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Multiuser Channel Estimation for Detection of
Cochannel Signals

Stephen J. Grant, Associate Member, IEEE,and James K. Cavers, Senior Member, IEEE

Abstract—Estimation of the channel impulse responses of mul-
tiple cochannel users is a key requirement of all multiuser detec-
tion and interference cancellation techniques, though little atten-
tion has been paid to the subject in the context of time-divison mul-
tiple-access (TDMA) systems. This paper addresses a pilot-based
MMSE technique for multiuser channel estimation in a TDMA
system, and makes two key contributions. Firstly, it allows for time
variation of the channels within and between training sequences,
an essential feature in a multiuser environment even at moderate
fading rates. Secondly, it addresses the design of training sequences
for the multiple cochannel users.

Index Terms—Dispersive channels, estimation, fading channels,
interference suppression, multidimensional signal detection, mul-
tiuser channels, sequences, time division multiaccess.

I. INTRODUCTION

M ULTIUSER detection and interference cancellation
techniques have received much attention recently due to

their potential for increasing system capacity. For code-division
multiple-access (CDMA) systems, where much of the research
has been focused, e.g., [1] and [2], the interest has been mo-
tivated by the poor performance of the conventional detector,
which ignores multiple access interference. For time-division
multiple-access (TDMA) systems, where a steadily increasing
amount of research is being directed, e.g., [3]–[6], the interest
is motivated by the desire to allow frequency reuse within cell
and/or achieve intercell interference cancellation. One aspect
common to all of the multiuser detection and interference
cancellation techniques, however, is the necessity of having
reliable channel estimates for all of the cochannel users.

The use of pilot symbols is a well-known method for ob-
taining good channel impulse response estimates in single-user
systems, e.g., [7]–[11]. For the case of multiuser systems, pilot-
based channel estimation has been studied extensively only for
CDMA, e.g., [12] and [13], where processing gain suppresses
interference in the channel estimator. However, little is known
about multiuser channel estimation in TDMA systems. The sole
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Fig. 1. Cochannel signal model. TheM time-variant, dispersive channels are
assumed to fade independently.

prior study appears to be [14], in which the channels are treated
as time-invariant.

This paper addresses a pilot-based MMSE technique for es-
timating the channel impulse responses of multiple cochannel
users in a TDMA system and makes two key contributions. First,
it allows time variation of the channels within and between the
training sequences. This is essential in a multiuser environment
where the training sequences are necessarily longer than in a
single user environment [14], resulting in significant time vari-
ation during the training periods. Previously, this has been un-
addressed.

Second, it addresses the design of appropriate training se-
quences. In contrast to the single-user case, for which it is often
possible to select a single training sequence with perfect auto-
correlation properties (as done in [8] and [9]), it is difficult, in
general, to select multiple training sequences of arbitrary length
with both perfect auto and cross-correlation properties. To over-
come these difficulties, reasonable selection criteria are pre-
sented for designing good, suboptimal training sequences with
training symbols constrained to lie within the modulation al-
phabet.

II. SIGNAL AND CHANNEL MODELS

Throughout this paper, the following conventions are used:
variables in italics are scalars, lowercase boldface variables are
vectors, and uppercase boldface variables are matrices. Fur-
thermore, and denote, respectively, the complex-conjugate
transpose and regular transpose of a vector or matrix, and
denotes complex conjugate. Since all signals are represented
by their complex baseband equivalents, the average power (or
variance) of the bandpass signal , with baseband equivalent

, is , where is the expectation
operator.

Fig. 1 shows a diagram of the transmission ofcochannel
signals through independently fading, dispersive channels.
Each channel is represented by its time-variant channel impulse
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response (CIR) where represents the memory of
the impulse response, andrepresents time variation. Theth
user’s transmitted signal is given by

(1)

where the data/training symbol is normalized such that
, the pulse shape is root-Nyquist with

deterministic autocorrelation function
and energy , the symbol period is , and the transmit
amplitude is related to the average power in by

. The relative delay appears in (1) since, in a
typical TDMA system, the received signals at the base station
may not be synchronized by symbol due to differing propagation
delays between each user’s terminal and the base.

The received signal consists of the sum of the filtered
cochannel signals and an additive white Gaussian noise com-
ponent with double-sided power spectral density . As-
suming that the time variations of the channels are slow enough
such that does not vary significantly over the memory
of the transmit pulse (a few symbols), the output of the matched
filter is

(2)

where is the th user’s composite impulse response
given by

(3)

The operator denotes convolution. Notice that the relative
delay is now considered to be part of the channel impulse
response. In (2), is the noise component of the matched
filter output. Since is white, the autocorrelation function of

is .

A. Channel Statistics

In this paper, we adopt an MMSE estimation technique which
leads naturally to considering time variation of the channels
within and between training periods. MMSE estimation of the
users’ channels requires knowledge of the second-order statis-
tics of summarized by the correlation function

(4)

Assuming a wide sense stationary uncorrelated scattering
(WSSUS) channel as well as a separable scattering function,
the correlation function reduces to

(5)

In this expression, is the temporal autocorrelation
function of the channel. For example, with isotropic scattering,

, where is the Bessel
function of the first kind and is the maximum Doppler
shift. The function is given by

(6)

where is the probability density function (PDF) of
the relative delay (often uniform over ),
and is the power-delay profile (PDP) of the
channel. One common example is the exponential PDP

, where is the
rms delay spread. Another is the single-spike profile for flat
fading given by where is the Dirac
delta function. Observing (6), is given by the convolu-
tion of the PDP and the PDF of . Because the uncertainty in
timing is often much larger than the rms delay spread, the shape
of , and thus the performance of the MMSE estimator,
is not very sensitive to .

As can be seen from (5) and (6), does not
depend on itself—only on its PDF. In other words, explicit
timing recovery is unnecessary; the relative delays are simply
estimated as part of the channels. However, if the relative delays
happen to be known, the PDF of becomes an impulse and

.

B. SNR Definition

The signal-to-noise ratio (SNR) of useris defined as
, where is the average received energy per symbol

from user given by (see Fig. 1)

(7)

where, again, a WSSUS channel has been assumed. The inner
integral of the latter expression is simply equal to twice the av-
erage power in . Furthermore, since the area under
is , the th user’s SNR is simply

(8)
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C. Channel Vectors

Samples of the matched filter output are taken at times
yielding the discrete-time sequence

(9)

where the symbol vector is given by (10) at the bottom
of the page and th user’s channel vector—to be estimated—is

...

...

(11)

where and are integers. Clearly, consists of sam-
ples of at -spaced delays evaluated at time

. It is assumed that is generally noncausal such
that and .

The second-order statistics of are summarized by the
autocorrelation matrix .
Using (5), the th element of this matrix is

(12)

where . Evidently, the
tap gains [elements of ] are correlated, in general, even
though we have assumed a WSSUS channel [10]. This is due to
the convolution of with the pulse autocorrelation
function as shown in (3).

Observing (11), the length of is where
. To maintain computational complexity as low as

possible, it is desirable to chooseand as small as possible,
keeping only those channel taps with significant variance. Since

Fig. 2. Sum of channel tap variances versus the channel memory lengthL

for flat and frequency-selective fading conditions. The variable� is the rolloff
parameter of the root-Nyquist transmit pulseu(t).

the impulse response decays to zero for large , the
sum of the tap variances, given by trace , saturates for
large .

As a guide for the selection of the minimum required,
Fig. 2 shows a plot of trace vs. for several com-
binations of rms delay spread and pulse rolloff—the two fac-
tors that directly influence the duration of . In this
graph, in (6) is calculated using an exponential power
delay profile and a uniform distribution of relative delay over
the interval . As can be seen, is sufficient
for capturing most of the energy in the impulse response for

. To minimize estimation error for higher values of
delay spread, it may be desirable to choose ; however,
the cost incurred when using MLSE-type detection schemes is
higher complexity due to the increased state set.

III. JOINT CHANNEL ESTIMATION

In this section, an MMSE technique for jointly estimating
the users’ channels is discussed. Other techniques (such as
least squares) may also be used, provided they incorporate a
model of the temporal variation of the channels. However, we
do not investigate them in this study, and restrict our attention to
MMSE which enables a consistent treatment of time variation
through the temporal autocorrelation function of the channels.

A. General Structure of the Estimator

MMSE estimation of the users’ channels relies upon the pe-
riodic insertion of a unique training sequence into each user’s
data sequence. The design of the training sequences is addressed

even

odd

(10)
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Fig. 3. Frame structure and indexing conventions.

in Section IV. Unique training sequences are required for each
user so that the cochannel signals may be distinguished (e.g.,
see [14]). This is in contrast to CDMA systems where spreading
codes are used to distinguish users and suppress interference in
the channel estimator.

It is assumed that the asynchronous users are slot-syn-
chronous such that their training sequences are inserted at the
same time, although different propagation delays make their
arrivals symbol-asynchronous as discussed previously. The
received samples during the training periods are then used to
derive estimates of the channels which are interpolated between
training periods. In this way, time variations of the channels
are tracked. The frame structure, along with the symbol and
frame indexing conventions used throughout this paper, is
shown in Fig. 3. In this structure, the length of each frame is

symbols, and the length of each training sequence is
symbols. Note that indexes symbols, and indexes samples;
thus, . To provide detail, a single training period
and the two adjacent data blocks are shown in exploded view.
The exploded view shows the zeroth frame which starts at the
beginning of the training period and extends to the end of the
subsequent data block. The estimation interval extends from
mid-frame to mid-frame either side of the training period.

Since the users’ channels are to be estimated jointly, we de-
fine the length- vector as the concatenation of
the users’ individual channel vectors

(13)

The autocorrelation matrix of the joint channel vector is
. Because the users’ channels

fade independently, is block diagonal and is given by

...
...

...
...

(14)

where is defined in (12).
Consider the MMSE estimation of in the estimation in-

terval shown in Fig. 3. The
channel estimator uses the received samples from the training
blocks of each of the frames centered about frame-0 to
form its estimate. These samples are contained in the vector

(15)

where

(16)

The length- vector contains a subset of the re-
ceived samples during theth training block called the “usable
samples.” For example, Fig. 3 shows the usable samples for the
zeroth frame ( ). With use of this subset, depends only
on training symbols—not on unknown data symbols—due to the
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length- precursor and the length- postcursor inserted in
each training sequence.

Since contains samples of a bandlimited process sampled
at a rate greater than the Nyquist rate, the covariance matrix of
, given by , becomes ill-conditioned as

increases (due to an increasing number of users). This suggests
the use of rank reduction to remove dependencies inas well
as to avoid explicit inversion of . Accordingly, we use eigen-
decomposition to write the covariance matrix ofas

(17)

The diagonal matrix contains the dominant eigenvalues of
, and contains those eigenvalues that fall below some

very small threshold, e.g., , where is the max-
imum eigenvalue of . The nonsquare matrices and
contain the normalized eigenvectors, arranged as columns, cor-
responding to the eigenvalues in and respectively. Now,
base the estimate of on the reduced dimensionality vector

(instead of itself) which has covariance matrix
.

The optimal (MMSE) estimate of based on is given
by the conditional mean . Since and
are jointly Gaussian, the conditional mean is linear in, and is
given by

(18)

where and .
The latter quantity is recognized as the pseudoinverse, or
Moore–Penrose generalized inverse, of [15]. Note that, for
short training sequences (small ), may not be ill-con-
ditioned; in this case . Evidently, the conditional
mean depends upon, giving a different interpolation matrix

for each position within the estimation interval.
However, recall that is WSS and is cyclostationary;
thus, it is sufficient to calculate the interpolation matrix for
each position in only the estimation interval shown in Fig. 3.
The same matrix repeats in subsequent intervals.

B. Quality of Channel Estimates

Let denote an arbitrary, not necessarily op-
timal, estimate of with associated channel estimation error

(19)

The estimation error covariance matrix is

(20)

where is the covariance matrix of and is
the cross-covariance matrix of and . For the optimal

channel estimate, , and the error
covariance matrix is

(21)

In this paper, one measure of channel estimation quality for
the th user is the sum of tap error variances, normalized by
the sum of the tap variances for that user, that is,

trace
trace

(22)

where is the th block along the main diagonal of
.

Another measure of channel estimation quality for theth
user that is a major determinant of system performance is the set
of correlation coefficients between corresponding taps of esti-
mated channel vector and the true channel vector .
Since each of the channel taps has its own correlation
coefficient, the following average is defined:

(23)

where indexes the individual channel taps, and denotes
the diagonal elements of the bracketed matrix. In this expres-
sion, and are the th blocks along the
main diagonals of and , respectively. Although
both and depend on , we found very little vari-
ation across the frame. Note that for perfect channel estimation,

and .

C. Details of Optimal Estimator

We now examine the optimal estimator in (18) in more detail
and obtain the required matrices. It is convenient to first intro-
duce the following data matrix:

(24)

where the th submatrix of is given by

...
(25)

and is given in (10). Due to the precursor and postcursor
inserted during each training period, consists only of sym-
bols from the th user’s training sequence and no unknown
symbols from the adjacent data sequences. Using (9), (13), (24),
and (25), the th component of can be written as

(26)

where is the th row of the data matrix and
. With this expression
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in hand, the elements of the matrices and in (18) may
be easily determined.

Using (15),

(27)

where is of dimension .
Now using (16) and (26), and assuming the noise and channel
fading process are uncorrelated, theth column of the th sub-
matrix of is simply

(28)

where .
Using (15) again,

...
...

...

(29)

where is of dimension
. Using (16) and (26) again, the th element of the th

submatrix of is simply

(30)

where and
. is the autocorrelation function

of the (colored) noise sequence.
Observing (27)–(30), one can see that the optimal inter-

polation matrix depends only on the data matrix
, the channel autocorrelation matrix , and the noise

autocorrelation function . For a given scattering envi-
ronment, the latter two depend on the Doppler fade rate,
the rms delay spread , and the SNR for each user.
These parameters may not be known at design time and may be
different for each user. However, as shown in [7] for the case of
a single user and flat fading, a worst-case design methodology
may be adopted whereby the interpolator is designed assuming
worst-case fading conditions and a typical operating SNR. This
is discussed further in Section V-D.

For the special case of a single user ( ), a single pilot
symbol ( and ), one sample per symbol, and
flat Rayleigh fading with , (27) and (29) give
identical interpolator coefficients to those derived in [7]. For the
case of a single user and frequency-selective fading, on the other
hand, the results here provide an extension to those contained
in [8], since we have considered the coloration of the sampled
noise sequence and the correlation between channel taps which

was ignored in [8]. As will be shown in Section V-D, the con-
sideration of these effects leads to a significant reduction in es-
timation error.

IV. TRAINING SEQUENCEDESIGN

Optimal selection of the users’ training sequences requires
testing all possible combinations of length- symbol se-
quences in order to minimize each user’s channel estimation
error defined in (22). For several users and practical
training sequence lengths, the resulting search space is prohib-
itively large; furthermore, the amount of computation required
to test each candidate sequence is high. In order to overcome
these difficulties, a simplified, suboptimal search strategy is de-
veloped below which not only yields good training sequences,
but offers more insight than an exhaustive computer search.

In the development of this suboptimal search strategy, several
assumptions are made: first, the users’ channels are assumed to
vary slowly enough that they may be considered constant over
the duration of each training period; second, the matrixin
(18) is assumed to be nonsingular, so that ; and
third, the noise sequence is assumed to be white. Under
these assumptions, (18) may be expressed in an alternate form
allowing for a simplified selection criterion. It must be empha-
sized, though, that these assumptions are made for the purposes
of training sequence design only. The resulting sequences are
then used to calculate the optimal channel estimate vector
using (18), (27), and (29) which do not depend on the simpli-
fying assumptions.

Using the slow time-variation assumption, the channel vector
in (26) may be approximated by for all .

Thus, the received vector may be written as

(31)

where is the vector of noise samples in theth training
period, which has covariance matrix under the as-
sumption of white noise.

Using the above expression for , the th submatrix of
may be rewritten as

(32)

The th submatrix of may be rewritten as

(33)

where if and zero otherwise. By using these sim-
plified expressions to form the matrices and , and then
by using the matrix inversion lemma twice to rewrite the product

in (18) (see [8, Appendix] for the single-user case),
the channel estimate vector may be expressed as

... (34)
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where

...
...

...

...
. . .

... (35)

Notice that the term in (34) is
the least-squares (LS) estimate of the channel vector
during the th training period, with estimation error

, and associated error covariance matrix

(36)

Clearly, is the same for each training block. The channel
estimate is then an interpolation [using ] of the LS
estimates made during the training periods centered
about frame-0. In [14], LS estimation of the users’ channels in
each of the training periods is also performed; however, since
the channels are assumed to be time-invariant, no interpolation
between training periods is performed. Furthermore, [14] does
not address the design of appropriate training sequences.

Equations (34) and (35) immediately suggest that the training
sequences have a minimum required length. In order to form the
LS estimates, the matrix must be nonsingular. This occurs
if the matrix is of full column rank,
which can only occur if the number of rows of is greater than
or equal to the number of columns. Consequently, the minimum
training sequence length is .

Equation (34) also suggests a simplified criterion for de-
signing good training sequences. Rather than choosing the
sequences to minimize in (22) for each user (the
optimal criterion), in this paper, the sequences are chosen to
minimize trace —an easier task. This is reasonable, since
one would expect that minimizing the error variance of the
acquired LS estimates during each training block would also
lead to a low interpolation error between training blocks. Note,
though, that the same minimum sequence length applies to
both the optimal and simplified criteria, except that for the
optimal criterion, a rank deficiency in causes to be
excessively high rather than causing an explicit singularity as
for the simplified criterion.

Minimization of trace is made easier by defining the
matrix formed by deleting the odd

numbered rows of and removing the zeros from the even num-
bered rows. No information is lost here, since, observing (10)
and (25), one can see that an even numbered row ofand its
associated odd numbered row contain the same symbols inter-
spersed with zeros. The odd numbered row is just a right shift
by one position of the even numbered row. As a consequence,
the even and odd numbered rows are linearly independent such
that if is of full column rank, then so is . Furthermore,

due to the sparse nature of, one can show that trace
trace , where the Gram matrix is given by

...
...

.. .
...

(37)

Evidently, selection of the users’ training sequences is accom-
plished simply by minimizing trace . Although we have
simplified the preceding analysis by assuming that the sampled
noise sequence is white, we found that the training sequences
that minimize trace also minimize the LS estimation error
variance for the case of noise coloration due to the matched
filter.

In [16] for the case of a single user ( ), it is shown that
trace is minimized by choosing a single training sequence
such that is diagonal. This implies that the training
sequence must have perfect autocorrelation properties, that is,
zero autocorrelation for all lags except zero. The design of such
a sequence of arbitrary length is not difficult; for example, see
[17].

In the multiuser case, on the other hand, a diagonalmatrix
implies that the different sequences have not only perfect
autocorrelation properties, but perfect crosscorrelation proper-
ties as well, that is, zero crosscorrelation for all lags. This is
generally very difficult to achieve for arbitrary and if the
training symbols are constrained to lie within the modulation
alphabet. In this paper, BPSK training sequences are selected
such that the off-diagonal elements of(autocorrelation values
for nonzero lags and crosscorrelation values for all lags) all fall
below a certain threshold, which is chosen to be as low as pos-
sible for a given and . Since the diagonal elements of
are all equal to , this procedure makes strongly di-
agonal.

Training sequence design is made somewhat easier if the first
symbols of each user’s sequence are constrained to be the

same as the last symbols. With this constraint, theth user’s
(modified) data matrix is

(38)

where is a length- column vector, and the operator
denotes a circular shift of by positions. The shift

is up if is positive and down if is negative. Note that the
th user’s training sequence is the concatenation of the last

symbols of and itself. The th submatrix of can
be now be written as

...
...

.. .
...

(39)
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TABLE I
MINIMUM LENGTH BINARY TRAINING SEQUENCES(INCLUDING PRECURSORS

AND POSTCURSORS) FOUND BY SEQUENTIAL SEARCH. THE SEQUENCES

ARE IN HEXADECIMAL FORM AND MUST BE ZERO PADDED TO THE

LEFT TO MAKE UP THE FULL LENGTHN

where is the periodic crosscorrelation function of the
column vectors and [18] defined as

(40)

The design of the training sequences now involves se-
lecting a set of different s that satisfy three criteria: 1)

is less than the threshold for
for all ; 2) is less than the threshold for

for all ; and 3) is full
column rank. Since the number of combinations ofdifferent

s is huge for several users and typical channel memory
lengths, a sequential search is used, rather than an exhaustive
one, to build up a set of training sequences one-by-one that
satisfy the three criteria.

Table I shows the results of a computer search for minimum
length binary training sequences that meet these criteria. For
compactness, the training sequences are listed in hexadecimal
form. The most significant bit corresponds to the first symbol to
be transmitted in the training sequence, that is , and the
least significant bit to the last symbol, that is .
BPSK symbols are derived from the bits of the training se-
quences using the mapping . Note that for
the case of , where the best training sequence is
001, the constraint of first and last symbols being equal is lifted
in order to avoid a singular Gram matrix.

The table also lists the threshold used for the off-diagonal el-
ements of . For each case, the threshold was first set to zero
and then increased until a full set of training sequences was
found. A value of zero indicates that is diagonal, implying
that the training sequences have perfect auto and crosscorre-
lation properties. This occurs when , or 4. It is
interesting to note that the resulting data matrixis equivalent
to the Hadamard matrix of order 1, 2, or 4, respectively, which is
known to have orthogonal columns resulting in a diagonal Gram
matrix.

Although we have shown results only for binary training se-
quences, the search technique presented in this paper applies
to the more general case of nonbinary sequences, e.g., QPSK,
8-PSK, and 16-QAM. However, experimentation with QPSK
sequences showed that while the search space is larger, the auto-
and crosscorrelation properties of the resulting sequences are no
better than for the binary sequences listed in Table I.

V. DESIGN ISSUES ANDPERFORMANCE

In this section, several design issues are treated, namely the
choice of interpolator order, choice of frame length, and effi-
ciency. The performance of the joint channel estimation scheme
is then investigated, using the channel estimation quality mea-
sures and defined in (22) and (23), respectively.
Unless otherwise specified, the optimal interpolator

is used so that in (20) is equal to .
Frequency-selective fading is considered using various

values of Doppler spread and rms delay spread .
The power delay profile is assumed to be exponential, and the
relative delay is assumed to be distributed uniformly on the
interval . Also, is set to 1/2 resulting in the

th user’s SNR being . Unless otherwise speci-
fied, the root-raised cosine transmit pulse has 50% excess
bandwidth. Furthermore, according to Fig. 2, the parameter
is set to 4 with and . The training sequences
listed in Table I are used in all cases. Recall that these sequences
are of the minimum length .

A. Interpolator Order

Fig. 4 shows a plot of channel estimation error versus interpo-
lator order, defined as . As can be seen, the use of more
than about nine training blocks ( ) to form the estimate
of does not significantly decrease the channel estimation
error. This behavior was found to be representative of a large
variety of fading and SNR conditions. It is also consistent with
that observed in [7] for the case of a single user and flat fading.
Note that user 2 experiences slightly better performance than
user 1 does since the training sequence for user 2 happens to
have slightly better autocorrelation properties.

B. Frame Length

Fig. 5 shows a plot of channel estimation error versus frame
length . For a fixed Doppler spread, as is increased beyond
a critical value, the channel estimation error increases sharply,
due to the fact that the fading channels are not sampled often
enough to allow proper interpolation. Clearly, as the Doppler
spread increases, the fading channels must be sampled at a
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Fig. 4. Channel estimation error versus interpolator order for two equipower
users at an SNR of 30 dB. The frame length isN = 2N = 28 symbols.

Fig. 5. Channel estimation error versus frame length for two equipower
users at an SNR of 30 dB with interpolator order nine. The fading is
frequency-selective with� =T = 0:2 for each user.

higher rate (shorter frame length): for 0.0025, 0.005,
and 0.01, the critical frame lengths are approximately 180, 90,
and 45 symbols, respectively. These values correspond closely
to the inverse of the Nyquist rate . Again, this behavior
is consistent with that observed in [7].

C. Efficiency

The transmission efficiency—or throughput—experienced
by any user is given by the ratio of the number of data symbols
per frame ( ) to the frame length . As the number of
users increases, so does the required length of the training se-
quence, causing the user efficiency to drop. Using the minimum
training sequence length found earlier, the user efficiency is

. Fig. 6 shows a plot of user
efficiency versus the number of users for the critical values
of found above. This plot illustrates significantly reduced
efficiency for short frame lengths and a large number of users.
In the extreme of fast fading ( ) with four users

Fig. 6. User and system efficiency for the critical frame lengths found in the
previous figure.

Fig. 7. Channel estimation error versus the number of equipower users
with frame lengthN = 50 and interpolator order nine. The fading is
frequency-selective with� =T = 0:2 andf T = 0:005 for each user.

and a frame length of , the user efficiency drops from
its value of 80% corresponding to a single user to a value near
50%. Remember, though, that in the case of frequency reuse
within a cell, system capacity may be enhanced through joint
detection and/or antenna arrays [3], [6] by allowing four users
to share the same frequency/time slot which offsets this reduc-
tion in user efficiency. Therefore, we define system efficiency
as and plot it on Fig. 6, where an optimal value
of can be seen. This optimal value and the corresponding
optimal both increase for slower fading where the frame
length can be much greater than for fast fading.

D. Performance

Fig. 7 shows a plot of channel estimation error versus number
of users. The estimation error actually decreases with each ad-
ditional user, which is due to longer training sequences as each
additional user is added. Again, each user has a slightly different
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Fig. 8. Channel estimation error and average correlation coefficient for
optimal and suboptimal interpolators with two equipower users, frame length
N = 50, and interpolator order nine. The fading is frequency-selective with
� =T = 0:2 andf T = 0:005 for each user.

estimation error variance due to the fact that users’ training se-
quences have slightly different autocorrelation properties.

In addition to the consideration of multiple users, our anal-
ysis provides an extension to the single-user results of [8] by
accounting for coloration of the sampled noise sequence and
correlation between the channel taps. Fig. 8 shows the estima-
tion gain achieved by considering these two effects. This graph
plots the estimation error variance and one minus the av-
erage correlation coefficient ( ) for both the optimal in-
terpolator and the suboptimal interpolator

. The matrices and are obtained by
modifying and as follows: the off-diagonal elements
of in (28) and (30) are set to zero, and the autocorrelation
function of the sampled noise sequence in (30) is redefined so
that for and zero otherwise. Observing the
estimation error curves, one can see that, for moderate SNR, up
to a 6-dB gain in estimation error may be achieved by consid-
ering the noise coloration and the inter-tap correlations. An even
a larger improvement is observed in the correlation coefficient.
It should be noted that this benefit comes at little or no cost in
computational load when performing the channel estimation.

This plot also demonstrates that the asymptotic channel es-
timation error varies inversely with SNR, as expected. Simi-
larly, the channel estimate and the true channel become increas-
ingly correlated with increasing SNR. For example, at an SNR
of 40 dB, use of the optimal interpolator results in an average
correlation coefficient of approximately —a
high degree of correlation. This is extremely desirable, since, as
observed in [7] for the case of a single user and flat fading, the
behavior of with SNR results in the elimination of the
bit error rate (BER) floor that is commonly observed in systems
employing differential detection.

The above graphs have all illustrated the performance for
equipower users. In normal system operation, though, we can
expect power differences among the users. Even in this case,
theabsoluteestimation error variance, given by trace

Fig. 9. Channel estimation error and average correlation coefficient for two
nonequipower users with frame lengthN = 50 and interpolator order nine.
The fading is frequency-selective with� =T = 0:2 andf T = 0:005
for each user.

[see (21)], is approximately equal for all users, since the estima-
tion error is produced primarily by the receiver noise . On
the other hand, therelative estimation error variance ,
defined in (22), is normalized by the sum of channel tap vari-
ances, which, in turn, is proportional to [see (5)].
Therefore, at a given noise level, the relative error variance is
close to inversely proportional to signal power, giving stronger
users better relative error results than weaker users.

Fig. 9 shows the relative estimation error variance and av-
erage correlation coefficient for the case of two users with a
power difference of 10 dB. For reference, the performance of
the equipower case ( ) is shown on the same graph.
Note that each user’s curves are plotted against the user’sown
SNR, defined in (8). As a result, the curves are closely spaced
which illustrates the approximate inverse dependence on signal
power, as discussed above. In a typical operating scenario, all
users are detected at a common receiver noise level. Conse-
quently, the weak and strong users operate at SNR values that
are 10 dB apart, and the horizontal axis must be interpreted in
this light. For example, if the strong user is at 30 dB SNR, then
the weak user is at 20 dB with a relative estimation error vari-
ance roughly 10 dB greater than that of the strong user. Simi-
larly, the average correlation coefficient for the stronger user is
significantly better (closer to unity) than for the weaker user.

In all of the results presented here, it is assumed that the inter-
polator is designed assuming perfect knowledge of the Doppler
fade rate , the rms delay spread , and the SNR
for each user. In a practical situation, these parameters may not
be known at design time and may, in fact, be different for each
user. Furthermore, they may change as the scattering environ-
ment changes. As mentioned previously, this may be handled by
adopting a worst-case design methodology. This approach was
investigated here by designing an interpolator using worst-case
values of and (equal for all users) and a typical op-
erating SNR (again, equal for all users). The performance of
this fixed interpolator was then investigated in an environment
with different channel and SNR conditions.
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Not surprisingly, it was found that better performance may
be obtained by optimizing the interpolator to match the actual
fading and SNR conditions. More importantly, however, it was
found that the performance is neither degraded nor improved
if the actual channel conditions are better than those designed
for (lower and than the design values) and if the
actual SNR’s are different from the design value. If the actual
channel conditions are worse than those designed for, significant
degradation in performance occurs.

VI. CONCLUSIONS

In this paper, we have developed a pilot-based MMSE
technique for jointly estimating the channels of multiple
cochannel users in a TDMA system that is useful for a variety
of multiuser detection and interference cancellation schemes.
The paper makes two key contributions: first, it accounts for
time variation of the channels both within and between training
periods. The former is essential in a multiuser environment
where the training sequences are necessarily longer than in
a single-user environment, resulting in significant variation
during training. Second, a simple strategy for the selection of
appropriate training sequences for the multiple cochannel users
is developed. The selection strategy is demonstrated for the
special case of BPSK sequences.

Several design issues are considered including the choice of
interpolator order, the choice of frame length, and efficiency.
Results show that the user throughput decreases with each addi-
tional user since the minimum length of the training sequences
grows linearly with the number of users. However, system ef-
ficiency may increase, since, through the use of joint detection
and/or antenna arrays, multiple users may be allowed to share
the same frequency/time slot.

Performance results are presented, and it is shown that the
channel estimation error decreases with each additional user due
to increasing training sequence lengths. Furthermore, it is shown
that for nonequipower users, the absolute channel estimation
error variance for all users is approximately equal, irrespective
of power differences, but the degree of correlation between the
channel estimate and the true channel is higher for the stronger
users than the weaker users.

REFERENCES

[1] Z. Zvonar and D. Brady, “Multiuser detection in single-path fading chan-
nels,” IEEE Trans. Commun., vol. 42, pp. 1729–1739, Feb./Mar./Apr.
1994.

[2] L. K. Rasmussenet al., “Impact of estimation error on multiuser detec-
tion in CDMA,” in Proc. IEEE VTC’98, Ottawa, Canada, May 18–21,
1998, pp. 1844–1848.

[3] S. J. Grant and J. K. Cavers, “Performance enhancement through joint
detection of cochannel signals using diversity arrays,”IEEE Trans.
Commun., vol. 46, pp. 1038–1049, Aug. 1998.

[4] J. Joung and G. L. Stüber, “Performance of truncated co-channel inter-
ference canceling MLSE for TDMA systems,” inProc. IEEE VTC’98,
Ottawa, Canada, May 18–21, 1998, pp. 1710–1714.

[5] K. Giridhar et al., “Nonlinear techniques for the joint estimation of
cochannel signals,”IEEE Trans. Commun., vol. 45, pp. 473–484, Apr.
1997.

[6] J. H. Winters, “Optimum combining in digital mobile radio with
cochannel interference,”IEEE J. Select. Areas Commun., vol. SAC-2,
pp. 528–539, July 1984.

[7] J. K. Cavers, “An analysis of pilot symbol assisted modulation for
Rayleigh fading channels,”IEEE Trans. Veh. Technol., vol. 40, pp.
686–693, Nov. 1991.

[8] S. A. Fechtel and H. Meyer, “Optimal parametric feedforward estimation
of frequency-selective fading radio channels,”IEEE Trans. Commun.,
vol. 42, pp. 1639–1650, Feb./Mar./Apr. 1994.

[9] W. K. Lo, D. D. Falconer, and A. U. H. Sheikh, “Adaptive equalization
and diversity combining for mobile radio using interpolated channel es-
timates,”IEEE Trans. Veh. Technol., vol. 40, pp. 636–645, Aug. 1991.

[10] B. C. Ng, M. Cedervall, and A. Paulraj, “A structured channel estimator
for maximum-liklihood sequence detection,”IEEE Commun. Lett., vol.
1, pp. 52–55, Mar. 1997.

[11] M. L. Moher and J. H. Lodge, “TCMP—A modulation and coding
strategy for Rician fading channels,”IEEE J. Select. Areas Commun.,
vol. 7, pp. 1347–1355, Dec. 1989.

[12] F. Ling, “Coherent detection with reference symbol based channel es-
timation for direct sequence CDMA uplink communications,” inProc.
IEEE VTC’93, Secaucus, NJ, May 1993, pp. 335–344.

[13] O. Nesper and P. Ho, “A pilot symbol assisted interference cancella-
tion scheme for an asynchronous DS/CDMA system,” inProc. IEEE
Globecom’96, London, U.K., November 1996, pp. 1447–1451.

[14] P. A. Ranta, A. Hottinen, and Z. Honkasalo, “Co-channel interference
cancelling receiver for TDMA mobile systems,” inProc. IEEE ICC’95,
Seattle, WA, June 18–22, 1995, pp. 17–21.

[15] S. Haykin,Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 1996.

[16] S. N. Crozier, D. D. Falconer, and S. A. Mahmoud, “Least sum of
squared errors (LSSE) channel estimation,”Proc. Inst. Elect. Eng., pt.
F, vol. 138, pp. 371–378, Aug. 1991.

[17] C. L. Ng, K. B. Letaief, and R. D. Murch, “Complex optimal sequences
with constant magnitude for fast channel estimation initialization,”IEEE
Trans. Commun., vol. 46, pp. 305–308, Mar. 1998.

[18] D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of pseudo-
random and related sequences,”Proc.IEEE, vol. 68, pp. 593–619, May
1990.

Stephen J. Grant (S’95–A’00) was born in
Vancouver, BC, Canada, in 1969. He received
the B.A.Sc. degree in electrical engineering from
the University of British Columbia, Vancouver,
BC, Canada in 1993 and the M.A.Sc. and Ph.D.
degrees in electrical engineering from Simon Fraser
University, Burnaby, BC, Canada, in 1996 and
2000, respectively. His M.A.Sc. thesis involved
the analysis, design, and implementation of a
DSP-controlled adaptive feedforward linearizer for
RF power amplifiers. His Ph.D. work concerned

increasing the capacity of TDMA cellular systems through joint detection with
diversity antenna arrays.

He is now with the Advanced Development and Research Group of Eric-
sson, Inc., Research Triangle Park, NC. His current research interests include
multiuser detection and channel estimation, adaptive antenna arrays, transmit
diversity, and space–time coding.

James K. Cavers(M’90–SM’99) was born in Port
Alice, BC, Canada in 1944. He received the B.A.Sc.
degree in engineering physics and the Ph.D. degree
in electrical engineering from the University of
British Columbia, Vancouver, BC, Canada, in 1966
and 1970, respectively.

From 1970 to 1979, he was an Assistant, then As-
sociate, Professor in the Department of Systems En-
gineering at Carleton University in Ottawa. He spent
1979 to 1982 as a Program Manager at MacDonald
Dettwiler and Associates, in Vancouver, followed by

a year as Senior Engineer at Glenayre Electronics, also in Vancouver. In 1983, he
joined the School of Engineering Science at Simon Fraser University, Barnaby,
BC, Canada, where he holds the rank of Professor. From 1990 to 1994, he was
Director of the School. His research interests include modulation and detection
for mobile communications, and integrated RF/DSP design.

Dr. Cavers is the 1995 recipient of the Gold Medal in Engineering and Applied
Science from the Science Council of B.C. and the 1998 recipient of the Principal
Innovation Award of the E.C. Manning Foundation.


