
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

MultiUAV: A MULTIPLE UAV SIMULATION FOR INVESTIGATION OF COOPERATIVE CONTROL

S. J. Rasmussen

Veridian
Wright-Patterson AFB, OH 45433 U.S.A.

 P. R. Chandler

Flight Control Division
Air Force Research Laboratory (AFRL/VACA)

Wright-Patterson AFB, OH 45433 U.S.A.

ABSTRACT

This paper describes MultiUAV, a simulation that is capa-
ble of simulating multiple unmanned aerospace vehicles
which cooperate to accomplish a predefined mission. The
simulation was constructed using the Mathwork’s Simulink
simulation software. Construction of the simulation satis-
fied the need for a simulation environment that researchers
can use to implement and analyze cooperative control algo-
rithms. The simulation is implemented in a hierarchical
manner with inter-vehicle communication explicitly mod-
eled. During construction of MultiUAV, issues concerning
memory usage and functional encapsulation were ad-
dressed. MultiUAV includes plotting tools and links to an
external program for post-simulation analysis. Each of the
vehicle simulations include six-degree-of-freedom dynam-
ics and embedded flight software. The embedded flight
software consists of a collection of managers (agents) that
control situational awareness and responses of the vehicles.
Managers included in the simulation are: Tactical Maneu-
vering, Sensor, Target, Cooperation, Route and Weapons.

1 BACKGROUND

In order to implement and evaluate cooperative control
strategies for unmanned aerospace vehicles (UAVs), a
simulation environment was needed. During an earlier pro-
ject, Control Automation and Task Allocation (CATA), a
multiple-vehicle/multi-agent simulation was developed,
see Boeing (1997). The CATA simulation was constructed
in C++ and was modified for use in cooperative control re-
search. This simulation was found to be very useful in
early cooperative control studies, see Chandler, Rasmus-
sen, and Pachter (2000). Since the CATA simulation was
relatively large and written in C++ it proved to be difficult
for other researchers to use. This prompted the develop-
ment of a Simulink-based multi-vehicle/multi-agent simu-
lation (MultiUAV). Simulink is a symbolic programming
environment which makes the simulation relatively easy
for researchers to understand and use, see The Mathworks,
Inc (2002). The MultiUAV simulation was constructed us-

ing the organizational structure of the CATA simulation.
CATA’s “vehicle” and “tactical maneuvering manager”
classes were extracted directly from the CATA simulation
to be used in MultiUAV.

MultiUAV is capable of simulating 8 vehicles and 10
targets. Simulated vehicles include embedded flight software
(EFS) and vehicle dynamics. EFS is the software that im-
plements cooperative control algorithms. The vehicle dy-
namics are simulated with six-degree-of-freedom (SDOF)
equations of motion. The vehicle model includes an autopi-
lot that makes the vehicles capable of waypoint navigation.

2 MultiUAV IMPLEMENTATION

MultiUAV is organized hierarchically with two major top-
level blocks, Vehicles and Targets, see Figure 1. The other
two blocks at the top level, Initialization and DataForPlot-
ting, call functions to initialize the simulation and save simu-
lation data for plotting. The top-level blocks contain the sub-
blocks and connections required to implement simulation of
the 8 vehicles and 10 targets, see Figures 2 and 3.

Figure 1: Top Level Blocks

There are three types of functions used in MultiUAV,

script, compiled and Simulink built-in. The majority of
functions in MultiUAV are written in MATLAB’s script
language and accessed from Simulink using S-function
blocks. This makes it convenient for researchers since

Rasmussen and Chandler

Figure 2: Vehicle Blocks
many know MATLAB script language. The compiled
functions include the classes used from CATA and other
functions that are available in other languages. The com-
piled functions are connected to Simulink through S-
function blocks.

2.1 Simulation Data and Communications

In order to keep MultiUAV as accessible as possible, every
effort is made to confine the transfer of data between
Simulink blocks to the signal “wires” in the Simulink user
interface. This is not always possible. For instance, passing
variable length matrices as signals in Simulink would have
caused too much overhead so the decision was made to
transfer the waypoint matrices through global MATLAB
memory.

To facilitate data flow between the elements of the
simulation, two data busses are implemented, one for simu-
lated communication signals (ComBus) and one for simu-
lation signals (SimBus). The ComBus bus contains the data
signals that would be communicated between real vehicles.
The SimBus bus contains the data signals that are required
only by the simulation, i.e. truth data. The Simulink Bus
Selector block, makes it possible to access any of the sig-
nals from the data busses by selecting the signal label.
These busses are fed back as inputs to all of the major sub-
blocks. This makes it possible to access signals from one
simulated vehicle deep in the sub-structure of another.

Figure 3: MultiUAV Hierarchy

Rasmussen and Chandler

2.2 Implementation

MultiUAV contains only homogeneous vehicle and targets.
Therefore, to implement the simulation only one vehicle
block and one target block needs to be built and then cop-
ies of these blocks can be used to represent the rest of the
vehicles and targets. To simplify simulation model modifi-
cations, a vehicle and a target block were implemented and
then saved in a Simulink block library. This “Cooperation”
block library was used to build the Vehicles and Targets
blocks. When one uses a block from a block library, a link
from the block to the library is created so when the library
is updated the linked blocks are also updated. Therefore the
first vehicle or target block is the implemented block and
the rest of the blocks are links to a copy of the imple-
mented blocks in the Cooperation block library.

2.3 Functional Encapsulation and Data Storage

The structure of MultiUAV, makes it necessary to plan a
strategy for functional encapsulation and data storage.
Since the functions are shared by all of the vehicles and
targets, care must be taken to encapsulate functions and
data as much as possible. To do this, a few guidelines were
established for function development and data storage.

Functions are not allowed to have local storage, such
as persistent variables. This prevents one vehicle from
changing/accessing data stored by another vehicle. This
forces all of the data to be passed-in through the function
call or global memory. Global memory is necessary be-
cause there are elements that can’t be passed through the
Simulink connections. To keep global memory encapsu-
lated, each vehicle is allocated a space in global memory
that it can use for storage. The vehicles are not allowed to
access another vehicle’s memory.

Since the reason for using Simulink was to make the
simulation more accessible to researchers, the strategy is to
use Simulink elements for data storage as much as possi-
ble. This keeps the data visible in the Simulink user inter-
face. The other option is to use global MATLAB memory
which makes the data less obvious. The different types of
memory used in this simulation are outlined below.

• Output of Blocks – the outputs of blocks can act

as memory. The value of the block outputs is held
until the block is updated. If the block is disabled
the output can be set to hold its last updated value.

• “Data Store” Blocks – These blocks can be used
to store data inside of a block which is only visi-
ble within that block and inside subsystems of that
block. This is a good way to save data in an ob-
ject-oriented fashion.

• Global Memory – the use of global memory
should be a “last choice” since it makes the simu-
lation less modular and thus less flexible. For this
simulation, global memory has been used for
structured storage, constant variables and constant
structures. Note, the term “constant” is used to
imply that the value of the variable is not intended
to change during the simulation. There is no
mechanism in MATLAB/Simulink to enforce this.
The following are examples of variables/struc-
tures implemented in global memory:
TargetMemory – (array of structures) The “main”
memory for the individual target blocks. Each struc-
ture in this array is used as memory for a target.
VehicleMemory – (array of structures) The
“main” memory for the vehicle blocks. Each
structure in this array is used as memory for a ve-
hicle. The structures contain structures for each of
the managers. This gives each manager a structure
for data storage.
WaypointCells – (cell array) These cells are used
to store the current waypoints for each vehicle.
The vehicle s-function reads the waypoints from
these cells.

3 SIMULATION ANALYSIS TOOLS

3.1 The Graphical User Interface

To assist users, a graphical user interface (GUI) was devel-
oped. The GUI contains buttons, a check block, and a pull-
down menu that perform various functions:

• Vehicle# – This is the vehicle referred to by the

“Enabled” check block.
• Enabled – When this block is checked the vehicle

is active during the simulation. If it is not checked
the vehicle is disabled during the simulation.

• Enable All – Set all of the vehicles to the enabled
state. This causes all of the vehicles to be active
during the simulation.

• Disable All – Set all of the vehicles to the disabled
state. This clears all of the enable flags to make it
more convenient to enable individual vehicles.

• Save AVDS Data – Saves the data necessary for
AVDS playback from global memory to files.

• Plot Results – Plots the results of the last simula-
tion run, see the next section.

3.2 Simulation Data Plot Window

After running the simulation the saved data can be plotted
using the PlotOutput function. This function can be in-
voked directly or by pressing the “Plot Results” button on
the GUI. The resulting plot, see Figure 4, shows a top-
down plan-view plot of the simulation data. The plot shows
vehicle positions (numbers), sensor footprints (large col-

Rasmussen and Chandler

ored rectangles), targets (small rectangles), markers (col-
ored circles) indicating vehicle to target assignment, and
the paths of the vehicles.

3.3 AVDS Data

Data can be saved for replay in AVDS, as seen in Figure 5.
This give the analyst an animated 3-D perspective of the
simulation results, see RasSimTech Ltd. (2002).

4 EMBEDDED FLIGHT SOFTWARE

MultiUAV simulation contains the Embedded Flight Soft-
ware (EFS) blocks necessary to implement cooperative
control of the vehicles. The EFS is a collection of software
managers that cause the vehicle to perform desired tasks,
see Figure 6. The following managers have been imple-

mented: Tactical Maneuvering, Sensor, Target,
Cooperation, Route, and Weapons. These managers are de-
scribed in the following sections.

The vehicle simulations are implemented as part of a
“Redundant Central Optimization” (RCO) structure to con-
trol the cooperation of vehicles while they carry out their
mission to find, classify, kill, and verify the targets in the
simulation. The RCO structure consists of vehicles that are
formed into a team that contains team members and a team
agent. The team agent makes and coordinates team mem-
ber assignments through the use of a centralized optimal
assignment selection algorithm that is based on partial in-
formation. The redundant portion of the RCO structure
comes about because each team member implements a lo-
cal copy of the team agent. Because of this, each of the
team members calculates assignments for the entire team
and then implements the assignment for itself.

Figure 4: Simulation Data Plot Window

Figure 5: AVDS Example

Rasmussen and Chandler

Figure 6: Embedded Flight Software Blocks
Communications between the simulated vehicles is fa-
cilitated through connections on the communication bus.
During the progress of the simulation the EFS managers
cause the vehicle to react to changes in target states, vehi-
cle tasks, and task assignments. As an example of the in-
formation flow between EFS managers during the simula-
tion, the following is a sequence of events that occur when
a previously undetected target is discovered:

1. Vehicle Dynamics block senses target. Makes

vehicle heading and target ID available to local
vehicle.

2. The local Sensor Manager calculates single
automatic target recognition (ATR) based on in-
formation from the Vehicle Dynamics block.
Makes single ATR available to all vehicles.

3. Sensor Managers on all vehicles calculate com-
bined ATR value based on information from all
vehicles. Make combined ATR available to local
vehicle.

4. Target Managers on all vehicles update the tar-
get state based on the combined ATR value from
the local vehicle and the states communicated
from the other vehicles. Makes the new target
states available to all vehicles.

5. If any of the targets change state the Route Man-
agers on all vehicles calculate optimal route and
cost to the target based on its new state. Makes cost
to service target available to all of the vehicles.

6. Cooperation Managers on all vehicles calculate
optimal assignment of vehicles to targets based
on the optimal costs. Makes assignment for local
vehicle available to the local vehicle.
7. Route Managers on all vehicles implement as-
signed routes. Makes assigned waypoints avail-
able to the local vehicle.

8. Tactical Maneuvering Managers on all vehicles
read assigned waypoints and calculate commands
that will cause the autopilot to cause the vehicle to
fly to the waypoints. Makes autopilot commands
available to the local vehicle.

9. Vehicle Dynamics reads autopilot commands and
runs vehicle dynamics simulation. Makes vehicle
state available to local vehicle.

4.1 Tactical Maneuvering Manager

This manager is used to perform all of the functions neces-
sary for near-term guidance of the vehicle. At this time the
Tactical Maneuvering Manager is only being used to gen-
erate autopilot commands to cause the vehicle to follow
given waypoints. Based on the need for precise tracking of
the planned trajectory between waypoints a trajectory fol-
lowing algorithm was added to the original CATA tactical
maneuvering manager, see Fowler (2001). This algorithm
calculates the autopilot commands necessary to cause the
vehicle to follow a given trajectory between the waypoints.
This ensures that the vehicle will arrive at a given way-
point at the heading required to complete the task.

4.2 Sensor Manager

This manager is used to perform all of the functions neces-
sary to monitor the sensors and process sensed data. The
Sensor Manager performs the following functions:

• Keeps track of which targets have been detected.

Rasmussen and Chandler

• Computes ATR based on sensed data from this
vehicle. ATR value is calculated from an azimuth
dependent function that produces templates such
as the one shown in Figure 7.

• Combination of ATR values for each target from
this and other vehicles.

• Calculation of a Battle Damage Assessment
(BDA) value.

4.3 Target Manager

The Target Manager keeps track of the state of all of the
known targets. It creates and manages list of known and
potential targets. It also determines when to change a tar-
get’s status to a different state based on the current state
and a state transition function, see Figure 8. Specifically,
the Target Manager performs the following functions:

• Classifies targets.
• Sends target information requests based on data

needed for high level of confidence in classification.
• Manages the target states based on detection and

specifications for probability of classification (Pc)
and probability of kill (Pk), see Figure 8. The

states are: Not Detected (D), Detected/Not Clas-

sified (CD /), Classified/Not Attacked (AC /),

Attacked/Not Killed (KA /), Killed/Not Verified

(VK /), and Verified (V).
• Accounts for moving targets and target registra-

tion issues, not yet implemented.

4.4 Cooperation Manager

Calculates task and target assignments for the vehicle based
on information gathered from all of the vehicles. Performs

Figure 7: ATR Template

the required assignment calculations to assign each vehicle
to a task. Tasks include continue to search, cooperative clas-
sification, attack and verification of kill. A network optimi-
zation model is used to calculate the vehicle task assign-
ments, see Schumacher, Chandler, and Rasmussen (2001).

4.5 Route Manager

This manager is used to plan and select the trajectory for
the vehicle to fly. The Route Manager is responsible for
calculating the lowest cost route to all known targets, based
on each target's state. It is also responsible for monitoring

Figure 8: Target States

Rasmussen and Chandler

the status of the vehicle's assigned task. Specifically the
Route manager is responsible for the following:

• Maintains matrices of waypoints that describe

primary and alternate flight trajectories for the ve-
hicle.

• Calculates new flight trajectories for the vehicle
based on mission requirements.

• Relays parameters describing costs of using alter-
native flight trajectories to other vehicles.

4.6 Weapons Manager

Selects a weapon and then simulates its deployment. This
manager is responsible for communicating a unique Bomb
ID number, the type of weapon released and the weapon’s
impact coordinates. The targets use this data to calculate
the effects of the weapon impact.

5 VEHICLE DYNAMICS SIMULATION

The vehicle dynamics are those contained in the Vehicle
class of the CATA simulation. The functionality included
from this class includes SDOF dynamics, a flight control
system (FCS), an autopilot, and the sensor footprint. The
SDOF dynamics simulate an air vehicle based on stability,
control and damping derivatives and mass properties that
are contained in the simulation code. An inner loop FCS
was used to cause the vehicle to respond consistently to
given commands at various flight conditions. The autopilot
was implemented with a number of different modes to give
researchers the ability to select the appropriate mode for
the task. Examples of these modes include: Auto Takeoff,
Altitude hold, Mach hold, and Maneuver. MultiUAV only
uses the Maneuver mode, since this is the mode used by
the Tactical Maneuvering manager for waypoint guidance.
The sensor footprint is modeled as a rectangle a set dis-
tance offset in front of the vehicle. During the simulation,
if a target is found inside of the rectangle, notification is set
back to Simulink for processing through a sensor model.

In order to remove timing differences between the Tac-
tical Maneuvering Manager and the vehicle dynamics, the
interface to both of these functions was combined in one S-
Function in the Aircraft Dynamics block. The S-Function "
TacticalVehicle" S-function contains calls to the Vehicle
class from the CATA simulation. The TacticalVehicle S-
function uses the inputs to the "Vehicle Dynamics" block as
well as the contents of the global variable "VehicleMem-
ory.Dynamics" to initialize and update the vehicle mode.

6 SIMULATION EXAMPLE

As an example, MultiUAV was setup with eight vehicles
and two targets as shown in Figure 9(a). The vehicles are
initialized with waypoints that cause them to follow a pre-
defined search pattern. As the simulation progresses, the
vehicles will continue to follow these predefined way-
points until they are assigned a different task. The simula-
tion was operated for 200 seconds simulation time. The
following are descriptions of the state of the simulation at
the indicated times:

• Time 8.1 seconds, Figure 9(b):

Vehicle #2 has just discovered target #1. At this
point, vehicle #5 is assigned to classify target #1.

• Time 23.5 seconds, Figure 9(c):
Vehicle #5 has classified target #1 and has been
assigned to attack it. Also, vehicle #3 has discov-
ered target #2 and vehicle #7 has been assigned to
classify it.

• Time 36.7 seconds, Figure 9(d):
Vehicle #5 has attacked target #1 and vehicle #4
has been assigned to verify it. Vehicle #7 classified
target #2, was assigned to attack it and attacked.
Vehicle #6 was assigned to verify target #2.

• Time 55.9 seconds, Figure 9(e):
Vehicle #4 has verified the killing of target #1 and
is returning to the point where it left its original
search waypoints. Vehicle #6 has just verified the
killing of target #2.

• Time 74.9 seconds, Figure 9(f):
Vehicles #4 and #6 are following their original
search waypoints.

During the simulation MultiUAV prints out status mes-
sages to the MATLAB console window. The following are
the status messages printed out in the first 8 seconds of the
simulation example. Notice that many of the messages are
redundant. This is because all of the vehicles track the tar-
get states. And all of them report their own status.

*** Start CATA/Simulink Simulation ***
0.01 luv 1 cycles past waypoint # 0
0.01 luv 2 cycles past waypoint # 0
0.01 luv 3 cycles past waypoint # 0
0.01 luv 4 cycles past waypoint # 0
0.01 luv 5 cycles past waypoint # 0
0.01 luv 6 cycles past waypoint # 0
0.01 luv 7 cycles past waypoint # 0
0.01 luv 8 cycles past waypoint # 0
5.77: LUV 2 Found Target ID# 1
7.60 Vehicle#1: Target #1's state has been
changed to: "Detected-Not-Classified". ATR
Metric = 0.709971
7.60 Vehicle#2: Target #1's state has been
changed to: "Detected-Not-Classified". ATR
Metric = 0.709971
7.60 Vehicle#3: Target #1's state has been
changed to: "Detected-Not-Classified". ATR
Metric = 0.709971
7.60 Vehicle#4: Target #1's state has been
changed to: "Detected-Not-Classified". ATR
Metric = 0.709971
7.60 Vehicle#5: Target #1's state has been
changed to: "Detected-Not-Classified". ATR
Metric = 0.709971

Rasmussen and Chandler

7.60 Vehicle#6: Target #1's state has been
changed to: "Detected-Not-Classified". ATR
Metric = 0.709971
7.60 Vehicle#7: Target #1's state has been
changed to: "Detected-Not-Classified". ATR
Metric = 0.709971
7.60 Vehicle#8: Target #1's state has been
changed to: "Detected-Not-Classified". ATR
Metric = 0.709971
7.70 Vehicle #1, Replanning

7.70 Vehicle #2, Replanning
7.70 Vehicle #3, Replanning
7.70 Vehicle #4, Replanning
7.70 Vehicle #5, Replanning
7.70 Vehicle #6, Replanning
7.70 Vehicle #7, Replanning
7.70 Vehicle #8, Replanning
8.00 Vehicle #5, Assigned Target #1 to: Clas-
sify Target

Target #1

Target #2

Vehicle #1

Vehicle #8

Target #1

Target #2

Vehicle #1

Vehicle #8

(a) Simulation Time = 1.3 (b) Simulation Time = 8.1

(c) Simulation Time = 23.5 (d) Simulation Time = 36.6

(e) Simulation Time = 55.9 (f) Simulation Time = 74.9

Figure 9: Snapshots Of The MultiUAV Example At Various Times During The Simulation

Rasmussen and Chandler

This simulation scenario demonstrates the capability
of autonomous UAVs to find and prosecute targets. At the
conclusion of the simulation both targets had been discov-
ered, classified, attacked and verified.

7 CONCLUSION

This paper described a multiple UAV simulation used to
investigate cooperative control algorithms. This simulation
has made it possible for researchers knowledgeable in
MATLAB and Simulink to evaluate their UAV coopera-
tive control algorithms. In order to give research institu-
tions access to it, MultiUAV was made available to public.
This has made it possible for a number of academic institu-
tions and contractors to integrate MultiUAV into their re-
search programs.

Implementing cooperative control algorithms in Mul-
tiUAV and running scenarios such as the one in the previ-
ous section, has uncovered many issues in cooperative con-
trol of UAVs. These issues are currently being addressed in
work at AFRL. As for the future, MultiUAV will be modi-
fied to meet simulation challenges that arise during
AFRL’s cooperative control research. There are immediate
plans to make the connections between the vehicles in
MultiUAV more flexible. This will enable users to increase
the number of vehicles, add detailed simulated communi-
cations, and allow the vehicles to be connected to simula-
tions outside of MultiUAV.

REFERENCES

Boeing. 1997. “Control Automation and Task Allocation”.
Air Force Research Laboratory. Final Report. Boeing.

Chandler, P., S. Rasmussen, and M. Pachter. 2000. “UAV
Cooperative Path Planning”. In Proceedings of the
2000 American Institute of Aeronautics and
Astronautics Guidance Navigation and Control
Conference. Denver, Colorado.

Fowler, Jeffery M. 2001. “Coupled Task Planning for Mul-
tiple Unmanned Air Vehicles”. Technical Report.
AFRL/VACA WPAFB, Dayton, Ohio.

RasSimTech Ltd. 2002. “AVDS”. Available via
<http://www.RasSimTech.com/.> [accessed
August 26, 2002]

Schumacher, Corey, Phillip R. Chandler, and Steven J.
Rasmussen. 2001. “Task Allocation For Wide Area
Search Munitions Via Network Flow Optimization”.
In Proceedings of the 2001 American Institute of
Aeronautics and Astronautics Guidance Navigation
and Control Conference. Montreal, Canada.

The Mathworks, Inc. 2002. “Simulink”. Available via
<http://www.mathworks.com/> [accessed
August 26, 2002]
AUTHOR BIOGRAPHIES

STEVEN RASMUSSEN is a Senior Aerospace Engineer
for Veridian. He is currently assigned as a consultant to the
U.S. Air Force Research Laboratory’s Control Science
Center of Excellence. His background is in flight control
research and simulation development. He is the author/co-
author of numerous conference and journal papers and one
text book. His email address is <steven.rasmussen@
afrl.af.mil>.

PHILLIP CHANDLER is the manager and principal in-
vestigator for UAV autonomous and cooperative control
in-house basic research efforts for the U.S. Air Force Re-
search Laboratory’s Control Science Center of Excellence.
He has over 20 years experience in basic, and advanced
flight control research and has authored dozens of confer-
ence and journal papers. His email address is <phillip
.chandler@afrl.af.mil>.

http://www.rassimtech.com/
http://www.mathworks.com/
mailto:<steven.rasmussen@ afrl.af.mil>
mailto:<steven.rasmussen@ afrl.af.mil>
mailto:<phillip .chandler@afrl.af.mil>
mailto:<phillip .chandler@afrl.af.mil>

