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Multiuser Channel Estimation for Detection of
Cochannel Signals
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Abstract—Estimation of the channel impulse responses of mul- (0
tiple cochannel users is a key requirement of all multiuser detec-
tion and interference cancellation techniques, though little atten- 0 LR
tion has been paid to the subject in the context of time-divisonmul- . M ] *2 t= kT2
tiple-access (TDMA) systems. This paper addresses a pilot-based signals "
MMSE technique for multiuser channel estimation in a TDMA
system, and makes two key contributions. Firstly, it allows for time slf)
variation of the channels within and between training sequences, Y
an essential feature in a multiuser environment even at moderate
fading rates. Secondly, it addresses the design of training sequencesig. 1.  Cochannel signal model. Thé time-variant, dispersive channels are
for the multiple cochannel users. assumed to fade independently.

Index Terms—Dispersive channels, estimation, fading channels,
interference suppression, multidimensional signal detection, mul- prior study appears to be [14], in which the channels are treated

tiuser channels, sequences, time division multiaccess. as time-invariant.
This paper addresses a pilot-based MMSE technique for es-
I. INTRODUCTION timating the channel impulse responses of multiple cochannel

q . 4 interf lati users in a TDMA system and makes two key contributions. First,
UL—LIL,JSER h etectloq adn m:ler erence canccla ‘Zt'oﬂ allows time variation of the channels within and between the
s tec niques have received muc atte_ntlon recent y _u_ethining sequences. This is essential in a multiuser environment
thelr_potennal for increasing system capacity. For COde'd'V'S'%‘nere the training sequences are necessarily longer than in a
multiple-access (CDMA) systems, where much of the reseaign e ser environment [14], resulting in significant time vari-

has been focused, e.g., [1] and [2], the interest. has been Mfon during the training periods. Previously, this has been un-
tivated by the poor performance of the conventional detecr%dressed.

which ignores multiple access interference. For time-division Second

. B ) it addresses the design of appropriate training se-
multiple-access (TDMA) systems, where a steadily increasiigences. In contrast to the single-user case, for which it is often
amount of research is being directed, e.g., [3]-[6], the inter

) . d by the desi llow f thi ssible to select a single training sequence with perfect auto-
is motivated by the desire to allow frequency reuse within celly o |ation properties (as done in [8] and [9]), it is difficult, in

and/or achieve intercell mterference car.1ceIIat|on.' One asp ‘é'ﬁeral, to select multiple training sequences of arbitrary length
common to all of the multiuser detection and interferengyp poh perfect auto and cross-correlation properties. To over-
cancellatlon technlques, however, is the necessity of havigge these difficulties, reasonable selection criteria are pre-
reliable channel estimates for all of the cochannel users. <4 for designing good, suboptimal training sequences with

.T.he use of pilot sy_mbols IS a weII—knovyn methpd .for Obt'raining symbols constrained to lie within the modulation al-
taining good channel impulse response estimates in smgle—L?ﬁébet
lot-—

systems, e.g., [7]-[11]. For the case of multiuser systems, pi
based channel estimation has been studied extensively only for
CDMA, e.g., [12] and [13], where processing gain suppresses Il. SIGNAL AND CHANNEL MODELS

interference in the channel estimator. However, little is known Throughout this paper, the following conventions are used:
about multiuser channel estimation in TDMA systems. The sol@iapes in italics are scalars, lowercase boldface variables are

vectors, and uppercase boldface variables are matrices. Fur-
thermore,’ and T denote, respectively, the complex-conjugate
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response (CIR),.(7; t) wherer represents the memory of Assuming a wide sense stationary uncorrelated scattering
the impulse response, andepresents time variation. Theth (WSSUS) channel as well as a separable scattering function,

user’s transmitted signal is given by the correlation function reduces to
$m(t) = Am Y em(n)ult —nT — 7,) ) Ro (m, 72, ) = A2, Rg’; (@) / (P — 7)
" Im
- 2" (e — 7) dr. (5)

where the data/training symbal,(n) is normalized such that
E[|cm(n)]?] = 1, the pulse shape(t) is root-Nyquist with
deterministic autocorrelation functiarfer) = [ u(t)*(t—«) dt
and energyz(0) = 1, the symbol period i§’, and the transmit

amplitudeAm is related to the average powss, in 5.,.(t) bY  fynction of the first kind andfp,_ is the maximum Doppler

= +/2P,,. The relative delay,,, appears in (1) since, in ghift. The functionG,, () is given by
typlcal TDMA system, the received signals at the base station

may not be synchronized by symbol due to differing propagation

delays between each user’s terminal and the base. Glr) =
The received signal(¢) consists of the sum of th¥/ filtered

cochannel signals and an additive white Gaussian noise com-

ponentz(t) with double-sided power spectral density. As-

suming that the time variations of the channels are slow eno

such thay,,,(7; t) does not vary significantly over the memorﬁ

of the transmit pulse (a few symbols), the output of the match

filter w*(—t) is

In this expression,R, _(«) is the temporal autocorrelation
function of the channel. For example, with isotropic scattering,

Ry, (o) = o Jo(2rfp, ), where Jo(-) is the Bessel

Ellgm (T — 7m; t)|2]

Pgm (7_ - Trn)frn('rrn) dTrn (6)

\l\.’)lr—\

ﬂ re fm(mm) is the probability density function (PDF) of
the relative delayr,, (often uniform over[-T7/2,T/2]),
and P, (r) is the power-delay profile (PDP) of the
channel One common example is the exponential PDP
P, (7) = (ng/nmsm)exp[—T/Trmsm], where s is the
rms delay spread. Another is the single-spike profile for flat
Z Am Z cm(n) [ gm(73 1) fading given byP, () = o2 &(r) whered(r) is the Dirac
m=1 delta function. Observing (6¥7,..(7) is given by the convolu-
(t - ”T =T = Tm) d7 + (1) tion of the PDP and the PDF of,,. Because the uncertainty in
timing is often much larger than the rms delay spread, the shape
= Z > cm(n —nT; 1) +n(t) @ o G, (7), and thus the performance of the MMSE estimator,
is not very sensitive t0,.,,, .
whereh,,(7; t) is themth user’'s composite impulse response AS can be seen from (5) and (6%, (71, 72, «) does not
given by depend orr,, itself—only on its PDF. In other words, explicit
timing recovery is unnecessary; the relative delays are simply
estimated as part of the channels. However, if the relative delays
b (73 1) = A g7 — T 1) @ (7). (3 happen to be known, the PDF of, becomes an impulse and

: : - Gn(7) = Py, (T = 7).
The operator® denotes convolution. Notice that the relative

delay,, is now considered to be part of the channel impul -

response. In (2)p(t) is the noise component of the matched " SNR Definition

filter output. Sincex(t) is white, the autocorrelation function of ~ The signal-to-noise ratio (SNR) of useris defined ad’,,, =

n(t) is pp(a) = Nyz(a). E; /N,, whereE; isthe average received energy per symbol
from userm given by (see Fig. 1)

m=1 n

A. Channel Statistics

In this paper, we adopt an MMSE estimation technique which . /2
leads naturally to considering time variation of the channels T /
within and between training periods. MMSE estimation of the T/2
users’ channels requires knowledge of the second-order statis- = /Pgm(v)/ El|lsm(t —7)]*dtdr  (7)
tics of h,,,(7; t) summarized by the correlation function ~T/2

L E[|gm(7; )@ sm(1)]?] dt

-T/2

where, again, a WSSUS channel has been assumed. The inner
Ry, (11, 72, @) integral of the latter expression is simply equal to twice the av-
_1 erage power ig,, (t). Furthermore, since the area undir, (1)
5 Bl (7y; ey (12; ¢ = )] is 02, themth user's SNR is simply

= A2 // gm — Tm; t)g:n()\g — Tm; t— a)]
2Pma2m Az o

— 9 m []m
(1 — AD)a(r2 — A2) dA1 d)a. ) I, = N, o (8)
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C. Channel Vectors 1.84 T oss
a=4u,
Samples of the matched filter outpet) are taken at times
t = kT'/2 yielding the discrete-time sequence
[}
M §
. _ T
r(k) = g_:lcm(k)hm(k) +n(k), g ]
o
k=..., -2 -1,01,2, ... 9 S
<] a=05
£
=]

where the symbol vectat,,, (k) is given by (10) at the bottom 3 1.7}

of the page aneh.th user’s channel vector—to be estimated—is g
-~ i _ 172y —— Flat fading
wo (. B o—o Freq selective fading (z,,, = 0.2T)
S 1.7] +—+ Freq selective fading (r,,,,=0.47) |
1\, kT 2 3 s 5 6 7 8
hm<<L1 + §>T; 7) Channel Memory (L)
Fig. 2. Sum of channel tap variances versus the channel memory |&ngth
: for flat and frequency-selective fading conditions. The variable the rolloff
B <0. kT) parameter of the root-Nyquist transmit putsg ).
m ’ 7
h,, (k) = T AT (11)  the impulse responde,,(7; ) decays to zero for large]|, the
Al =5 — sum of the tap variances, given by trigg  (0)], saturates for
2° 2 ™
large L..
As a guide for the selection of the minimum. required,
' Fig. 2 shows a plot of tra¢By,  (0)] vs. L. for several com-
kT 2 ™
B | LoT; — binations of rms delay spread and pulse rolloff—the two fac-
2 tors that directly influence the duration @&f,,(7; ¢). In this
; Lo+ 1 T k_T graph,G,,,(7) in (6) is calculated using an exponential power
| ftm o) g ) delay profile and a uniform distribution of relative delay over

the interval[—-7/2, T/2]. As can be seer,. = 4 is sufficient
whereL; andL; are integers. Clearlh.,(k) consists of sam- for capturing most of the energy in the impulse response for
ples of h,,(7; t) at T/2-spaced delays evaluated at time= -, < 0.47. To minimize estimation error for higher values of
kT/2. 1t is assumed that,,,(7; ¢) is generally noncausal suchdelay spread, it may be desirable to chodse= 6; however,
thatL; < 0OandL; > 0. the cost incurred when using MLSE-type detection schemes is

The second-order statistics bnf,, (k) are summarized by the higher complexity due to the increased state set.

autocorrelation matriRy, () = (1/2)E[h,,(k)h! (k — j)].
USing (5), thajl, vth element of this matrix is 1. JOINT CHANNEL ESTIMATION

) wl v §T In this section, an MMSE technique for jointly estimating
{Rn,,. (1) }u, 0 = B, <7a D 7) (12)  the M users’ channels is discussed. Other techniques (such as
least squares) may also be used, provided they incorporate a
whereu, v € {2L;, ..., 0,..., 2Ly + 1}. Evidently, the model of the temporal variation of the channels. However, we
tap gains [elements di,,, (k)] are correlated, in general, everdo notinvestigate them in this study, and restrict our attention to
though we have assumed a WSSUS channel [10]. This is duéMtISE which enables a consistent treatment of time variation
the convolution ofy,,,(T — 7,,,; t) with the pulse autocorrelation through the temporal autocorrelation function of the channels.
function as shown in (3). .
Observing (11), the length di,,, (k) is 2(L. + 1) where A. General Structure of the Estimator
L. = L,— Ly. To maintain computational complexity as low as MMSE estimation of the users’ channels relies upon the pe-
possible, itis desirable to choose andL- as small as possible, riodic insertion of a unique training sequence into each user’'s
keeping only those channel taps with significant variance. Sindata sequence. The design of the training sequences is addressed

cm(k) = (20)
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Length N frame

Length N, training

—>

sese Data % Data % Data Data vee

—L1

Symbol {n: |=\12 |-L+1 -L,0 N-L,~1 |_N/2_|-L
index 4 14 l
Symbol " EE
sequence " "
——1 —~—
Cal) Length L, Length |L,]
precursor postcursor
Received
sequence
k) ——
Usable received
samples
r(0)
Estimation interval
Frame O

Fig. 3. Frame structure and indexing conventions.

in Section IV. Unigue training sequences are required for eathe autocorrelation matrix of the joint channel vector is
user so that the cochannel signals may be distinguished (eRp,(j) = (1/2)E[h(k)h'(k + 5)]. Because the users’ channels
see [14]). This is in contrast to CDMA systems where spreadifede independentlfRx, () is block diagonal and is given by

codes are used to distinguish users and suppress interference in )
the channel estimator. R, (4)

It is assumed that the asynchronous users are slot-syn- ) 0 Ru, () -+~ 0
chronous such that their training sequences are inserted at the Rn(j) =
same time, although different propagation delays make their
arrivals symbol-asynchronous as discussed previously. The 0 0 -+« R, ()
received samples during the training periods are then usedgép@

0 0

(14)

derive estimates of the channels which are interpolated betw ereR_gm (j% ISI\/(ljl\?lﬁsnEEd n (12.)' Yinth N
training periods. In this way, time variations of the channels o|n5|]\$rt eL <estzna]t\|fon hf(L) mht € e_St'?atgjr]rw'
are tracked. The frame structure, along with the symbol affyva [~N/2|-Lo+1 < n < |[N/2] - L, showninFig. 3. The

frame indexing conventions used throughout this paper, G annel estimator uses the received samples from the training
shown in Fig. 3. In this structure, the length of each frame ocks of each of thew + 1 frames centered about frame-0 to

N symbols, and the length of each training sequencaVis orm its estimate. These samples are contained in the vector

symbols. Note that indexes symbols, antlindexes samples; T T T T

thus,n = |k/2|. To provide detail, a single training period 2=l (=Q) - r7(0) - Q)] (15)
and the two adjacent data blocks are shown in exploded Vigyhere

The exploded view shows the zeroth frame which starts at the

beginning of the training period and extends to the end of theq)

subsequent data block. The estimation interval extends from [+(2¢N) 7(2¢N+1) -+ r(2gN+2(N;—L.)—1)]%.
mid-frame to mid-frame either side of the training period. (16)

Since the users’ channels are to be estimated jointly, we de-
fine the length2 M/ (L. + 1) vectorh(k) as the concatenation of The length2( N, — L.) vectorr(q) contains a subset of the re-
the M users’ individual channel vectors ceived samples during thgh training block called the “usable
samples.” For example, Fig. 3 shows the usable samples for the
zeroth framed = 0). With use of this subset(q) depends only
h(k) = [h¥(k) h¥k) --- hi(k)]". (13) ontraining symbols—not on unknown data symbols—due to the
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length-L, precursor and the lengtli-,| postcursor inserted in channel estimate;(k) = v(k), U(k) = P(k)R# and the error

each training sequence. covariance matrix is
Sincez contains samples of a bandlimited process sampled
at a rate greater than the Nyquist rate, the covariance matrix of R (k) = Ry(0) — P(E)RFPT(k). (21)

z, given byR,, = (1/2)E[zz"], becomes ill-conditioned a¥,

increases (due to an increasing number of users). This suggests this paper, one measure of channel estimation quality for
the use of rank reduction to remove dependenciesds well themth user is the sum of tap error variances, normalized by
as to avoid explicit inversion dR,,. Accordingly, we use eigen- the sum of the tap variances for that user, that is,
decomposition to write the covariance matrixzofs

T o2 oo 0] @2
R, =[M; M;] [Al 0 } o (17) e 0]
0 Ax] |Mj whereR,, (k) is the mth block along the main diagonal of

R.(k).
The diagonal matribA; contains the dominant eigenvalues of A(\nz)ther measure of channel estimation quality for thih
R, and A, contains those eigenvalues that fall below somgser that is a major determinant of system performance is the set
very small threshold, €.9107? Anax, WhereA,,.x is the max- of correlation coefficients between corresponding taps of esti-
imum eigenvalue oR,. The nonsquare matricdd; andM; mated channel vectd,, (%) and the true channel vectoy, ().
contain the normalized eigenvectors, arranged as columns, @ifice each of the( L. + 1) channel taps has its own correlation
responding to the eigenvaluesAn andA, respectively. Now, coefficient, the following average is defined:
base the estimate &f( k) on the reduced dimensionality vector

w = M|z (instead ofz itself) which has covariance matrix ___ oL {Re,. n. ()}
R, = M{R,M; = A, ) = 5 2 NERT NG
The optimal (MMSE) estimate di(k) based onw is given ’ VAL w0
by the conditional meam(k) = E[h(k)|w]. Sinceh(k) andw (23)
are jointly Gaussian, the conditional mean is lineawinand is ) o
given by wherej indexes the individual channel taps, angl, ; denotes
the diagonal elements of the bracketed matrix. In this expres-
v(k) = (L Ela(k)w']) Rytw sion, Ry, (k) andRy_ n,, (k) are themth blocks along the
B sz)R#z v (18) main diagonals oR+ (k) andRs n(k), respectively. Although

botho? (k) andp,,.(k) depend ork, we found very little vari-
ation across the frame. Note that for perfect channel estimation,
where P(k) = (1/2)E[h(k)z/] andR¥ = MiAT'MI. 52 (1) — 0 andpm(k) = 1.

The latter quantity is recognized as the pseudoinverse, of" ’

Moore—Penrose generalized inverseRgf [15]. Note that, for C. Details of Optimal Estimator

short training sequences (smaft), R, may not be ill-con- We now examine the optimal estimator in (18) in more detail

iti i i # — R-1 i iti . . . . . .
ditioned; in this CaSERZ. - R, ; EV'def?“y’ the cpndltlonql and obtain the required matrices. It is convenient to first intro-
mean depends updn giving a different interpolation matrix duce the following data matrix:

P(k)R# for each position within the estimation interval.
However, recall thah(k) is WSS and-(k) is cyclostationary; A=[A, Ay - Ayl (24)
thus, it is sufficient to calculate the interpolation matrix for

each position in only the estimation interval shown in Fig. 3ynere thenth submatrix ofA is given by
The same matrix repeats in subsequent intervals.

B. Quality of Channel Estimates T ()

Let ¥(k) = U(k)z denote an arbitrary, not necessarily op- A, = . (25)
timal, estimate oh(%) with associated channel estimation error :

ck (2(v, — L)-1)

e(k) = h(k) —v(k). (29)
andc,,(-) is given in (10). Due to the precursor and postcursor
The estimation error covariance matrix is inserted during each training periodl,,, consists only of sym-
bols from themth user’s training sequence and no unknown
Re(k) =Rn(0) — Rl,h(k) — Ry n(k) + Re(k) symbols from the adjacent data sequences. Using (9), (13), (24),

“ Ry (0) — U(P (k) — P(EYU () and (25), thejth component of(g) can be written as

+ U(k)R, U (k) (20) r(2qN + 5) = a;h(2gN +5) +n(2gN +35)  (26)

whereRy (k) is the covariance matrix 6f(k) andR n(k) is where a; is the jth row of the data matrixA and
the cross-covariance matrix ¢{ %) andh(k). For the optimal j € {0,1,...,2(N; — L.) — 1}. With this expression
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in hand, the elements of the matrid@st) andR., in (18) may was ignored in [8]. As will be shown in Section V-D, the con-

be easily determined. sideration of these effects leads to a significant reduction in es-
Using (15), timation error.
P(k) =[5 Eh(k)r’(-Q)] -+ LELETrH(Q)]] (27) IV. TRAINING SEQUENCEDESIGN

Optimal selection of the users’ training sequences requires
whereP (k) is of dimensior2 M (L. +1) x 2(2Q+1)(N;— L.).  testing all possible combinations 8 length-V, symbol se-
Now using (16) and (26), and assuming the noise and changgknces in order to minimize each user's channel estimation
fading process are uncorrelated, fitk column of theyth sub-  error o2 (k) defined in (22). For several users and practical
matrix of P(k) is simply training sequence lengths, the resulting search space is prohib-
itively large; furthermore, the amount of computation required

{% E[h(k)rf(q)]} — Ry (k — 29N — j)a} (28) to test ge}ch c;andidgte sequence is .high. In order to overcome
j these difficulties, a simplified, suboptimal search strategy is de-
veloped below which not only yields good training sequences,

whereq € {-Q, ..., Q}. but offers more insight than an exhaustive computer search.
Using (15) again, In the development of this suboptimal search strategy, several
assumptions are made: first, the users’ channels are assumed to
1 1 vary slowly enough that they may be considered constant over
Z — T(— R — i
2 Br(=Qir(=Q)] 2 Blr(=Q)r"(@)] the duration of each training period; second, the ma#jxin
R, — : . : (18) is assumed to be nonsingular, so tRgt = R !; and
' third, the noise sequenegk) is assumed to be white. Under
%E[r(Q)rT(—Q)] %E[r(Q)rT(Q)] these assumptions, (18) may be expressed in an alternate form

allowing for a simplified selection criterion. It must be empha-
sized, though, that these assumptions are made for the purposes
) _ ) of training sequence design only. The resulting sequences are
whereR,, is of dimensior2(2Q+1)(N,— L) x2(2Q+1)(Ne~  then used to calculate the optimal channel estimate ve¢ior

Lc). Using (16) and (26) again, the jth element of the, pth ging (18), (27), and (29) which do not depend on the simpli-
submatrix ofR., is simply fying assumptions.

Using the slow time-variation assumption, the channel vector

(29)

{1 E[r(q)rT(p)]} h(2¢N + j) in (26) may be approximated ly(2¢N) for all j.
2 4,5 Thus, the received vectefq) may be written as
= a;Rp(2t(q — p)N +i— j)al + ¢n(2(qg— p)N +i — j)
(30) r(g) = Ah(2¢N) +n(q) (31)
whereq, p € {~Q, ..., Q}andi,j € {0,1,...,2(N; — wheren(q) is the vector of noise samples in thth training

L.) —1}. ¢,(j) = N,x(jT/2) is the autocorrelation function perlod_, which h_as covanance matifk, = NI under the as-
sumption of white noise.

of the (colored) noise sequence. . . .
Observing (27)~(30), one can see that the optimal int _Using the abovg expression fofg), the gth submatrix of

polation matrix P(k)R# depends only on the data matri:f)(k) may be rewritten as

A, the channel autocorrelation matrRy,(j), and the noise 1

autocorrelation functionp,(j). For a given scattering envi- 3 Eh(k)r'(-Q)] = Ru(k — 2gN)AT. (32)

ronment, the latter two depend on the Doppler fade fate,

the rms delay spread..,,, and the SNR'",,, for each user. The g pth submatrix ofR,, may be rewritten as

These parameters may not be known at design time and may be

different for each user. However, as shown in [7] for the case of ; ;

a single user and flat fading, a worst-case design methodolog}ﬂr(q)r ()] = ARn(2(g — p)N)AT + NoI6(g —p) (33)

may be adopted whereby the interpolator is designed assuming

worst-case fading conditions and a typical operating SNR. Thigieres(!) = 1if I = 0 and zero otherwise. By using these sim-

is discussed further in Section V-D. plified expressions to form the matricB§/) andR,, and then
For the special case of a single uséf (= 1), a single pilot by using the matrix inversion lemma twice to rewrite the product

symbol (V; = 1 andL. = 0), one sample per symbol, andP(k)R 'z in (18) (see [8, Appendix] for the single-user case),

flat Rayleigh fading withG(r) = 026(7), (27) and (29) give the channel estimate vecto(k) may be expressed as

identical interpolator coefficients to those derived in [7]. For the

case of a single user and frequency-selective fading, on the other (ATA)TTATr(-Q)

hand, the results here provide an extension to those contained .

in [8], since we have considered the coloration of the sampled v(k) = W(k) : (34)

noise sequence and the correlation between channel taps which (ATA) 1ATr(Q)
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where due to the sparse nature Af, one can show that trad@L®] =
2N, tracdG 1], where the Gram matri& is given by
W(k) =[Ru(k+2QN) ... Ry(k —20QN)]

Ru(0) - Ru(—4QN) B{B. B{B. -+ BBy
B!B, B!B, --- B!Buy
: . : G=B'B= . (37
R11(4QN) - Rh(O) . . T . .. T .

NO(ATA)il 0 —1 ijBl BJ\IBQ BJWB]W

+ : . : . (35) Evidently, selection of the users’ training sequences is accom-

: ' ) plished simply by minimizing trad&—!]. Although we have
0 o No(ATA)™! simplified the preceding analysis by assuming that the sampled

A noise sequence is white, we found that the training sequences
Notice that the term{ATA)~*Afr(g) = hys(q) in (34) is that minimize tracfG —*] also minimize the LS estimation error
the least-squares (LS) estimate of the channel vdef®§/V) variance for the case of noise coloration due to the matched

during thegth training period, with estimation errefis(q) = filter.
(ATA)"1Afn(q), and associated error covariance matrix In [16] for the case of a single usel{ = 1), it is shown that
tracdG 1] is minimized by choosing a single training sequence
R;® = N,(ATA)™L. (36) such thatG = B! B, is diagonal. This implies that the training

sequence must have perfect autocorrelation properties, that is,

Clearly, R/ is the same for each training block. The channglero autocorrelation for all lags except zero. The design of such

estimatev (k) is then an interpolation [usingV (k)] of the LS 3 sequence of arbitrary length is not difficult; for example, see
estimates made during th&) + 1 training periods centered[17],

about frame-0. In [14], LS estimation of the users’ channels In | the multiuser case, on the other hand, a diagGhatatrix

each of the training periods is also performed; however, sinﬁ:ﬁp”es that theM different sequences have not only perfect
the channels are assumed to be time-invariant, no interpolatigitocorrelation properties, but perfect crosscorrelation proper-
between training periods is performed. Furthermore, [14] dogss as well, that is, zero crosscorrelation for all lags. This is
not address the design of appropriate training sequences. generally very difficult to achieve for arbitrad andL.. if the
Equations (34) and (35) immediately suggest that the trainifgining symbols are constrained to lie within the modulation
sequences have a minimum required length. In order to form @ napet. In this paper, BPSK training sequences are selected
LS estimates, the matris A must be nonsingular. This occursgych that the off-diagonal elements@f(autocorrelation values
ifthe 2(V; — L) x 2M(L.+1) matrix A is of full columnrank, - for nonzero lags and crosscorrelation values for all lags) all fall
which can only occur if the number of rows Afis greater than pe|ow a certain threshold, which is chosen to be as low as pos-
or equal to the number of columns. Consequently, the minimup|e for a givenM andL.. Since the diagonal elements Gf
training sequence length 1§, = M (L. + 1) + L.. are all equal taV, — L., this procedure make& strongly di-
Equation (34) also suggests a simplified criterion for d%‘gonal.
signing good training sequences. Rather than choosing theraining sequence design is made somewhat easier if the first
sequences to minimize? (k) in (22) for each user (the 1, symbols of each user's sequence are constrained to be the

optimal criterion), in this paper, the sequences are chosensigne as the lagt. symbols. With this constraint, theth user's
minimize tracéRL5]—an easier task. This is reasonable, SinG@nodified) data matrix is

one would expect that minimizing the error variance of the
acquired LS estimates during each training block would also B =[bn T by -+ T 'by] (38)
lead to a low interpolation error between training blocks. Note,

though, that the same minimum sequence length applies\fRerep,, is a lengthéV, — L..) column vector, and the operator
both the optimal and simplified criteria, except that for th?’bm denotes a circular shift db,, by ! positions. The shift

optimal criterion, a rank deficiency iA causes_rf_m({c) tobe s upifi is positive and down if is negative. Note that the
excessively high rather than causing an explicit singularity asi, yser's training sequence is the concatenation of thelast

for the simplified criterion. . o symbols ofb,,, andb,,, itself. Them, nth submatrix ofG can
Minimization of tracéRL5] is made easier by defining thepa now be written as

(N — L) x M(L. + 1) matrix B formed by deleting the odd
numbered rows oA and removing the zeros fromthe evennumgi g _

bered rows. No information is lost here, since, observing (10)™ 9" B 0 P 1 U I
and (25), one can see that an even numbered rafv ahd its b, b (0) b,y (1) b,y (L)
associated odd numbered row contain the same symbols inter bbb, (=1) %b...1,.(0) O, b, (Le—1)

spersed with zeros. The odd numbered row is just a right shift

by one position of the even numbered row. As a consequence

the even and odd numbered rows are linearly independent suchéy,, v, (—L.) b, b, (—L.+1) --- b, b, (0)
that if B is of full column rank, then so i\. Furthermore, (39)
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TABLE |
MINIMUM LENGTH BINARY TRAINING SEQUENCES(INCLUDING PRECURSORS
AND POSTCURSOR$ FOUND BY SEQUENTIAL SEARCH. THE SEQUENCES
ARE IN HEXADECIMAL FORM AND MUST BE ZERO PADDED TO THE
LEFT TOMAKE UP THE FULL LENGTH N,
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The table also lists the threshold used for the off-diagonal el-
ements ofG. For each case, the threshold was first set to zero
and then increased until a full set of training sequences was
found. A value of zero indicates th&t is diagonal, implying
that theM training sequences have perfect auto and crosscorre-

M | L | N; | Threshold Training Sequence(s) lation properties. This occurs whéw, — L. = 1, 2, or 4. Itis
1011 1 interesting to note that the resulting data maBixs equivalent
1] 3 0 1 to the Hadamard matrix of order 1, 2, or 4, respectively, which is
o | s . 0 knovyn to have orthogonal columns resulting in a diagonal Gram
matrix.
3|7 0 1 Although we have shown results only for binary training se-
419 1 21 guences, the search technique presented in this paper applies
21012 0 0,1 to the more general case of nonbinary sequences, e.g., QPSK,
il 0 1,4 8-PSK, and 16-QAM. However, experimentation with QPSK
5| s ) 4107 sequences showe;d that Whl|§ the search spaceis larger, the auto-
’ and crosscorrelation properties of the resulting sequences are no
3| u 2 30B,111 better than for the binary sequences listed in Table I.
4 |14 2 2C0B,461
3/0]3 1 0,1,2 V. DESIGN ISSUES ANDPERFORMANCE
17 2 41,448 In this section, several design issues are treated, namely the
2|1 3 209,62F,69F choice of interpolator order, choice of frame length, and effi-
3|15 4 3053,5065,30BB ciency. The performance of the joint channel estimation scheme
4|19 5 18053 5818B,8361 is then investigated, using the channel estimation quality mea-
AP 5 0356 suress? (k) andm(k)_o_lefmed in (2_2) a_nd (23), respectively.
T Unless otherwise specified, the optimal interpoldthy,: (k) =
1]9 4 101,4,108,20 P(k)RZ is used so thaR (k) in (20) is equal taR 27! (k).
2 |14 4 1009,3047,206A,312F Frequency-selective fading is considered using various
3119 4 30053,50335,10581,70BDF values of Doppler spread,,, and rms delay spreat,,s,, .
4| o4 4 B0032B,302DC3,D0657D,E1506E The power delay profile is assumed to be exponential, and the

relative delayr,, is assumed to be distributed uniformly on the

interval [-17/2, T/2]. Also, o2 is set to 1/2 resulting in the

whered, (1) is the periodic crosscorrelation function of thenth user's SNR being',, = P, /N.. Unless otherwise speci-
column vectors andy [18] defined as

The design of the training sequences now involves se-

b,y () = (x, T'y) = (T'y)"x. (40)

fied, the root-raised cosine transmit pulgg) has 50% excess
bandwidth. Furthermore, according to Fig. 2, the paraméter

is setto 4 withL; = —2 and L, = 2. The training sequences
listed in Table | are used in all cases. Recall that these sequences
are of the minimum lengt, = M (L. + 1) + L..

lecting a set ofM differentb,,s that satisfy three criteria: 1) 5
|0, b, ()| is less than the threshold fore {1,2,..., L.}
for all m; 2) |0y, w,. (1) is less than the threshold for i
l € {~Le...,0, ..., L.} forall m # n; and 3)B is full lator order, d(_aflned aSQ + 1. As can be seen, the use (_)f more
column rank. Since the number of combinationg6fifferent than about nine training blockg)(= 4) to form the estimate
b.,s is huge for several users and typical channel memo‘?f/h(k) d_oes not §|gn|f|cantly decrease the chann.el estimation
lengths, a sequential search is used, rather than an exhau§V@" This behavior was found to be representative of a large
one, to build up a set a¥/ training sequences one-by-one thayariety of fadln_g and SNR condltlons._lt is also consistent Wlth
satisfy the three criteria. that observed in [7] for the case of a single user and flat fading.
Table I shows the results of a computer search for minimulPte that user 2 experiences slightly better performance than
length binary training sequences that meet these criteria. fSE" 1 does since the training sequence for user 2 happens to
compactness, the training sequences are listed in hexadecift@(e slightly better autocorrelation properties.
form. The most significant bit corresponds to the first symbol to
be transmitted in the training sequence, thatié— L), andthe B- Frame Length
least significant bit to the last symbol, thatdg(N; — Lo — 1). Fig. 5 shows a plot of channel estimation error versus frame
BPSK symbols are derived from the bits of the training séength/V. For a fixed Doppler spread, @& is increased beyond
quences using the mappifg, 1} — {—1, +1}. Note that for a critical value, the channel estimation error increases sharply,
the case ofl = 1, L. = 1 where the best training sequence islue to the fact that the fading channels are not sampled often
001, the constraint of first and last symbols being equal is liftezhough to allow proper interpolation. Clearly, as the Doppler
in order to avoid a singular Gram matrix. spread increases, the fading channels must be sampled at a

Interpolator Order
Fig. 4 shows a plot of channel estimation error versus interpo-



GRANT AND CAVERS: MULTIUSER CHANNEL ESTIMATION FOR DETECTION OF COCHANNEL SIGNALS 1853

x 10‘3 400 T T T T T T T
14 T j ! ! ’ i —— System Efficiency fpT =0.0025
——F— User1 350} | ——— User Efficiency
w2 v === User 2 4 :
a Toms = 0.2T 300}

Q b T = 04T
2 1r . f,T=0.005
3 3 250 1
g 08} ;
5 g 200 f,7=0.01
p 2
& 06} o 150
-
(o]
E
5 04f 100

0.2}t 50

——
f,T=0.005" 0 . . .
0 ) 2 L L 2 s 1 2 3 4 5
0 5 10 15 20 25 30 Number of Users (M)
Interpolator Order (2Q+1)
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Fig. 4. Channel estimation error versus interpolator order for two equipowsyevious figure.

users at an SNR of 30 dB. The frame lengtivis= 2N, = 28 symbols.
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Fig. 5. Channel estimation error versus frame length for two equipower o )
users at an SNR of 30 dB with interpolator order nine. The fading @_g. 7. Channel estimation error versus the numbe( of equipower users
frequency-selective ith,..,,. /7' = 0.2 for each user. with frame lengthN' = 50 and interpolator order nine. The fading is

i frequency-selective with,.s,,, /7 = 0.2 andfp,,, T = 0.005 for each user.

higher rate (shorter frame length): fép, 7" = 0.0025, 0.005,

and 0.01, the critical frame lengths are approximately 180, g9)d a frame length aV = 45, the user efficiency drops from
and 45 symbols, respectively. These values correspond clodgyvalue of 80% corresponding to a single user to a value near
to the inverse of the Nyquist ragsp,_ 7. Again, this behavior 50%. Remember, though, that in the case of frequency reuse

is consistent with that observed in [7]. within a cell, system capacity may be enhanced through joint
detection and/or antenna arrays [3], [6] by allowing four users
C. Efficiency to share the same frequency/time slot which offsets this reduc-

The transmission efficiency—or throughput—experiencéji)” in user efficiency. T.herefo.re, we define syster_n efficiency
by any user is given by the ratio of the number of data symbds s = M. and plot it on Fig. 6, where an optimal value
per frame (V — N,) to the frame lengthV. As the number of 0 M can be seen. This optimal value a}nd the corresponding
users increases, so does the required length of the trainingQ)%t-'maI 15 both increase for slower fading _Where the frame
quence, causing the user efficiency to drop. Using the minimJfN9th can be much greater than for fast fading.
training sequence length found earlier, the user efficiency is
e = (N — M(L. + 1) — L,)/N. Fig. 6 shows a plot of user D- Performance
efficiency versus the number of users for the critical values Fig. 7 shows a plot of channel estimation error versus number
of NV found above. This plot illustrates significantly reducedf users. The estimation error actually decreases with each ad-
efficiency for short frame lengths and a large number of useditional user, which is due to longer training sequences as each
In the extreme of fast fadingff,, 2" = 0.01) with four users additional useris added. Again, each user has a slightly different
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Fig. 8. Channel estimation error and average correlation coefficient f619- 9- Channel estimation error and average correlation coefficient for two
optimal and suboptimal interpolators with two equipower users, frame lendif@neduipower users with frame length = 50 and interpolator order nine.

N = 50, and interpolator order nine. The fading is frequency-selective withh€ fading is frequency-selective with...,, /T = 0.2 and fp,, T = 0.005
Temer /T = 0.2 andfp . T = 0.005 for each user. for each user.

o i .. [see (21)], is approximately equal for all users, since the estima-
estimation error variance due to the fact that users’ training $f5n error is produced primarily by the receiver noisg). On

quences have slightly different autocorrelation properties.  ha other hand, theslative estimation error variance? (k),

In addition to the consideration of multiple users, our anadefined in (22), is normalized by the sum of channertap vari-
ysis provides an extension to the single-user results of [8] gy]ceS, which, in turn, is proportional #2, = 2P, [see (5)].
accounting for coloration of the sampled noise sequence afigerefore, at a given noise level, the relative error variance is
correlation between the channel taps. Fig. 8 shows the estimpgyse to inversely proportional to signal power, giving stronger
tion gain achieved by considering these two effects. This gragBers petter relative error results than weaker users.
plots the estimation error varianeg (k) andoneminustheav-  Fig. 9 shows the relative estimation error variance and av-
erage correlation coefficient ¢- .., (k)) for both the optimal in-  grage correlation coefficient for the case of two users with a
terpolatorU,,(k) = P(k)RZ and the suboptimal interpolator power difference of 10 dB. For reference, the performance of
U(k) = P'(k)R'] . The matrice®’ (k) andR;, are obtained by the equipower casé{ — P — 1) is shown on the same graph.
modifying P(k) and R, as follows: the off-diagonal elementsNote that each user’s curves are plotted against the useris
of Ru(+) in (28) and (30) are set to zero, and the autocorrelati@NR, defined in (8). As a result, the curves are closely spaced
function of the sampled noise sequence in (30) is redefinedgRich illustrates the approximate inverse dependence on signal
thate,.(j) = N, for j = 0 and zero otherwise. Observing theyower, as discussed above. In a typical operating scenario, all
estimation error curves, one can see that, for moderate SNRid@rs are detected at a common receiver noise léyeConse-
to a 6-dB gain in estimation error may be achieved by consiguently, the weak and strong users operate at SNR values that
ering the noise coloration and the inter-tap correlations. An evgfe 10 dB apart, and the horizontal axis must be interpreted in
a larger improvement is observed in the correlation coefficienis light. For example, if the strong user is at 30 dB SNR, then
It should be noted that this benefit comes at little or no cost {Re weak user is at 20 dB with a relative estimation error vari-
computational load when performing the channel estimation.gnce roughly 10 dB greater than that of the strong user. Simi-

This plot also demonstrates that the asymptotic channel &gy, the average correlation coefficient for the stronger user is
timation error varies inversely with SNR, as expected. Simgignificantly better (closer to unity) than for the weaker user.
larly, the channel estimate and the true channel become increasn all of the results presented here, itis assumed that the inter-
ingly correlated with increasing SNR. For example, at an SNBdlator is designed assuming perfect knowledge of the Doppler
of 40 dB, use of the optimal interpolator results in an averagede ratefp_, the rms delay spreaf,,, , and the SNR,,
correlation coefficient of approximately,,(k) = 0.9997—a for each user. In a practical situation, these parameters may not
high degree of correlation. This is extremely desirable, since, & known at design time and may, in fact, be different for each
observed in [7] for the case of a single user and flat fading, theer. Furthermore, they may change as the scattering environ-
behavior ofp,,(k) with SNR results in the elimination of the ment changes. As mentioned previously, this may be handled by
bit error rate (BER) floor that is commonly observed in systemgiopting a worst-case design methodology. This approach was
employing differential detection. investigated here by designing an interpolator using worst-case

The above graphs have all illustrated the performance fealues off,_ andn..s, (equal for all users) and a typical op-
equipower users. In normal system operation, though, we camating SNR",,, (again, equal for all users). The performance of
expect power differences among the users. Even in this caes fixed interpolator was then investigated in an environment
the absoluteestimation error variance, given by tréBg,, (k)] with different channel and SNR conditions.
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Not surprisingly, it was found that better performance may [7]
be obtained by optimizing the interpolator to match the actual
fading and SNR conditions. More importantly, however, it was 8]
found that the performance is neither degraded nor improved[
if the actual channel conditions are better than those designe?g}
for (lower fp_ andr.,, than the design values) and if the
actual SNR’s are different from the design value. If the actual
channel conditions are worse than those designed for, significaHl
degradation in performance occurs.

[11]

VI. CONCLUSIONS

[12]
In this paper, we have developed a pilot-based MMSE

technique for jointly estimating the channels of multiple

. . . [13]
cochannel users in a TDMA system that is useful for a varlet)I
of multiuser detection and interference cancellation schemes.
The paper makes two key contributions: first, it accounts fof14]
time variation of the channels both within and between training
periods. The former is essential in a multiuser environmentis]
where the training sequences are necessarily longer than in
a single-user environment, resulting in significant variation
during training. Second, a simple strategy for the selection of
appropriate training sequences for the multiple cochannel usels’]
is developed. The selection strategy is demonstrated for the
special case of BPSK sequences. [18]

Several design issues are considered including the choice of
interpolator order, the choice of frame length, and efficiency.
Results show that the user throughput decreases with each addi-
tional user since the minimum length of the training sequenca<
grows linearly with the number of users. However, system ¢
ficiency may increase, since, through the use of joint detecti
and/or antenna arrays, multiple users may be allowed to sh
the same frequency/time slot.

Performance results are presented, and it is shown that
channel estimation error decreases with each additional user
toincreasing training sequence lengths. Furthermore, itis sho
that for nonequipower users, the absolute channel estimatjon
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