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Abstract We study the set of all pseudoline arrangements with contact points which
cover a given support. We define a natural notion of flip between these arrangements
and study the graph of these flips. In particular, we provide an enumeration algorithm
for arrangements with a given support, based on the properties of certain greedy
pseudoline arrangements and on their connection with sorting networks. Both the
running time per arrangement and the working space of our algorithm are polyno-
mial.

As the motivation for this work, we provide in this paper a new interpretation
of both pseudotriangulations and multitriangulations in terms of pseudoline arrange-
ments on specific supports. This interpretation explains their common properties and
leads to a natural definition of multipseudotriangulations, which generalizes both.
We study elementary properties of multipseudotriangulations and compare them to
iterations of pseudotriangulations.
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Fig. 1 (a) A triangulation T of a convex point set P. (b) The dual pseudoline arrangement P* of P
(whose first level is highlighted). (¢) The dual pseudoline arrangement 7* of T

1 Introduction

The original motivation for this paper is the interpretation of certain families of pla-
nar geometric graphs in terms of pseudoline arrangements. As an introductory il-
lustration, we present this interpretation on the family of triangulations of a convex
polygon.

Let P be a finite point set in convex position in the Euclidean plane R?. A rrian-
gulation T of P is a maximal crossing-free set of edges on P, or equivalently, a de-
composition of the convex hull of P into triangles with vertices in P. See Fig. 1(a).
A (strict) bisector of a triangle A of T is a line which passes through a vertex of A
and (strictly) separates its other two vertices. Observe that any triangle has a unique
bisector parallel to any direction. Moreover any two triangles of 7 have a unique
common strict bisector, and possibly an additional non-strict bisector if they share an
edge.

We now switch to the line space M of the Euclidean plane R?. Remember that M
is a Mdbius strip homeomorphic to the quotient space R?/(0, d) ~ (0 + , —d) via
the parametrization of an oriented line by its angle 6 with the horizontal axis and
its algebraic distance d to the origin (see Sect. 3 for details). For pictures, we rep-
resent M as a vertical band whose boundaries are identified in opposite directions.
The dual of a point p € P is the set of all lines of R? passing through p. It is a
pseudoline of M, i.e. a non-separating simple closed curve. The dual of P is the
set P*:={p* | p € P}. It is a pseudoline arrangement of M, since any two pseu-
dolines p*, g* of P* cross precisely once at the line (pq). Call first level of P* the
boundary of the external face of the complement of P*. It corresponds to the sup-
porting lines of the convex hull of P. See Fig. 1(b).

As illustrated on Fig. 1(c), we observe after [32, 33] that:

(1) the set A* of all bisectors of a triangle A of T is a pseudoline of M;

(ii) the dual pseudolines A}, A3 of any two triangles Ay, Ay of T have a unique
crossing point (the unique common strict bisector of A; and A;) and possibly a
contact point (when A and A, share a common edge);

(iii) the set T* := {A* | A triangle of T} is a pseudoline arrangement with contact
points; and

(iv) T* covers P* minus its first level.
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We furthermore prove in this paper that this interpretation is bijective: any pseu-
doline arrangement with contact points supported by P* minus its first level is the
dual pseudoline arrangement 7* of a triangulation 7' of P.

Motivated by this interpretation, we study the set of all pseudoline arrangements
with contact points which cover a given support in the Mobius strip. We define a
natural notion of flip between them, and study the graph of these flips. In particular,
we provide an enumeration algorithm for arrangements with a given support (similar
to the enumeration algorithm of [7] for pseudotriangulations), based on certain greedy
pseudoline arrangements and their connection with primitive sorting networks [23,
Sect. 5.3.4, 10, 24]. The running time per arrangement and the working space of our
algorithm are both polynomial.

We are especially interested in the following particular situation. Let L be a pseu-
doline arrangement and k be a positive integer. We call k-pseudotriangulation of L
any pseudoline arrangement with contact points that covers L minus its first k levels.
These objects provide dual interpretations for two, until now unrelated, classical gen-
eralizations of triangulations of a convex polygon (see Sect. 3 for the definitions and
basic properties of these geometric graphs):

Pseudotriangulations (k = 1). Introduced for the study of the visibility complex of a
set of disjoint convex obstacles in the plane [34, 35], pseudotriangulations were
used in different contexts such as motion planning and rigidity theory [15, 42].
Their combinatorial and geometric structure has been extensively studied in the
last decade (number of pseudotriangulations [1, 2], polytope of pseudotriangula-
tions [36], algorithmic issues [5, 7, 16], etc.). See [37] for a detailed survey on the
subject. As far as pseudotriangulations are concerned, this paper has two main ap-
plications: it proves the dual characterization of pseudotriangulations in terms of
pseudoline arrangements and provides an interpretation of greedy pseudotriangula-
tions in terms of sorting networks, leading to a new proof of the greedy flip property
for points [3, 7, 34]. The objects studied in this paper have a further (algorithmic)
motivation: as a first step to compute the dual arrangement of a set of disjoint con-
vex bodies described only by its chirotope, Habert and Pocchiola raise in [16] the
question to compute efficiently a pseudotriangulation of a pseudotriangulation of
the set, i.e. a 2-pseudotriangulation.

Multitriangulations (convex position). Introduced in the context of extremal theory
for geometric graphs [9], multitriangulations were then studied for their combina-
torial structure [11, 12, 20, 25]. The study of stars in multitriangulations [28], gen-
eralizing triangles for triangulations, naturally leads to interpret multitriangulations
as multipseudotriangulations of points in convex position. As far as we know, this
paper provides the first interpretation of multitriangulations in terms of pseudoline
arrangements on the Mobius strip.

The paper is organized as follows. Section 2 is devoted to the study of all pseu-
doline arrangements with contact points covering a given support. We define the flip
and the greedy pseudoline arrangements (2.2) whose properties yield the enumeration
algorithm for pseudoline arrangements with a given support (2.3).

In Sect. 3, we prove that the pseudotriangulations of a finite planar point set P
in general position correspond to the pseudoline arrangements with contact points
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supported by the dual pseudoline arrangement of P minus its first level (3.2). Simi-
larly, we observe that multitriangulations of a planar point set P in convex position
correspond to pseudoline arrangements with contact points supported by the dual
pseudoline arrangement of P minus its first k levels (3.3).

This naturally yields to the definition of multipseudotriangulations in Sect. 4. We
study the primal of a multipseudotriangulation. We discuss some of its structural
properties (4.2) which generalize the cases of pseudotriangulations and multitrian-
gulations: number of edges, pointedness, crossing-freeness. We study in particu-
lar the faces of multipseudotriangulations (4.3) which naturally extend triangles in
triangulations, pseudotriangles in pseudotriangulations, and stars in multitriangula-
tions.

In Sect. 5, we compare multipseudotriangulations to iterated pseudotriangulations.
We give an example of a 2-triangulation which is not a pseudotriangulation of a trian-
gulation (5.1). We prove, however, that greedy multipseudotriangulations are iterated
greedy pseudotriangulations (5.2), and we study flips in iterated pseudotriangulations
(5.3).

Section 6 presents two further topics. The first one (6.1) is a pattern avoid-
ing characterization of greedy multipseudotriangulations related to horizon trees.
The second one (6.2) is a discussion on multipseudotriangulations of double pseu-
doline arrangements, which extend pseudotriangulations of convex bodies in the
plane.

Finally, we discuss in Sect. 7 some related problems and open questions con-
cerning in particular the primal of a multipseudotriangulation, the diameter and
the polytopality of the graph of flips, and the number of multipseudotriangulations.
Since the submission of this paper, some of these questions were partially answered
in [29, 40, 43] based on a framework similar to the material presented in this pa-
per.

2 Pseudoline Arrangements with the Same Support
2.1 Pseudoline Arrangements in the Mobius Strip

Let M denote the Mobius strip (without boundary), defined as the quotient set of the
plane R? under the map 7 : R> — R2, (x, y) —~ (x + 7, —). The induced canonical
projection will be denoted by 7 : R — M.

A pseudoline is the image A under the canonical projection 7 of the graph
{(x, f(x)) | x € R} of a continuous and r-antiperiodic function f : R — R (that
is, which satisfies f(x + m) = — f(x) for all x € R). We say that f represents the
pseudoline A.

When we consider two pseudolines, we always assume that they have a finite num-
ber of intersection points. Thus, these intersection points can only be either crossing
points or contact points. See Fig. 3(a). Any two pseudolines always have an odd
number of crossing points (in particular, at least one). When A and u have exactly
one crossing point, we denote it by A A .

A pseudoline arrangement with contact points is a finite set A of pseudolines
such that any two of them have exactly one crossing point and possibly some contact
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Fig.2 A pseudoline
arrangement in the Mobius strip.
Its contact points are represented
by white circles

R | -

---' b-‘ ‘-----‘ “IIIIIIIIIII g

points. See Fig. 2. In this paper, we are only interested in simple arrangements, that is,
where no three pseudolines meet in a common point. The support of A is the union
of its pseudolines. Observe that A is completely determined by its support together
with its set of contact points. The first level of A is the external hull of the support
of A, i.e. the boundary of the external face of the complement of the support of A.
We define inductively the kth level of A as the external hull of the support of A minus
its first k — 1 levels.

Remark 1 The usual definition of pseudoline arrangements does not allow contact
points. In this paper, they play a crucial role since we are interested in all pseudoline
arrangements which share a common support, and which only differ by their sets of
contact points. To simplify the exposition, we omit throughout the paper to specify
that we work with pseudoline arrangements with contact points.

Pseudoline arrangements are also classically defined on the projective plane rather
than the Mobius strip. The projective plane is obtained from the Mobius strip by
adding a point at infinity.

For more details on pseudoline arrangements, we refer to the broad literature on
the topic [6, 13, 14, 24].

2.2 Flip Graph and Greedy Pseudoline Arrangements
2.2.1 Flips

We use the symbol A for the symmetric difference: XAY := (X N\ Y)U (Y \ X). We
refer to Fig. 3 for an illustration of the following lemma.

Lemma 2 Let A be a pseudoline arrangement, S be its support, and V be the set
of its contact points. Let v € V be a contact point of two pseudolines of A, and w
denote their unique crossing point. Then V A{v, w} is also the set of contact points
of a pseudoline arrangement A’ supported by S.

Proof Let f and g represent the two pseudolines A and p of A in contact at v.
Let x and y be such that v =7 (x, f(x)), w=n(y, f(y)) and x <y <x + 7. We
define two functions f’ and g’ by
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Fig. 3 (a) A pseudoline
arrangement with one contact
point v and one crossing
point w. (b) Flipping v in the
pseudoline arrangement of (a)
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_ f onl[x,y]l+Zm, and g = g onlx,yl+Zm,

,.
I g otherwise, f otherwise.
These two functions are continuous and -antiperiodic, and thus define two pseudo-
lines " and . These two pseudolines have a contact point at w and a unique crossing
point at v, and they cross any pseudoline v of A \ {A, it} exactly once (since v either
crosses both A and i between v and w, or crosses both A and x between w and v).
Consequently, A" := AA{A, u, A, '} is a pseudoline arrangement, with support S,
and contact points VA{v, w}. O

Definition 3 Let A be a pseudoline arrangement with support S and contact
points V, let v € V be a contact point between two pseudolines of A which
cross at w, and let A’ be the pseudoline arrangement with support S and contact
points V A{v, w}. We say that we obtain A’ by flipping v in A.

Note that the starting point of a flip is always a contact point. To this contact point
corresponds precisely one crossing point. In contrast, it would be incorrect to try to
flip a crossing point: the two pseudolines which cross at this point might have zero or
many contact points.

Observe also that the pseudoline arrangements A and A’ are the only two pseudo-
line arrangements supported by S whose sets of contact points contain V ~\ {v}.

Definition 4 Let S be the support of a pseudoline arrangement. The flip graph of S,
denoted by G(S), is the graph whose vertices are all the pseudoline arrangements
supported by S, and whose edges are flips between them.

In other words, there is an edge in the graph G(S) between two pseudoline ar-
rangements if and only if their sets of contact points differ by exactly two points.

Observe that the graph G(S) is regular: there is one edge adjacent to a pseudo-
line arrangement A supported by S for each contact point of A, and two pseudoline
arrangements with the same support have the same number of contact points.

Example 5 The flip graph of the support of an arrangement of two pseudolines with p
contact points is the complete graph on p 4 1 vertices.

@ Springer



148 Discrete Comput Geom (2012) 48:142-191

2.2.2 Acyclic Orientations

Let S be the support of a pseudoline arrangement and S denote its preimage under the
projection 7. We orient the graph S along the abscissa increasing direction, and the
graph S by projecting the orientations of the edges of S. We denote by < the induced
partial order on the vertex set of S (defined by z < 7’ if there exists an oriented path
on S from z to 7).

A filter of S is a proper set F of vertices of S such that z € F and z < 7/ im-
plies 7' € F. The corresponding antichain is the set of all edges and faces of S with
one vertex in F and one vertex not in F. This antichain has a linear structure, and
thus, can be seen as the set of edges and faces that cross a vertical curve x of R2.
The projection x := m () of such a curve is called a cut of S. We see the fundamen-
tal domain located between the two curves x and t(x) as the result of cutting the
Mobius strip along the cut x. For example, we use such a cut to represent pseudoline
arrangements in all figures of this paper. See for example Fig. 3.

The cut x defines a partial order <, on the vertex set of S: for all vertices v and w
of S, we write v <, w if there is an oriented path in S which does not cross .
In other words, v <, w if v < w, where v (resp. w) denotes the unique preimage
of v (resp. w) between x and t(x). For example, in the arrangements of Fig. 3, we
have v <, w.

Let A be a pseudoline arrangement supported by S, v be a contact point between
two pseudolines of A and w denote their crossing point. Since v and w lie on a same
pseudoline on S, they are comparable for <, . We say that the flip of v is x -increasing
if v <, w and yx-decreasing otherwise. For example, the flip from (a) to (b) in Fig. 3
is x-increasing. We denote by G, (S) the directed graph of x-increasing flips on
pseudoline arrangements supported by S.

Lemma 6 The directed graph G ,(S) of x-increasing flips is acyclic.

Proof If A and A’ are two pseudoline arrangements supported by S, we write
A <, A’ if there exists a bijection ¢ between their sets of contact points such
that v <, ¢(v) for any contact point v of A. It is easy to see that this relation is
a partial order on the vertices of G, (S). Since the edges of G, (S) are oriented ac-
cording to <, the graph G, (S) is acyclic. O

Theorem 7 below states that this acyclic graph G, (S) has in fact a unique source,
and thus is connected.

2.2.3 Sorting Networks

Let n denote the number of pseudolines of the arrangements supported by S and
m > (;) their number of intersection points (crossing points plus contact points).
We consider a chain F = F,;; D F;;—1 D --- D F| D Fy = t(F) of filters of S
such that two consecutive of them F; and F;i; only differ by a single element:
{vi}:= Fj41 ~ F;. This corresponds to a (backward) sweep x = x0, X1s+--» Xm = X
of the Mobius strip, where each cut ;4 is obtained from the cut x; by sweeping a
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Fig. 4 A (backward) sweep of
the support of the pseudoline
arrangement of Fig. 2

maximal vertex v; := 7 (v;) of S (for the partial order <, ). For all i, let eil , el.z, ey e;.’

denote the sequence of edges of S with exactly one vertex in F;, ordered from top
s . i
to bottom, and let i be the index such that ¥; is the common point of edges e;
0
and ¢; +1 (see Fig. 4).

Let A :={)\{,...,A,} be a pseudoline arrangement supported by S. For all i,
we denote by o} the permutation of {1,...,n} whose jth entry o;(j) is the in-
dex of the pseudoline supporting e, i.e. such that 7(e/) C AgA(jy- Up to rein-
dexing the pseudolines of A, we can assume that O’OA is the inverted permutation
O'OA :=[n,n—1,...,2, 1], and consequently that a,ﬁ is the identity permutation. Ob-
serve that for all i:

(i) if v; is a contact point of A, then 0! = oifq;

A

(i) otherwise, o/, is obtained from al.A by inverting its iYth and (iIj + 1)th entries.

+1
The following theorem is illustrated on Fig. 5.

Theorem 7 The directed graph G, (S) has a unique source I", characterized by
the property that the permutation O'il_;_ | Is obtained from O’iF by sorting its iYth and
(iD + D)th entries, for all i.

Proof If I satisfies the above property, then it is obviously a source of the directed
graph G, (S): any flip of I' is x-increasing since two of its pseudolines cannot touch
before they cross.

Assume conversely that I" is a source of G,(S). Let a := al.r @i D) and

b= oiF (iD + 1). We have two possible situations:

(i) If a < b, then the two pseudolines A, and Ap, of I already cross before v;. Con-
sequently, v; is necessarily a contact point of I", which implies that crl.ljrl (i =a
and o, (iU + 1) = b.

(i1) If a > b, then the two pseudolines A, and Aj, of I" do not cross before v;. Since I”
is a source of G, (S), v; is necessarily a crossing point of I". Thus 011;1 (iD) =b
and ol (P +1)=a.
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Fig. 5 The greedy pseudoline
arrangement on the support of

Fig. 2, obtained by sorting the 3
permutation [5, 4, 3, 2, 1]. The L -4‘
result of each comparator is 1‘— 2

written after it (i.e. to its left
since we sweep backwards)

In both cases, al.q_

| is obtained from oiF by sorting its i Dth and (i + 1)th entries. O
Corollary 8 The graphs of flips G(S) and G, (S) are connected.

Definition 9 The unique source of the directed graph G, (S) is denoted by I'y (S)
and called the y-greedy pseudoline arrangement on S.

Let us reformulate Theorem 7 in terms of sorting networks (see [23, Sect. 5.3.4] for
a detailed presentation; see also [10]). Let i < j be two integers. A comparator [i : j]

transforms a sequence of numbers (a, ..., a,) by sorting (a;,a;), i.e. replacing a;
by min(a;, a;) and a; by max(a;, a;). A comparator [i : j] is primitive if j =i + 1.
A sorting network is a sequence of comparators that sorts any sequence (aj, ..., ;).

The support S of an arrangement of n pseudolines together with an arbitrary sweep
F, D --- D Fy corresponds to the primitive sorting network [1D 10 4+ 1],...,
[mD cmY + 1] (see [24, Sect. 8]). Theorem 7 affirms that sorting the permutation
[n,n—1,...,2,1] according to this sorting network provides a pseudoline arrange-
ment supported by S, which depends only upon the support S and the filter Fyy (not
on the total order given by the sweep).

2.2.4 Greedy Set of Contact Points

The following proposition provides an alternative construction of the greedy pseudo-
line arrangement Iy (S) of the support S.

Proposition 10 Let vy, ..., v, be a sequence of vertices of S constructed recursively
by choosing, as long as possible, a remaining vertex v; of S minimal (for the partial
order <) such that {v1, ..., v;} is a subset of the set of contact points of a pseudoline
arrangement supported by S. Then the resulting set {v1, ..., v,} is exactly the set of
contact points of I'y (S).

Proof Firstof all, {vy, ..., v,} is by construction the set of contact points of a pseudo-
line arrangement A supported by S. If A is not the (unique) source Iy (S) of the ori-
ented graph G, (S), then there is a contact point v; of A whose flip is x-decreasing.
Let w denote the corresponding crossing point, and A’ the pseudoline arrangement
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obtained from A by flipping v;. This implies that {vy,...,v;—1, w} is a subset of
the set of contact points of A’ and that w <, v;, which contradicts the minimality
of v;. O

Essentially, this proposition affirms that we obtain the same pseudoline arrange-
ment when:

(i) sweeping S decreasingly and place crossing points as long as possible; or
(i1) sweeping S increasingly and place contact points as long as possible.

2.2.5 Constrained Flip Graph

We now need to extend the previous results to constrained pseudoline arrangements
on S, in which we force a set V of vertices of S to be contact points.

Theorem 11 Let V be a subset of vertices of the support S, and let G, (S| V) be the
subgraph of G, (S) induced by the pseudoline arrangements with support S, whose
set of contact points contains V. Then this directed graph G, (S| V) is either empty
or an acyclic connected graph with a unique source I" characterized by the property
that for all i:

@) ifv; €V, then Uiil = O’ir;
(i) if v; ¢ V, then aiil is obtained from oir by sorting its iYth and (© + 1)th

entries.

Proof We transform our support S into another one S’ by opening all intersection
points of V (the local picture of this transformation is ><—X). If §’” supports at least
one pseudoline arrangement, we apply the result of Theorem 7: a pseudoline arrange-
ment supported by S’ corresponds to a pseudoline arrangement with support S whose
set of contact points contains V. g

We denote by I', (S| V) the unique source of the constrained flip graph G, (S| V).

In terms of sorting networks, I, (S| V) is the result of the sorting of the inverted
permutation [n,n —1, ..., 2, 1] by the restricted primitive network ([i Y 1ier,
where [ :={i |v; ¢ V}.

Observe also that we can obtain, like in the previous subsection, the contact points
of I, (S| V) by an iterative procedure: we start from the set V and add recursively a
minimal (for the partial order <, ) remaining vertex v; of S such that V U {v1, ..., v;}
is a subset of the set of contact points of a pseudoline arrangement supported by S.
The vertex set produced by this procedure is the set of contact points of the x -greedy
constrained pseudoline arrangement Iy (S| V).

2.3 Greedy Flip Property and Enumeration
2.3.1 Greedy Flip Property

We are now ready to state the greedy flip property (see Fig. 6) that says how to up-
date the greedy pseudoline arrangement I, (S| V) when either x or V are slightly
perturbed.
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X 7(x) X T(x) ()

Fig. 6 The greedy flip property

Theorem 12 (Greedy flip property) Let S be the support of a pseudoline arrange-
ment. Let x be a cut of S, v be a minimal (for the order <) vertex of S, and V de-
note the cut obtained from y by sweeping v. Let V be a set of vertices of S (such
that G(S|V) is not empty), and W :=V U {v}. Then:

(1) Ifvis a contact point of I'y (S| V) which is notin 'V, then Iy, (S| V) is obtained
Sfrom I'y (S| V) by flipping v. Otherwise, I'y (S| V) =Ty (S| V).

(2) If v is a contact point of I'(S|V), then I'y(S|W) = I'(S|V). Other-
wise, G(S | W) is empty.

Proof We consider a sweep
Fut1=FD>Fy=F D>Fy_12>--DFKDF =1(F)D Fy=1(F)

such that F (resp. F’) is a filter corresponding to the cut yx (resp. ). Define

the points v; := F;+1 \ F; and v; :=m(v;), and the index iU as previously. Let

o1, ...,0my+1 denote the sequence of permutations corresponding to I, (S|V) on
the sweep F| C - -- C Fy,+1. In other words:

(1) oy is the inverted permutation [n,n — 1, ...,2, 1];
(i) if v; € V, then 041 =0}
(iii) otherwise, oj is obtained from o; by sorting its iYth and (iD + 1)th entries.

Similarly, let po, ..., pm and wy, ..., ®; denote the sequences of permutations cor-

responding to I, (S| V) and Iy (S| W), respectively, on the sweep Fo C -+ C Fj,.
Assume first that v is a contact point of I, (S| V), but is not in V. Let j denote

the integer such that v; is the crossing point of the two pseudolines of Iy (S| V) that

are in contact at v. We claim that in this case Iy (S| V) is obtained from I, (S| V)

by flipping v, i.e. that:

(i) forall 1 <i < j, p; is obtained from o; by exchanging m- and mY + 1;

(i) forall j <i <m, p; = 0j.

Indeed, p; is obtained by exchanging mY and m™ + 1 in the sequence po = [n,n —
1,...,2,1] = oy (since mY and mP + 1 are, respectively, the (0D + 1)th and 0Pth
entries of pp). Then any comparison between two consecutive entries give the same
result in p; and in o;, until mY and m= + 1 are compared again, i.e. until i = j. At
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this stage, mY and m= + 1 are already sorted in p; but not in o ;. Consequently, we
have to exchange m™ and m™ + 1 in o;j and not in p;, and we obtain 011 = 0j41.
After this, all the comparisons give the same result in p; and o;, and p; = o; for
all j <i <m.

We prove similarly that:

e When v is not a crossing point of I, (S| V), orisin V, p; = o; for all i € [m], and
Ly(SIV)=Ty(S|V).

e When v is a contact point of I'y (S| V), w; = o; forall i € [m], and Iy, (S| W) =
Iy (S|v).

Finally, we prove that G(S|W) is empty when v is not a contact point
of I, (S| V). For this, assume that G(S| W) is not empty, and consider the greedy
arrangement I" =1, (S|W). The flip of any contact point of I" not in W is
X -increasing. Furthermore, since v is a minimal element for <, the flip of v is also
x-increasing. Consequently, I" is a source in the graph G, (S|V), which implies
that I, (S| V) = I', and thus, v is a contact point of I, (S| V). O

2.3.2 Enumeration

From the greedy flip property, we derive a binary tree structure on colored pseudoline
arrangements supported by S, whose left-pending leaves are precisely the pseudoline
arrangements supported by S. A pseudoline arrangement is colored if its contact
points are colored in blue, green or red. Green and red contact points are considered
to be fixed, while blue ones can be flipped.

Theorem 13 Let 7 be the binary tree on colored pseudoline arrangements supported
by S defined as follows:

(1) The root of the tree is the x-greedy pseudoline arrangement on S, entirely col-

ored in blue.

(ii) Any node A of T is a leaf of T if either it contains a green contact point or it
only contains red contact points.

(iii) Otherwise, choose a minimal blue point v of A. The right child of A is obtained
by flipping v and coloring it in blue if the flip is x -increasing and in green if the
flip is x-decreasing. The left child of A is obtained by changing the color of v
into red.

Then the set of pseudoline arrangements supported by S is exactly the set of red-
colored leafs of T .

Proof The proof is similar to that of Theorem 9 in [7].

We define inductively a cut x(A) for each node A of 7: the cut of the root is yx,
and for each node A the cut of its children is obtained from x by sweeping the
contact point v. We also denote V (A) the set of red contact points of A. With these
notations, the greedy flip property (Theorem 12) ensures that A = I', (4)(S |V (A)),
for each node A of 7.

The fact that any red-colored leaf of 7 is a pseudoline arrangement supported
by S is obvious. Reciprocally, let us prove that any pseudoline arrangement supported
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by S is ared leaf of 7. Let A be a pseudoline arrangement supported by S. We define
inductively a path Ao, ..., A, in the tree 7 as follows: Ag is the root of 7 and for
all i >0, A;4 is the left child of A; if the minimal blue contact point of A; is a
contact point of A, and its right child otherwise (we stop when we reach a leaf). We
claim that forall 0 <i < p:

e the set V(A;) is a subset of contact points of A;
e the contact points of A notin V (A;) are not located between x (A) and y;

from which we derive that A = A, is a red-colored leaf. O

Visiting the tree 7 provides an algorithm to enumerate all pseudoline arrange-
ments with a given support. In the next section, we will see the connection between
this algorithm and the enumeration algorithm of [7] for pseudotriangulations of a
point set.

Let us briefly discuss the complexity of this algorithm. We assume that the input
of the algorithm is a pseudoline arrangement and we consider a flip as an elementary
operation. Then this algorithm requires a polynomial running time per pseudoline
arrangement supported by S. As for many enumeration algorithms, the crucial point
of this algorithm is that its working space is also polynomial (while the number of
pseudoline arrangements supported by S is exponential).

3 Dual Pseudoline Arrangements

In this section, we prove that both the graph of flips on “(pointed) pseudotriangula-
tions of a point set” and the graph of flips on “multitriangulations of a convex poly-
gon” can be interpreted as graphs of flips on “pseudoline arrangements with a given
support”. This interpretation is based on the classical duality that we briefly recall in
the first subsection, and leads to a natural definition of “multipseudotriangulations of
a pseudoline arrangement” that we present in Sect. 4.

3.1 Dual Pseudoline Arrangement of a Point Set

To a given oriented line in the Euclidean plane, we associate its angle 6 € R/2n7Z
with the horizontal axis and its algebraic distance d € R to the origin (i.e. the
value of ((—v,u) | .) on the line, where (u,v) is its unitary direction vector).
Since the same line oriented in the other direction gives an angle 6 + 7 and
a distance —d, this parametrization naturally associates a point of the Mobius
strip M := R%/(6,d) ~ (6 + m, —d) to each line of the Euclidean plane. In other
words, the line space of the Euclidean plane is (isomorphic to) the Mobius strip.

Via this parametrization, the set of lines passing through a point p forms a pseudo-
line p*. The pseudolines p* and ¢* dual to two distinct points p and ¢ have a unique
crossing point, namely the line (pg). Thus, for a finite point set P in the Euclidean
plane, the set P* :={p* | p € P} is a pseudoline arrangement without contact points
(see Fig. 7). Again, we always assume that the point set P is in general position
(no three points lie in a same line), so that the arrangement P* is simple (no three
pseudolines pass through the same point).

@ Springer



Discrete Comput Geom (2012) 48:142-191 155

Fig. 7 A point set P in general
position (a) and (1. a
(a representation of) its dual .b b
*
arrangement P* (b) ce c
° d
< d e
o f
J° h
.h )
(a) (b)

This elementary duality also holds for any topological plane (or R>-plane, see [39]
for a definition), not only for the Euclidean plane R2. That is to say, the line space
of a topological plane is (isomorphic to) the Mobius strip and the dual of a finite set
of points in a topological plane is a pseudoline arrangement without contact points.
Let us also recall that any pseudoline arrangement of the Mobius strip without con-
tact points is the dual arrangement of a finite set of points in a certain topological
plane [17]. Thus, in the rest of this paper, we deal with sets of points and their duals
without restriction to the Euclidean plane.

3.2 Dual Pseudoline Arrangement of a Pseudotriangulation

We refer to [37] for a detailed survey on pseudotriangulations, and just recall here
some basic definitions.

Definition 14 A pseudotriangle is a polygon A with only three convex vertices (the
corners of A), joined by three concave polygonal chains (Fig. 8). A line is said to be
tangent to A if:

(1) either it passes through a corner of A and separates the two edges incident to it;
(ii) or it passes through a concave vertex of A and does not separate the two edges
incident to it.

Fig. 8 Three pseudotriangles and their common tangents
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Fig. 9 (a) A pseudotriangulation T of the point set P of Fig. 7(a). (b) The dual arrangement 7* of T,
drawn on the dual arrangement P* of P of Fig. 7(b). Each pseudoline of T* corresponds to a pseudotri-
angle of T'; each contact point in 7* corresponds to an edge in T; each crossing point in 7* corresponds
to a common tangent in 7'

A pseudotriangulation of a point set P in general position is a set of edges of P
which decomposes the convex hull of P into pseudotriangles. We moreover always
assume that pseudotriangulations are pointed, meaning that there exists a line passing
through any point p € P and defining a half-plane containing all the edges incident
to p.

The results of this paper only concern pointed pseudotriangulations. Therefore we
omit to always specify that pseudotriangulations are pointed. Historically, pseudo-
triangulations were introduced for families of smooth convex bodies [35] and were
therefore automatically pointed. Pseudotriangulations of points, pointed or not, can
be regarded as limits of pseudotriangulations of infinitesimally small convex bodies.
Note that pointed pseudotriangulations are edge-minimal pseudotriangulations.

Under the pointedness assumption, any two pseudotriangles of a pseudotriangu-
lation have a unique common tangent. This leads to the following observation (see
Fig. 9):

Observation 15 [32, 33] Let T be a pseudotriangulation of a point set P in general
position. Then:

(i) the set A* of all tangents to a pseudotriangle A of T is a pseudoline;
(ii) the dual pseudolines A7, A% of any two pseudotriangles Ay, Ay of T have a
unique crossing point (the unique common tangent to A and A;) and possibly
a contact point (when A1 and A; share a common edge);
(iii) the set T* := {A* | A pseudotriangle of T'} is a pseudoline arrangement (with
contact points); and
(iv) T* is supported by P* minus its first level (see Fig. 9(b)).

In fact, this covering property characterizes pseudotriangulations:

Theorem 16 Let P be a finite point set in general position in the plane, and P*!
denote the support of its dual pseudoline arrangement minus its first level. Then:
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(1) The dual arrangement T* := {A* | A pseudotriangle of T} of a pseudotriangu-
lation T of P is supported by P*!.
(ii) The primal set of edges

E:={[p.ql|p.q € P, p* Aq* contact point of A}
of a pseudoline arrangement A supported by P*! is a pseudotriangulation of P.

In this section, we provide three proofs of part (ii) of this result. The first proof is
based on flips. First, remember that there is also a simple flip operation on pseudotri-
angulations of P: replacing any internal edge e in a pseudotriangulation of P by the
common tangent of the two pseudotriangles containing e produces a new pseudotri-
angulation of P. For example, Fig. 10 shows two pseudotriangulations of the point set
of Fig. 7(a), related by a flip, together with their dual pseudoline arrangements. We
denote by G(P) the graph of flips on pseudotriangulations of P, whose vertices are
pseudotriangulations of P and whose edges are flips between them. In other words,
there is an edge in G(P) between two pseudotriangulations of P if and only if their
symmetric difference is reduced to a pair.

Proof 1 of Theorem 16(ii) The two notions of flips (the primal notion on pseudotri-
angulations of P and the dual notion on pseudoline arrangements supported by P*!)
coincide via duality: an internal edge e of a pseudotriangulation 7" of P corresponds
to a contact point e* of the dual pseudoline arrangement 7*; the two pseudotrian-
gles Ay and Ay of T containing e correspond to the two pseudolines A} and A7
of T* in contact at ¢*; and the common tangent f of Aj and A, corresponds to the
crossing point f* of A} and Aj.

Thus, the graph G (P) is a subgraph of G(S). Since both are connected and regular
of degree | P| — 3, they coincide. In particular, any pseudoline arrangement supported
by P*! is the dual of a pseudotriangulation of P. O
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Fig. 11 (a) Four

points p, g, r, s in convex
position with the intersection ¢
of [p, r] and [g, s]. (b) A point s
inside a triangle pgr with the
witness pseudoline £,

(a) (b)

Remark 17 Observe that this duality matches our greedy pseudoline arrangement
supported by P*! with the greedy pseudotriangulation of [7]. In particular, the greedy
flip property and the enumeration algorithm of Sect. 2.3 are generalizations of results
in [7].

Our second proof of Theorem 16 is slightly longer but more direct, and it intro-
duces a “witness method” that we will repeatedly use throughout this paper. It is
based on the following characterization of pseudotriangulations:

Lemma 18 [42] A graph T on P is a pointed pseudotriangulation of P if and only
if it is crossing-free, pointed and has 2| P| — 3 edges.

Proof 2 of Theorem 16(ii) We check that E is crossing-free, pointed and has 2| P| —3
edges:

Cardinality. First, the number of edges of E equals the difference between the
number of crossing points of P* and of A:

El = (u;ﬂ) B (|2|> _ <|129|> B (|P|2— 2) op|s

Crossing-free. Let p,q,r, s be four points of P in convex position. Let ¢ be the
intersection of [p, r] and [g, s] (see Fig. 11(a)). We use the pseudoline t* as a witness
to prove that [p, r] and [g, s] cannot both be in E. For this, we count crossings of ¢*
with P* and A, respectively:

(i) Since P is in general position, the point ¢ is not in P. Therefore P* U {¢*} =
(P U {r})* is a (non-simple) pseudoline arrangement, and ¢* crosses P* ex-
actly | P| times.

(i1) Since t* is a pseudoline, it crosses each pseudoline of A at least once. Thus, it
crosses A at least |A| =|P| — 2 times.

(iii) For each of the points p* A r* and g™ A s*, replacing the crossing point by a
contact point removes two crossings with ¢*.

Thus, [p, r] and [g, s] cannot both be in E, and E is crossing-free.
Pointed. Let p, q,r,s be four points of P such that s lies inside the convex hull
of {p, q,r}. We first construct a witness pseudoline (see Fig. 11(b)) that we use to
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prove that [p,s], [g,s] and [r,s] cannot all be in E. Let f),, fy, fr and f; rep-
resent p*, g%, r* and s*, respectively. Let x, y,z € R be such that f,(x) = f;(x),
fq(¥) = fs(y) and f,(z) = fs(z). Let g be a continuous and 7 -antiperiodic function
vanishing exactly on {x, y, z} + Zx and changing sign each time it vanishes; say for
example g(¢) :=sin(f — x) sin(¢ — y) sin(t — z). For all ¢ > 0, we define the function
he : R — R by he(t) = fs(t) + eg(¢). The function h, is continuous and 7 -anti-
periodic. The corresponding pseudoline £, crosses s* three times. It is also easy to
see that if ¢ is sufficiently small, then £, crosses the pseudolines of (P . {s})* ex-
actly as s* does (see Fig. 11(b)). For such a small ¢, we count the crossings of £,
with P* and A, respectively:

(1) €. crosses P* exactly |P|+ 2 times (it crosses s* three times and any other
pseudoline of P* exactly once).
(ii) Since ¢, is a pseudoline, it crosses A at least [A| = |P| — 2 times.
(iii) For each of the points p* A s*, g* A s™ and r* A s*, replacing the crossing point
by a contact point removes two crossings with £;.

Thus, [p, 7], [¢, s] and [r, s] cannot all be in E, and E is pointed. O

Observe that once we know that E is crossing-free, we could also argue its point-
edness observing that the pseudolines of A would cover the dual pseudoline of a
non-pointed vertex twice.

Our third proof of Theorem 16 focusses on pseudotriangles. For every pseudo-
line A of the pseudoline arrangement A, we denote by

S :={lp.q1|p.q € P, p* A q* contact point of A}

the polygonal cycle formed by the edges primal to the contact points of L. For any
point g in the plane, we denote by o, (q) the winding number of S(A) around ¢,
i.e. the number of rounds made by S(A) around the point g.

Proof 3 of Theorem 16(ii) Consider a point g inside the convex hull of our point
set P, and such that P U {g} be in general position. Hence, its dual pseudoline ¢*
has exactly | P| crossings with P*, none of which are on the first level of P*. For
any pseudoline A € A, let 7, (¢) denote the number of intersection points between g*
and X (that is, the number of tangents to S(X) passing through ¢). Then we have
03.(q) = (11(q) — 1)/2 and

IPl=|g"NP*|=) (@) =141+2)_ oi(q)

reA reA

=|P|-2+2) oi(q).

reA

Consequently, >, . 4 01(q) = 1. Hence 03 (¢g) = 0 for all A € A, except for precisely
one pseudoline u € A which satisfies 0, (q) = 1.

As a consequence, all polygons S(A) for A € A are pseudotriangles (otherwise, we
would have points such that 0, (¢) > 1 for some A) and they cover the convex hull
of P. Consequently, these | P|—2 pseudotriangles form a pointed pseudotriangulation
of P. g
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Fig. 12 A 2-triangulation of the 0 7
octagon
1 6
2\ : ; 5
3 4

3.3 Dual Pseudoline Arrangement of a Multitriangulation

Let C,, denote the set of vertices of the convex regular n-gon. We are interested in the
following generalization of triangulations, introduced by Capoyleas and Pach [9] in
the context of extremal theory for geometric graphs (see Fig. 12).

Definition 19 For ¢ € N, an {-crossing is a set of ¢ mutually crossing edges
of C,. A k-triangulation of the n-gon is a maximal set of edges of C, with no
(k + 1)-crossing.

Observe that an edge of C, can be involved in a (k + 1)-crossing only if there
remain at least k vertices on each side. Such an edge is called k-relevant. An edge
with exactly (resp. strictly less than) kK — 1 vertices on one side is a k-boundary edge
(resp. a k-irrelevant edge). By maximality, every k-triangulation consists of all the
nk k-irrelevant plus k-boundary edges and some k-relevant edges.

In [28], the triangles and their bisectors are generalized for k-triangulations as
follows (see Fig. 13):

Definition 20 [28] A k-star is a star polygon of type {2k + 1/k}, that is, a set of
edges of the form {s;s; x| j € Zoxs1}, where s, 51, ..., 52 are cyclically ordered
around the unit circle. A (strict) bisector of a k-star is a (strict) bisector of one of its
angles s S8 jik-

As for k = 1, where triangles provide a powerful tool to study triangulations,
k-stars are useful to understand k-triangulations. In the following theorem, we point
out five properties of stars proved in [28]. Figures 13 and 14 illustrate these results
on the 2-triangulation of Fig. 12.

Fig. 13 The four 2-stars of the 2-triangulation of Fig. 12
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Fig. 14 A flip in the 0 7 0 7

2-triangulation of Fig. 12 ﬁ
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Theorem 21 [28] Let T be a k-triangulation of the n-gon. Then

(1) T contains exactly n — 2k k-stars and k(n — 2k — 1) k-relevant edges.

(i) Each edge of T belongs to zero, one, or two k-stars, depending on whether it is
k-irrelevant, k-boundary, or k-relevant.

(iii) Every pair of k-stars of T has a unique common strict bisector.

(iv) Flipping any k-relevant edge e of T into the common strict bisector f of the two
k-stars containing e produces a new k-triangulation T A{e, f} of the n-gon.
T and T Ale, [} are the only two k-triangulations of the n-gon containing
T \ {e}.

(v) The flip graph G, x on k-triangulations of the n-gon is connected and regular
of degree k(n — 2k — 1).

Similarly to Observation 15, we can interpret these properties of the stars of the
multitriangulations in the dual space (see Fig. 15):

Observation 22 Let T be a k-triangulation of a convex n-gon. Then:

(i) the set S* of all bisectors of a k-star S of 7T is a pseudoline of the Mobius strip;

(ii) the dual pseudolines ST, S; of any two k-stars S1, A, of T have a unique cross-
ing point (the unique common strict bisector of S; and S,) and possibly some
contact points (when S; and S, share common edges);

(iii) the set T* := {§* | S k-star of T} of dual pseudolines of k-stars of T is a pseu-
doline arrangement (with contact points); and

(iv) T* is supported by the dual pseudoline arrangement C;i of C, minus its first
k levels (see Fig. 15(b)).

Fig. 15 A 2-triangulation T of

: 0 7 S
the octagon (a) and its dual 1f0s: =0 ‘;o;’o 10 o~
pseudoline arrangement T* (b). T, & &S
Each thick pseudoline of T* 1 V, 6
corresponds to a 2-star of T'; T

L T
each contact point in 7' U
corresponds to an edge in T'; 2 5 6 U
each crossing point in 7* S
corresponds to a common ?,3 Vv
bisector in T 3 4 i 0222020 = O==-- 0=
@) (b)
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Again, it turns out that this observation provides a characterization of multitrian-
gulations of a convex polygon:

Theorem 23 Let C,, denote the set of vertices of a convex n-gon, and C j,‘k denote the
support of its dual pseudoline arrangement minus its first k levels. Then:

(1) The dual pseudoline arrangement T* := {S* | S k-star of T} of a k-triangula-
tion T of the n-gon is supported by C :k.
(ii) The primal set of edges

E:={[p.q]|p.q € Cu, p* Aq"* contact point of A}

of a pseudoline arrangement A supported by C,’fk is a k-triangulation of the
n-gon.

We provide two proofs of this theorem.

Proof 1 of Theorem 23(ii) The two notions of flips (the primal notion on k-triangula-
tions of the n-gon and the dual notion on pseudoline arrangements supported by C,’fk)
coincide. Thus, the flip graph G, ; on k-triangulations of the n-gon is a subgraph
of G(C;"k). Since they are both connected and regular of degree k(n — 2k — 1), these
two graphs coincide. In particular, any pseudoline arrangement supported by C;‘[k is
the dual of a k-triangulation of the n-gon. O

Proof 2 of Theorem 23(ii) We follow the method of our second proof of Theo-
rem 16(ii). Since E has the right number of edges (namely k(2n — 2k — 1)), we only
have to prove that it is (k + 1)-crossing-free. We consider 2k + 2 points py, ..., pk,
qo, - - -, gk cyclically ordered around the unit circle. Since the definition of cross-
ing (and thus, of £-crossing) is purely combinatorial, i.e. depends only on the cyclic
order of the points and not on their exact positions, we can move all the vertices
of our n-gon on the unit circle while preserving their cyclic order. In particular,
we can assume that the lines (p;g;)ico,... k) all contain a common point ¢. Its dual
pseudoline t* crosses C, exactly n times and A at least |A| = n — 2k times. Fur-
thermore, for any point p} A g, replacing the crossing point by a contact point re-
moves two crossings with t*. Thus, the pseudoline t* provides a witness which proves
that the edges [pi, qil, i € {0, ..., k}, cannot be all in E, and thus ensures that E is
(k + 1)-crossing-free. Il

4 Multipseudotriangulations

Motivated by Theorems 16 and 23, we define in terms of pseudoline arrangements a
natural generalization of both pseudotriangulations and multitriangulations. We then
study elementary properties of the corresponding set of edges in the primal space.
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4.1 Definition

We consider the following generalizations of both pseudotriangulations and multitri-
angulations:

Definition 24 Let L be a pseudoline arrangement supported by S. Define its
k-kernel S* to be its support minus its first k levels (which are the iterated external
hulls of S). Denote by V¥ the set of contact points of L in S¥. A k-pseudotriangula-
tion of L is a pseudoline arrangement whose support is S¥ and whose set of contact
points contains V.

Pseudotriangulations of a point set P correspond via duality to 1-pseudotriangula-
tions of the dual pseudoline arrangement P*. Similarly, k-triangulations of the n-gon
correspond to k-pseudotriangulations of the pseudoline arrangement C;¥ in convex
position. If L is a pseudoline arrangement with no contact point, then any pseudo-
line arrangement supported by S¥ is a k-pseudotriangulation of L. In general, the
condition that the contact points of L in its k-kernel should be contact points of any
k-pseudotriangulation of L is a natural assumption for iterating multipseudotriangu-
lations (see Sect. 5).

Let A be a k-pseudotriangulation of L. We denote by V (A) the union of the set
of contact points of A with the set of intersection points of the first k levels of L. In
other words, V (A) is the set of intersection points of L which are not crossing points
of A. As for pseudoline arrangements, the set V (A) completely determines A.

Flips for multipseudotriangulations are defined as in Lemma 2, with the restriction
that the contact points in V¥ cannot be flipped. In other words, the flip graph on
k-pseudotriangulations of L is exactly the graph G(S¥| V). Section 2 asserts that
the graph of flips is regular and connected, and provides an enumeration algorithm
for multipseudotriangulations of L.

Let x be a cut of (the support of) L. It is also a cut of the k-kernel S of L.
A particularly interesting example of k-pseudotriangulation of L is the source of
the graph of x-increasing flips on k-pseudotriangulations of L (see Fig. 16 for an
illustration):

Definition 25 The x-greedy k-pseudotriangulation of L, denoted F)/(‘ (L), is the
greedy pseudoline arrangement I (Sk|vHy.

4.2 Pointedness and Crossings

Let P be a point set in general position. Let A be a k-pseudotriangulation of P*
and V (A) be the set of crossing points of P* which are not crossing points of A. We
call primal of A the set

E:={[p,ql|p.q€ P, p* rng* € V(A)}

of edges of P primal to V(A) (see Fig. 17). Here, we discuss general properties
of primals of multipseudotriangulations. We start with elementary properties that we
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Fig. 16 The x-greedy e R, e U,
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already observed for the special cases of pseudotriangulations and multitriangulations
in the proofs of Theorems 16 and 23:

Lemma 26 The primal E of A has k(2| P| — 2k — 1) edges.

Proof The number of edges of E is the difference between the number of crossing
points in the pseudoline arrangements P* and A:

- (|1;*|) B <|/21|) _ (|§|) ~ <|P|2—2k> TSR

We now discuss pointedness of E. We call k-alternation any set { f; | i € Zok+1}
of 2k + 1 edges all incident to a common vertex and whose cyclic order around it is
given by

fo < firk < fi < fark <+ < fu < fu < fo.

where f; denotes the opposite direction of the edge f;.
Lemma 27 The primal E of A cannot contain a k-alternation.

Proof We simply mimic the proof of pointedness in Theorem 16. Let po, ..., pax
and g be 2k + 2 points of P such that F := {[p;,q]|i € Zk+1} is a k-alternation.
We prove that F' cannot be a subset of E by constructing a witness pseudoline ¢
that separates all the crossing points p}* A g* corresponding to F, while crossing g*
exactly 2k + 1 times and the other pseudolines of P* exactly as ¢g* does. (We skip
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(a) (b) (©

Fig. 18 (a) A non-2-pointed (but 2-alternation-free) 2-pseudotriangulation. (b) A 2-pseudotriangulation
containing a 3-crossing. (¢) A 3-crossing-free 2-alternation-free set not contained in a 2-pseudotriangula-
tion

the precise construction, since it is exactly the same as in the proof of Theorem 16.)
Counting the crossings of £ with P* and A, we obtain:

(i) £ crosses P* exactly | P| + 2k times;
(ii) £ crosses A at least |A| = |P| — 2k times;
(iii) for each of the points p A g*, replacing the crossing point by a contact point
removes two crossings with £.

Thus the edges [p;, g] cannot all be contained in E. O

Remark 28 Observe that a set of edges is pointed if and only if it is 1-alternation-free.
In contrast, we want to observe the difference between k-alternation-freeness and the
following natural notion of k-pointedness: we say that a set F' of edges with vertices
in P is k-pointed if for all p in P, there exists a line which passes through p and
defines a half-plane that contains at most k — 1 segments of F adjacent to p. Observe
that a k-pointed set is automatically k-alternation-free but that the converse statement
does not hold (see Fig. 18(a)).

Finally, contrarily to pseudotriangulations (k = 1) and multitriangulations (convex
position), the condition of avoiding (k + 1)-crossings does not hold for k-pseudo-
triangulations in general:

Remark 29 There exist k-pseudotriangulations with (k + 1)-crossings (see Fig. 18(b))
as well as (k + 1)-crossing-free k-alternation-free sets of edges that are not subsets
of k-pseudotriangulations (see Fig. 18(c)).

4.3 Stars in Multipseudotriangulations

To complete our understanding of the primal of multipseudotriangulations, we need
to generalize pseudotriangles of pseudotriangulations and k-stars of k-triangulations:
both pseudotriangles and k-stars correspond to pseudolines of the covering pseudo-
line arrangement.

We keep the notations of the previous section: P is a point set in general position,
A is a k-pseudotriangulation of P* and E is the primal set of edges of A.
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Fig. 19 (a) Winding number of 0
a star. (b) 2-depth in the point
set of Fig. 7(a) 0

(@ (b)

Definition 30 We call szar of a pseudoline A € A the set of edges
S :={lp.ql| p.q € P, p* Aq* contact point of }

primal to the contact points of X.
Lemma 31 For any A € A, the star S()) is non-empty.

Proof We have to prove that any pseudoline A of A supports at least one contact
point. If it is not the case, then A is also a pseudoline of P*, and all the | P| — 1 cross-
ing points of A with P* \ {1} should be crossing points of A with the arrangement
A~ {A}. This is impossible since |A \ {A}| =|P| — 2k — 1. O

Similarly to the case of k-triangulations of the n-gon, we say that an edge [p, ¢
of E is a k-relevant (resp. k-boundary, resp. k-irrelevant) edge if there remain strictly
more than (resp. exactly, resp. strictly less than) k — 1 points of P on each side
(resp. one side) of the line (pg). In other words, p* A g* is located in the k-kernel
(resp. in the intersection of the kth level and the k-kernel, resp. in the first k levels)
of the pseudoline arrangement P*. Thus, the edge [p, ¢] is contained in 2 (resp. 1,
resp. 0) stars of A.

The edges of a star S(A) are cyclically ordered by the order of their dual contact
points on A, and thus S(A) forms a (not-necessarily simple) polygonal cycle. For any
point g in the plane, let 0, (¢) denote the winding number of S(A) around ¢, that is,
the number of rounds made by S(A) around the point g (see Fig. 19(a)). For example,
the winding number of a point in the external face is 0.

We call k-depth of a point ¢ the number §%(g) of k-boundary edges of P crossed
by any (generic continuous) path from ¢ to the external face, counted positively
when passing from the “big” side (the one containing at least k vertices of P) to the
“small side” (the one containing k — 1 vertices of P), and negatively otherwise (see
Fig. 19(b)). That this number is independent from the path can be seen by mutation.
For example, 8! (¢) is 1 if ¢ is in the convex hull of P and 0 otherwise.

Proposition 32 Any point q of the plane is covered §*(g) times by the stars S(A),
A € A, of the k-pseudotriangulation A of P*:

gy =Y ou(q).

reA
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The proposition is intuitively clear: let us walk on a continuous path from the
external face to the point ¢. Initially, the winding numbers of all stars of A are zero
(we start outside all stars of A). Then each time we cross an edge e:

(1) If e is k-irrelevant, it is not contained in any star of A, and we do not change the
winding numbers of the stars of A.

(i1) If e is a k-boundary edge, and if we cross it positively, we increase the winding
number of the star S of A containing e; if we cross e negatively, we decrease the
winding number of S.

(iii) If e is k-relevant, then we decrease the winding number of one star of A con-
taining e and increase the winding number of the other star of A containing e.

Let us give a formal proof in the dual:

Proof of Proposition 32 Both ¢ (q) and 8%(g) can be read on the pseudoline ¢*:

(1) If 75 (¢g) denotes the number of intersection points between g* and A (that is, the
number of tangents to S(A) passing through ¢), then o (q¢) = (1a.(g¢) — 1)/2.

(ii) If y*(g) denotes the number of intersection points between ¢* and the first k
levels of P*, then 8K(¢) =k — y*(¢)/2.

The pseudoline ¢g* has exactly | P| crossings with P* (since P* U {¢*} is an arrange-
ment), which are crossings either with the pseudolines of A or with the first k levels
of P*. Hence,

IPl=v @)+ ) 1q) =2k —26"(@) + A1 +2)_au(9),
reA reA

and we get the aforementioned result since |A| = | P| — 2k. |

Remark 33 As a consequence of Proposition 32, we see that the k-depth of any
point g in any point set P is always non-negative (as a sum of non-negative numbers).
It is interesting to notice that Welzl proved in [44] that this non-negativity property is
actually equivalent to the Lower Bound Theorem for d-dimensional polytopes with
d + 3 vertices.

A corner of the star S(A) is an internal convex angle of it (see Fig. 21(a)). In
the following proposition, we are interested in the number of corners of S(1). For
points in convex position (Sect. 3.3), the number of corners of a star is always 2k 4 1.
This is not true anymore in general position as illustrated in Fig. 20. The following
proposition gives our best bounds on the number of corners of the star of a multi-
pseudotriangulation.

Proposition 34 The number of corners of a star S(\) of a k-pseudotriangulation
of P* is odd and between 2k + 1 and 2(k — 1)|P| + 2k + 1.

Proof We read convexity of internal angles of S() on the preimage A of the pseu-
doline A under the projection 7. Let pgr be an internal angle, let v = p* A ¢* and

w = ¢* Ar* denote the contact points corresponding to the two edges [p, ¢] and [¢, 7]
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Fig. 20 A star of a 2-pseudotriangulation of seven points with nine corners. This example can be gener-
alized to a 2-pseudotriangulation of n points with 2n — 5 corners

f () l (b)

Fig. 21 (a) Two stars with five corners. (b) The two possible configurations of two consecutive contact
points on A: convex (left) and concave (right)

of this angle, and let ¥ and w denote two consecutive preimages of v and w on A
(meaning that w is located between v and 7(v)). The angle pgr is a corner if and
only if © and w lie on opposite sides of A, meaning that the other curves touching A
at ¥ and w lie on opposite sides, one above and one below A (see Fig. 21(b)).

In particular, the number c(X) = ¢ of corners of S()) is the number of opposite
consecutive contact points on A between two versions o and 7(v) of a contact point v
of A. To see that ¢ is odd, imagine that we are discovering the contact points of A
one by one. The first contact point v that we see corresponds to two opposite contact
points  and 7(¥) on A. Then, at each stage, we insert a new contact point 1w between
two old contact points that can be:

(i) either on opposite sides and then we are not changing c;
(ii) or on the same side and we are adding to c either O (if w is also on the same side)
or 2 (if w is on the opposite side).

Thus, ¢ remains odd in any case.

To prove the lower bound, we use our witness method. We perturb X a little bit to
obtain a pseudoline p that passes on the opposite side of each contact point (this is
possible since ¢ is odd). This pseudoline & crosses A between each pair of opposite
contact points and crosses the other pseudolines of A exactly as A does. Thus, u
crosses A exactly |A| — 1 4 ¢ times. But since u is a pseudoline, it has to cross all
the pseudolines of P* at least once. Thus, |P| <|A|—1+c=|P|—-2k—1+¢
and ¢ > 2k + 1.
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From this lower bound, we derive automatically the upper bound. Indeed, we know
that the number of corners around one point p is at most deg(p) — 1. Consequently,

D (deg(p) = 1) = ) ) =c()+ Y _cv).

peP veA 1;;/)}
The left sum equals 2k(2|P| — 2k — 1) — | P| while, according to the previous
lower bound, the right one is at least ¢ + (|P| — 2k — 1)(2k + 1). Thus we get
c<2(k—-1)|P|+2k+1. O

5 Iterated Multipseudotriangulations

By definition, a k-pseudotriangulation of an m-pseudotriangulation of a pseudoline
arrangement L is a (k + m)-pseudotriangulation of L. In this section, we study these
iterated sequences of multipseudotriangulations. In particular, we compare multi-
pseudotriangulations with iterated sequences of 1-pseudotriangulations.

5.1 Definition and Examples

Let L be a pseudoline arrangement. An iterated multipseudotriangulation of L is a
sequence Aj, ..., A, of pseudoline arrangements such that A; is a multipseudotrian-
gulation of A;_; for all i (by convention, Ag = L). We call signature of Ay, ..., A,
the sequence k| < - -- < k, of integers such that A; is a k;-pseudotriangulation of L
for all i. Observe that the assumption that contact points of a pseudoline arrange-
ment L should be contact points of any multipseudotriangulation of L is natural in
this setting: iterated multipseudotriangulations correspond to decreasing sequences
of sets of crossing points.

A decomposition of a multipseudotriangulation A of a pseudoline arrangement L

is an iterated multipseudotriangulation Ay, ..., A, of L such that A, = A and r > 1.
We say that A is decomposable if such a decomposition exists, and irreducible oth-
erwise. The decomposition is complete if its signature is 1,2, ..., r.

It is tempting to believe that all multipseudotriangulations are completely decom-
posable. This would allow to focus only on pseudotriangulations. However, we start
by showing that not even all multitriangulations are decomposable. The following
example is due to Francisco Santos.

Example 35 (An irreducible 2-triangulation of the 15-gon) We consider the geomet-
ric graph T of Fig. 22. The edges are:

(1) all the 2-irrelevant and 2-boundary edges of the 15-gon, and
(i) the five zigzags Z,={[3a,3a+6],[3a+6,3a+1],[3a+ 1,3a+ 5],
[3a +5,3a + 2]}, fora €{0, 1,2, 3,4}.

Thus, T has 50 edges and is 3-crossing-free (since the only 2-relevant edges of T that
cross a zigzag Z, are edges of Z,_1 and Z,1). Consequently, T is a 2-triangulation
of the 15-gon.
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Fig. 22 An irreducible
2-triangulation of the 15-gon: it
contains no triangulation

Let us now prove that T* is irreducible, that is, that T contains no triangulation.
Observe first that the edge [0, 6] cannot be an edge of a triangulation contained in 7’
since none of the triangles 06i, i € {7, ..., 14}, is contained in 7. Thus, we are look-
ing for a triangulation contained in 7 \ {[0, 6]}. Repeating the argument successively
for the edges [1, 6], [1, 5] and [2, 5], we prove that the zigzag Z is disjoint from any
triangulation contained in 7. By symmetry, this proves the irreducibility of 7*.

5.2 Iterated Greedy Pseudotriangulations

Greedy multipseudotriangulations provide interesting examples of iteration of pseu-
dotriangulations. Let L be a pseudoline arrangement, and x be a cut of L.

Theorem 36 For any positive integers a and b, F)?+b(L) = Ff (FX“ (L)). Conse-
quently,for any integer k, F)”(‘ (L) = FXI o FXI 0---0 FXI (L), where FXI (.) is iterated k
fimes.

Proof Since x is a cut of L, it is also a cut of F;‘ (L) and thus Ff(]“)‘(‘ (L)) is well
defined. Observe also that we can assume that L has no contact point (otherwise, we
can open them). Let n := |L| and m := (g)

Let x = xo0,..., xm = x be a backward sweep of L. For all i, let v; denote the
vertex of L swept when passing from x; to x;4+1, and i denote the integer such that
the pseudolines that cross at v; are the iUth and (iD + 1)th pseudolines of L on ;.

Let 0p, ..., om denote the sequence of permutations corresponding to I,/ (L) on
the sweep xo, - - ., Xm- In other words, oy is the permutation

i,...,a,n—a,n—a-1,...,a+2,a+1,n—a+1,...,n],

whose first a and last a entries are preserved, while its n — 2a intermediate entries
are inverted. Then, for all i, the permutation o, is obtained from o; by sorting its
iYth and (iD + 1)th entries.

Similarly, let pg, ..., pm and wy, ..., w, denote the sequences of permutations
corresponding to F)?H’(L) and F;’(F)? (L)), respectively: both py and wg equal the
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permutation whose first and last a 4 b entries are preserved and whose n — 2a — 2b
intermediate entries are inverted, and:

e ;41 is obtained from p; by sorting its i Uth and (iD + 1)th entries;
o ifuv; ¢ F;‘ (L), then w;4 is obtained from w; by sorting its iYth and (iE| + 1)th
entries; otherwise, w; 1| = w;.

‘We claim that for all i,

(A) all the inversions of p; are also inversions of o;: p;j(p) > pi(q) implies
o;i(p) > oi(g) forall 1 < p <q <n;and
B) pi =w;.

We prove this claim by induction on i. It is clear for i = 0. Assume it holds for i
and let us prove it for i + 1. We have two possible situations:

(1) First case: 0;(iY) < 0;((" + 1). Then ;41 = 0; and v; € [Y(L). Thus,
w;+1 = w;. Furthermore, using property (A) at rank i, we know that
pi(i‘:') < pi (iD + 1), and thus p;41 = p;. To summarize, o;+] = 0;, Wi+ = W;,
and p;+1 = p;, which trivially implies that properties (A) and (B) remain true.

(2) Second case: o; (iD) > 0; (i‘:| + 1). Then 0,4 is obtained from o; by exchanging
the iJth and (iD + D)th entries, and v; ¢ F)? (L). Consequently, p;+1 and w;1
are both obtained from p; and w;, respectively, by sorting their i Uth and
(iY 4+ 1)th entries. Thus, property (B) obviously remains true. As far as
property (A) is concerned, the result is obvious if p and g are different
from {7 and iY + 1. By symmetry, it suffices to prove that for any p < i o,
Pi+1(p) > pi+1(iD) implies o;4+1(p) > ai_H(iD). We have to consider two sub-
cases:

(a) First subcase: p,-(iD) < pj (1":J + 1). Then p;4+1 = p;. Thus, if p < i is such
that p;+1(p) > ,o,-+1(iD), then we have p; (p) > p; (iD). Consequently, we
obtain 0j41(p) = 07 (p) > 0;(i”) > 0; ((© + 1) = 0711 (D).

(b) Second subcase: p;(i D) > p; (iIj + 1). Then p;4+; is obtained from p;
by exchanging its iYth and (Y + 1)th entries. If p < i is such that
Pi+1(p) > ,oi+1(iD), then we have p;(p) > ,o,-(i‘:I 4+ 1). Consequently, we
obtain ;1.1 (p) = 0i(p) > 0i(i7 + 1) = 0711 (V).

Obviously, property (B) of our claim proves the theorem. d
5.3 Flips in Iterated Multipseudotriangulations

Let Ag,..., A, be an iterated multipseudotriangulation of a pseudoline arrange-
ment L, with signature k; < --- < k.. Let v be a contact point of A, (which is
not a contact point of L), and let i denote the first integer for which v is a con-
tact point of A; (thus, v is a contact point of A; if and only if i < j <r). For
alli <j<r,let A’j denote the pseudoline arrangement obtained from A; by flip-
ping v, and let w; denote the new contact point of A’.. Let j denote the biggest
integer such that w; = w;. There are three possibilities:

(1) If j=r,then Ayq,..., Aj_1, A;, ..., A is an iterated multipseudotriangulation

of L. We say that it is obtained from Ay, ..., A, by a complete flip of v.
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Fig. 23 An iterated multipseudotriangulation: a pseudoline arrangement L (a), a 1-pseudotriangula-
tion Ay of L (b), and a 1-pseudotriangulation Ay of Ay (¢). The contact points u, v, w illustrate the
three possible situations for flipping a contact point

(ii) If j <7, and w; = w; is a contact point of A1, then
A],...,Aifl,A;,...,A.//',AJL}»],...,AI-

is an iterated multipseudotriangulation of L. We say that it is obtained
from Ay, ..., A, by a partial flip of v.

(iii) If j <r, and w; = wj is a crossing point in A1, then we cannot flip v in A;
maintaining an iterated multipseudotriangulation of L.

To illustrate these three possible cases, we have labeled on Fig. 23 some in-
tersection points of an iterated pseudotriangulation. We have chosen three contact
points u, v, w in (b). For z € {u, v, w}, we label 7’ (resp. z”’) the crossing point corre-
sponding to z in (b) (resp. in (c)). Observe that:

(i) points u’ and u” coincide. Thus we can flip simultaneously point « in (b) and (c)
(complete flip);

(ii) points v’ is different from v” but is a contact point in (c). Thus, we can just flip v
in (b), without changing (c) and we preserve an iterated pseudotriangulation
(partial flip);

(iii) point w’ is a crossing point in (c), different from w”. Thus, we cannot flip w
in (b) maintaining an iterated pseudotriangulation.

Let G¥1--~ (L) be the graph whose vertices are the iterated multipseudotriangu-
lations of L with signature k| < --- < k,, and whose edges are the pairs of iterated
multipseudotriangulations linked by a (complete or partial) flip.

Theorem 37 The graph of flips GX1-+%r (L) is connected.

To prove this proposition, we need the following lemma:

Lemma 38 Any intersection point v in the k-kernel of a pseudoline arrangement is
a contact point in a k-pseudotriangulation of it.

Proof The result holds when k = 1. We obtain the general case by iteration. O

@ Springer



Discrete Comput Geom (2012) 48:142-191 173

Proof of Theorem 37 We prove the result by induction on r (L is fixed). Whenr =1,
we already know that the flip graph is connected. Now, let A_ and A be two iterated
multipseudotriangulations of L with signature k| < - - - < k, that we want to join by
flips. Let B_ and B be iterated multipseudotriangulations of L with signature k; <
-+- <kr_1,and A_ and A be k,-pseudotriangulations of L suchthat A_ =B_, A_
and A+ = B+, A+.

By induction, Gk1---kr—1 (L) is connected: let

B_=B\,By,...,By_1,B, =B,

be a path from B_ to B, in G-k~ (L). For all j, let v; be such that B is
obtained from B; by flipping v; and let w; be such that B; is obtained from B; 1 by
flipping w;. Let A; be a k,-pseudotriangulation of L containing the contact points
of B; plus w; (it exists by Lemma 38), and let C; = B, A;. Let D; be the iterated
multipseudotriangulation of L obtained from the iterated pseudotriangulation C; by
a partial flip of v;. Finally, since Gk’(Bj) is connected, there is a path of complete
flips from D;_; to C;.

Merging all these paths, we obtain a global path from A_ to A : we transform A_
into C; via a path of complete flips; then C; into D; by the partial flip of v;; then D
into C; via a path of complete flips; then C; into D, by the partial flip of v»; and so
on. O

6 Further Topics

We discuss here the extensions in the context of multipseudotriangulations of two
known results on pseudotriangulations:

(1) The first one concerns the connection between the greedy pseudotriangulation of
a point set and its horizon trees.

(2) The second one extends to arrangements of double pseudolines the definition and
properties of multipseudotriangulations.

6.1 Greedy Multipseudotriangulations and Horizon Graphs

We have seen in previous sections that the greedy k-pseudotriangulation of a pseudo-
line arrangement L can be seen as:

(1) the unique source of the graph of increasing flips;

(2) a greedy choice of crossing points given by a sorting network;
(3) a greedy choice of contact points;

(4) an iteration of greedy 1-pseudotriangulations.

In this section, we provide a “pattern avoiding” characterization of the crossing points
of the greedy k-pseudotriangulation of L.

Let L be a pseudoline arrangement, and x be a cut of L. We index by £y, ..., ¢,
the pseudolines of L in the order in which they cross y (it is well defined, up to a
complete inversion).
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A
Am\\ %,
S %,

%,

Fig. 24 The sets UX (L),

LK (L), and G (L) for the
pseudoline arrangement of
Fig. 7(b) and k € {1, 2}. The
underlying
k-pseudotriangulation is the
greedy k-pseudotriangulation
of L
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We define the k-upper x-horizon set of L to be the set TU])‘( (L) of crossing
points £y A £g, with 1 < a < B8 < n, such that there is no y1,..., y; satisfy-
inga <y <--- <y and €y ALy <y €y A Lg Tor all i € [k]. In other words, on
each pseudoline £, of L, the set U’)‘( (L) consists of the smallest k crossing points of
the form £, A £g, with o < B.

Similarly, define the k-lower x-horizon set of L to be the set ]LI)‘( (L) of crossing
points £y A £g, with 1 <a < B <n, such that there is no 41, ..., §; satisfying §; <
o< <Band Lg Als; <Xy £y A Lg Toralli € [k]. On each pseudoline £g of L, the
set L')‘( (L) consists of the smallest k crossing points of the form £, A £g, witha < B.

Finally, we define the set Gl)‘( (L) to be the set of crossing points £, A £g, with
1 <o < B <n, such that there isno y1, ..., yx and 61, ..., 8 satisfying:

() a<yr<- <y, 61 <--- <8 <p,and 8 < y1; and
(i) o ALy, Sy Lo NEg and £g A Ls; <y £y ALg foralli e [k].

Obviously, the sets U’)‘( (L) and IL/)‘( (L) are both contained in Gl)‘( (L).

Example 39 In Fig. 24, we have labeled the vertices of the pseudoline arrangement L
of Fig. 7(b) with different geometric tags according to their status:

(A) crossing points of the k-upper y-horizon set Ul)‘( (L) are represented by up trian-
gles A;

(v) crossing points of the k-lower x-horizon set ]L’)‘( (L) are represented by down
triangles v/;

(XX) crossing points in both U’)‘( (L) and ]L’)‘( (L) are represented by up and down tri-
angles Xx;

(O) crossing points of G’)‘( (L) but neither in U’)‘( (L), norin ]L’)‘( (L) are represented by
squares .

Observe that the remaining vertices are exactly the crossing points of the x-greedy
k-pseudotriangulation of L.

Example 40 We consider the arrangement C,' of n pseudolines in convex position.
Let z be a vertex on the upper hull of its support, F := {7’ | z < z’} denote the filter
generated by z, and x denote the corresponding cut (see Fig. 25). It is easy to check
that:
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Fig. 25 The sets UK (C}),

LK (C%). and GK (C¥) for the
arrangement Cg of eight
pseudolines in convex position,
and k € {1, 2}. The underlying
k-pseudotriangulation is the

greedy k-pseudotriangulation
of Cg

D U W N

N |

o]

Fig. 26 A mutation in the
arrangement of Fig. 7(b)

(i) UR(ChH={untpgll<a<nanda <B <a+kl;
(i) ]L’)‘((C,f)z{ﬁa/\ﬂﬂ |l <o <kanda < j <n};and
(iii) G (C;) = U} (Ca) UL (Co).

Observe again that the remaining vertices are exactly the crossing points of the
x-greedy k-pseudotriangulation of C;'.

Theorem 41 extends this observation to all pseudoline arrangements, using convex
position as a starting point for a proof by mutation.

Theorem 41 For any pseudoline arrangement L with no contact point, and any cut x
of L, the sets V(I'f (L)) and G (L) coincide.

The proof of this theorem works by mutation. A mutation is a local transformation
of an arrangement L that only inverts one triangular face of L. More precisely, it is
a homotopy of arrangements during which only one curve £ € L moves, sweeping a
single vertex of the remaining arrangement L \ {¢} (see Fig. 26).

If P is a point set of a topological plane, mutating an empty triangle p*g*r* of P*
by sweeping the vertex g* A r* with the pseudoline p* corresponds in the primal to
moving p a little bit such that only the orientation of the triangle pgr changes.

The graph of mutations on pseudoline arrangements is known to be connected:
any two pseudoline arrangements (with no contact points and the same number of
pseudolines) are homotopic via a finite sequence of mutations (followed by a home-
omorphism). In fact, one can even avoid mutations of triangles that cross a given cut
of L:

@ Springer



176 Discrete Comput Geom (2012) 48:142-191

Fig. 27 A local image of a a a E
mutation b c A
b D F
c B c

Proposition 42 Let L and L’ be two pseudoline arrangements of M (with no contact
points and the same number of pseudolines) and yx be a cut of both of L and L' . There
is a finite sequence of mutations of triangles disjoint from x that transforms L into L.

Proof We prove that any arrangement L of n pseudolines can be transformed into the
arrangement C,' of n pseudolines in convex position (see Fig. 25).

Let £1, ..., ¢, denote the pseudolines of L (ordered by their crossings with x).
Let A denote the triangle formed by y, £; and £;. If there is a vertex of the ar-
rangement L ~\ {{1, ¢;} inside A, then there is a triangle of the arrangement L in-
side A and adjacent to £1 or £,. Mutating this triangle reduces the number of vertices
of L ~. {£1, £»} inside A such that after some mutations, there is no more vertex in-
side A. If A is intersected by pseudolines of L \ {£1, £>}, then there is a triangle
inside A formed by £;, £2 and one of these intersecting pseudolines (the one closest
to £1 A £7). Mutating this triangle reduces the number of pseudolines intersecting A.
Thus, after some mutations, A is a triangle of the arrangement L.

Repeating these arguments, we prove that for alli € {2,...,n — 1} and after some
mutations, ¢;, £1, £;4+1 and x delimit a face of the arrangement L. Thus, one of the
two topological disk delimited by x and £; contains no more vertex of L, and the
proof is then straightforward by induction. g

Let V be a triangle of L not intersecting x. Let L’ denote the pseudoline ar-
rangement obtained from L by mutating the triangle V into the inverted triangle A.
Let a < b < ¢ denote the indices of the pseudolines ¢, £; and £, that form V and A.
In V, we denote A =¥, Al., B=£, AL, and C = £, A £p; similarly, in A, we
denote D =€y Alc, E=€, AL and F =€, A {p, (see Fig. 27).

Lemma 43 With these notations, the following properties hold.:

i) BeUk(l) = celk'(l) < EecU'W)
— FelUlw),
AeU¥(L) < DelUlW),
Eclk(l) < Dell (L) & Belf (L)
= Aclf),
Felk(l) < celfW).
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(i) Ccell() = AcU@),
EeUl(l) = DelULW),
Delf (L) = FelkW),
Bell(L) = celfw),
BeGl(L) = CeGh)ADeGhW)AFeGhW),
EeGl(L) = DeGUHACeGh(L)AAEGr ().
(i) CeGh(l) = AecUw)vcell (),
DeGl(L) = Felt)vDeUl(L),
AcGh(L) = AcUh)vcell'w),
FeGh(L) = Fell@w)vDeU ().
(iv) CeGHILIANE¢GH (L) = A¢GhL),
DeG(LYAB¢Gh(L) = F¢Gh(L).

Proof By symmetry, it is enough to prove the first line of each of the four points of
the lemma.

Properties of point (i) directly come from the definitions. For example, all the
assertions of the first line are false if and only if there exist y1, ..., yx—1 with a <
Y1 <--- <yk—1and,foralli € [k—1],£, A€y, < C (orequivalently £, ALy, <, E).

We derive point (ii) from the following observation: if y > b and if £, AL, <, C,
theny >a and £, AL, < B.

For point (iii), assume that A ¢ U’)‘( (L)yand C ¢ ]L’)‘( (L). Then there exist y1, ..., ¥
and 81,...,8c such that §; <--- <8 <b<y; <--- <y, and, for all i € [k], £, A
£y, <y A (and therefore £, A £y, < C) and €5 A €s; < C. Thus C ¢ G’)‘((L).

Finally, assume that C € (G’)‘( (L) and E ¢ G’)‘( (L). Then there exist yy, ..., yx and
81,...,0suchthata <y <--- <y, 01 <--- <8 <c, 8 < y1,and for all i €
[k], €4 N £y, <y E and £. A Ls5; <Xy E. Since C € (Gr’)‘( (L), we have 8; > b. Thus
b<yi<---<yandforalli €[k], £y ALy, <y Aand £, A €s; <y A. This implies
that A ¢ GX.(L). O

We are now ready to establish the proof of Theorem 41:

Proof of Theorem 41 The proof works by mutation. We already observed the result
when the pseudoline arrangement is in convex position (see Example 40 and Fig. 25).
Proposition 42 ensures that any pseudoline arrangement can be reached from this
convex configuration by mutations of triangles not intersecting x . Thus, it is sufficient
to prove that such a mutation preserves the property.

Assume that L is a pseudoline arrangement and y is a cut of L, for which the
result holds. Let V be a triangle of L not intersecting x . Let L’ denote the pseudoline
arrangement obtained from L by mutating the triangle V into the inverted triangle A.
Let A, B, C and D, E, F denote the vertices of V and A as indicated in Fig. 27.
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1 1] [1 1] [1 2] [1 2] [1 3] 1N /3
QVQ 2%3 2%1 2%3 2&1 2 Kz
3 3| (3 20 |3 3|3 1] 3 ARE 1
1 1] 1 1] |1 2| |1 2| |1 30 |1 3
. .
QKQ 2}(3 2K1 2?<3 2%_1 2%2
3 3113 N2 3 3113 Ni|]|3 2113 1

Fig. 28 The six possible cases for the mutation of the greedy k-pseudotriangulation

If v is a vertex of the arrangement L’ different from D, E, F, then:
veV(If(L)) < veV([}(L) < veGl) < veGiL).

Thus, we only have to prove the equivalence when v € {D, E, F'}. The proof
is a (computational) case analysis: using the properties of Lemma 43 as boolean
equalities relating the boolean variables defined by “X € Yﬁ(L)” (where X €
{A,B,C,D,E,F}, Y € {U,L,G}, and p € {k —1,k}), we have written a short
boolean satisfiability program which affirms that:

(i) either {A, B, C} C GX (L) and (D, E, F} C Gk (L);

(i) or {A, B,C}NGh (L) ={A,C}and {D, E, F}N Gk (L) ={D, E};
(iii) or {A, B,C}NGX(L)={B,C}and (D, E, F}NGk (L") = (D, F};
(iv) or {A, B,C}NGA (L) ={A}and {D, E, F}N G (L) = (D};

(v) or {A, B,C}NGk (L) ={C}and {D, E, F} NG (L") = {F};
(vi) or {A, B,C}NGK(L)=0and {D, E, F}NG% (L)) = 0.

It is easy to check that these six cases correspond to sorting the six possible
permutations of {1,2,3} on V and A (see Fig. 28). Consequently, if V(F)f(L)) N
{A,B.C} =Gk (L)N{A, B, C}, then we have V(I'F(L")) N{D, E, F}=G% (L) n
{D, E, F}, which finishes the proof. O

Let us finish this discussion by recalling the interpretation of the horizon sets
when k = 1. Let P be a finite point set. For any p € P, let u(p) denote the point g
that minimizes the angle (Ox, pg) among all points of P with y, <y, (by con-
vention, for the higher point p of P, u(p) = p). The upper horizon tree of P is the
set U(P) = {pu(p) | p € P}. The lower horizon tree IL(P) of P is defined symmet-
rically. See Fig. 29.

Choosing a cut y of P* corresponding to the point at infinity (—oo, 0) makes
coincide primal and dual definitions of horizon sets: we have TU)I( (P*) =U(P)* and
L} (P*) =L(P)*.

In [31], Pocchiola observed that the set U(P) U IL(P) of edges can be completed
into a pseudotriangulation of P just by adding the sources of the faces of P* inter-
sected by the cut . The obtained pseudotriangulation is our x -greedy 1-pseudotrian-
gulation I') (P*).
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Fig. 29 The upper horizon tree (left), the lower horizon tree (middle), and the greedy pseudotriangulation
(right) of the point set of Fig. 7(a). The dashed edges in the greedy pseudotriangulation are not in the
horizon trees

Fig. 30 (a) A double
pseudoline. (b) An arrangement
of 2 double pseudolines

LT
\\\\\\\\\\m Wittty
\\\“\

6.2 Multipseudotriangulations of Double Pseudoline Arrangements

In this section, we deal with double pseudoline arrangements, i.e. duals of sets of dis-
joint convex bodies. Definitions and properties of multipseudotriangulations naturally
extend to these objects.

6.2.1 Definitions

A simple closed curve in the Mobius strip can be:

(i) either contractible (homotopic to a point);
(i1) or non separating, or equivalently homotopic to a generator of the fundamental
group of M: it is a pseudoline;
(iii) or separating and non-contractible, or equivalently homotopic to the double of a
generator of the fundamental group of M: it is called a double pseudoline (see
Fig. 30(a)).

The complement of a double pseudoline ¢ has two connected components: the
bounded one is a M6bius strip M, and the unbounded one is an open cylinder Cy (see
Fig. 30(a)).

The canonical example of a double pseudoline is the set C* of tangents to a convex
body C of the plane. Observe also that the pth level of a pseudoline arrangement is
a double pseudoline. If C is a convex body of the plane, then the Mobius strip Mc+
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Fig. 31 A configuration of four
disjoint convex bodies and its .
dual double pseudoline

arrangement

[SoR S RN

Q

Fig. 32 A configuration of
three disjoint convex bodies and
its dual double pseudoline
arrangement

QW= Q »

=

corresponds to lines that pierce C, while Cc+ corresponds to lines disjoint from C.
If C and C’ are two disjoint convex bodies, the two corresponding double pseudo-
lines C* and C’* cross four times (see Figs. 31 and 32). Each of these four crossings
corresponds to one of the four bitangents (or common tangents) between C and C’.

Definition 44 [17] A double pseudoline arrangement is a finite set of double pseudo-
lines such that any two of them have exactly four intersection points, cross transver-
sally at these points, and induce a cell decomposition of the Mobius strip (i.e. the
complement of their union is a union of topological disks, together with the external
cell).

Given a set Q of disjoint convex bodies in the plane (or in any topological plane),
its dual Q* :={C* | C € Q} is an arrangement of double pseudolines (see Figs. 31
and 32). Furthermore, as for pseudoline arrangements, any double pseudoline ar-
rangement can be represented by (i.e. is the dual of) a set of disjoint convex bodies in
a topological plane [17].

In this paper, we only consider simple arrangements of double pseudolines. Defin-
ing the support, the levels, and the kernels of double pseudoline arrangements as for
pseudoline arrangements, we can extend multipseudotriangulations to double pseu-
doline arrangements (see Fig. 33):

Definition 45 A k-pseudotriangulation of a double pseudoline arrangement L is a
pseudoline arrangement supported by the k-kernel of L.

All the properties related to flips developed in Sect. 2 apply in this context. In the
end of this section, we only revisit the properties of the primal of a multipseudotrian-

gulation of a double pseudoline arrangement.
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Fig. 33 A pseudotriangulation
of the set of disjoint convex
bodies of Fig. 32

6.2.2 Elementary Properties

Let Q be a set disjoint convex bodies in general position in the plane and Q* be its
dual arrangement. Let A be a k-pseudotriangulation of Q*, V (A) denote all crossing
points of Q* that are not crossing points of A, and E denote the corresponding set
of bitangents of Q. As in Sect. 4.2, we discuss the properties of the primal configu-
ration E:

Lemma 46 The set E has 4|Q|k — | Q| — 2k? — k edges.

Proof The number of edges of E is the number of crossing points of Q* minus the
number of crossing points of A, i.e.

E| =4(IQ*I) 3 (IAI) =4(IQI) 3 (ZIQI —2k>
2 2 2 2
=40k — |Q| — 2k — k. O

We now discuss pointedness. For any convex body C of Q, we arbitrarily choose a
point pc in the interior of C, and we consider the set X ¢ of all segments between pc
and a sharp boundary point of C. We denote by X := [ co Xc the set of all these
segments.

Lemma 47 The set E U X cannot contain a k-alternation.

Proof Let C be a convex body of Q, let g be a sharp point of C and let F := {[p;, q] |
i € [2k]} be a set of edges incident to ¢ such that {[pc, g]} U F is a k-alternation.
We prove that F' is not contained in E. Indeed, the dual pseudolines {p; | i € [2k]}
intersect alternately the double pseudoline C* between the tangents to C at g (see
Fig. 34). This ensures the existence of a witness pseudoline ¢ that separates all the
contact points p* A C*, while crossing C* exactly 2k times and the other double
pseudolines of Q* exactly has ¢g* does. (As usual, we obtain it by a perturbation
of the pseudoline ¢*.) Counting the crossings of £ with Q* and A, respectively, we
obtain:

(1) £ crosses Q* exactly 2|(Q ~\ {C})*| + 2k =2|Q| + 2k — 2 times;
(ii) £ crosses A at least |A| =2|Q| — 2k times;
(iii) for each of the points p; A ¢*, replacing the crossing point by a contact point
removes two crossings with £. O
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T T

Fig. 34 A k-alternation at a sharp point

6.2.3 Stars

If X is a pseudoline of A, we call star the envelope S(A) of the primal lines of the
points of 1. The star S(1) contains:

(1) all bitangents T between two convex bodies of Q such that 7 is a contact point
of A; and

(ii) all convex arcs formed by the tangent points of the lines covered by A with the
convex bodies of Q.

This star is a (non-necessarily simple) closed curve. We again have bounds on the
number of corners (i.e. convex internal angles) of S(A):

Proposition 48 The number of corners of S(A) is odd and between 2k — 1
and 4k| Q| — 2k — 1.

Proof In the case of double pseudoline arrangements, corners are even easier to char-
acterize: a bitangent T between two convex C and C’ of Q always defines two cor-
ners, one at each extremity. These corners are contained in one of the two stars adja-
cent to T. Let A be a pseudoline with a contact point at t. In a neighborhood of 7, the
pseudoline A can be contained either in M+ or in Cc=. In the first case, the star S(})
contains the corner formed by the bitangent t and the convex C (or possibly, by the
bitangent 7 and another tangent to C); while in the second case, it does not. (The
same observation holds for C’.)

In other words, if the double pseudoline C* supports a pseudoline A between
two contact points v and w, then one of the three following situations occurs (see
Fig. 35):

(i) either v and w lie on opposite sides of A; then exactly one of these contact points
lies in M+, and S(A) has one corner at C,
(i1) or v and w both lie on M+, and S(A) has two corners at C,
(ii1) or v and w both lie on C¢+, and S()\) has no corners at C.

In particular, the number ¢ = c(}) of corners of X is the number of situations (i) plus
twice the number of situations (ii). This proves that ¢ is odd and (at least) bigger than
the number of opposite consecutive contact points of the pseudoline A.
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@ (i) (iii)
Fig. 35 The three possible situations for two consecutive contact points on £

Fig. 36 A
2-pseudotriangulation of the
double pseudoline arrangement
of Fig. 31. Observe that the
bolded red star has only

3 corners

In order to get a lower bound on this number, we construct (as in the proof of
Proposition 34) a witness pseudoline p that crosses A between each pair of opposite
contact points and passes on the opposite side of each contact point. It crosses A
at most ¢ times and A ~\ {A} exactly |A| — 1 times. Moreover, if « is a pseudoline
and § is a double pseudoline of M, then either « is contained in Mg and has no
crossing with 8, or & and 8 have an even number of crossings. Since u is a pseudoline
and can be contained in at most one Mdbius strip M. (for C € Q), the number of
crossings of u with Q* is at least 2(]Q| — 1). Thus, we obtain the lower bound
2101 —1) <2|Q| -2k —1+c,ie.c>2k— 1.

From this lower bound, we obtain the upper bound: the total number of corners is
at most twice the number of bitangents:

2(4kI1Q1 =101 = 2K* —k) = Y e(w) = () + (210 — 2k — 1) 2k — 1),

HeA

and we get c <4|Q|k — 2k — 1. O

When k& = 1, we can even prove that all stars are pseudotriangles. Indeed, since
any star has at least three corners, the upper bound calculus gives 2(3|Q| — 3) >
c+32|Q|—-3),ie.c<3.

For general k, observe that contrary to the case of pseudoline arrangements, a star
may have 2k — 1 corners (see Fig. 36).
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Let us now give an analogue of Proposition 32. For any point ¢ in the plane, we
denote by 7*(g) the number of crossings between ¢* and the support of Q* minus its
first k levels. Let 8%(q) := n*(¢)/2 — | Q| + k. For any A € A(U) and any point ¢ in
the plane, we still denote by o, (¢) the winding number of S(1) around q.

Proposition 49 For any point q of the plane §*(¢) = Y aen 00.(q).

Proof Remember that if 7, (¢) denotes the number of intersection points between ¢*
and A, then o) (q) = (1).(q) — 1)/2. Thus, we have

(@) =) u@=141+2)_oi(q),

reA reA

and we get the result since |A| =2|Q| — 2k. O

When k = 1, it is easy to see that 8! () is 1 if ¢ is inside the free space of the con-
vex hull of Q (i.e. in the convex hull of Q, but not in Q), and 0 otherwise. Remember
that a pseudotriangulation of Q is a pointed set of bitangents that decomposes the
free space of the convex hull of Q into pseudotriangles [33]. Propositions 48 and 49
provide, when k = 1, the following analogue of Theorem 16:

Theorem 50 Let Q be a set of disjoint convex bodies (in general position) and Q*
denote its dual arrangement. Then:

(1) The dual arrangement T* := {A* | A pseudotriangle of T} of a pseudotriangu-
lation T of Q is a 1-pseudotriangulation of Q*.
(i1) The primal set of edges

E:={[p.ql|p.q € P, p* Aq* is not a crossing point of A}
of a 1-pseudotriangulation A of Q* is a pseudotriangulation of Q.

Observe that at least two other arguments are possible to prove (ii):

(1) either comparing the degrees of the flip graphs as in our first proof of Theorem 16;

(2) or checking that all forbidden configurations of the primal (two crossing bitan-
gents, a non-pointed sharp vertex, a non-free bitangent) may not appear in the
dual, as in our second proof of Theorem 16.

Let us finish this discussion about stars by interpreting the number 8% (¢) for gen-
eral k£ and for “almost every” point g. For any convex body C of Q, let VC denote
the intersection of all closed half-planes delimited by a bitangent between two convex
bodies of Q, and containing C (see Fig. 37). By definition, the bitangents between
two convex bodies C and C’ of Q coincide with the bitangent of VC and VC’.
Furthermore, the convex bodies VC (C € Q) are maximal for this property. We de-
note VQ :={VC | C € Q} the set of maximal convex bodies of Q.

For a point ¢ outside V Q, the interpretation of 8%(¢) is similar to the case of
points. We call level of a bitangent t the level of the corresponding crossing point
in Q*. Given a point g outside V Q, the number 8%(g) is the number of bitangents
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Fig. 37 The set of all bitangents to the arrangement of convex bodies of Fig. 32 and the corresponding
maximal convex bodies

of level k crossed by any (generic continuous) path from ¢ to the external face (in
the complement of V Q), counted positively when passing from the “big” side to the
“small side”, and negatively otherwise.

7 Open Questions

We finish by a short presentation of some open questions that have arisen out of
this work. Since the submission of this paper, some of these questions were (at least
partially) answered in [29, 40, 43]. We have decided to keep these questions in the
discussion and to refer to the relevant articles in side remarks.

Primal of a Multipseudotriangulation When k =1 or in the case of convex po-
sition, primals of k-pseudotriangulations are characterized by simple non-crossing
and pointedness conditions. For general k£ and general position, we know that the
primal of a k-pseudotriangulation is k-alternation-free (Lemma 27), but there exist
k-pseudotriangulations containing (k + 1)-crossings as well as (k + 1)-crossing-free
k-alternation-free sets of edges not contained in k-pseudotriangulations (see Fig. 18).
Thus, we still miss a simple condition to characterize multipseudotriangulations of
points in general position:

Question 51 Characterize primals of multipseudotriangulations.

Another question related to the primal of a multipseudotriangulation would be to
determine whether for every point set there exists a multipseudotriangulation that
looks as simple as possible. When k = 1, we know that every point set in general
position has:

(i) a pointed pseudotriangulation consisting only of triangles and four-sided pseu-
dotriangles [21];
(ii) a pointed pseudotriangulation whose maximum degree is at most five [21].
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AL~ @f\?@

Fig. 38 (a) The polytope of pointed pseudotriangulations of a set of five points. (b) The 6-dimensional
associahedron

Question 52 Does every point set in general position have a k-pseudotriangulation
with only “simple” stars (resp. only vertices with “little” degree)?

In the previous question, “simple” may be interpreted either as “with exactly
2k + 1 corners” or as “with at most 2k + ¢ edges” (for a minimal ¢). Similarly, “little”
means smaller than a constant (as small as possible).

Diameter of the Graph of Flips The graph of flips on k-pseudotriangulations of a
pseudoline arrangement L is connected, and an easy inductive argument shows that
its diameter at is most quadratic in |L|. For certain particular cases, even better bounds
are known:

(a) The diameter of the graph of flips on pointed pseudotriangulations of a set of n
points is at most O (n Inn) [4].

(b) The graph of flips on the k-triangulations of the n-gon has diameter bounded
by 2k(n — 2k — 1) [25, 28].

(c) For triangulations of the n-gon, the diameter is exactly 2n — 10 [41].

Question 53 What is the (asymptotic) diameter of the flip graph?

Polytopality Let S be the support of a pseudoline arrangement. Let A(S) denote
the simplicial complex of subsets of contact points of pseudoline arrangements sup-
ported by S. Our results ensure that A(S) is an abstract polytope whose ridge graph
is the graph of flips (see the discussion in [7, Sect. 2.2]). When S is the first kernel
of the dual pseudoline arrangement of a point set of the Euclidean plane, it turns out
that this abstract polytope can be realized effectively as a polytope of R? (where d is
the number of flippable edges), which is the polar of the polytope of pointed pseudo-
triangulations of [36]. An example of this polytope is presented in Fig. 38(a). When
the points are in convex position, this polytope is the associahedron (see Fig. 38(b)).
This leads to the following question:

Question 54 Is A(S) the boundary complex of a polytope?
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Fig. 39 A non-stretchable

arrangement of nine pseudolines

(left) represented on the \
projective plane to show its

symmetries. Remove the center

point to obtain the arrangement

in the Mdbius strip.

A pseudotriangulation of it

(right)

This question specializes for pseudotriangulations and multitriangulations to the
following interesting questions:

(a) Is the graph of flips on pseudotriangulations of a point set polytopal? Since [36]
answers positively for Euclidean point sets, this question only remains open for
non-stretchable arrangements. We have represented in Fig. 39 a pseudotriangu-
lation of the smallest non-stretchable simple pseudoline arrangement (the non-
Pappus pseudoline arrangement). Since this arrangement is symmetric under the
dihedral group Ds, it could be worked out with methods similar to those in [8].

(b) Is the graph of flips on k-triangulations of the n-gon polytopal? Jonsson proved
that the simplicial complex of (k 4 1)-crossing-free sets of k-relevant diagonals
of the n-gon is a combinatorial sphere [19]. However, except for little cases, the
question of the polytopality of this complex remains open. We refer to [8, 28] and
[26, Sect. 4.3] for a detailed discussion on this question.

Remark 55 Since the submission of this paper, our knowledge on this question has
progressed. In [43], Stump made the connection between the multitriangulations and
the type A subword complexes defined in [22]. These simplicial complexes are pre-
cisely the simplicial complexes A(S) defined above. It implies in particular that

e these simplicial complexes are either topological spheres or topological balls [22],
and
e Question 54 is the special type A case of Question 6.4 in [22].

We close this discussion by mentioning the related construction in [29]. It associates
to each sorting network N its so-called brick polytope whose vertices correspond
to certain pseudoline arrangements with contact points supported by N. For certain
well-chosen networks, the brick polytope specializes to Hohlweg and Lange’s real-
izations of the associahedron [18]. This construction answers Question 54 positively
for a certain class of supports S. It was moreover extended recently to spherical sub-
word complexes of any finite type in [30].

Number of Multipseudotriangulations In his paper [20], Jonsson proved that
the number of k-triangulations of the n-gon is equal to the determinant
det(Cp—i—j)1<i,j<k (Where Cp, = mLH(ZrZ’) denotes the mth Catalan number). This
determinant also counts non-crossing k-tuples of Dyck paths of semi-length n — 2k
(see [28] and [26, Sect. 4.1] for a more detailed discussion). It raises the following

question:
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Fig. 40 The beam arrangement 01234567
of a 2-triangulation of the P 8
octagon. Each pseudoline is a 0 ]
lattice path — v Yo
X g 6 oot R §o B
5 boo =p o R
e
3p g -
: T A
3 4 0 -

Question 56 Find an explicit bijection between Dyck multipaths and multitriangu-
lations.

Our interpretation of multitriangulations in terms of pseudoline arrangements nat-
urally associates to a k-triangulation of the n-gon a set of n — 2k lattice paths as fol-
lows. Let T be a k-triangulation of the n-gon. For each edge (i, v) of T (with u < v),
we place a mirror at the grid point of coordinates (u#, v). This mirror is a double faced
mirror parallel to the diagonal x = y so that it reflects a ray coming from (—o0, v) to
aray going to (u, +00), and a ray coming from (#, —00) to a ray going to (400, v).
Furthermore, for 1 <i <n — 2k, we place a light beam at (—oo, k — 1 + i) pointing
horizontally. We obtain n — 2k beams which reflect on the mirrors of T (see Fig. 40).

The results of this paper imply the following properties:

(i) All beams are x- and y-monotone lattice paths.
(i1) The ith beam comes from the direction (—oo, k — 1 +i) and goes to the direction
(k =141, +00).
(iii) Each beam reflects exactly 2k 4 1 times, and thus, has k vertical segments (plus
one vertical half-line) and k horizontal segments (plus one horizontal half-line).
(iv) The beams form a pseudoline arrangement: any two of them cross exactly once.

The ith beam B; “corresponds” via duality to the k-star S; of T whose (k + 1)th
vertex is the vertex kK — 1 47 (in other words, the k-star bisected by the line passing
through the vertex k — 1 + i and through the midpoint of [0, n — 1]). Indeed:

(i) the beam B; is (by duality) the set of all bisectors of S;;
(i1) the mirrors which reflect B; are the edges of S;; and
(iii) the intersection of two beams B; and B; is the common bisector of §; and S;.

Observe that instead of k Dyck paths of semi-length n — 2k, the beam arrangement
of a k-triangulation has n — 2k beams which all have k horizontal steps.

Remark 57 In their recent paper [40], Serrano and Stump also observe the corre-
spondence between multitriangulations and beam arrangements (called “reduced pipe
dream” in their paper). Starting from this correspondence, they provide an explicit bi-
jection between multitriangulations and Dyck multipaths. We refer to [38, 40, 43] and
the references therein.
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Another interesting question concerning the number of multipseudotriangulations
would be to determine what point sets give the maximum and minimum number
of multipseudotriangulations. For example, when k = 1, every point set in general
position has at least as many pointed pseudotriangulations as the convex polygon
with the same number of points [1].

Question 58 What point sets have the maximum and minimum number of multi-
pseudotriangulations?

Decomposition of a k-Pseudotriangulation We have seen in Sect. 5 that certain
multipseudotriangulations can be decomposed into iterated multipseudotriangula-
tions. Remember, however, that there exist irreducible multipseudotriangulations
(Example 35).

Question 59 Characterize (completely) decomposable multipseudotriangulations.
The same question can be asked in a more algorithmical flavor:

Question 60 How can we decide algorithmically whether a k-pseudotriangulation is
decomposable?

Obviously, a brute-force algorithm is not considered as a good solution. A good
way to test efficiency of the answers to Questions 59 and 60 would be to prove/
disprove that Example 35 is the minimal irreducible 2-triangulation (or, in other
words, that any 2-triangulation of an n-gon, with n < 14, contains a triangulation).

Remember also that when a multipseudotriangulation is decomposable, the graph
of partial flips is not necessarily connected. In particular, finding all decompositions
of a multipseudotriangulation cannot be achieved just by searching in the graph of
partial flips.

Question 61 How can we enumerate all the decompositions of a multipseudotrian-
gulation?

Computing a k-Pseudotriangulation An initial pseudotriangulation of a set of n
points can be computed in O (nInn) time, using only the predicate of the chirotope.
A similar result would be interesting for k-pseudotriangulations:

Question 62 Compute an initial k-pseudotriangulation of a given (double) pseudo-
line arrangement, using only its chirotope.
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