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ABSTRACT 

This paper describes MultiUAV, a simulation that is capa-
ble of simulating multiple unmanned aerospace vehicles 
which cooperate to accomplish a predefined mission. The 
simulation was constructed using the Mathwork’s Simulink 
simulation software. Construction of the simulation satis-
fied the need for a simulation environment that researchers 
can use to implement and analyze cooperative control algo-
rithms. The simulation is implemented in a hierarchical 
manner with inter-vehicle communication explicitly mod-
eled. During construction of MultiUAV, issues concerning 
memory usage and functional encapsulation were ad-
dressed. MultiUAV includes plotting tools and links to an 
external program for post-simulation analysis. Each of the 
vehicle simulations include six-degree-of-freedom dynam-
ics and embedded flight software. The embedded flight 
software consists of a collection of managers (agents) that 
control situational awareness and responses of the vehicles. 
Managers included in the simulation are: Tactical Maneu-
vering, Sensor, Target, Cooperation, Route and Weapons. 

1 BACKGROUND 

In order to implement and evaluate cooperative control 
strategies for unmanned aerospace vehicles (UAVs), a 
simulation environment was needed. During an earlier pro-
ject, Control Automation and Task Allocation (CATA), a 
multiple-vehicle/multi-agent simulation was developed, 
see Boeing (1997). The CATA simulation was constructed 
in C++ and was modified for use in cooperative control re-
search. This simulation was found to be very useful in 
early cooperative control studies, see Chandler, Rasmus-
sen, and Pachter (2000). Since the CATA simulation was 
relatively large and written in C++ it proved to be difficult 
for other researchers to use. This prompted the develop-
ment of a Simulink-based multi-vehicle/multi-agent simu-
lation (MultiUAV). Simulink is a symbolic programming 
environment which makes the simulation relatively easy 
for researchers to understand and use, see The Mathworks, 
Inc (2002). The MultiUAV simulation was constructed us-

 
 

ing the organizational structure of the CATA simulation. 
CATA’s “vehicle” and “tactical maneuvering manager” 
classes were extracted directly from the CATA simulation 
to be used in MultiUAV.  

MultiUAV is capable of simulating 8 vehicles and 10 
targets. Simulated vehicles include embedded flight software 
(EFS) and vehicle dynamics. EFS is the software that im-
plements cooperative control algorithms. The vehicle dy-
namics are simulated with six-degree-of-freedom (SDOF) 
equations of motion. The vehicle model includes an autopi-
lot that makes the vehicles capable of waypoint navigation.  

2 MultiUAV IMPLEMENTATION 

MultiUAV is organized hierarchically with two major top-
level blocks, Vehicles and Targets, see Figure 1. The other 
two blocks at the top level, Initialization and DataForPlot-
ting, call functions to initialize the simulation and save simu-
lation data for plotting. The top-level blocks contain the sub-
blocks and connections required to implement simulation of 
the 8 vehicles and 10 targets, see Figures 2 and 3. 

 

 
Figure 1:  Top Level Blocks 

 
There are three types of functions used in MultiUAV, 

script, compiled and Simulink built-in. The majority of 
functions in MultiUAV are written in MATLAB’s script 
language and accessed from Simulink using S-function 
blocks. This makes it convenient for researchers since 
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Figure 2:  Vehicle Blocks 
many know MATLAB script language. The compiled 
functions include the classes used from CATA and other 
functions that are available in other languages. The com-
piled functions are connected to Simulink through S-
function blocks.  

2.1 Simulation Data and Communications 

In order to keep MultiUAV as accessible as possible, every 
effort is made to confine the transfer of data between 
Simulink blocks to the signal “wires” in the Simulink user 
interface. This is not always possible. For instance, passing 
variable length matrices as signals in Simulink would have 
caused too much overhead so the decision was made to 
transfer the waypoint matrices through global MATLAB 
memory.  

To facilitate data flow between the elements of the 
simulation, two data busses are implemented, one for simu-
lated communication signals (ComBus) and one for simu-
lation signals (SimBus). The ComBus bus contains the data 
signals that would be communicated between real vehicles. 
The SimBus bus contains the data signals that are required 
only by the simulation, i.e. truth data. The Simulink Bus 
Selector block, makes it possible to access any of the sig-
nals from the data busses by selecting the signal label. 
These busses are fed back as inputs to all of the major sub-
blocks. This makes it possible to access signals from one 
simulated vehicle deep in the sub-structure of another. 

 

 
Figure 3:  MultiUAV Hierarchy 
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2.2 Implementation 

MultiUAV contains only homogeneous vehicle and targets. 
Therefore, to implement the simulation only one vehicle 
block and one target block needs to be built and then cop-
ies of these blocks can be used to represent the rest of the 
vehicles and targets. To simplify simulation model modifi-
cations, a vehicle and a target block were implemented and 
then saved in a Simulink block library. This “Cooperation” 
block library was used to build the Vehicles and Targets 
blocks. When one uses a block from a block library, a link 
from the block to the library is created so when the library 
is updated the linked blocks are also updated. Therefore the 
first vehicle or target block is the implemented block and 
the rest of the blocks are links to a copy of the imple-
mented blocks in the Cooperation block library. 

2.3 Functional Encapsulation and Data Storage 

The structure of MultiUAV, makes it necessary to plan a 
strategy for functional encapsulation and data storage. 
Since the functions are shared by all of the vehicles and 
targets, care must be taken to encapsulate functions and 
data as much as possible. To do this, a few guidelines were 
established for function development and data storage.  

Functions are not allowed to have local storage, such 
as persistent variables. This prevents one vehicle from 
changing/accessing data stored by another vehicle. This 
forces all of the data to be passed-in through the function 
call or global memory. Global memory is necessary be-
cause there are elements that can’t be passed through the 
Simulink connections. To keep global memory encapsu-
lated, each vehicle is allocated a space in global memory 
that it can use for storage. The vehicles are not allowed to 
access another vehicle’s memory.  

Since the reason for using Simulink was to make the 
simulation more accessible to researchers, the strategy is to 
use Simulink elements for data storage as much as possi-
ble. This keeps the data visible in the Simulink user inter-
face. The other option is to use global MATLAB memory 
which makes the data less obvious. The different types of 
memory used in this simulation are outlined below.  

  
• Output of Blocks – the outputs of blocks can act 

as memory. The value of the block outputs is held 
until the block is updated. If the block is disabled 
the output can be set to hold its last updated value. 

• “Data Store” Blocks – These blocks can be used 
to store data inside of a block which is only visi-
ble within that block and inside subsystems of that 
block. This is a good way to save data in an ob-
ject-oriented fashion.  

• Global Memory – the use of global memory 
should be a “last choice” since it makes the simu-
lation less modular and thus less flexible. For this 
simulation, global memory has been used for 
structured storage, constant variables and constant 
structures. Note, the term “constant” is used to 
imply that the value of the variable is not intended 
to change during the simulation. There is no 
mechanism in MATLAB/Simulink to enforce this. 
The following are examples of variables/struc-
tures implemented in global memory: 
TargetMemory – (array of structures) The “main” 
memory for the individual target blocks. Each struc-
ture in this array is used as memory for a target. 
VehicleMemory – (array of structures) The 
“main” memory for the vehicle blocks. Each 
structure in this array is used as memory for a ve-
hicle. The structures contain structures for each of 
the managers. This gives each manager a structure 
for data storage. 
WaypointCells – (cell array) These cells are used 
to store the current waypoints for each vehicle. 
The vehicle s-function reads the waypoints from 
these cells. 

3 SIMULATION ANALYSIS TOOLS 

3.1 The Graphical User Interface 

To assist users, a graphical user interface (GUI) was devel-
oped. The GUI contains buttons, a check block, and a pull-
down menu that perform various functions: 

 
• Vehicle# – This is the vehicle referred to by the 

“Enabled” check block. 
• Enabled – When this block is checked the vehicle 

is active during the simulation. If it is not checked 
the vehicle is disabled during the simulation. 

• Enable All – Set all of the vehicles to the enabled 
state. This causes all of the vehicles to be active 
during the simulation. 

• Disable All – Set all of the vehicles to the disabled 
state. This clears all of the enable flags to make it 
more convenient to enable individual vehicles. 

• Save AVDS Data – Saves the data necessary for 
AVDS playback from global memory to files. 

• Plot Results – Plots the results of the last simula-
tion run, see the next section. 

3.2 Simulation Data Plot Window 

After running the simulation the saved data can be plotted 
using the PlotOutput function. This function can be in-
voked directly or by pressing the “Plot Results” button on 
the GUI. The resulting plot, see Figure 4, shows a top-
down plan-view plot of the simulation data. The plot shows 
vehicle positions (numbers), sensor footprints (large col-
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ored rectangles), targets (small rectangles), markers (col-
ored circles) indicating vehicle to target assignment, and 
the paths of the vehicles.  

3.3 AVDS Data 

Data can be saved for replay in AVDS, as seen in Figure 5. 
This give the analyst an animated 3-D perspective of the 
simulation results, see RasSimTech Ltd. (2002). 

4 EMBEDDED FLIGHT SOFTWARE 

MultiUAV simulation contains the Embedded Flight Soft-
ware (EFS) blocks necessary to implement cooperative 
control of the vehicles. The EFS is a collection of software 
managers that cause the vehicle to perform desired tasks, 
see Figure 6. The following managers have been imple-

mented: Tactical Maneuvering, Sensor, Target, 
Cooperation, Route, and Weapons. These managers are de-
scribed in the following sections.  

The vehicle simulations are implemented as part of a 
“Redundant Central Optimization” (RCO) structure to con-
trol the cooperation of vehicles while they carry out their 
mission to find, classify, kill, and verify the targets in the 
simulation. The RCO structure consists of vehicles that are 
formed into a team that contains team members and a team 
agent. The team agent makes and coordinates team mem-
ber assignments through the use of a centralized optimal 
assignment selection algorithm that is based on partial in-
formation. The redundant portion of the RCO structure 
comes about because each team member implements a lo-
cal copy of the team agent. Because of this, each of the 
team members calculates assignments for the entire team 
and then implements the assignment for itself. 
 

 

Figure 4:  Simulation Data Plot Window 

 

Figure 5:  AVDS Example 
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Figure 6:  Embedded Flight Software Blocks 
Communications between the simulated vehicles is fa-
cilitated through connections on the communication bus. 
During the progress of the simulation the EFS managers 
cause the vehicle to react to changes in target states, vehi-
cle tasks, and task assignments. As an example of the in-
formation flow between EFS managers during the simula-
tion, the following is a sequence of events that occur when 
a previously undetected target is discovered: 

 
1. Vehicle Dynamics block senses target. Makes 

vehicle heading and target ID available to local 
vehicle. 

2. The local Sensor Manager calculates single 
automatic target recognition (ATR) based on in-
formation from the Vehicle Dynamics block. 
Makes single ATR available to all vehicles.  

3. Sensor Managers on all vehicles calculate com-
bined ATR value based on information from all 
vehicles. Make combined ATR available to local 
vehicle.  

4. Target Managers on all vehicles update the tar-
get state based on the combined ATR value from 
the local vehicle and the states communicated 
from the other vehicles. Makes the new target 
states available to all vehicles. 

5. If any of the targets change state the Route Man-
agers on all vehicles calculate optimal route and 
cost to the target based on its new state. Makes cost 
to service target available to all of the vehicles.  

6. Cooperation Managers on all vehicles calculate 
optimal assignment of vehicles to targets based 
on the optimal costs. Makes assignment for local 
vehicle available to the local vehicle. 
7. Route Managers on all vehicles implement as-
signed routes. Makes assigned waypoints avail-
able to the local vehicle. 

8. Tactical Maneuvering Managers on all vehicles 
read assigned waypoints and calculate commands 
that will cause the autopilot to cause the vehicle to 
fly to the waypoints. Makes autopilot commands 
available to the local vehicle. 

9. Vehicle Dynamics reads autopilot commands and 
runs vehicle dynamics simulation. Makes vehicle 
state available to local vehicle. 

4.1 Tactical Maneuvering Manager 

This manager is used to perform all of the functions neces-
sary for near-term guidance of the vehicle. At this time the 
Tactical Maneuvering Manager is only being used to gen-
erate autopilot commands to cause the vehicle to follow 
given waypoints. Based on the need for precise tracking of 
the planned trajectory between waypoints a trajectory fol-
lowing algorithm was added to the original CATA tactical 
maneuvering manager, see Fowler (2001). This algorithm 
calculates the autopilot commands necessary to cause the 
vehicle to follow a given trajectory between the waypoints. 
This ensures that the vehicle will arrive at a given way-
point at the heading required to complete the task. 

4.2 Sensor Manager 

This manager is used to perform all of the functions neces-
sary to monitor the sensors and process sensed data. The 
Sensor Manager performs the following functions: 
 

• Keeps track of which targets have been detected. 
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• Computes ATR based on sensed data from this 
vehicle. ATR value is calculated from an azimuth 
dependent function that produces templates such 
as the one shown in Figure 7. 

• Combination of ATR values for each target from 
this and other vehicles. 

• Calculation of a Battle Damage Assessment 
(BDA) value. 

4.3 Target Manager 

The Target Manager keeps track of the state of all of the 
known targets. It creates and manages list of known and 
potential targets. It also determines when to change a tar-
get’s status to a different state based on the current state 
and a state transition function, see Figure 8. Specifically, 
the Target Manager performs the following functions: 
 

• Classifies targets. 
• Sends target information requests based on data 

needed for high level of confidence in classification. 
• Manages the target states based on detection and  

specifications for probability of classification (Pc) 
and probability of kill (Pk), see Figure 8. The 

states are: Not Detected ( D ), Detected/Not Clas-

sified ( CD / ), Classified/Not Attacked ( AC / ), 

Attacked/Not Killed ( KA / ), Killed/Not Verified 

( VK / ), and Verified ( V ). 
• Accounts for moving targets and target registra-

tion issues, not yet implemented. 

4.4 Cooperation Manager 

Calculates task and target assignments for the vehicle based 
on information gathered from all of the vehicles. Performs
 

 
Figure 7: ATR Template 

 
the required assignment calculations to assign each vehicle 
to a task. Tasks include continue to search, cooperative clas-
sification, attack and verification of kill. A network optimi-
zation model is used to calculate the vehicle task assign-
ments, see Schumacher, Chandler, and Rasmussen (2001). 

4.5 Route Manager 

This manager is used to plan and select the trajectory for 
the vehicle to fly. The Route Manager is responsible for 
calculating the lowest cost route to all known targets, based 
on each target's state. It is also responsible for monitoring  
 

 
Figure 8:  Target States 
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the status of the vehicle's assigned task. Specifically the 
Route manager is responsible for the following: 

 
• Maintains matrices of waypoints that describe 

primary and alternate flight trajectories for the ve-
hicle. 

• Calculates new flight trajectories for the vehicle 
based on mission requirements. 

• Relays parameters describing costs of using alter-
native flight trajectories to other vehicles. 

4.6 Weapons Manager 

Selects a weapon and then simulates its deployment. This 
manager is responsible for communicating a unique Bomb 
ID number, the type of weapon released and the weapon’s 
impact coordinates. The targets use this data to calculate 
the effects of the weapon impact. 

5 VEHICLE DYNAMICS SIMULATION 

The vehicle dynamics are those contained in the Vehicle 
class of the CATA simulation. The functionality included 
from this class includes SDOF dynamics, a flight control 
system (FCS), an autopilot, and the sensor footprint. The 
SDOF dynamics simulate an air vehicle based on stability, 
control and damping derivatives and mass properties that 
are contained in the simulation code. An inner loop FCS 
was used to cause the vehicle to respond consistently to 
given commands at various flight conditions. The autopilot 
was implemented with a number of different modes to give 
researchers the ability to select the appropriate mode for 
the task. Examples of these modes include: Auto Takeoff, 
Altitude hold, Mach hold, and Maneuver. MultiUAV only 
uses the Maneuver mode, since this is the mode used by 
the Tactical Maneuvering manager for waypoint guidance. 
The sensor footprint is modeled as a rectangle a set dis-
tance offset in front of the vehicle. During the simulation, 
if a target is found inside of the rectangle, notification is set 
back to Simulink for processing through a sensor model. 

In order to remove timing differences between the Tac-
tical Maneuvering Manager and the vehicle dynamics, the 
interface to both of these functions was combined in one S-
Function in the Aircraft Dynamics block. The S-Function " 
TacticalVehicle" S-function contains calls to the Vehicle 
class from the CATA simulation. The TacticalVehicle S-
function uses the inputs to the "Vehicle  Dynamics" block as 
well as the contents of the global variable "VehicleMem-
ory.Dynamics" to initialize and update the vehicle mode. 

6 SIMULATION EXAMPLE 

As an example, MultiUAV was setup with eight vehicles 
and two targets as shown in Figure 9(a). The vehicles are 
initialized with waypoints that cause them to follow a pre-
defined search pattern. As the simulation progresses, the 
vehicles will continue to follow these predefined way-
points until they are assigned a different task. The simula-
tion was operated for 200 seconds simulation time. The 
following are descriptions of the state of the simulation at 
the indicated times: 

 
• Time 8.1 seconds, Figure 9(b): 

Vehicle #2 has just discovered target #1. At this 
point, vehicle #5 is assigned to classify target #1.  

• Time 23.5 seconds, Figure 9(c): 
Vehicle #5 has classified target #1 and has been 
assigned to attack it. Also, vehicle #3 has discov-
ered target #2 and vehicle #7 has been assigned to 
classify it.  

• Time 36.7 seconds, Figure 9(d): 
Vehicle #5 has attacked target #1 and vehicle #4 
has been assigned to verify it. Vehicle #7 classified 
target #2, was assigned to attack it and attacked. 
Vehicle #6 was assigned to verify target #2. 

• Time 55.9 seconds, Figure 9(e): 
Vehicle #4 has verified the killing of target #1 and 
is returning to the point where it left its original 
search waypoints. Vehicle #6 has just verified the 
killing of target #2. 

• Time 74.9 seconds, Figure 9(f): 
Vehicles #4 and #6 are following their original 
search waypoints. 
 

During the simulation MultiUAV prints out status mes-
sages to the MATLAB console window. The following are 
the status messages printed out in the first 8 seconds of the 
simulation example. Notice that many of the messages are 
redundant. This is because all of the vehicles track the tar-
get states. And all of them report their own status. 

 
*** Start CATA/Simulink Simulation *** 
0.01 luv 1 cycles past waypoint # 0 
0.01 luv 2 cycles past waypoint # 0 
0.01 luv 3 cycles past waypoint # 0 
0.01 luv 4 cycles past waypoint # 0 
0.01 luv 5 cycles past waypoint # 0 
0.01 luv 6 cycles past waypoint # 0 
0.01 luv 7 cycles past waypoint # 0 
0.01 luv 8 cycles past waypoint # 0 
5.77: LUV 2 Found Target ID# 1 
7.60 Vehicle#1: Target #1's state has been 
changed to: "Detected-Not-Classified". ATR 
Metric = 0.709971 
7.60 Vehicle#2: Target #1's state has been 
changed to: "Detected-Not-Classified". ATR 
Metric = 0.709971 
7.60 Vehicle#3: Target #1's state has been 
changed to: "Detected-Not-Classified". ATR 
Metric = 0.709971 
7.60 Vehicle#4: Target #1's state has been 
changed to: "Detected-Not-Classified". ATR 
Metric = 0.709971 
7.60 Vehicle#5: Target #1's state has been 
changed to: "Detected-Not-Classified". ATR 
Metric = 0.709971 
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7.60 Vehicle#6: Target #1's state has been 
changed to: "Detected-Not-Classified". ATR 
Metric = 0.709971 
7.60 Vehicle#7: Target #1's state has been 
changed to: "Detected-Not-Classified". ATR 
Metric = 0.709971 
7.60 Vehicle#8: Target #1's state has been 
changed to: "Detected-Not-Classified". ATR 
Metric = 0.709971 
7.70 Vehicle #1, Replanning 

7.70 Vehicle #2, Replanning 
7.70 Vehicle #3, Replanning 
7.70 Vehicle #4, Replanning 
7.70 Vehicle #5, Replanning 
7.70 Vehicle #6, Replanning 
7.70 Vehicle #7, Replanning 
7.70 Vehicle #8, Replanning 
8.00 Vehicle #5, Assigned Target #1 to: Clas-
sify Target 
 

 

Target #1

Target #2

Vehicle #1

Vehicle #8

Target #1

Target #2

Vehicle #1

Vehicle #8

     
(a) Simulation Time = 1.3 (b) Simulation Time = 8.1 

 

     
(c) Simulation Time = 23.5 (d) Simulation Time = 36.6 

 

     
(e) Simulation Time = 55.9 (f) Simulation Time = 74.9 

Figure 9:  Snapshots Of The MultiUAV Example At Various Times During The Simulation 
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This simulation scenario demonstrates the capability 
of autonomous UAVs to find and prosecute targets. At the 
conclusion of the simulation both targets had been discov-
ered, classified, attacked and verified. 

7 CONCLUSION 

This paper described a multiple UAV simulation used to 
investigate cooperative control algorithms. This simulation 
has made it possible for researchers knowledgeable in  
MATLAB and Simulink to evaluate their UAV coopera-
tive control algorithms. In order to give research institu-
tions access to it, MultiUAV was made available to public. 
This has made it possible for a number of academic institu-
tions and contractors to integrate MultiUAV into their re-
search programs. 

Implementing cooperative control algorithms in Mul-
tiUAV and running scenarios such as the one in the previ-
ous section, has uncovered many issues in cooperative con-
trol of UAVs. These issues are currently being addressed in 
work at AFRL. As for the future, MultiUAV will be modi-
fied to meet simulation challenges that arise during 
AFRL’s cooperative control research. There are immediate 
plans to make the connections between the vehicles in 
MultiUAV more flexible. This will enable users to increase 
the number of vehicles, add detailed simulated communi-
cations, and allow the vehicles to be connected to simula-
tions outside of MultiUAV. 

REFERENCES 

Boeing. 1997. “Control Automation and Task Allocation”. 
Air Force Research Laboratory. Final Report. Boeing. 

Chandler, P., S. Rasmussen, and M. Pachter. 2000. “UAV 
Cooperative Path Planning”. In Proceedings of the 
2000 American Institute of Aeronautics and 
Astronautics Guidance Navigation and Control 
Conference. Denver, Colorado.  

Fowler, Jeffery M. 2001. “Coupled Task Planning for Mul-
tiple Unmanned Air Vehicles”. Technical Report. 
AFRL/VACA WPAFB, Dayton, Ohio. 

RasSimTech Ltd. 2002. “AVDS”. Available via 
<http://www.RasSimTech.com/.> [accessed 
August 26, 2002]  

Schumacher, Corey, Phillip R. Chandler, and Steven J. 
Rasmussen. 2001. “Task Allocation For Wide Area 
Search Munitions Via Network Flow Optimization”. 
In Proceedings of the 2001 American Institute of 
Aeronautics and Astronautics Guidance Navigation 
and Control Conference. Montreal, Canada. 

The Mathworks, Inc. 2002.  “Simulink”. Available via 
<http://www.mathworks.com/> [accessed 
August 26, 2002] 
AUTHOR BIOGRAPHIES 

STEVEN RASMUSSEN is a Senior Aerospace Engineer 
for Veridian. He is currently assigned as a consultant to the 
U.S. Air Force Research Laboratory’s Control Science 
Center of Excellence. His background is in flight control 
research and simulation development. He is the author/co-
author of numerous conference and journal papers and one 
text book. His email address is <steven.rasmussen@ 
afrl.af.mil>. 

PHILLIP CHANDLER is the manager and principal in-
vestigator for UAV autonomous and cooperative control 
in-house basic research efforts for the U.S. Air Force Re-
search Laboratory’s Control Science Center of Excellence. 
He has over 20 years experience in basic, and advanced 
flight control research and has authored dozens of confer-
ence and journal papers. His email address is <phillip 
.chandler@afrl.af.mil>. 

http://www.rassimtech.com/
http://www.mathworks.com/
mailto:<steven.rasmussen@ afrl.af.mil>
mailto:<steven.rasmussen@ afrl.af.mil>
mailto:<phillip .chandler@afrl.af.mil>
mailto:<phillip .chandler@afrl.af.mil>

