = [ck−1, dk−1] such that u ≺ a1 ≺ a2 ≺ · · · ≺ ak−1 ≺ v ≺ b1 ≺
b2 ≺ · · · ≺ bk−1 ≺ w and u ≺ c1 ≺ c2 ≺ · · · ≺ ck−1 ≺ v ≺ d1 ≺ d2 ≺ · · · ≺ dk−1 ≺ w.
Then we say that E is v-farther than F if ei is v-farther than fi for every 1 ≤ i ≤
k−1. We say that E is v-maximal if it does not exist any (k−1)-crossing intersecting
∠(u, v,w) and v-farther than E.

Let ∠(u, v,w) be a k-relevant angle of T . If the edge [u,v + 1] is in T , then the
angle ∠(v + 1, u, v) is a k-relevant angle of T and, if it is contained in a k-star S of
T , then so is ∠(u, v,w). Moreover, if n > 2k + 1 (n = 2k + 1 is a trivial case), T

cannot contain all the edges {[u + i, v + i] | i = 0 . . . n − 1} and {[u + i, v + i + 1] |
i = 0 . . . n − 1}. Consequently, we can assume that [u,v + 1] is not in T .

Thus we have a k-crossing E of the form e1 = [a1, b1], . . . , ek = [ak, bk] with
u ≺ a1 ≺ · · · ≺ ak ≺ v + 1 and v + 1 ≺ b1 ≺ · · · ≺ bk ≺ u. Since [u,v] ∈ T , ak = v

and since ∠(u, v,w) is an angle, v +1 ≺ bk � w. Consequently, {e1, . . . , ek−1} forms
a (k−1)-crossing intersecting ∠(u, v,w) and we can assume that it is v-maximal (see
Fig. 7(a)). We will prove that the edges [u,b1], [a1, b2], . . . , [ak−2, bk−1], [ak−1,w]
are in T such that the points u, a1, . . . , ak−1, v, b1, . . . , bk−1, w are the vertices of
a k-star of T containing the angle ∠(u, v,w). To get this result, we use two steps:
first we prove that ∠(a1, b1, u) is an angle of T , and then we prove that the edges
e2, . . . , ek−1, [v,w] form a (k−1)-crossing intersecting ∠(a1, b1, u) and b1-maximal
(so that we can reiterate the argument).
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Fig. 7 (a) The k-crossing E; (b) First step: [u,b1] ∈ T ; (c) Second step: {e2, . . . , ek−1, [v,w]} is
b1-maximal

First step (see Fig. 7(b))
Suppose that [u,b1] is not in T . Thus we have a k-crossing F that prevents the

edge [u,b1]. Let f1 = [c1, d1], . . . , fk = [ck, dk] denote its edges with u ≺ c1 ≺ · · · ≺
ck ≺ b1 and b1 ≺ d1 ≺ · · · ≺ dk ≺ u.

Note first that v ≺ dk � w. Indeed, if it is not the case, then dk ∈ �w,u� and ck �= v,
because ∠(u, v,w) is an angle. Thus either ck ∈ �u,v� and then F ∪ {[u,v]} forms
a (k + 1)-crossing, or ck ∈ �v, b1 � and then E ∪ {[ck, dk]} forms a (k + 1)-crossing.
Consequently, we have b1 ≺ d1 ≺ · · · ≺ dk−1 ≺ w.

Let � = max{1 ≤ j ≤ k − 1 | bi ≺ di ≺ w for any i with 1 ≤ i ≤ j}. Then for any
1 ≤ i ≤ �, since {e1, . . . , ei} ∪ {fi, . . . , fk} does not form a (k + 1)-crossing, we have
u ≺ ci � ai . Thus for any 1 ≤ i ≤ �, u ≺ ci � ai ≺ v ≺ bi ≺ di ≺ w, so that fi is
v-farther than ei . Furthermore, we have u ≺ c1 ≺ · · · ≺ c� ≺ a�+1 ≺ · · · ≺ ak−1 ≺
v ≺ d1 ≺ · · · ≺ d� ≺ b�+1 ≺ · · · ≺ bk−1 ≺ w. Consequently, we get a (k − 1)-crossing
{f1, . . . , f�, e�+1, . . . , ek−1} which is v-farther than {e1, . . . , ek−1}; this contradicts
the definition of {e1, . . . , ek−1}. Thus we obtain [u,b1] ∈ T .

Suppose now that ∠(a1, b1, u) is not an angle of T . Then there exists a0 ∈ �u,a1 �
such that [b1, a0] ∈ T . But then the (k − 1)-crossing {[a0, b1], e2, . . . , ek−1} is v-
farther than {e1, . . . , ek−1}. This implies that ∠(a1, b1, u) is an angle of T .

Second step (see Fig. 7(c))
Let F be a (k − 1)-crossing intersecting ∠(a1, b1, u) and b1-farther than the

(k − 1)-crossing {e2, . . . , ek−1, [v,w]}. Let f2 = [c2, d2], . . . , fk = [ck, dk] denote
its edges, with a1 ≺ c2 ≺ · · · ≺ ck ≺ b1 ≺ d2 ≺ · · · ≺ dk ≺ u.

Note first that bk � dk � w. Indeed, if it is not the case, then dk ∈ �w,u� and ck �=
v, because ∠(u, v,w) is an angle. Thus either ck ∈ �a1, v� and then F ∪ {[u,v], e1}
forms a (k + 1)-crossing, or ck ∈ �v, b1 � and then E ∪ {[ck, dk]} forms a (k + 1)-
crossing. Consequently, we have b1 ≺ d2 ≺ · · · ≺ dk−1 ≺ w.

Furthermore, for any 2 ≤ i ≤ k − 1, fi is ∠(a1, b1, u)-farther than ei , so that a1 ≺
ci � ai ≺ b1 ≺ bi � di ≺ u. In particular, a1 ≺ ck−1 � ak−1 ≺ v and we get u ≺ a1 ≺
c2 ≺ · · · ≺ ck−1 ≺ v ≺ b1 ≺ d2 ≺ · · · ≺ dk−1 ≺ w. Consequently, the (k − 1)-crossing
{e1, f2, . . . , fk−1} is v-farther than {e1, . . . , ek−1}, which is a contradiction. �

The following easy consequence of Theorem 4.1 justifies the title of this paper.
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Corollary 4.2 Let e be an edge of T .

(i) If e is a k-relevant edge, then it belongs to exactly two k-stars of T (one on each
side).

(ii) If e is a k-boundary edge, then it belongs to exactly one k-star of T (on its
“inner” side).

(iii) If e is a k-irrelevant edge, then it does not belong to any k-star of T .

Corollary 4.3 (1) For any k-star S in T and for any vertex r not in S there is a
unique k-star R in T such that r is a vertex of the common bisector of R and S.

(2) Any k-relevant edge which is not in T is the common bisector of a unique pair
of k-stars of T .

Proof Let ∠(u, s, v) be the unique angle of S which contains r . Let ∠(x, r, y) be the
unique angle of T of vertex r which contains s. According to Theorem 4.1, the angle
∠(x, r, y) belongs to a unique k-star R. The common bisector of R and S is [r, s] and
R is the only such k-star of T .

Let e = [r, s] be a k-relevant edge, not in T . Let ∠(x, r, y) (resp. ∠(u, s, v)) denote
the unique angle of T of vertex r (resp. s) which contains s (resp. r). According to
Theorem 4.1, the angle ∠(x, r, y) (resp. ∠(u, s, v)) belongs to a unique k-star R (resp.
S). The common bisector of R and S is [r, s] and (R,S) is the only such couple of
k-stars of T . �

Observe that parts (1) and (2) of this corollary give bijections between

(1) “vertices not used in the k-star S of T ” and “k-stars of T different from S”; and
(2) “k-relevant edges not used in T ” and “pairs of k-stars of T ”.

From any of these two bijections, and using Corollary 4.2 for double counting, it is
easy to derive the number of k-stars and of k-relevant edges in T :

Corollary 4.4 (1) Any k-triangulation of the n-gon contains exactly n − 2k k-stars,
k(n − 2k − 1) k-relevant edges and k(2n − 2k − 1) edges.

(2) The k-triangulations are exactly the (k + 1)-crossing-free subsets of En of
cardinality k(2n − 2k − 1).

Similarly, we prove the following result:

Corollary 4.5 Let [u,v] be a k-relevant or k-boundary edge of T . Then the number
of k-stars of T on the positive side of the oriented edge from u to v equals |�v,u�|−k.

Proof If |�v,u�| = k, then any k-star of T has certainly more vertices in �u,v� than
in �v,u�, so that any k-star of T lies on the negative side of [u,v].

Suppose now that |�v,u�| > k. Let R be the k-star of T containing [u,v] and lying
on the positive side of it. According to the bijection (1) given by Corollary 4.3, we
only have to prove that any k-star S of T (distinct from R) lies on the positive side of
[u,v] if and only if the vertex of S of the common bisector of R and S lies in �v,u�.
But this is an easy consequence of Lemma 3.6. �
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Fig. 8 The four 2-stars in the 2-triangulation of the octagon of Fig. 2

Example 4.6 To illustrate the results of this section, Fig. 8 shows the 2-stars con-
tained in the 2-triangulation T of the octagon of Fig. 2. There are four 2-stars and six
2-relevant edges (Corollary 4.4). Every 2-relevant edge is contained in two 2-stars of
T (Corollary 4.2) and each of the 20 2-relevant angles of T is contained in exactly
one 2-star of T (Theorem 4.1).

5 The Graph of Flips

Let T be a k-triangulation of the n-gon, let f be a k-relevant edge of T , let R and
S be the two k-stars of T containing f (Corollary 4.2), and let e be the common
bisector of R and S. Remember that we proved (Lemma 3.8) that T �{e, f } is a
(k + 1)-crossing-free subset of En. Observe moreover that T �{e, f } is maximal:
this follows from Corollary 4.4, but also from the fact that if T �{e, f } is properly
contained in a k-triangulation T̃ , then T̃ �{e, f } is (k +1)-crossing-free and properly
contains T .

Thus, T �{e, f } is a k-triangulation of the n-gon.

Lemma 5.1 T and T �{e, f } are the only two k-triangulations of the n-gon contain-
ing T \ {f }.

Proof Let e′ be any edge of En \ T distinct from e. Let R′ and S′ be the two k-stars
with common bisector e′ (Corollary 4.3(2)). We can assume that R′ does not contain
f and then R′ ∪ {e′} is contained in T �{e′, f } and forms a (k + 1)-crossing. �

We say that we obtain the k-triangulation T �{e, f } from the k-triangulation T by
flipping the edge f .

Let Gn,k be the graph of flips on the set of k-triangulations of the n-gon, i.e. the
graph whose vertices are the k-triangulations of the n-gon and whose edges are
the pairs of k-triangulations related by a flip. It follows from Corollary 4.4 and
Lemma 5.1 that Gn,k is regular of degree k(n − 2k − 1): every k-relevant edge of
T can be flipped, in a unique way. In this section, we prove the connectivity of this
graph and bound its diameter.

Note that e and f necessarily cross. In particular, if e = [α,β] and f = [γ, δ],
with 0 � α ≺ β � n − 1 and 0 � γ ≺ δ � n − 1, then
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Fig. 9 The triangulation T min
11,3

• either 0 � α ≺ γ ≺ β ≺ δ � n − 1 and the flip is said to be slope-decreasing, or
• 0 � γ ≺ α ≺ δ ≺ β � n − 1 and the flip is said to be slope-increasing.

We define a partial order on the set of k-triangulations of the n-gon as follows: for
two k-triangulations T and T ′, we say T < T ′ if and only if there exists a sequence
of slope-increasing flips from T to T ′. That this is indeed a partial order follows from
the fact that each slope increasing flip increases the total slope of a k-triangulation,
where the slope of an edge [u,v] is defined as u + v (with the sum taken in N, not in
Zn) and the total slope of a k-triangulation is the sum of slopes of its edges.

Let T min
n,k be the k-triangulation of the n-gon whose set of k-relevant edges is

{[i, j ] | i ∈ �0, k − 1� and j ∈ �i + k + 1, i − k − 1�} (see Fig. 9).

Lemma 5.2 For any k-triangulation of the n-gon T �= T min
n,k , there exists a k-relevant

edge f ∈ T \ T min
n,k such that the edge added by the flip of f is in T min

n,k .

In particular, the k-triangulation T min
n,k is the unique least element of the set of

k-triangulations of the n-gon, partially ordered by <.

Proof Since the second point is an immediate corollary of the first one, we only have
to prove the first point.

Let T be a k-triangulation of the n-gon distinct from T min
n,k . Let

� = max
{
k + 1 ≤ i ≤ n − k − 1 | {[0, i], [1, i + 1], . . . , [k − 1, i + k − 1]} � T

}
,

which exists because T �= T min
n,k .

Let 0 ≤ j ≤ k−1 such that the edge [j, �+j ] is not in T . Let {[x1, y1], . . . , [xk, yk]}
denote a k-crossing that prevent [j, � + j ] to be in T , with the convention that

(i) x1 ≺ · · · ≺ xk ≺ y1 ≺ · · · ≺ yk ;
(ii) if j > 0, then j ∈ �xj , xj+1 � and � + j ∈ �yj , yj+1 �; and

(iii) if j = 0, then 0 ∈ �yk, x1 � and � ∈ �xk, y1 �.

With this convention, we are sure that xk ∈ �k, � − 1� and yk ∈ �� + k,n − 1�. If
yk ∈ �� + k,n − 1�, then the set

{[0, � + 1], . . . , [k − 1, � + k], [xk, yk]
}
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Fig. 10 A path of slope-decreasing flips from the 2-triangulation of Fig. 2 to T min
8,2 . In each image, the

new edge is in bold and the dashed edge will be flipped

is a (k + 1)-crossing of T . Thus yk = � + k, and there exists an edge [xk, � + k] with
xk ∈ �k, � − 1�.

Now let m = min{k ≤ i ≤ � − 1 | [i, � + k] ∈ T }. Let f be the edge [m,� + k],
let S be the k-star containing the angle ∠(m, � + k, k − 1) and let R be the other
k-star containing f . Let s0, . . . , sk−2, sk−1 = k − 1, sk = m,sk+1, . . . , s2k−1, s2k =
� + k denote the vertices of the k-star S in circle order. Then s0 ∈ �� + k + 1,0�, and
the only way not to get a (k + 1)-crossing is to have s0 = 0. This implies that sj = j

for all 0 ≤ j ≤ k − 1.
Let e be the common bisector of R and S and s denote its vertex in S. Since

f = [m,� + k] = [sk, s2k] is a common edge of R and S, it is obvious that s /∈
{sk, s2k}. Moreover, since for any 0 ≤ j ≤ k − 2 the interval �sj , sj+1 � is empty,
s /∈ {sk+1, sk+2, . . . , s2k−1}. Consequently, s ∈ {s0, . . . , sk−1} = �0, k − 1� and e ∈
T min

n,k \ T . �

Obviously, we get symmetric results with the k-triangulation T max
n,k whose set of

k-relevant edges is {[i, j ] | i ∈ �n − k,n − 1� and j ∈ �i + k + 1, i − k − 1�}.

Example 5.3 Figure 10 shows a path of slope-decreasing flips from the 2-triangulation
of Fig. 2 to T min

8,2 .

Corollary 5.4 The graph Gn,k is connected, regular of degree k(n− 2k − 1), and its
diameter is at most 2k(n − 2k − 1).

Proof Let T be a k-triangulation of the n-gon. The regularity follows from the fact
that any of the k(n − 2k − 1) k-relevant edges of T can be flipped. Moreover, the
previous lemma ensures that there exists a sequence of at most k(n − 2k − 1) slope-
decreasing flips from T to T min

n,k . Thus any pair of k-triangulations is linked by a path

of length at most 2k(n − 2k − 1) passing through T min
n,k . �

Obviously we would obtain the same result with any rotation of the labeling of Vn.
In particular, for any pair {T ,T ′} of k-triangulations, we can choose the intermediate
k-triangulation T ′′ for our path among any rotation of T min

n,k . Consequently, there ex-
ists a path linking T and T ′ of length smaller than the average of |T �T ′′| + |T ′′�T ′|
(for T ′′ among the rotations of T min

n,k ). As proved in [28], this argument improves the

upper bound for the diameter to be 2k(n − 4k − 1) when n > 8k3 + 4k2.
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Fig. 11 Examples of k-zigzags
of En for (n, k) = (10,2) and
(21,3)

Note that even if the improvement is asymptotically not relevant, for the case k =
1, the improved bound of 2n − 10 is actually the exact diameter of the associahedron
for large values of n [38]. For k > 1, we only have the following lower bound:

Lemma 5.5 If n ≥ 4k, then the diameter of Gn,k is at least k(n − 2k − 1).

Proof We only have to find two k-triangulations of the n-gon with no k-relevant
edges in common. Let Z be the following subset of k-relevant edges of En:

Z = {[q − 1,−q − k] | 1 ≤ q ≤ �n/2 − k}

∪{[q,−q − k] | 1 ≤ q ≤ �(n − 1)/2 − k}.
We say that Z is a k-zigzag of En (see Fig. 11). Let ρ be the rotation t �→ t + 1. Ob-
serve that since n ≥ 4k, the 2k k-zigzags Z,ρ(Z), . . . , ρ2k−1(Z) are disjoint. More-
over,

(i) there is no 2-crossing in a k-zigzag, so that there is no (k + 1)-crossing in the
union of k of them;

(ii) a k-zigzag contains n − 2k − 1 k-relevant edges, so that the union of k disjoint
k-zigzags contains k(n − 2k − 1) k-relevant edges.

According to Corollary 4.4, this proves that the union of k disjoint k-zigzags is the
set of k-relevant edges of a k-triangulation. Thus, we obtain the two k-triangulations
we were looking for with the sets of k-relevant edges

⋃k−1
i=0 ρi(Z) and

⋃2k−1
i=k ρi(Z).

�

We want to observe that Lemma 5.2 is the way how [28] and [10] prove that the
number of edges in all k-triangulations of the n-gon is the same. Compare it to our
direct proof in Corollary 4.4.

6 k-Ears and k-Colorable k-Triangulations

Let us assume that n ≥ 2k + 3. We call a k-ear any edge of length k + 1 in a k-
triangulation. We say that a k-star is external if it contains at least one k-boundary
edge (and internal otherwise). It is well known and easy to prove that the number of
ears in any triangulation equals its number of internal triangles plus 2. In this section,
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we prove that the number of k-ears in any k-triangulation equals its number of internal
k-stars plus 2k. Then we characterize the triangulations that have no internal k-star
in terms of colorability of their intersection complex.

Let S be a k-star and [u,v] be an edge of S such that S lies on the positive side of
the oriented edge from u to v. We say that [u,v] is a positive ear of S if |�v,u�| =
k + 1. Said differently, [u,v] is an ear, and S is the unique (by Corollary 4.5) k-star
on the “outer” side of it.

Lemma 6.1 Let b ≥ 1 be the number of k-boundary edges of an external k-star S.
Then, S has exactly b − 1 positive ears. Moreover, k-boundary edges and positive
ears of S form an alternating path in the k-star.

Proof Observe first that if [x, x +k] is a k-boundary edge of S, then all k +1 vertices
of �x, x+k� are vertices of S. Since S has 2k+1 vertices, this implies that if [x, x+k]
and [y, y +k] are two k-boundary edges of S, then �x, x +k� and �y, y +k� intersect;
that is, for example, y ∈ �x, x + k�. But then, all edges [i, i + k] (x � i � y) are
k-boundary edges of S, and all edges [i, i + k + 1] (x � i ≺ y) are positive ears of
S. Thus, k-boundary edges and positive ears of S form an alternating path in the k-
star, beginning and ending by a k-boundary edge. In particular, S has exactly b − 1
positive ears. �

Corollary 6.2 The number of k-ears in a k-triangulation T equals the number of
internal k-stars plus 2k. In particular, T contains at least 2k k-ears.

Proof For any 0 ≤ i ≤ 2k + 1, let μi denote the number of k-stars of T with exactly
i k-boundary edges. Let ν denote the number of k-ears of T . Then

2k+1∑

i=0

μi = n − 2k and
2k+1∑

i=1

iμi = n.

Since any k-ear is a positive ear of exactly one k-star, the previous lemma ensures
moreover that

2k+1∑

i=1

(i − 1)μi = ν.

Thus, we obtain ν = n − (n − 2k) + μ0 = 2k + μ0. �

Example 6.3 The 2-triangulation in Fig. 2 has five 2-ears and one internal 2-star (the
2-star (a) in Fig. 8).

We are now interested in a characterization of the k-triangulations that have ex-
actly 2k k-ears, or equivalently that have no internal k-star. We need the following
definitions.

We say that a k-triangulation is k-colorable if it is possible to color its k-relevant
edges with k colors such that there is no monochromatic 2-crossing. Observe that, if
this happens, then every k-crossing uses an edge of each color.



Discrete Comput Geom (2009) 41: 284–317 301

Fig. 12 Examples of
k-accordions of En for
(n, k) = (10,2) and (21,3)

Definition 6.4 A k-accordion of En is a set Z = {[ai, bi] | 1 ≤ i ≤ n − 2k − 1} of
n − 2k − 1 edges such that b1 = a1 + k + 1 and for any 2 ≤ i ≤ n − 2k − 1, the edge
[ai, bi] is either [ai−1, bi−1 + 1] or [ai−1 − 1, bi−1] (see Fig. 12).

Observe that, in this definition, bi = ai + k + i for any 1 ≤ i ≤ n − 2k − 1. More-
over, it is easy to check that the definition is equivalent to being a set of n − 2k − 1
k-relevant edges of En without 2-crossing.

Lemma 6.5 The union of k disjoint k-accordions of En is the set of k-relevant edges
of a k-triangulation of the n-gon.

Proof Observe that:

(i) There is no 2-crossing in a k-accordion, so that there is no (k + 1)-crossing in
the union of k of them.

(ii) A k-accordion contains n−2k−1 k-relevant edges, so that the union of k disjoint
k-accordions contains k(n − 2k − 1) k-relevant edges.

This lemma thus follows from Corollary 4.4. �

We have already met some particular k-accordions both when we constructed the
triangulation T min

n,k and in the proof of Lemma 5.5. The two types of k-accordions
in these examples (“fan” and “zigzag”) are somehow the two extremal examples of
them.

Theorem 6.6 Let T be a k-triangulation, with k > 1. The following properties are
equivalent for T :

(i) T is k-colorable.
(ii) There exists a k-coloring of the k-relevant edges of T such that no k-star of T

contains three edges of the same color.
(iii) T has no internal k-star.
(iv) T contains exactly 2k k-ears.
(v) T contains exactly 2k edges of each length k + 1, . . . , �(n − 1)/2 (and k of

length n/2 if n is even).
(vi) The set of k-relevant edges of T is the union of k disjoint k-accordions.
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Observe that for k = 1, only (ii), (iii), (iv), (v) and (vi) are equivalent, while (i)
holds for every triangulation.

Proof of Theorem 6.6 When k > 1, any three edges of a k-star form at least one
2-crossing. Thus, any k-coloring of T without monochromatic 2-crossing is such
that no k-star of T contains three edges of the same color, and (i) implies (ii).

Let S be a k-star of a k-triangulation whose k-relevant edges are colored with k

colors. If all edges of S are k-relevant then, by the pigeon-hole principle, there is a
color that colors three edges of S. Thus (ii) implies (iii). Corollary 6.2 ensures that
(iii) and (iv) are equivalent.

Since (vi) ⇒ (v) ⇒ (iv) and (vi) ⇒ (i) are trivial, it only remains to prove that (iv)
implies (vi).

For this, we give an algorithm that finds the k disjoint k-accordions in a
k-triangulation T with 2k k-ears. Recall that if S is an external k-star with b k-
boundary edges, then S has b − 1 positive ears, and that k-boundary edges and posi-
tive ears of S form an alternating path in the k-star. Thus, the edges of S which are nei-
ther
k-boundary nor positive ears of S form a path of even length. This defines natu-
rally a “pairing” of them: we say that the first and the second (resp. the third and the
fourth, etc.) edges of this path form a pair of edges in S. Observe that such a pair of
edges forms an angle containing no vertex.

Consider now a k-ear e1 of T . Let S0 be the k-star of T for which e1 is a positive
ear. Let S1 be the other k-star of T containing e1. Let e2 be the pair of e1 in S1. Let S2
be the other k-star of T containing e2 and let e3 be the pair of e2 in S2. Let continue
so until we reach a k-ear. It is obvious that we get a k-accordion of En. To get another
k-accordion, we do the same with a k-ear which is neither e1 nor en−2k−1.

To prove the correctness of this algorithm, we only have to prove that the
k-accordions we construct are disjoint. Suppose for example that two of them
{e1, . . . , en−2k−1} and {f1, . . . , fn−2k−1} intersect. Let i, j be such that ei = fj . Let
S be a k-star containing ei . Then by construction, either ei+1 or ei−1 (resp. either
fj+1 or fj−1) is the pair of ei in S. Thus, either ei+1 = fj+1, or ei+1 = fj−1. By
propagation, we get that {e1, . . . , en−2k−1} = {f1, . . . , fn−2k−1} �

Observe that the above proof of (iv) ⇒ (vi) also gives uniqueness (up to permu-
tation of colors) of the k-coloring (decomposition into accordions) of a k-colorable
k-triangulation T . Indeed, any k-coloring has to respect the pairing of edges in all
k-stars of T .

Let us also remark that part (v) implies that every k-colorable k-triangulation con-
tains exactly k(n − 2p − 1) p-relevant edges, for any k ≤ p ≤ �n−1

2 . It is proved
by a flip method in [28] that any k-triangulation of the n-gon contains at most this
same number of p-relevant edges. We will prove this result in the next section, as an
application of the flattenings of k-stars in k-triangulations.

Let us conclude this section with the following remark. An easy “intuitive model”
for what a k-triangulation is just a superposition of k triangulations. Even if this
model is sometimes useful, the results in this section say that it is also misleading:

• Theorem 6.6 says that the structure of k-triangulations obtained in this way is really
particular: the number of edges of each length is 2k, all k-stars are external, etc.
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Fig. 13 A 3-colorable
3-triangulation of the 12-gon
such that there is no 4-accordion
disjoint from it

• The number of k-accordions of En containing a given k-ear of En is 2n−2k−2.
In particular, the number of k-colorable k-triangulations of En is at most(
n
k

)
2k(n−2k−2) ≤ 2(k+1)n. This is much smaller than the total number of

k-triangulations, which for constant k equals 4nk modulo a polynomial factor in n

(see Remark 8.2).
• Let T be any triangulation with only two ears, and let Z denote the set of its

2-relevant edges. Clearly, Z is a 2-accordion, and it is easy to see that there exists
a 2-accordion Z′ disjoint from it, so that Z′ complete Z to give the set of 2-relevant
edges of a 2-colorable 2-triangulation. Surprisingly, this simple property fails when
k ≥ 3: even if a k-triangulation T is k-colorable, it is not always possible to find a
(k + 1)-accordion disjoint from T (see Fig. 13).

7 Flattening a k-Star, Inflating a k-Crossing

The goal of this section is to describe in terms of k-stars an operation that connects
k-triangulations of n and of n + 1 vertices. This operation, already present in [21],
in [28], and when k = 2 in [14], is useful for recursive arguments and it was a step in
all previous proofs of the flipability of k-relevant edges (Corollary 5.4).

Definition 7.1 Let T be a k-triangulation of the (n + 1)-gon, and e = [s0, s0 + k]
be a k-boundary edge of T . Let s0, s1 = s0 + 1, . . . , sk = s0 + k, sk+1, . . . , s2k be the
vertices of the unique k-star S of T containing e, in their circle order.

We call flattening of e in T the set of edges T e whose underlying set of points is
the set Vn+1 � {s0} and which is constructed from T as follows (see Fig. 14):

(i) for any edge of T whose vertices are not in {s0, . . . , sk} just copy the edge;
(ii) forget all the edges [s0, si], for 1 ≤ i ≤ k;

(iii) replace any edge of the form [si , t] with 0 ≤ i ≤ k, and sk ≺ t � sk+i (resp.
sk+i+1 � t ≺ s0) by the edge [si , t] (resp. [si+1, t]).

Remark 7.2 We sometimes call this operation “flattening of the k-star S”. This is a
somehow more graphical description of the operation, but it is also a slight abuse of
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Fig. 14 Flattening a 3-boundary edge, inflating a 3-crossing

language. Indeed, if S has more than one k-boundary edge, the result of the flattening
of S depends on which k-boundary edge we flatten.

We want to prove that T e is a k-triangulation of the n-gon. Observe first that

(1) If f is a k-relevant edge of T e, then
(i) either f is of the form [si , sk+i], for some 1 ≤ i ≤ k, and then it arises as

the gluing of two edges f ′ = [si−1, sk+i] and f ′′ = [si , sk+i] of the initial
triangulation T ;

(ii) or f is not of the previous form, and then it arises from a unique k-relevant
edge f ′ of T .

(2) If f and g are two k-relevant edges of T e arising from f ′ and g′ respectively,
then
(i) either f and g do not cross, and then f ′ and g′ do not cross; or

(ii) f and g do cross, and then f ′ and g′ do cross, unless the following happens:
there exists i in {1, . . . , k}, and u,v two vertices such that sk ≺ u � si+k ≺
si+k+1 � v ≺ s0 and f = [si , u], g = [si+1, v], f ′ = [si , u] and g′ = [si , v].
Such a configuration is said to be a hidden configuration (see Fig. 14).

It is easy to derive from this that |T e| = |T | − 2k = k(2n − 2k − 1) and that any
subset of En that properly contains T e contains a (k + 1)-crossing. However, this
is not sufficient to conclude that T e is a k-triangulation (see Fig. 15 for a counter-
example). Thus we have to prove that T e is (k + 1)-crossing-free. Note that this
provides a third proof (which this time is recursive on n) of the number of edges of a
k-triangulation of the n-gon.

Lemma 7.3 The set T e is (k + 1)-crossing-free. Hence, it is a k-triangulation of the
n-gon.

Proof Suppose that T e contains a (k + 1)-crossing F . Let denote f0 = [x0, y0] . . .,
fk = [xk, yk] the edges of F ordered such that x0 ≺ x1 ≺ · · · ≺ xk ≺ y0 ≺ y1 ≺ · · · ≺
yk . Let f ′

0 = [x′
0, y

′
0], . . . , f ′

k = [x′
k, y

′
k] be k+1 edges of T that give (when we flatten

e) the edges f0, . . . , fk , respectively.
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Fig. 15 A subset of nine edges
of E6 such that any proper
superset contains a 2-crossing
but which is not a triangulation

It is clear that if there exists no 0 ≤ i ≤ k such that the four edges (fi, fi+1, f
′
i ,

f ′
i+1) form a hidden configuration, then the edges f ′

0, . . . , f
′
k form a (k + 1)-crossing

of T , which is impossible. Thus we can suppose that the number of hidden con-
figurations in the set {(fi, fi+1, f

′
i , f

′
i+1) | 0 ≤ i ≤ k} is at least 1. We can also as-

sume that this number is minimal, that is that we cannot find a (k + 1)-crossing
G of T e arising from a set G′ of edges of T such that the number of hidden
configurations in the set {(gi, gi+1, g

′
i , g

′
i+1) | 0 ≤ i ≤ k} is strictly less than in

{(fi, fi+1, f
′
i , f

′
i+1) | 0 ≤ i ≤ k}. Here, we raise an absurdity by finding such sets

G and G′.
Let i in {0, . . . , k} be such that (fi, fi+1, f

′
i , f

′
i+1) is a hidden configuration. We

can suppose that xi = si and xi+1 = si+1 (if this is not the case, we renumber the
edges of F such that this be true). Thus we know that yi � si+k ≺ si+k+1 � yi+1. Let

p = min{0 ≤ j < i | for any j < � ≤ i, x� = s� and y� � s�+k}, and

q = max{i + 1 < j ≤ k + 1 | for any i + 1 ≤ � < j, x� = s� and s�+k � y�}.
Let G be the set of k + 1 edges of T e deduced from F as follows:

• for all i with p < i < q , let gi be [si , si+k],
• for all i with 0 ≤ i ≤ p and q ≤ i ≤ k, let gi be fi .

Let G′ be the set of k + 1 edges of T constructed as follows:

• for all i with p < i < q , let g′
i be [si , si+k],

• for all i with 0 ≤ i ≤ p or q ≤ i ≤ k, let g′
i be f ′

i .

It is quite clear that G is a (k + 1)-crossing of T e arising from G′. We just have to
verify that the number of hidden configurations in the set {(gi, gi+1, g

′
i , g

′
i+1) | 0 ≤

i ≤ k} is less than in {(fi, fi+1, f
′
i , f

′
i+1) | 0 ≤ i ≤ k}. But

(i) the number of hidden configurations in {(gi, gi+1, g
′
i , g

′
i+1) | i < p or q ≤ i} is

exactly the same as in {(fi, fi+1, f
′
i , f

′
i+1) | i < p or q ≤ i};

(ii) there is no hidden configuration in {(gi, gi+1, g
′
i , g

′
i+1) | p < i < q−1}, whereas

there is one in {(fi, fi+1, f
′
i , f

′
i+1) | p < i < q − 1}; and

(iii) the edges (gp, gp+1, g
′
p, g′

p+1) (resp. (gq−1, gq, g′
q−1, g

′
q)) do not form a hidden

configuration. �

We now define the inverse transformation.

Definition 7.4 Let T be a k-triangulation of the n-gon and E be a k-crossing. Let
[s1, s1+k], . . . , [sk, s2k] denote its edges, with s1 ≺ s2 ≺ · · · ≺ s2k . Assume further that
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s1, . . . , sk are consecutive in the cyclic order of the n-gon (that is, sk = s1 + k − 1).
We call E an external k-crossing. Let s0 be a new vertex on the circle, between s1 −1
and s1.

We call inflating of E at �s1, sk � in T the set of edges T
E

whose underlying set of
points is the set Vn ∪ {s0} and which is constructed from T as follows (see Fig. 14):

(i) for any edge of T whose vertices are not in {s1, . . . , sk} just copy the edge;
(ii) add all the edges [s0, si], for 1 ≤ i ≤ k and

(iii) replace any edge of the form [si , t] with 1 ≤ i ≤ k, and sk ≺ t � sk+i (resp.
sk+i � t ≺ s1) by the edge [si , t] (resp. [si−1, t]).

Remark 7.5 We are abusing notation: if E contains more than k consecutive vertices,
then the result of the inflating of E depends on the k-consecutive points we choose.
It would also be an abuse of language to say that we inflate the cyclic interval �s1, sk �
since several k-crossings may be adjacent to these k points. For example, when k = 1,
we have to specify both an edge and a vertex of this edge to define an inflating.

Observe that:

(1) Any k-relevant edge f of T
E

arises from a unique edge f ′ of T .

(2) If f and g are two k-relevant edges of T
E

that cross, and f ′ and g′ are the two
edges of T that give f and g, respectively, then f ′ and g′ cross as well.

Point (2) ensures that T
E

is (k + 1)-crossing-free. Moreover, it is easy to see that

|T E | = |T | + 2k = k(2(n + 1) − 2k − 1). Thus, by Corollary 4.4, we get:

Lemma 7.6 T
E

is a k-triangulation of the (n + 1)-gon.

Theorem 7.7 Flattening and inflating are inverse operations. More precisely:

(i) if e is a k-boundary edge of a k-triangulation T , and E denotes the k-crossing

of T e consisting of edges that arise as gluing of two edges of T , then T e

E = T ;
and

(ii) if E is a k-crossing with k consecutive vertices s1, . . . , sk , and e denotes the edge

[s0, sk] of T
E

, then T
E

e = T .

Example 7.8 Figure 16 shows the inflating of 2-crossing {[1,4], [2,7]} at �1,2� in
the 2-triangulation of Fig. 2. The new 2-star is colored in red.

We can now use these inverse transformations to prove additional results on
k-triangulations by induction.

Corollary 7.9 Let N(n, k) denote the number of k-triangulations of an n-gon. The
quotient N(n + 1, k)/N(n, k) equals the average number of k-crossings on the first
k points among all k-triangulations of the n-gon.
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Fig. 16 The inflating of the 2-crossing {[1,4], [2,7]} at �1,2� in the 2-triangulation of Fig. 2

For example:

(i) For k = 1, we get that N(n + 1,1)/N(n,1) equals the average degree of vertex
1 in triangulations of the n-gon. Since the average degree of all triangulations
of the n-gon is the same and equal to (4n − 6)/n we recover the well-known
recursion for Catalan numbers:

Cn−1 = 4n − 6

n
Cn−2.

(ii) For n = 2k + 1 we have that N(2k + 1, k) = 1 (the unique k-triangulation is
the complete graph) and the number of k-crossings using the first k vertices in
this k-triangulation is k + 1 (any choice of k of the last k + 1 vertices gives one
k-crossing). In particular, we recover the fact that N(2k + 2, k) = k + 1 (see
Example 1.1).

(iii) Unfortunately, for n > 2k+1 it is not true that the number of k-crossings using k

consecutive vertices is independent of the k-triangulation. Otherwise we would
have that N(n+ 1, k) ·n/N(n, k) is an integer, equal to that number (as happens
in the case of triangulations).

The following lemma is another example of the use of a recursive argument. It is
equivalent to Theorem 10 in [28], where the proof uses flips.

Lemma 7.10 Any k-triangulation of the n-gon contains at most k(n − 2p − 1)

p-relevant edges, for any k ≤ p ≤ n−1
2 .

Proof When n = 2p + 1, it is true since there are no p-relevant edges.
Suppose now that n > 2p + 1. Let T be a k-triangulation of the n-gon. Let e =

[u,u + k] be a k-boundary edge of T . It is easy to check that if g is a k-relevant edge
of T of length �, then the corresponding edge g′ in T e has length � or � − 1, and the
latter is possible only if g = [v, v + �] with v � u ≺ u + k � v + �.

Let E be the k-crossing of T e that arises from the edges of the k-star of T con-
taining e. Let F be the set of edges of E of length at least p. Let G denote the set of
edges of length p of T e \ E arising from an edge of length p + 1 of T .
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Any non-p-relevant edge of T e � (E ∪ G) (resp. of E \ F ) arise from one (resp.
two) non-p-relevant edge of T . Thus we obtain by induction that the number of p-
relevant edges is at most k(n − 1 − 2p − 1) + |F | + |G|.

To conclude, we only have to observe that any two edges of F ∪ G are crossing,
which implies that |F | + |G| = |F ∪ G| ≤ k. �

To close this section, observe that the result of flattening several k-boundary edges
of a k-triangulation is independent of the order. Indeed, let e and f be two distinct
k-boundary edges of a k-triangulation T . Let e′ (resp. f ′) denote the edge of T f

(resp. T e) arising from e (resp. f ). Then e′ (resp. f ′) is a k-boundary edge of T f

(resp. T e) and

T f
e′ = T ef ′ .

In particular, one can define the flattening of a set of k-boundary edges.
Similarly, it is possible to define the inflating of a set of edges-disjoint k-crossings

of a k-triangulation.

8 Further Topics and Open Questions

In this section, we discuss further topics and open questions related to multitriangu-
lations. We hope that at least some of them may be easier to prove and understand by
looking at k-triangulations as “complexes of k-stars”.

The Number of k-Triangulations Remember that Jonsson proved in [21] that

Theorem 8.1 The number of k-triangulations of the n-gon is equal to the determi-
nant

det(Cn−i−j )1≤i,j≤k =

∣∣∣∣∣∣∣
∣

⎛

⎜⎜
⎝

Cn−2 Cn−3 . . . Cn−k Cn−k−1
Cn−3 Cn−4 . . . Cn−k−1 Cn−k−2

...
...

. . .
...

...

Cn−k−1 Cn−k−2 . . . Cn−2k+1 Cn−2k

⎞

⎟⎟
⎠

∣∣∣∣∣∣∣
∣

,

where Cm = 1
m+1

(2m
m

)
denotes the mth Catalan number.

Remark 8.2 An explicit product formula for the value of this determinant, first found
by Viennot, can be found in [21, p. 130]. For the asymptotics of it, observe that the
recurrence Cn = 4n−2

n+1 makes each entry equal to Cn times a rational function of
degree at most 2k in n. Since Cn ∈ 
(4nn−3/2) we conclude that, for fixed k, the
number of k triangulations of an n-gon grows as 4nk , modulo a rational function of
degree O(k2) in n.

On the other hand, the Catalan determinant in this statement also counts two other
classes of objects:
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Fig. 17 A Dick path a and a
Dyck 3-path b of semilength 6

(i) Dyck k-paths of semi-length n − 2k:
A Dyck path of semilength � is a lattice path using north steps N = (0,1) and
east steps E = (1,0) starting from (0,0) and ending at (�, �), and such that it
never goes below the diagonal y = x (see Fig. 17(a)). We call Dyck k-path of
semilength � any k-tuple (d1, . . . , dk) of Dyck paths of semilength � such that
each di never goes above di−1, for 2 ≤ i ≤ k (see Fig. 17(b)).
That the Catalan determinant of Theorem 8.1 also counts the number of Dyck
k-paths of semilength n − 2k is proved in [8].

(ii) Maximal (k + 1)-diagonal-free fillings of the triangular polyomino An:
A stack polyomino of shape (s1, . . . , sr ) (where there exists t ∈ {1, . . . , r} such
that 0 < s1 ≤ · · · ≤ st and st ≥ · · · ≥ sr > 0) is the following subset of Z

2, whose
elements are called boxes:

{
(i, j) | 1 ≤ i ≤ r,0 ≤ j ≤ si

}
.

A filling of a polyomino is an assignment of 0 and 1 to its boxes. For � ∈ N, an
�-diagonal of a filling of a polyomino Λ is a chain (α1, β1), . . . , (α�,β�) of �

boxes of Λ filled with 1 and such that

• α1 < α2 < · · · < α� and β1 < β2 < · · · < β�, and
• the rectangle {(α,β) | α1 ≤ α ≤ α�,β1 ≤ β ≤ β�} is a subset of Λ.

See Fig. 18 for an illustration (we use the matrix convention to index the boxes
of a polyomino; that is, the row index increases as we go down). See [22, 24, 34]
for more details.
Let An denote the polyomino {(i, j) | 0 ≤ i ≤ n − 2, 1 ≤ j ≤ n − i − 1} (see
Fig. 18). That maximal (k + 1)-diagonal-free fillings of the triangular polyomino
An are enumerated by the determinant of Theorem 8.1 is proved in [18].

Let us now give a little overview of the different proofs of Theorem 8.1:

(1) First, Jonsson gave in [21] a direct, but complicated, proof using induction on n,
based on an analogue of our Corollary 7.9.

(2) In [22], Jonsson gave another proof, this time indirect. He observed that given
any subset E of En, an �-crossing of E corresponds to an �-diagonal in the
upper triangular part of the adjacency matrix of E. In particular, this gives a
straightforward bijection between k-triangulations of an n-gon and maximal (k+
1)-diagonal-free fillings of another polyomino, namely

Ωn := {
(i, j) | 0 ≤ i ≤ n − 2, i + 1 ≤ j ≤ n − 1

}
.
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Fig. 18 (a) A stack polyomino of shape (2,3,5,6,2,2); (b) a filling of this polyomino, with a shaded
2-diagonal; (c) the polyomino A7

Example 8.3 In Fig. 19, we show the filling of Ω8 that corresponds to the
2-triangulation of the octagon of Fig. 2. For the sake of clarity, we have omit-
ted 0’s and replaced 1’s by dots. We also have shaded the 2-relevant boxes of
Ω8.

Jonsson then proved that the number of maximal (k + 1)-diagonal-free fillings of
a stack polyomino of shape (s1, . . . , sr ) depends only on its content, that is, the
multiset {s1, . . . , sr}. Thus, he can use the polyomino An instead of Ωn, and the
aforementioned result of [18], to enumerate k-triangulations.

(3) Krattenthaler [24], studying different restrictions on diagonals in fillings of poly-
ominoes, proved in a simpler way that the number of fillings of a stack poly-
omino depends only on its content. Rubey [34] generalized this same result to
moon polyominoes. He also emphasized that “the problem of finding a com-
pletely bijective proof [...] remains open. However, it appears that this problem
is difficult”.

(4) Elizalde [14] gave an explicit bijection between 2-triangulations and Dyck 2-
paths. He begins with coloring the relevant edges of a 2-triangulation with two
colors. Then, each color defines one of the two Dyck paths.

Our hope would be that looking at k-triangulations as complexes of k-stars might
perhaps be used to give a general explicit bijection between k-triangulations and Dyck
k-paths. Observe that the number n− 2k of k-stars equals the semilength of the Dyck
k-paths we need to construct. Hence, the idea would be to use each k-star to represent
one pair of steps in each path.

To close this discussion, remember that Catalan numbers also count many other
“Catalan structures” (see Exercise 6.19 in [37]). Rooted binary trees seem particu-
larly important for our topic since they are dual graphs of triangulations. It would be
interesting to understand the corresponding objects for k-triangulations.

Rigidity A triangulation of a convex n-gon is a minimally rigid object in the plane.
That is to say, any continuous movement of its vertices that preserves all edges’
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Fig. 19 The filling of Ω8 that corresponds to the 2-triangulation of Fig. 2

lengths extends to an isometry of the plane, and the triangulation is a minimal graph
for this property. Moreover, it is generically so, meaning that the same is true for all
embeddings of the same graph with sufficiently generic choice of positions for the
vertices. See [16] for a very nice expository introduction to combinatorial rigidity,
and [17] for a more technical one.

In the plane, generic minimal rigidity of a graph G = (V ,E) is equivalent to the
following Laman property: |E| = 2|V |−3 and any subgraph on 2 ≤ m ≤ |V | vertices
has less than 2m − 3 edges. The Laman property is a special case of the following.

Definition 8.4 A graph G = (V ,E) is said to be (p, q)-sparse if |E′| ≤ p|V (E′)|−q

for any subset E′ of E.

Sparsity for several families of parameters (p, q) is relevant in rigidity theory,
matroid theory and pebble games. See [27, 36] and the references therein. Observe
that Corollary 4.4 implies:

Corollary 8.5 k-triangulations are
(
2k,

(2k+1
2

))
-sparse graphs.

Being
(
d,

(
d+1

2

))
-sparse is a necessary, but not sufficient for d > 2, condition for

a graph being generically minimally rigid in dimension d [17]. This suggests the
following conjecture:

Conjecture 8.6 Every k-triangulation is generically minimally rigid in dimension
2k.

We can prove this conjecture for k = 2:

Theorem 8.7 Every 2-triangulation is a generically minimally rigid graph in dimen-
sion 4.

Proof We prove by induction on n that 2-triangulations are generically rigid in di-
mension 4. Minimality then follows from the fact that a generically rigid graph in
dimension d needs to have at least nd − (

d+1
2

)
edges.
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Fig. 20 A vertex split on three
edges

Fig. 21 A 3-triangulation
without two consecutives 3-ears

Induction begins with the unique 2-triangulation on five points, that is, the com-
plete graph K5, which is generically rigid in dimension 4.

For the inductive step, let us recall the following graph-theoretic construction
called “vertex split” (see Fig. 20 and [39] for more details). Let G be a graph, u

a vertex of G and U the adjacent vertices of u. Let U = X � Y � Z be a partition
of U . A vertex split of u on |Y | edges is the graph G′ obtained from G as follows:

(i) remove the edges [u, z], for z ∈ Z;
(ii) add a new vertex v; and

(iii) add new edges [u,v], [v, y], for y ∈ Y and [v, z], for z ∈ Z.

The key result that we need is that a vertex split on d − 1 edges in a generically
rigid graph in dimension d is also generically rigid in dimension d [39].

So, let n ≥ 5 and assume that we have already proved that every 2-triangulation of
the n-gon is rigid. Let T be a 2-triangulation of the (n+1)-gon. Let S be a 2-star of T

with at least two 2-boundary edges (such a 2-star exists since it appears in the “outer”
side of any 2-ear). It is easy to check that inverse transformation of the flattening of
S is exactly a vertex split on 3 edges. Thus, the result follows. �

Generalizing this proof, observe that if T is a k-triangulation and S a k-star of
T with k k-boundary edges (or equivalently k − 1 consecutive k-ears), then the in-
verse transformation of the flattening of S is exactly a vertex split on 2k − 1 edges.
However, our proof of Theorem 8.7 cannot be directly applied since there exist k-
triangulations with no k-star containing k k-boundary edges, or equivalently, without
k − 1 consecutive k-ears, for k ≥ 3 (see Fig. 21).

Multiassociahedron Let Δn,k be the simplicial complex of all subsets of k-relevant
edges of En that do not contain any (k + 1)-crossing. Facets and ridges in Δn,k are
k-triangulations of the n-gon and flips between them. Corollary 4.4 proves that Δn,k
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Fig. 22 The dual of the simplicial complex Δ6,1 and a realization of the corresponding associahedron

is pure, and Corollary 5.4 suggests that it could be a sphere; that this is the case
and, moreover, that this sphere is vertex-decomposable (in particular, shellable) was
proved in [13, 21, 22]. But it remains a main open question to know whether Δn,k is
polytopal. That is, whether it is the boundary complex of a polytope.

So far, we only know that this holds for:

• k = 1: Δn,1 is the boundary complex of the polar of the associahedron (see Fig. 22).
Various realizations have been proposed; among others see [2, 15, 19, 25, 26].

• n = 2k + 1: there is a unique k-triangulation.
• n = 2k + 2: there are k + 1 k-triangulations (Example 1.1) and Δ2k+2,k is realized

by the k-simplex.
• n = 2k + 3.

Lemma 8.8 For any k ≥ 1, the simplicial complex Δ2k+3,k is realized by the cyclic
polytope of dimension 2k with 2k − 3 vertices.

Proof The set of k-relevant edges of the (2k + 3)-gon forms a cycle C of length
2k + 3 (in fact, it forms a (2k + 3)-star). It is easy to check that the sets of k-
relevant edges of k-triangulations of the (2k + 3)-gon are exactly the subsets of C

that satisfy Gale’s evenness condition, and thus correspond to facets of the cyclic
polytope (see Theorem 0.7 of [40]). �

In our opinion, k-stars are a promising tool to answer this question: first because
they give a better understanding of flips in k-triangulations and some constructions
of the associahedron are based on understanding flips; but moreover because one of
the most natural ways of constructing the associahedron is as a secondary polytope,
which obviously uses triangles [2, 35].

Another possible way of constructing this polytope could be based on rigidity of
k-triangulations, mimicking the construction in [32] (see also [33]).

Surfaces Regarding a k-triangulation T of the n-gon as a complex of k-stars natu-
rally defines a polygonal complex C(T ) as follows:
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Fig. 23 Examples of decompositions of surfaces associated to the 2-triangulations T min
6,2 , T min

7,2 and T min
8,2

(i) the vertices of C(T ) are the vertices of the n-gon;
(ii) the edges of C(T ) are the k-boundary edges and k-relevant edges of T ; and

(iii) the facets of C(T ) are the k-stars of T , considered as (2k + 1)-gons.

Since every k-relevant edge belongs to two k-stars and every k-boundary edge be-
longs to one, this complex is a surface with boundary, with gcd(n, k) boundary com-
ponents. Also, it is orientable since the natural orientation of each k-star can be in-
herited on each polygon. Hence, from its Euler characteristic, we derive its genus:

gn,k = 1

2
(2 − f + e − v − b) = 1

2

(
2 − n + k + kn − 2k2 − gcd(n, k)

)
.

That is, the surface does not depend on the k-triangulation T but only on n and k.
We denote Sn,k this surface. The polygonal complex C(T ) of each k-triangulation
provides a polygonal decomposition of Sn,k .

Figure 23 shows the surfaces associated to the 2-triangulations T min
n,2 for n = 6,7

and 8.
Apart from its beauty, this interpretation of k-triangulations as polygonal decom-

positions of surfaces is interesting for the following reason.
Let T be a k-triangulation of the n-gon, and let f be a k-relevant edge of T . Let

R and S be the two k-stars of T containing f , and let e be the common bisector of R

and S. Let X and Y be the two k-stars of T �{e, f } containing e.
Then T \ {f } can be viewed as a decomposition of Sn,k into n − 2k − 2 (2k + 1)-

gons and one 4k-gon, obtained from C(T ) by gluing the two (2k + 1)-gons R and
S along the edge f . And then T �{e, f } is obtained from T \ {f } by splitting this
4k-gon into the two (2k + 1)-gons X and Y .

As an example, in Fig. 24 we have drawn the decomposition of the cylinder cor-
responding to the 2-triangulation T min

6,2 . The second 2-triangulation is obtained from

T min
6,2 by flipping the edge [1,4], and we have represented the decomposition of the
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Fig. 24 A cycle of flips

cylinder obtained by flipping the edge on the surface. If we now flip [0,3] and then
[2,5], we obtain again the triangulation T min

6,2 .
Observe that although the corresponding decomposition is combinatorially the

same as in the first picture, it has been “twisted” on the surface. This phenomenon
can be interpreted as a homomorphism between

(i) the fundamental group πn,k of the graph of flips Gn,k (i.e. the set of closed walks
in Gn,k , based at an initial k-triangulation, considered up to homotopy); and

(ii) the mapping class group Mn,k of the surface Sn,k (i.e. the set of diffeomor-
phisms of the surface Sn,k into itself that preserve the orientation and that fix the
boundary of Sn,k , considered up to isotopy [3, 20]).

It may be interesting to understand the image and the kernel of this homomorphism.
In particular, if this homomorphism is surjective, this interpretation provides a new
combinatorial description of the mapping class group of Sn,k .

This homomorphism is actually a monodromy action. Let Gn,k denote the set of
embeddings f : T → Sn,k , where T ranges over all k-triangulations of the n-gon,
and embeddings are considered modulo isotopy. We make Gn,k into a graph, lifting
flips between k-triangulations as in the example above. Then, the “forgetful map” is
a covering map Gn,k → Gn,k. The mapping class group is the group of deck transfor-
mations of this cover and the above homomorphism is the corresponding monodromy
action.

Chirotopes Let T be a k-triangulation and let S be a k-star of T . If we consider
our n-gon with vertices in the unit circle C ⊂ R

2, then lines that intersect C form a
Möbius strip in the dual RP 2. It is easy to check that the set of all geometric bisec-
tors of a k-star S (including the edges of S as limit cases) form a pseudoline �S in
the Möbius strip. Furthermore, as Michel Pocchiola pointed out to us, Theorem 3.5
affirms that the two pseudolines corresponding to two k-stars of T intersect exactly
once. Thus, the set of pseudolines associated to the k-stars of T is an arrangement
of pseudolines in RP 2. In particular, it defines a chirotope or oriented matroid (of
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rank 3) χT on the set of k-stars of T [4, 23, 31]. This is an analogue to the chirotope
(or pseudo-line arrangement) that Pocchiola and Vegter introduce for pseudotriangu-
lations [29, 30, 33].

We can also define the chirotope directly (that is, in the “primal space”) as follows.
Let S,S′ and S′′ be three k-stars of T . Let u and v be vertices of S and S′, respectively,
such that [u,v] is the unique common bisector of S and S′. We define χT (S,S′, S′′)
to be negative if S′′ has more vertices in �u,v� than in �v,u�, and positive in the other
case (it is easy to see that S′′ can not have has many vertices in �u,v� and in �v,u�).

This chirotope provides a new interpretation of some of the results in this paper.
For example, external k-stars (i.e. k-star containing at least one k-boundary edge)
are exactly the elements on the convex hull of this chirotope. Thus, Corollary 6.2 of
Sect. 6 can be rewritten as: the number of k-ears of a k-triangulation T of the n-gon is
n minus the number of k-stars of the convex hull of χT . Remember also that external
k-stars where relevant in Sect. 7. More technical details and further results on this
topic will be given in a subsequent paper.

Note Added in Proof After the completion of this paper we have found out that our main result, Theo-
rem 1.4, was independently discovered by Dress et al. [12].
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