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Abstract

Multiuser demodulation algorithms for centralized receivers of asynchronous
direct-sequence (DS) spread-spectrum code-division multiple-access (CDMA) systems in
frequency-selective fading channels are studied. Both DS-CDMA systems with short (one
symbol interval) and long (several symbol intervals) spreading sequences are considered.

Linear multiuser receivers process ideally the complete received data block. The ap-
proximation of ideal infinite memory-length (IIR) linear multiuser detectors by finite
memory-length (FIR) detectors is studied. It is shown that the FIR detectors can be
made near-far resistant under a given ratio between maximum and minimum received
power of users by selecting an appropriate memory-length. Numerical examples demon-
strate the fact that moderate memory-lengths of the FIR detectors are sufficient to achieve
the performance of the ideal IIR detectors even under severe near-far conditions.

Multiuser demodulation in relatively fast fading channels is analyzed. The optimal
maximum likelihood sequence detection receiver and suboptimal receivers are considered.
The parallel interference cancellation (PIC) receiver is demonstrated to achieve better
performance in known channels than the decorrelating receiver, but it is observed to be
more sensitive to channel coefficient estimation errors than the decorrelator. At high
channel loads the PIC receiver suffers from bit error rate (BER) saturation, whereas the
decorrelating receiver does not. Choice of channel estimation filters is shown to be crucial
if low BER is required. Data-aided channel estimation is shown to be more robust than
decision-directed channel estimation, which may suffer from BER saturation caused by
hang-ups at high signal-to-noise ratios.

Multiuser receivers for dynamic CDMA systems are studied. Algorithms for ideal lin-
ear detector computation are derived and their complexity is analyzed. The complexity of
the linear detector computation is a cubic function of KL, where K and L are the num-
ber of users and multipath components, respectively. Iterative steepest descent, conjugate
gradient, and preconditioned conjugate gradient algorithms are proposed to reduce the
complexity. The computational requirements for one iteration are a quadratic function of
KL. The iterative detectors are also shown to be applicable for parallel implementation.
Simulation results demonstrate that a moderate number of iterations yields the perfor-
mance of the corresponding ideal linear detectors. A quantitative analysis shows that the
PIC receivers are significantly simpler to implement than the linear receivers and only
moderately more complex than the conventional matched filter bank receiver.

Keywords: channel estimation, interference cancellation, decorrelation, iterative
detection
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Edistämissäätiö enabled this work and is thus gratefully acknowledged.

I am grateful to my father Aarno and to my late mother Kaija for the help,
support, and love they have provided for me throughout my life. The positive
attitude towards education in our home has been an important driving force for
my later studies.

I wish to express my deepest thanks to my family, my wife Hanna for the love
and support she has shown to me, and to my children Tuomas (three years) and
Kaisa (one year) for the understanding they have shown in their own ways. With-
out Hanna’s highly positive attitude the thesis would not have been completed.

Oulu, September 15, 1997 Markku Juntti



List of original publigations

The thesis is in part based on the following original publications, which are referred
in the text by Roman numerals:

I Juntti M & Glisic S (1997) Advanced CDMA for wireless communications. In:
Glisic SG & Leppänen PA (eds) Wireless Communications: TDMA Versus
CDMA, Kluwer Academic Publishers, Chapter 4, p 447–490.

II Juntti MJ & Aazhang B (1995) Linear finite memory-length multiuser detec-
tors. Proc. Communication Theory Mini-Conference (CTMC’95) in conjunc-
tion with IEEE Global Telecommunications Conference (GLOBECOM’95),
Singapore, November 13–17, p 126–130.

III Juntti MJ, Aazhang B & Lilleberg JO (1996) Linear multiuser detection
for R-CDMA. Proc. Communication Theory Mini-Conference (CTMC’96)
in conjunction with IEEE Global Telecommunications Conference (GLOBE-
COM’96) London, U.K., November 18–22, p 127–131.

IV Juntti MJ & Aazhang B (1997) Finite memory-length linear multiuser de-
tection for asynchronous CDMA communications. IEEE Transactions on
Communications 45(5): p 611–622.

V Juntti MJ (1997) Performance of decorrelating multiuser receiver with data-
aided channel estimation. Proc. Communication Theory Mini-Conference
(CTMC’97) in conjunction with IEEE Global Telecommunications Confer-
ence (GLOBECOM’97), Phoenix, Arizona, USA, November 5–7.

VI Juntti MJ, Latva-aho M & Heikkilä M (1997) Performance Comparison of
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List of symbols and abbreviations

A diagonal matrix of transmitted complex amplitudes of all users
at one symbol interval (K ×K)

Ak transmitted complex amplitude of user k
A diagonal matrix of transmitted complex amplitudes of all users

over all symbol intervals (NbK ×NbK)

A(n) diagonal matrix of transmitted complex amplitudes of all users
over symbol intervals inside the processing window (NK ×NK)

Ā(n) diagonal matrix of transmitted complex amplitudes of all users
over symbol intervals inside the processing window plus the edge
symbol intervals ((N + 4)K × (N + 4)K)

A(n)
e diagonal matrix of transmitted complex amplitudes of all users

over the edge symbol intervals (4K × 4K)
b vector of data symbols of all users over all symbol intervals

(NbK × 1)

b(n) vector of data symbols of all users over symbol intervals
inside the processing window (NK × 1)

b̄
(n)

vector of data symbols of all users over symbol intervals inside
the processing window plus the edge symbol intervals
((N + 4)K × 1)

b(n) vector of data symbols of all users at symbol interval n (K × 1)

b
(n)
e vector of data symbols of all users over the edge symbol

intervals (4K × 1)

b
(n)
k data symbol of user k at symbol interval n

c vector of the channel coefficients of all users over all symbol
intervals (NbKL× 1)

c(n) vector of the channel coefficients of all users at symbol
interval n (KL× 1)

c
(n)
k vector of the channel coefficients of user k at symbol

interval n (L× 1)

c̃
(n)
k combining vector (L × 1)



c
(n)
k (t) channel impulse response of user k at symbol interval n

c
(n)
k,l channel complex coeffcient (gain) of lth multipath of user k

at symbol interval n
C(n) matrix of the channel coefficient vectors of all users at

symbol interval n (KL×K)

C̃(n) combining matrix
C matrix of the channel coefficient vectors of all users over

all symbol intervals (NbKL×NbK)
C(n) matrix of the channel coefficient vectors of all users over

symbol intervals inside the processing window (NKL×NK)

C̄(n) matrix of the channel coefficient vectors of all users over
symbol intervals inside the processing window plus the edge
symbol intervals ((N + 4)KL× (N + 4)K)

C(n)
e matrix of the channel coefficient vectors of all users over

the edge symbol intervals (4KL× 4K)
CAPk channel capacity of user k
C set of complex numbers
D(i) detector block (KL×KL)
D(z) z-transform of a linear detector (KL×KL)
D linear infinite memory-length multiuser detector
DN truncated linear finite memory-length multiuser detector of

length N (NKL×KL)
D̄N optimal linear finite memory-length multiuser detector of

length N (NKL×KL)
Ek transmitted energy per symbol of user k
F convolution of the multiuser channel impulse response

and multiuser detector (NKL×KL)
h vector of data-amplitude products of all users

over all symbol intervals (NbK × 1)

h(n) vector of data-amplitude products of all users over symbol
intervals inside the processing window (NK × 1)

h̄
(n)

vector of data-amplitude products of all users over symbol
intervals inside the processing window plus the edge symbol
intervals ((N + 4)K × 1)

h(n) vector of data-amplitude products of all users at symbol
interval n (K × 1)

h(n)
e vector of data-amplitude products of all users over the

edge symbol intervals (4K × 1)

h
(n)
k data-amplitude product of user k at symbol interval n

I identity matrix
IL identity matrix (L× L)
J distance of channel estimation filter taps in symbol intervals
J0 zero-order Bessel function of the first kind
k user index
K number of active users



l propagation path index
L number of propagation paths

L̃ Cholesky factor of the correlation matrix R(0)
L(n) Cholesky factor of the correlation matrix R(n)

n discrete symbol interval index
N number of symbols in the processing window
Nb number of symbols in the data packet
Nc processing gain
Np distance of the pilot symbols
Ns number of samples in symbol interval
P “half” of the processing window length
Pk probability of bit error for user k
Ppr number of coefficients in the prediction part of the

channel estimation filter
Psm number of coefficients in the smoothing part of the

channel estimation filter

q
(n)
k,l channel estimation filter input vector

r discrete-time sampled received signal vector over
all symbol intervals (NbNs × 1)

r(n) discrete-time sampled received signal vector over
symbol intervals inside the processing window (NNs × 1)

r(t) complex envelope of received continuous-time signal

R
(n)
k,k′ (i) matrix of crosscorrelations of signature waveforms

for all multipath components of users k and k′ with delay
of i symbols at symbol interval n (L× L)

R(n)(i) matrix of crosscorrelations of signature waveforms
for all multipath components of all users with delay of i
symbols at symbol interval n (KL×KL)

R matrix of crosscorrelations of signature waveforms
for all multipath components of all users over all symbol
intervals (NbKL×NbKL)

R(n) matrix of crosscorrelations of signature waveforms
of multipath components of all users over symbol intervals
inside the processing window (NKL×NKL)

R̄(n) matrix of crosscorrelations of signature waveforms
of multipath components of all users over symbol intervals
inside the processing window plus the edge symbol
intervals (NKL× (N + 4)KL)

R(n)
e matrix of crosscorrelations of signature waveforms

of multipath components of all users over the edge symbol
intervals (NKL× 4KL)

IR set of real numbers

s
(n)
k (t) signature waveform of user k at symbol interval n

s
(n)
k,m chip m of user k at symbol interval n

S(0)(0) matrix of samples of signature waveforms (Ns ×KL)



S matrix of samples of signature waveforms ((N + 2)Ns ×NKL)
t continuous-time index
T length of a symbol period
Tm delay spread
Tc length of a chip period
T detector matrix; inverse of R or R(n)

UN block column of inverse matrix (NKL×KL)

v
(n)
k,l channel estimation filter vector

w vector of the matched filter output noise components
of all users over all symbol intervals (NbKL× 1)

w(n) vector of the matched filter output noise components
of all users over symbol intervals inside the
processing window (NKL× 1)

w(n) vector of the matched filter output noise components
of all users at symbol interval n (KL× 1)

w
(n)
k vector of the matched filter output noise components

of user k at symbol interval n (L × 1)

w
(n)
k,l noise component of the sampled output of the matched

filter for the lth multipath of user k at symbol interval n
y vector of matched filter outputs of all users over all

symbol intervals (NbKL× 1)
y(n) vector of matched filter outputs of all users over symbol

intervals inside the processing window (NKL× 1)
y(n) vector of matched filter outputs of all users at symbol

interval n (KL× 1)

y
(n)
k vector of matched filter outputs of multipath components

of user k at symbol interval n (L × 1)

y
(n)
k,l sampled output of the filter matched to the kth users lth

multipath component at symbol interval n
y[MUD] multiuser detector output vector over all symbol

intervals (NbKL× 1)

y
(n)
[MUD] multiuser detector output vector over symbol intervals

inside the processing window (NKL× 1)

y
(n)
[MUD](m) multiuser detector output vector over symbol intervals

inside the processing window at iteration m (NbKL× 1)

y
(n)
[MUD] multiuser detector output vector at symbol interval

n (KL× 1)
z complex discrete-time sampled zero mean additive

white Gaussian noise vector over all symbol intervals
(NbNs × 1)

z(t) complex continuous-time zero mean additive white
Gaussian noise

0L zero matrix (L× L)
δk,k′ Kronecker delta function



δ(t) Dirac’s delta function

ζ
(n)
1 matrix of the past edge correlations (NKL× 2KL)

ζ
(n)
2 matrix of the future edge correlations (NKL× 2KL)
ηk asymptotic multiuser efficiency of user k
η̄k power-limited near-far resistance of user k
λi eigenvalue of a matrix

µ(n) response of the edge symbols at linear detector output
Ξ modulation symbol alphabet
φk transmitted carrier phase
ϕk,l(.) channel autocorrelation (autocovariance) function
σ2 two-sided power spectral density of the noise
Σc covariance matrix of vector c

τk delay of kth user’s transmitted signal
τk,l delay of lth multipath component of user k
ψ(t) chip waveform

Ψ̂ multiple-access interference estimate
Ω(.) log-likelihood function
AME asymptotic multiuser efficiency
AWGN additive white Gaussian noise
BEP bit error probability
BER bit error rate
BPSK binary phase shift keying
CG conjugate gradient
CGL conjugate gradient for solving least squares problems
CDMA code-division multiple-access
DA data-aided
DD decision-directed
DF decision-feedback
DFE decision-feedback equalizer
DS direct-sequence
DSP digital signal processing
D-CDMA deterministic code-division multiple-access
EM expectation-maximization
FDMA frequency-division multiple-access
FH frequency-hopping
FIR finite impulse response
flop floating point operation
GPIC groupwise parallel interference cancellation
GSIC groupwise serial interference cancellation
HD hard decision
IC interference cancellation
IIR infinite impulse response
ISI intersymbol interference
LMMSE linear minimum mean squared error
MAI multiple-access interference
MC multicarrier



MF matched filter
ML maximum likelihood
MLSD maximum likelihood sequence detection
MMSE minimum mean squared error
MOE minimum output energy
MPSK M-ary phase shift keying
MRC maximal ratio combining
MSE mean squared error
MUD multiuser demodulation
NDA non-data-aided
NFR near-far resistance
PCG preconditioned conjugate gradient
pdf probability density function
PDMA polarization-division multiple-access
PIC parallel interference cancellation
PSK phase shift keying
R-CDMA random code-division multiple-access
SAGE space alternating generalized expectation-maximization
SIC serial interference cancellation
SD soft decision; steepest descent
SINR signal-to-interference-plus-noise ratio
SNR signal-to-noise ratio
TDMA time-division multiple-access
SDMA space-division multiple-access
WSSUS wide-sense stationary uncorrelated scattering
W-CDMA wideband code-division multiple-access
∗ convolution
(·)∗ complex conjugation
(·)max maximum of the argument
(·)min minimum of the argument
(·)[d] decorrelating detector applied to the argument
(·)[HD−PIC] hard decision parallel interference cancellation detector applied

to the argument
(·)[LIN ] linear detector applied to the argument
(·)[MRC] maximal ratio combining applied to the argument
(·)[ms] linear minimum mean squared error detector applied

to the argument
(·)[nw] noise-whitening detector applied to the argument
(·)[PIC] parallel interference cancellation detector

applied to the argument

(̂·) estimate of the argument
arg argument
AH conjugate transpose of A
A−1 inverse of A
A⊤ transpose of A
diag(· · ·) diagonal matrix with elements · · · on main diagonal



E(·) expectation
inf(·) largest lower bound (infimum)
ln(·) natural logarithm
max(·) maximum
mbc(·) middle block column
min(·) minimum
Q(.) normalized and scaled Gaussian complementary error

function
Re(·) real part
sgn(·) signum function
sup smallest upper bound (supremum)
| · | magnitude
‖ · ‖ Euclidean norm
⌈x⌉ smallest integer larger than or equal to x
(A)ij element at the ith row and jth column of matrix A
∂

∂x
gradient vector with respect to x
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1. Introduction

Transmission of information has become a key feature of the modern way of life.
The possibilities offered by telecommunications are changing the way how peo-
ple work, shop, spend their leisure time etc. The advancing communication and
information processing technologies create more markets for new communication
services and products. In particular, the demand for wireless communication ser-
vices has increased rapidly and the trend is excepted to continue. Therefore, strin-
gent requirements on the capacity of communication systems are posed in terms
of the number of users a system can serve simultaneously. In other, and more
appropriate, words, as much information as possible should be transferred. This
goal can be achieved by designing efficient source coding methods to compress the
non-systematic redundancies in the information, by using smaller cells in cellular
systems, by utilizing spatial signal processing techniques, and by designing efficient
multiple-access techniques and transceivers for them.

The topic of this thesis is to analyze demodulation techniques which demodu-
late multiple users of a communications system jointly increasing the capacity of
communication systems. The approach is called multiuser demodulation (MUD)
or multiuser detection. Receivers applying multiuser demodulation are called mul-
tiuser receivers. As an introduction to the topic, multiple-access techniques, their
features, as well as pros and cons are discussed in Section 1.1. In Section 1.2 facts
motivating the need for the multiuser receivers are considered, and short historical
overview of the multiuser demodulation is also presented. The aims and outline of
the thesis is described in Section 1.3.

1.1. Multiple-access techniques

Multiple-access refers to a technique to share a common communications channel
between multiple users. The freedoms in use when designing multiuser communica-
tion systems include space, time, and frequency. Time and frequency domains are
duals of each other via the Fourier transform so that the actual options to use are
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space domain and time-frequency domain designs. In the space domain users can
be separated by making their distance large enough. An example is to use cables
to separate communication signals in wireline communication. Another example is
to separate transmitters geographically to have large enough distances attenuating
the signals so that they do not interfere significantly. More advanced techniques
include polarization-division multiple-access (PDMA) and space-division multiple-
access (SDMA) [1]. In PDMA two users can be separated by using electromagnetic
waves with different polarization. In SDMA sectorized antennas are usually applied
to separate users at the same frequency.

In time-frequency domain multiple-access each users’ transmitted data signal is
modulated by a signature waveform. The receiver can demodulate each users data,
if the signature waveforms of the users are different enough. Various signature
waveform designs result in different multiple-access techniques.

The oldest multiple-access technique is frequency-division multiple-access
(FDMA). In FDMA each users’ signature waveform occupies its own frequency
band and the receiver can separate the users’ signals by simple bandpass filtering.
FDMA is a simple scheme and applicable to both analog and digital modulation. It
is not, however, very flexible for providing variable bit rates, which is an important
requirement in future communication services. Making the bit rate higher requires
more frequency channels to be allocated for a user. This implies a need for several
bandpass filters.

The introduction of digital modulations enabled the appearance of time-division
multiple-access (TDMA), in which each users’ signature waveform is limited to
a predetermined time interval. TDMA is relatively simple to implement and it
is very flexible for providing variable bit rates. Increasing the bit rate can be
implemented by assigning to a user more transmission intervals. However, the
transmissions of all the users must be exactly synchronized to each other. Due to
simpler implementation of more complicated modulation schemes in TDMA than
in FDMA the capacity of TDMA systems is usually significantly higher than that
of the FDMA systems.

The invention of spread-spectrum techniques for communication systems with
anti-jamming and low probability of undesired interception capabilities lead to the
idea of code-division multiple-access (CDMA). A review of the spread-spectrum
techniques can be found in papers by Scholtz [2] and Pickholtz et al. [3]. More
detailed treatments can be found in the books by Simon et al. [4], Dixon [5],
Peterson et al. [6], and Viterbi [7]. The history of spread-spectrum has been
reviewed in [8, 9, 10] and [4, Part 1, Chap. 2].

CDMA can be implemented in numerous ways including frequency-hopping
(FH), time-hopping (TH), and direct-sequence (DS) spread-spectrum techniques
[4] as well as multicarrier (MC) techniques [11]. Design of CDMA signature wave-
forms based on wavelets [12, 13, 14, 15] or overlapping signature waveforms (spread-
signature CDMA) counteracting fading [16, 17] have also been proposed. Hybrid
CDMA systems based on combining all or some of the techniques are also pos-
sible. In FH-CDMA users’ signature waveforms are centered on different carrier
frequencies at different time intervals. The hopping from a frequency to another is
controlled according to a pseudo-random spreading sequence. In DS-CDMA sys-
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tems each users’ signature waveforms are continuous in the time domain and have
a relatively flat spectrum. Therefore, in DS-CDMA systems users are separated
neither in time nor in frequency domains, but all signature waveforms occupy the
whole frequency band allocated for the transmission at all times. However, the
data of users can be separated in the receivers, since the signature waveforms of
DS-CDMA are formed by spreading sequences which are unique to all users. In
multicarrier modulation each user’s data is transmitted using different carrier fre-
quencies [18]. In MC-CDMA the data signal is also spread in the frequency domain
as in DS-CDMA [11].

Traditional FDMA and TDMA are designed to be orthogonal in the sense that
the signature waveforms are mutually orthogonal. DS-CDMA, on the other hand,
can be designed to be either orthogonal or non-orthogonal. The spreading se-
quences can be designed to be orthogonal. If the signals of all users arrive at the
receiver with the same time delay (spreading sequence phase) and if the transmis-
sion medium does not cause time dispersion, the signature waveforms appear as
orthogonal at the receiver. With unequal timing offsets, the signature waveforms
are non-orthogonal at the receiver.1 The spreading sequences may also be designed
to be non-orthogonal. Orthogonal CDMA is in many respects similar to FDMA
or TDMA. The non-orthogonal CDMA is more flexible than orthogonal multiple-
access techniques, since there is no hard limit on the number of users, as there is in
orthogonal multiple-access techniques due to the finite dimensionality of the signal
space.

The debate on the question which multiple-access technique gives the maxi-
mal system capacity is very controversial2. One significant answer is given by
information theory. In the so called Gaussian multiple-access channel, i.e., in a
time-frequency channel distorted by additive white Gaussian noise (AWGN) with
several transmitters and one centralized receiver, the maximum Shannon capacity
is obtained by letting all the users to use all the bandwith at all time instants [22].
A DS-CDMA system is clearly a good approximation of such a system. Another
answer for cellular systems is provided by the fact that a DS-CDMA system can
provide a frequency reuse factor of one [7], whereas TDMA has so far been lim-
ited to a reuse factor of three or four. However, antenna diversity may push the
reuse factor for TDMA lower in the future. With a frequency reuse factor of one
FH-CDMA cannot avoid frequency hits between users at the same frequencies in
adjacent cells causing a severe performance degradation. Furthermore, coherent
demodulation is not practical in FH systems, which causes a performance penalty
in comparison to DS systems with coherent demodulation. The CDMA signature
waveforms have usually a significantly larger bandwith than FDMA or TDMA
waveforms. Thus, CDMA signature waveforms offer protection against fading,
which is an impairment of mobile radio channels [23]. The advantages of TDMA
in comparison to CDMA include its simpler implementation in many cases and the
infrastructure of some existing systems.

1Similar nonidealities, such as time- or frequency-dispersive channel, often remove also the
orthogonality of FDMA, TDMA, or FH-CDMA.

2As an example, for DS-CDMA applied to cellular mobile communications contrary views are
presented, e.g., by Viterbi & Vembu [19, 20] and by Verdú [21].
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CDMA has reached most interest in application to wireless cellular terrestrial
[1, 24, 25, 26, 27, 7] or satellite [28] communications. The IS-95 cellular system
[29, 30] is a second generation cellular wireless communication system applying
CDMA technology. Since the bandwith of IS-95 is relatively narrow (1.25 MHz),
IS-95 is often called a narrowband CDMA system. There are several third gener-
ation systems under development, which utilize the DS-CDMA technique. One of
them is a CDMA system utilizing multiuser detection [31, 32] proposed in a Euro-
pean research project FRAMES [33, 34]. Another developing DS-CDMA system
is the so called wideband CDMA (W-CDMA) system proposed for Japan [35, 36].
The modified IS-95 standard IS-665 introduces also a wideband CDMA system
[37]. All the above mentioned third generation CDMA systems are proposed to
utilize multiuser receivers, namely some form of multiple-access interference (MAI)
cancellation.

1.2. Multiuser demodulation

As discussed in the previous section, non-orthogonal multiple-access can potentially
offer better system capacity than orthogonal schemes. The price to be paid for
non-orthogonal signature waveforms is the fact that the conventional single-user
matched filter or correlator receiver is not optimal for demodulation. Actually,
obtaining the maximum Shannon capacity requires joint decoding of the data of
all users [22]. The problem becomes increasingly significant if the received power
levels of the users are dissimilar. This is the so called near-far problem. Strong
signals may completely bury the weak ones if the conventional receiver is applied.
Therefore, the design of conventional CDMA systems relies on accurate power
control [7, 38] to alleviate the near-far problem, and spreading sequence design
[4, 5, 6, 7, 39] to reduce crosscorrelations between the signature waveforms of the
users. If the number of users is large, the performance of the conventional single-
user receiver is poor even in the absence of the near-far problem due to the large
level of MAI.

An alternative to the conventional receiver is to apply a receiver designed to take
the multiple-access interference into consideration, i.e., multiuser demodulation.
The multiuser demodulation is related to co-channel interference rejection [40].
Co-channel interference is caused by signals of users transmitting at the same
frequency band, and it is usually rejected by adaptive filtering [41, 42]. This can
be seen as a special case of multiuser demodulation. A multiuser detector can also
make a joint detection of the data of all users.

The first publication on multiuser detection was presented by Schneider [43], who
studied the zero-forcing decorrelating detector. Later Kashihara [44] and Kohno et
al. [45] studied multiple-access interference cancellation receivers. Both Schneider
and Kohno also suggested the use of the Viterbi algorithm for optimal detection in
asynchronous multiuser communications. The real trigger to the increasing interest
in multiuser detection was Verdú’s work on multiuser detection [46, 47, 48], where
the application of the Viterbi algorithm for optimal maximum likelihood sequence
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detection (MLSD) was developed, and its performance was analyzed. Verdú showed
that the CDMA systems are neither interference nor near-far limited, but both are
actually limitations of the conventional single-user receiver.

Since the optimal multiuser detection is prohibitively complex to implement for
many practical applications, numerous suboptimal schemes have been investigated.
A review of multiuser demodulation literature will be presented in Chapter 2. Tu-
torial reviews can also be found in [49, 50, 51] and an overview in [52]. The work
on multiuser receivers has demonstrated that even suboptimal detector with a sig-
nificantly lower implementation complexity than the optimal detector can greatly
improve the detection performance and capacity of multiuser communication sys-
tems. Furthermore, robust detection in the presence of a near-far problem was
shown to be possible.

1.3. Aim and outline of the thesis

In spite of the major research effort invested in multiuser demodulation techniques,
several practical as well as theoretical open problems still exist in the field of
multiuser receivers. Some of them are considered in more detail in this thesis.
The aim of the thesis is to develop practical multiuser demodulation algorithms
for mobile communication systems with frequency-selective fading channels, and to
analyze their implementation complexity. The emphasis is restricted to the uplink
(i.e., reverse link) of asynchronous DS-CDMA systems where users transmit in an
uncoordinated manner and are received by one centralized receiver.

The thesis is presented as a monograph for clarity and to make it easier to read.
However, parts of the literature review in Chapter 2 and parts of the main contri-
butions in Chapters 3–5 have been published earlier or submitted for publication.
The rest of the thesis is organized as follows.

Chapter 2, literature review of which is in part included in Paper I, presents
the background knowledge for the main contributions of the thesis. Notations
and a mathematical model of a CDMA system utilized in the later chapters are
introduced. Relevant literature on single-user fading channel receivers as well as on
multiuser demodulation is reviewed. Based on the literature review, open problems
to be considered in Chapters 3–5 are pointed out.

Chapter 3, results of which are in part included in Papers II–IV, considers
the approximation of ideal infinite memory-length (infinite impulse response, IIR)
linear multiuser detectors by finite memory-length (finite impulse response, FIR)
detectors in asynchronous CDMA systems. The stability and performance of the
FIR detectors are analyzed and numerical examples are presented.

Chapter 4, results of which are in part included in Papers V–VI, considers
multiuser demodulation in relatively fast fading channels. An optimal multiuser
receiver is derived, and the performance of two suboptimal receivers, namely the
decorrelating and parallel interference cancellation receivers, is studied. In partic-
ular, the performance of different channel estimation filters, data-aided (DA) and
decision-directed (DD) channel estimation, and the bit error rates of the decorre-
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lating and the parallel interference cancellation receivers are compared.
Chapter 5, results of which are in part included in Papers III, VII–X, focuses on

the implementation issues of the linear receivers. The computational complexity
of updating the receivers to changes in communication scenario is analyzed and
compared to the parallel interference cancellation receivers.

Chapter 6 concludes the thesis. The results and contributions are summarized
and discussed. Furthermore, some open problems for future research are pointed
out.

1.4. Author’s contribution to publications

The thesis is in part based on the ten original publications. The author has had
the main responsibility for making the analysis and writing all the Papers I–X.
The author has also implemented the software to perform the numerical analysis
and computer simulations except in Paper VI, where Markku Heikkilä compiled
the software in the guidance of the author and Matti Latva-aho.

In Paper I, the author has compiled the literature review of multiuser demodu-
lation utilized in Chapter 2. In Papers, II–III, the author invented the main ideas,
developed the analysis, and produced the examples. The second author provided
help, ideas, and criticism during the process. In Papers IV and VIII–X, the idea
of application of the conjugate gradient algorithm to multiuser detection is due
to Jorma Lilleberg. The author developed the idea and the analysis, as well as
produced the examples. The second and third authors provided help, ideas, and
criticism during the process. Papers V and VII are author’s own work. In Paper
VI, the author developed the ideas and analysis together with the help of the other
authors.



2. Preliminaries

Some preliminaries necessary for analysis in the following chapters are presented in
this chapter. In Section 2.1 a multiuser CDMA system is defined in mathematical
terms. A review of the earlier and parallel work regarding receiver design for fading
channel communications and multiuser demodulation is presented in Section 2.2.
The open problems addressed in this thesis are defined in Section 2.3.

2.1. System model

A general multiuser CDMA system is illustrated in Fig. 2.1. The so called multiple-
access channel [22, Chap. 14] is considered in this thesis. In this model K users
share the same communication media and the signals transmitted by the users
pass through separate and independent channels. The outputs of the channels
are added to a common noise process. The transmitted data is demodulated in
a centralized multiuser receiver, which makes a joint decision of the data of all
users. In a mobile communication system, for example, the setup is valid for the
uplink. The mathematical formulation of the transmission system presented in this
section has been inspired by several earlier papers, e.g., [53, 47, 54, 55, 56, 57]. In
Section 2.1.1, the system model is defined in a conventional way with continuous-
time variables. The corresponding discrete-time model, which is more suitable for
algorithm derivations than the continuous-time one, is defined in Section 2.1.2. In
Section 2.1.3, the system model for a truncated observation window is presented.
The statistical model of the fading channel is described in Section 2.1.4. To ease the
reading of the thesis some notational principles are summarized in Section 2.1.5.
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Fig. 2.1. CDMA system.

2.1.1. Continuous-time model

A user k ∈ {1, 2, . . . ,K} transmits in the nth symbol interval t ∈
[
(n − 1)T, nT

)

complex signal

b
(n)
k Aks

(n)
k (t− τk), (2.1)

where T is the length of the symbol period, b
(n)
k ∈ Ξ is the transmitted complex data

symbol1, Ξ is the modulation symbol alphabet, Ak =
√
Eke

jφk is the transmitted
complex amplitude of user k (assumed to be constant over the transmission), Ek is
the energy per symbol of the corresponding real bandpass signal, φk is the carrier

phase, τk ∈ [0, T ) is the delay of kth user’s transmitted signal, and s
(n)
k (t) is the

signature waveform of user k. For convenience, s
(n)
k (t) is assumed to be real (the

analysis can be straightforwardly generalized to the complex case) and normalized

so that s
(n)
k (t) = 0, if t 6∈ [0, T ), and

∫ T

0 | s(n)
k (t) |2 dt = 1. In a DS-CDMA system

the signature waveforms are of the form

s
(n)
k (t) =

Nc−1∑

m=0

s
(n)
k,mψ(t−mTc), (2.2)

where s
(n)
k,m is the mth chip of user k on the symbol interval n, Tc is the length of

the chip period, Nc = T/Tc is the processing gain, and ψ(t) is the chip waveform.

1Uncoded transmission is studied in this thesis, i.e., the data symbols b
(n)
k

, ∀ k, n are assumed
to be i.i.d. random variables with uniform distribution into Ξ.
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In this work the chips are assumed binary, i.e., s
(n)
k,m ∈ {−1, 1}. If the signature

waveforms are periodic with period T , i.e., s
(n)
k (t) = s

(i)
k (t) ∀ n, i or for DS signals

s
(n)
k,m = s

(i)
k,m ∀ n, i, they will be called time-invariant, otherwise time-varying. Con-

stant envelope modulation (e.g., MPSK) is assumed, therefore, |b| = 1, ∀ b ∈ Ξ. It
is assumed that the CDMA system under investigation is asynchronous in the sense
that the delays are uniformly distributed into the interval τk ∈

[
0, T

)
∀ k, l. The

CDMA system is called synchronous if the delays are equal (and, thus, normalized
to zero), i.e., τ1 = τ2 = . . . = τK = 0, and quasi-synchronous if the delays are small
compared to the symbol interval.

It is assumed that the channel of user k appears as a linear filter with impulse

response c
(n)
k (t) (Fig. 2.1). It is further assumed that the channel impulse re-

sponses consists of discrete multipath components [23, Chap. 14] so that they can
be expressed as

c
(n)
k (t) =

L∑

l=1

c
(n)
k,l δ

(
t− τ

(n)
k,l

)
, (2.3)

where L is the number of multipath components2 of the channel, c
(n)
k,l is the complex

coefficient (gain) of the lth multipath component of user k at symbol interval n,

τ
(n)
k,l ∈

[
0, Tm

)
is the delay of the lth multipath component of user k at symbol

interval n, Tm is the delay spread of the channel and δ(t) is the Dirac’s delta
function. The effect of time-varying delays is not analyzed in this thesis and the
delays are assumed to be perfectly tracked. Thus, they will be denoted by τk,l in
the forthcoming analysis. Furthermore, it is assumed that the delay spread of the
channel is less than the symbol interval, i.e., Tm < T .

The received CDMA signal is the convolution of the transmitted signal (2.1)
and the channel impulse response (2.3) plus the additive channel noise. Thus, the
complex envelope of the received signal can be expressed as

r(t) =

Nb−1∑

n=0

K∑

k=1

b
(n)
k Aks

(n)
k (t− nT − τk) ∗ c(n)

k (t) + z(t)

=

Nb−1∑

n=0

K∑

k=1

b
(n)
k Ak

L∑

l=1

c
(n)
k,l s

(n)
k (t− nT − τk − τk,l) + z(t), (2.4)

where Nb is the number of symbols in the data packet, the asterix ∗ denotes
convolution, z(t) is complex zero mean additive white Gaussian noise process with
two-sided power spectral density σ2.

It has been shown that the set of matched filter (MF) outputs sampled once in a
symbol interval forms sufficient statistics for the detection of the transmitted data3

[47, 56]. The sampled output of the filter matched to the kth users lth multipath

2The number of propagation paths is assumed to be equal for all users for notational simplicity.
3This is true due to the key assumption that the channel noise z(t) has Gaussian complex

amplitude distribution and the delays are known so that the MF outputs can be sampled at
correct times.
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component is

y
(n)
k,l =

∫ (n+1)T+τk+τk,l

nT+τk+τk,l

r(t)s
(n)
k (t− nT − τk + τk,l)dt. (2.5)

Let the vectors of MF output samples for the nth symbol interval be defined as

y
(n)
k = (y

(n)
k,1 , y

(n)
k,2 , . . . , y

(n)
k,L)⊤ ∈CL (2.6)

y(n) = (y
⊤(n)
1 ,y

⊤(n)
2 , . . . ,y

⊤(n)
K )⊤ ∈CKL (2.7)

and their concatenation over the whole data packet

y =
(

y⊤(1) y⊤(2) · · · y⊤(Nb)
)⊤ ∈CNbKL. (2.8)

Let R(n)(i) ∈ (−1, 1]KL×KL be a crosscorrelation matrix4 with the partitioning

R(n)(i) =




R
(n)
1,1 (i) R

(n)
1,2 (i) · · · R

(n)
1,K(i)

R
(n)
2,1 (i) R

(n)
2,2 (i) · · · R

(n)
2,K(i)

...
...

. . .
...

R
(n)
K,1(i) R

(n)
K,2(i) · · · R

(n)
K,K(i)




∈ IRKL×KL, (2.9)

where matrices R
(n)
k,k′(i) ∈ IRL×L, ∀ k, k′ ∈ {1, 2, . . . ,K} have elements

(
R

(n)
k,k′ (i)

)
l,l′

=

∫ ∞

−∞
s
(n)
k (t− τk − τk,l)s

(n−i)
k′ (t+ iT − τk′ − τk′,l′)dt,

∀ l, l′ ∈ {1, 2, . . . , L} (2.10)

The vector (2.7) can be expressed as [54]

y(n) = R(n)(2)C(n−2)Ab(n−2) + R(n)(1)C(n−1)Ab(n−1) (2.11)

+R(n)(0)C(n)Ab(n) + R(n)(−1)C(n+1)Ab(n+1)

+R(n)(−2)C(n+2)Ab(n+2) + w(n),

where
A = diag (A1, A2, . . . , AK) ∈CK×K (2.12)

is a diagonal matrix of transmitted amplitudes,

C(n) = diag
(
c
(n)
1 , c

(n)
2 , . . . , c

(n)
K

)
∈ CKL×K , (2.13)

is the matrix of channel coefficient vectors

c
(n)
k =

(
c
(n)
k,1 , c

(n)
k,2 , . . . , c

(n)
k,L

)⊤
∈CL, (2.14)

4For notational compactness, the discrete-time index n will be left out from R(n)(i), when
possible without confusion.
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b(n) =
(
b
(n)
1 , b

(n)
2 , . . . , b

(n)
K

)⊤
∈ ΞK , (2.15)

is the vector of the transmitted data and w(n) ∈ CKL is the output vector due to
noise. As in the case of time-invariant signature waveforms [54], it is easy to show
that R(n)(i) = 0KL, ∀ |i| > 2 and R(n)(−i) = R⊤(n+i)(i), where 0KL is an all-zero
matrix of size KL×KL.

The concatenation vector of the matched filter outputs (2.8) has the expression

y = RCAb + w = RCh + w, (2.16)

where

R =




R(0)(0) R⊤(1)(1) R⊤(2)(2) · · · 0KL

R(1)(1) R(1)(0) R⊤(2)(1) · · · 0KL

R(2)(2) R(2)(1) R(2)(0) · · · 0KL

...
...

...
. . .

...

0KL 0KL 0KL · · · R(Nb−1))(0)




∈ IRNbKL×NbKL, (2.17)

C = diag
(
C(0),C(1), . . . ,C(Nb−1)

)
∈ CNbKL×NbK , (2.18)

A = diag (A,A, . . . ,A) ∈ CNbK×NbK , (2.19)

b =
(
b⊤(0),b⊤(1) . . . ,b⊤(Nb−1)

)⊤
∈ ΞNbK , (2.20)

h = Ab is the data-amplitude product vector, and w is the Gaussian noise output
vector with zero mean and covariance matrix σ2R.

The emphasis in this thesis is on centralized multiuser detectors that process the
matched filter output to provide statistics for both channel amplitude estimation
and data detection. The multiuser detector output for the nth symbol interval is

denoted by y
(n)
[MUD] ∈ CKL. Similarly, as in (2.8), the concatenation of the detector

outputs over the whole data symbol packet is denoted by y[MUD] ∈ CNbKL.

2.1.2. Discrete-time model

The received continuous-time signal is assumed to be sampled after front-end fil-
tering with Ns samples per symbol interval. The received signal vector for the
whole data packet over time interval t ∈

[
0, (Nb + 1)T

)
, is

r = SCAb + z, (2.21)
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where z is the received complex white Gaussian noise sequence, and S is a matrix
of samples of signature waveforms of the form

S =




S(0)(0) 0 0 · · · 0
S(0)(−1) S(1)(0) 0 · · · 0

S(0)(−2) S(1)(−1) S(2)(0) · · · 0
...

...
...

. . .
...

0 0 0 · · · S(Nb−1)(0)

0 0 0 · · · S(Nb−1)(−1)

0 0 0 · · · S(Nb−1)(−2)




∈ IR(N+2)Ns×NKL, (2.22)

where matrix S(n)(0) ∈ IRNs×KL includes the firstNs samples, S(n)(−1) ∈ IRNs×KL

includes the middle Ns samples, and S(n)(−2) ∈ IRNs×KL, includes the last Ns

samples of signature waveforms of the users in the nth symbol interval due to the
delay differences of users. Assuming 0 = τ1 < τ2 < · · · < τK < T the element
matrices have the structure

S(n)(0)

S(n)(−1)

S(n)(−2) 0

0

. . .
= ∈ IR3Ns×KL.

A column bar in the matrix above describes the non-zero sampled signature wave-
form of a particular user, and the zeros at the top are used to represent the delays
of a propagation path of the particular user.

The matched filter output vector has the expression

y = SHr = RCAb + w = RCh + w, (2.23)

where the correlation matrix R in (2.17) has the expression

R = S⊤S ∈ (−1, 1]NKL×NKL. (2.24)

Therefore the blocks of R have the expressions

R(n)(0) = S⊤(n)(0)S(n)(0) + S⊤(n)(−1)S(n)(−1) + S⊤(n)(−2)S(n)(−2)

R(n)(1) = S⊤(n)(0)S(n−1)(−1) + S⊤(n)(−1)S(n−1)(−2)

R(n)(2) = S⊤(n)(0)S(n−2)(−2).

2.1.3. Finite processing window model

In purely asynchronous, unslotted CDMA systems the data packet lengths Nb are
very large. Actually, each user activates and deactivates its terminal independently
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from each other. Thus, it is not practical to assume that the whole received signal
r or the matched filter output vector y would be processed in a receiver. Therefore,
a finite processing window model will be defined.

The received signal will be processed in processing windows of lengthN = 2P+1,
where P is a positive integer and N is the window length measured in symbol
durations T . A concatenation of symbols over a processing window is denoted by

b(n) =
(
b⊤(n−P ), . . . ,b⊤(n−1),b⊤(n),b⊤(n+1), . . . ,b⊤(n+P )

)⊤
∈ ΞNK . (2.25)

Similarly, the concatenation of the matched filter outputs over the processing win-
dow is defined as

y(n) =
(
y⊤(n−P ), . . . ,y⊤(n−1),y⊤(n),y⊤(n+1), . . . ,y⊤(n+P )

)⊤
∈CNKL. (2.26)

The vector of the matched filter outputs has the expressions

y(n) = R(n)C(n)A(n)b(n) + R(n)
e C(n)

e A(n)
e b(n)

e + w(n) (2.27)

= R̄(n)C̄(n)Ā(n)b̄
(n)

+ w(n), (2.28)

where the vector

b(n)
e =

(
b⊤(n−P−2),b⊤(n−P−1),b⊤(n+P+1),b⊤(n+P+2)

)⊤
∈ Ξ4K (2.29)

includes the symbols outside the processing window,

b̄
(n)

=
(
b⊤(n−P−2),b⊤(n−P−1), b⊤(n),b⊤(n+P+1),b⊤(n+P+2)

)⊤
∈ Ξ(N+4)K ,

(2.30)
includes the symbols both inside and outside the processing window,

C(n) = diag
(
C(n−P ),C(n−P+1), . . . ,C(n+P )

)
∈ CNKL×NK , (2.31)

C(n)
e = diag

(
C(n−P−2),C(n−P−1),C(n+P+1),C(n+P+2)

)
∈C4KL×4K , (2.32)

C̄(n) = diag
(
C(n−P−2),C(n−P−1), C(n),C(n+P+1),C(n+P+2)

)

∈C(N+4)KL×(N+4)K , (2.33)

A(n) = diag (A,A, . . . ,A) ∈CNK×NK , (2.34)

A(n)
e = diag (A,A,A,A) ∈ C4K×4K , (2.35)

Ā(n) = diag
(
A,A,A,A(n),A

)
∈ C(N+4)K×(N+4)K , (2.36)

R(n) =




R(n−P )(0) R⊤(n−P+1)(1) R⊤(n−P+2)(2) · · · 0KL

R(n−P+1)(1) R(n−P+1)(0) R⊤(n−P+2)(1) · · · 0KL

R(n−P+2)(2) R(n−P+2)(1) R(n−P+2)(0) · · · 0KL

...
...

...
. . .

...

0KL 0KL 0KL · · · R(n+P )(0)
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∈ IRNKL×NKL, (2.37)

R(n)
e =

(
ζ

(n)
1 , ζ

(n)
2

)

=




R(n−P )(2) R(n−P )(1) 0KL 0KL

0KL R(n−P+1)(2) 0KL 0KL

0KL 0KL R⊤(n+P+1)(2) 0KL

0KL 0KL R⊤(n+P+2)(1) R⊤(n+P+3)(2)




∈ IRNKL×4KL, (2.38)

i.e., ζ
(n)
1 ∈ IRNKL×2KL includes the first and ζ

(n)
2 ∈ IRNKL×2KL the last 2KL

columns of R(n)
e , and

R̄(n) =
(
ζ

(n)
1 ,R(n), ζ

(n)
2

)
∈ IRNKL×(N+4)KL. (2.39)

In (2.27) the first term is the response due to symbols b inside the processing
window and the second is the response due to symbols be outside the processing
window. The third term w ∈ CNKL is the response due to noise, which is a zero
mean Gaussian random vector with covariance matrix σ2R. Expression (2.28) is
obtained by writing the first two terms in (2.27) as one matrix-vector product. It is
assumed in this work that matrices R and R(n) are positive definite and therefore
nonsingular. This is ideally the case with probability one [54]. In practice, R
and R(n) become singular (positive-semidefinite) if the product KL is large in
comparison to the processing gain of a DS-CDMA system. The reason is that
practical bandwith constraints pose upper limits to the dimensionality of signal
space spanned by the columns of S. It has been observed by the author that the
number of users and multipath components up to KL ≈ 3Nc can be tolerated in
asynchronous DS-CDMA systems so that the matrix R is still nonsingular.

2.1.4. Statistical fading channel model

The channel coefficient vector

c =
(
c⊤(0), c⊤(1), . . . , c⊤(Nb−1)

)⊤
, (2.40)

where c(n) =
(
c
⊤(0)
1 , c

⊤(0)
2 , . . . , c

⊤(0)
K

)⊤
is assumed to be complex Gaussian random

vector with zero mean and covariance matrix Σc. It is assumed that the fading
channel coefficients have a zero mean and variance normalized for convenience so
that

L∑

l=1

E
(
|c(n)

k,l |2
)

= 1, ∀ k. (2.41)

The channel coefficients are assumed to be independent, i.e., E
(
c
(n)
k,l , c

∗(n)
k′,l′

)
=

σ2
ck,l

δk,k′δl,l′ , where δk,k′ is the discrete Kronecker delta function, and σ2
ck,l

=
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E
(
|ck,l|2

)
is the power of the lth path of user k. The assumption is equivalent to the

common uncorrelated scattering (US) model [23]. The channels are assumed to be
stationary over the observation interval so that the channel autocorrelation (auto-

covariance) function ϕk,l(n, n
′) = E

(
c
(n)
k,l c

∗(n′)
k,l

)
is a function of the time difference

n′ − n only. The assumption is equivalent to the common wide-sense stationary
(WSS) model [23]. In other words, the channel autocorrelation becomes

ϕk,l(i) = E
(
c
(n)
k,l c

∗(n+i)
k,l

)
. (2.42)

The stationarity assumption is valid if the vehicle speed does not change during
the transmission. The Doppler power spectrum is assumed to be the classical
Jakes’ spectrum [58, Sec. 5.4], which results in the Clarke’s channel autocorrelation
function

ϕk,l(i) = σ2
ck,l

J0(2πfd
i

T
), (2.43)

where J0 is the zero-order Bessel function of the first kind,

fd =
v

clight
fc (2.44)

is the maximum Doppler spread, v is the speed of the vehicle, clight is the speed
of light, and fc is the carrier frequency. The width of the channel autocorrelation
function is called channel coherence time, denoted by Tcoh. The coherence time
satisfies Tcoh ≈ 1/fd. Channel is said to be slowly fading if Tcoh ≫ T or fdT ≪ 1,
and fast fading if Tcoh < T or fdT > 1. In the intermediate case Tcoh > T or
fdT < 1, the channel will be termed relatively fast fading. This is often the case in
current mobile communication systems with high vehicle speeds.

The covariance matrix of the channel can be partitioned as

Σc =




Σc(0) Σc(0),c(1) · · · Σc(0),c(Nb−1)

ΣH
c(0),c(1) Σc(1) · · · Σc(1),c(Nb−1)

...
...

. . .
...

ΣH
c(0),c(Nb−1) ΣH

c(1),c(Nb−1) · · · Σc(Nb−1)


 . (2.45)

With the WSSUS channel model the blocks in (2.45) can be expressed as

Σc(n),c(n+i) =




Σ
c
(n)
1 ,c

(n+i)
1

0L · · · 0L

0L Σ
c
(n)
2 ,c

(n+i)
2

· · · 0L

...
...

. . .
...

0L 0L · · · Σ
c
(n)

K
,c

(n+i)

K



, (2.46)

and

Σ
c
(n)

k
,c

(n+i)

k

=




ϕk,1(i) 0 · · · 0
0 ϕk,2(i) · · · 0
...

...
. . .

...
0 0 · · · ϕk,L(i)


 . (2.47)
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2.1.5. Summary of notational conventions

A boldface, lower-case non-italic symbol with discrete-time index as a superscript,
e.g., b(n) ∈ ΞK ,h(n) ∈ CK ,y(n) ∈ CKL,w(n) ∈ CKL, denotes a vector of K or
KL variables over the nth symbol interval. A boldface, lower-case, italic symbol,
e.g., b ∈ ΞNbK ,h ∈ CNbK ,y ∈ CNbKL,w ∈ CNbKL, denotes a vector of NbK or
NbKL variables concatenated over the whole data packet of Nb symbol intervals.
A boldface, lower-case, italic symbol with discrete-time index as a superscript, e.g.,
b(n) ∈ ΞNK ,h(n) ∈ CNK ,y(n) ∈ CNKL,w(n) ∈ CNKL, denotes a vector of NK or
NKL variables concatenated over the observation window of N symbol intervals.
A boldface, lower-case italic symbol with discrete-time index as a superscript and

symbol e (denoting for edge) as a subscript, e.g., b(n)
e ∈ Ξ4K ,h(n)

e ∈ C4K ,y
(n)
e ∈

C4KL,w
(n)
e ∈ C4KL, denotes a vector of 4K or 4KL variables over the symbol

intervals n − P − 2, n − P − 1, n + P + 1, n + P + 2. A boldface, lower-case,

italic symbol with a bar above and discrete-time index as a superscript, e.g., b̄
(n) ∈

Ξ(N+4)K , h̄
(n) ∈ C(N+4)K , ȳ(n) ∈ C(N+4)KL, ¯w(n) ∈ C(N+4)KL, denotes a vector of

(N + 4)K or (N + 4)KL variables concatenated over the observation window of N
symbol intervals and the previous and following two symbol intervals causing the
edge effect.

Corresponding conventions apply to matrices as well. The boldface, upper-case
symbols denote matrices for one symbol interval, and the boldface, upper-case,
calligraphic symbols, e.g., R, denote matrices concatenated over several symbol
intervals. If the discrete-time index as a superscript is included to the calligraphic
symbol, the concatenation is over a processing window of length N , otherwise
over data packet length Nb. If there is the bar above the calligraphic symbol, the
concatenation is over N + 4 symbols including the edge effect. The symbol e as a
subscript refers to concatenation over the edge symbols only.

2.2. Review of earlier and parallel work

The relevant background literature is reviewed in this section. The main emphasis
is on multiuser demodulation techniques for DS-CDMA systems5, which are most
important either from a practical or theoretical point of view. Most centralized6

multiuser receivers can be illustrated as in Figs. 2.2(a) or 2.2(b). The multiuser
signal processing can be performed either before the multipath combining, by pro-
cessing the matched filter bank output vector y, or after the multipath combining,

5Although the multiuser receivers have gained most interest in conjunction with DS-CDMA
systems, they can be applied in any non-orthogonal multiple-access scheme. They have been
considered for TDMA [59], hybrid DS-CDMA/TDMA [60, 61], FH-CDMA [62, 63], MC-CDMA
[64, 65, 66, 67], wavelet packet CDMA [15], and spread-signature CDMA [68] communications.

6Centralized multiuser detectors (called sometimes also joint detectors) make a joint detection
of the symbols of different users. Decentralized multiuser detectors (called sometimes also single-
user detectors) demodulate a signal of one desired user only.



37

by processing the maximal ratio combined matched filter bank output vector

y[MRC] = CHy. (2.48)

It should be noted, however, that the block diagrams in Figs. 2.2 are simplified and
cannot fit all multiuser receivers into their framework. Most multiuser receivers
can also be implemented before matched filtering, i.e., by processing the received
spread-spectrum signal samples r. It should also be noted that most multiuser
receivers alleviate not only the detrimental effects of multiple-access interference,
but the intersymbol interference as well.

The performance of multiuser receivers can be measured by bit error probability
(BEP) or bit error rate (BER), as well as by mean squared error (MSE) of the
detector output or channel estimates. Furthermore, other performance criteria
yielding simpler analysis than the bit error probability have also been considered.
They include the asymptotic multiuser efficiency (AME) [47, 48], and the near-far
resistance (NFR) [69, 70, 54]. The AME describes the asymptotic limit of the
loss in the signal-to-noise ratio (SNR) as the power spectral density of the noise
approaches zero. For coherent BPSK modulation in AWGN channels, AME is
defined as

ηk = sup
̺∈[0,1]

lim
σ2→0

Pk

Q

(√
̺Ek

σ2

) <∞, (2.49)

where sup denotes the smallest upper bound, Q(x) = 1√
2π

∫ ∞
x e−t2/2dt is the nor-

malized and scaled Gaussian complementary error function, and Pk is the bit error
probability of user k with the particular multiuser detector. The AME for mul-
tiuser detectors in Rayleigh fading channels has been defined in [56, 71, 72]. The
Rician fading case has been considered in [73, 74]. The near-far resistance is the
value of the AME for the worst possible interfering energy combination and is
defined as

η̄k = inf
El≥0,l 6=k

ηk. (2.50)

The detector for user k is said to be near-far resistant if η̄k > 0.
In Section 2.2.1, some of the key results on single-user fading channel receiver

techniques are reviewed. Optimal multiuser receivers are considered in Section
2.2.2 and suboptimal ones in Section 2.2.3.

2.2.1. Receivers for fading channel communications

Some key aspects of the receivers for single-user (K = 1) fading channel commu-
nications will be reviewed in short in this section. Tutorial expositions of fading
channel communications have been presented by Turin [75] and Stein [76]. More
complete treatments can be found in books by Proakis [23], and Schwartz et al.
[77]. A treatment of the mobile radio channel can be found in [58]. A comprehen-
sive survey of the literature on fading channel communications is included in the
thesis of Mämmelä [78].
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Fig. 2.2. Multiuser receiver structures.

For slowly fading channels the channel impulse response can be estimated pre-
cisely and the channel impulse response can be assumed to be known. In that case
the optimal receiver (yielding lowest probability of symbol error) for the single user

k includes a filter matched to the convolution of the signature waveform s
(n)
k (t) and

the channel impulse response c
(n)
k (t). In multipath channels such a matched filter

is called a coherent RAKE receiver [79, 23]. The output of the coherent RAKE
receiver for user k is obtained by maximal ratio combing (MRC) the MF outputs
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for different propagation paths, i.e., by

y
(n)
[MRC]k = c

H(n)
k y

(n)
k =

L∑

l=1

c
∗(n)
k,l y

(n)
k,l . (2.51)

If the delay spread is significantly smaller than the symbol interval (Tm ≪ T ), the
intersymbol interference (ISI) can be assumed to be negligible and a hard deci-

sion on the RAKE output y
(n)
[MRC]k yields (near)optimal decision. If the channel

introduces ISI, the receiver minimizing the error probability is significantly more
complicated to implement. Thus, another optimization criterion, namely the min-
imum symbol sequence error probability, is selected. The optimum receiver then
performs maximum likelihood sequence detection [23] in the presence of ISI. The
MLSD can be implemented efficiently by applying the Viterbi algorithm [23, 80, 81].
Suboptimal receivers, which are simpler than MLSD and do not require separate
channel estimator, for ISI channels include linear and decision-feedback (DF) equal-
izers (DFE) [23]. The DFE’s can be applied also in frequency-selective channels
[75]. Their overall impulse response should be such that the equalizer implicitly
performs both maximal ratio combining and ISI reduction. The equalizers can be
made adaptive so that they automatically tune their impulse response to approxi-
mate the desired one [23] or the impulse response can be computed by utilizing a
channel impulse response estimate [82].

In fast or relatively fast fading channels, the channel impulse response cannot
be assumed to be known. Thus, the optimal receiver is somewhat different from
that in the slowly fading channels. The receiver minimizing the symbol error prob-
ability is again complex to implement and difficult to analyze [83]. Therefore, the
MLSD is usually selected to be the optimal reference receiver. The MLSD receiver
consists of an estimator, which estimates the received noiseless signal, and a cor-
relator, which correlates (multiplies) the received signal with the signal estimate
[84, 85, 86, 78]. The receiver structure is called estimator-correlator [85]. The opti-
mal received noiseless signal estimator with known delays according to the MLSD
criterion is the estimator which minimizes the mean squared error at the estima-
tor output. The estimator is thus called minimum mean squared error (MMSE)
estimator. Since the channel noise as well as the complex channel coefficients are
assumed to have a Gaussian distribution, the MMSE estimator is a linear filter.
The estimation and correlation must be performed for all possible transmitted data
sequences. The data sequence yielding the largest correlator output is selected as
the maximum likelihood sequence decision. Therefore, the computational complex-
ity of the MLSD receiver depends exponentially on the transmitted data packet
size. For that reason the MLSD is not feasible for most practical applications.

Suboptimal receivers which are simpler to implement can be obtained by ap-
plying differentially coherent or noncoherent receivers [77], or by decoupling the
channel estimation and data detection. Blind sequence detectors not needing ex-
plicit channel estimation have also been proposed [87]. However, their applicability
to time-varying channels has not been studied. The channel coefficients can be es-
timated by filtering the MF outputs by a channel estimation filter if the effect of
data symbols is removed from them. The channel estimation filter can in principle
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be either a predictor7, a filter8, or a smoother [88, p. 400]. A predictor uses only
the past samples to estimate the current channel coefficient, whereas a “filter” uses
also the current sample. A smoother uses the past, current, and future samples.
The removal of the data modulation can be accomplished either in a data-aided,
decision-directed9, or non-data-aided (NDA) manner [89]. The DA channel es-
timators utilize MF output samples for which the data is known. This can be
accomplished by transmitting a separate channel sounding reference signal (pilot
signal) from which the channel is estimated [90, 91, 92]. For example, code-division
duplexed pilot signal is utilized in the IS-95 CDMA system downlink [29]. Another
way of implementing DA channel estimation is to utilize known pilot symbols time-
division multiplexed in the transmitted data stream [93, 94, 95, 96, 97, 98, 99].
The channel needs to be interpolated between the pilot symbol intervals. The DD
channel estimators utilize the decisions of the receiver to remove the effect of data
modulation [100, 101, 102, 103]. The DD channel estimation often applies predic-
tion of the complex channel coefficients, since only the past decisions are available
for channel estimator [100, 101, 102]. By using tentative decisions smoother type
channel estimation filters can also be applied [103]. The NDA channel estimators
(also called blind channel estimators) estimate the channel without utilizing data
or decisions. There has been an increasing interest in blind channel identification
[104, 105, 106]. Their application to fast or relatively fast fading channels has
gained very little attention [107].

2.2.2. Optimal multiuser demodulation

The centralized multiuser receiver minimizing the bit error probability of one sym-
bol of a particular user has been studied by Verdú [46] for the known channel case.
The minimum error probability receiver must find the most probably transmitted
data symbol for all users for all symbol intervals. In other words, NbK separate
minimizations need to be performed. Each minimization computes a metric for
all possible |Ξ|Nb(K−1) interfering data symbol combinations, where |Ξ| denotes
the cardinality of the set Ξ. Although a dynamic programming algorithm can be
devised to implement the minimum probability of error detector, the required num-
ber of operations grow exponentially with the number of users. Furthermore, the
performance of the minimum probability of error detector is difficult to analyze.
Therefore, similarly to the single-user ISI channels, the minimum symbol sequence
error probability is selected to be the optimization criterion. Thus, the maximum

7Only forward predictors are considered in this thesis.
8The term “filter” has here unavoidably two meanings: it denotes a general channel estimation

filter or it denotes a certain type of filter as in [88, p. 400]. In nearly all cases the term “filter”
has the former meaning in this thesis. In the case of the latter meaning, the word will be given
in quotes in the sequel.

9Decision-feedback (DF) and decision-directed are synonyms. In this thesis, however, the
term decision-directed is used in conjunction with removal of the effect of the data symbols in the
channel estimation, whereas the term decision-feedback is used in conjunction with the decisions
utilized in intersymbol interference or multiple-access interference cancellation.
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likelihood sequence detector will be the optimal multiuser detector.
The MLSD multiuser receiver minimizes the probability of an erroneous decision

on the bit vector b including the data symbols of all users on all symbol intervals.
If the channel is known, the decision can be expressed in the form [47, 71, 108]

b̂[MLSD] = arg min
b∈ΞNbK

Ω(b), (2.52)

where the log-likelihood function Ω(b) is

Ω(b) = 2Re
(
bHAHCHy

)
− bHAHCHRCAb. (2.53)

The maximum likelihood detector admits the structure of the receiver in Fig.
2.2(a). If the signature waveforms are time-invariant, the minimization can be
implemented by a dynamic programming algorithm so that the implementation
complexity depends exponentially on the number of users only, not on the data
packet length [46, 47]. However, the implementation complexity makes the MLSD
infeasible for many practical applications. The asymptotic multiuser efficiency of
the MLSD has been analyzed in [48, 109, 110]. MLSD for trellis-coded modulated
CDMA transmissions in AWGN channels has been studied in [111], and for con-
volutionally encoded transmissions in [112]. The effect of delay estimation errors
to MLSD has been considered in [113]. Joint maximum likelihood sequence detec-
tion and amplitude estimation in AWGN channels has been analyzed in [114, 115].
MLSD for flat Rician fading channels with synchronous CDMA have been consid-
ered in [73] and two path Rician fading channels with asynchronous CDMA in [74].
MLSD in unknown slowly fading channels has been considered in [116].

The performance of the MLSD is analyzed in [47, 48]. It turned out to be impos-
sible to derive a closed form bit error probability expression for the MLSD. Upper
and lower bounds, most of which are complicated to calculate, were found. The
simplest lower bound is the single-user bound (or matched filter bound), which is
the performance of a communication system with one active user (K = 1). The
performance results on the MLSD demonstrate that significant performance gains
can be obtained over the conventional single-user receiver. It has been demon-
strated that the CDMA systems are not inherently interference limited, but that
is the limitation of the conventional detector.

The maximum likelihood sequence detection for relatively fast fading channels
has also been analyzed. MLSD for synchronous CDMA in Rayleigh fading chan-
nels has been presented in [72, 117]. The resulting MLSD receiver consists of the
received noiseless signal estimator for all possible data sequences and a correlator,
which multiplies the received signal with the estimated received noiseless signal
(estimator-correlator receiver).

The optimal MLSD receiver for channels with unknown user and multipath
delays τk and τk,l is significantly more difficult to derive. The reason is the fact that
the received signal depends nonlinearly on the delays, and the MLSD receiver does
not admit a simple estimator-correlator interpretation. One way to approximate
the MLSD for the reception of a signal with unknown delays is to perform joint
maximum likelihood estimation on the data, received complex amplitude, and the
delays [118]. The joint ML estimation has clearly extremely high computational
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complexity, which is exponential in the product of the number of users K, number
of propagation paths L, and number of samples per symbol interval Ns.

Optimal decentralized multiuser detectors for AWGN channels have been consid-
ered in [119], where the multiple-access interference was modeled as non-
Gaussian noise. The optimal decentralized multiuser detectors can also admit
the utilization of the knowledge of a subset of the K − 1 interfering signature
waveforms. The optimal decentralized multiuser detector has also computational
complexity which depends exponentially on the number of users.

2.2.3. Suboptimal multiuser demodulation

Due to the prohibitive computational complexity of the optimal MLSD multiuser
receiver suboptimal solutions have been studied extensively. They somehow ap-
proximate the optimal MLSD receiver. Most receivers can process either the
matched filter bank output (Fig. 2.2(b)) or its maximal ratio combined version
(Fig. 2.2(a)). The latter receivers do not eliminate the effect of MAI on channel
estimation. Therefore, the multiuser detectors processing the MF bank output
are often more desirable in practice, and the discussion in this thesis will focus
on such receivers. Section 2.2.3.1 concentrates on linear equalizer type receivers,
whereas interference cancellation receivers are considered in Section 2.2.3.2. Other
suboptimal receivers are reviewed in Section 2.2.3.3.

2.2.3.1. Linear equalizer type multiuser demodulation

Linear equalizer type multiuser receivers process the matched filter output vector
y (or the maximal ratio combined vector y[MRC]) by a linear operation. In other

words, the output y[LIN ] of a linear multiuser detector T ∈CNbKL×NbKL is

y[LIN ] = T ⊤y. (2.54)

Different choices of the matrix T yield different multiuser receivers. The identity
matrix T = INbKL, is equivalent to the conventional single-user receiver. The
linear equalizer type receivers apply the principles of linear equalization, which has
been used in ISI reduction [23].

The decorrelating or zero-forcing receiver, which completely removes the MAI,
corresponds to the choice [54, 120]

T = R−1. (2.55)

Performance of the decorrelating detector in AWGN channels has been analyzed
in [70, 54, 121, 122]. It has been shown that the decorrelating detector is opti-
mally near-far resistant in the sense that it achieves the same NFR as the MLSD.
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The performance of the decorrelator in known, slowly fading channels has been
analyzed in [120, 71, 123, 108, 124]. Differentially coherent case has been con-
sidered in [125]. The corresponding analysis for estimated, relatively fast fading
channels has been presented in [73, 74, 72, 126, 127]. The performance of the
decorrelator utilizing the matched filter bank output y or the maximal ratio com-
bined MF bank output y[MRC] has been compared in [128, 129]. The principle
of the decorrelating receiver has been extended to receivers utilizing antenna ar-
rays [130, 131, 132, 133, 134, 135, 129], multiple base stations [136, 137, 138], or
multiple data rates [139, 140]. Adaptive implementations of the decorrelating re-
ceiver for synchronous CDMA systems have been considered in [141, 142] and for
asynchronous CDMA systems in [143]. The decorrelating receiver for convolution-
ally encoded CDMA transmissions in AWGN channels has been studied in [144].
Decorrelating receivers for quasi-synchronous CDMA systems in AWGN channels
without precise delay estimation has been proposed in [145, 146, 147, 148], and for
code acquisition in quasi-synchronous CDMA in [149]. The effect of delay estima-
tion errors to the decorrelator performance has been analyzed in [150, 151]. The
impact of quantization due to the finite precision presentation of the numbers in
the receiver has been considered in [152, 153].

A partial decorrelator, which also makes the additive channel noise component
white, so called noise-whitening detector is defined as

T = L−1, (2.56)

where L is lower triangular Cholesky factor of R such that R = L⊤L [154]10. The
noise-whitening detector forces the MAI due to past symbols to zero. The MAI due
to future symbols may be suppressed by interference cancellation utilizing decision-
feedback [155, 154] or the MAI may be handled by some suboptimal tree-search
algorithm [157, 158, 159].

If the information symbols b
(n)
k are independent and uniformly distributed and

the channel is known, the linear receiver which minimizes the mean squared errors
at the detector outputs (so called LMMSE detector) is [88]

T =
[
R + σ2

(
CAAHCH

)−1
]−1

. (2.57)

The LMMSE receiver is equal to the linear receiver maximizing the signal-to-
interference-plus-noise ratio (SINR) [160]. Centralized LMMSE receivers have been
proposed for AWGN channels in [161], for fading channels in [124, 162, 163], and
for antenna array receivers [132, 133, 164, 165]. Bounds for the NFR and SINR of
the LMMSE receiver in AWGN channels have been derived in [166], and the bit
error probability has been analyzed in [167].

The LMMSE receivers have attracted most interest due to their applicability to
decentralized adaptive implementation. Decentralized LMMSE multiuser receivers
for AWGN or slowly fading channels suitable for adaptive implementation based
on training have been considered in [168, 169, 160, 170]. The convergence of the

10The definition of Cholesky factorization used in this thesis is an upper triangular matrix
times a lower triangular matrix [155, 154] as opposed to the usual lower triangular times upper
triangular matrix [156].
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adaptive algorithms for the LMMSE multiuser receivers has been considered in
[171, 172, 173]. A modified adaptive multiuser receiver applicable to relatively fast
fading frequency-selective channels with channel state information has been pro-
posed in [174]. CDMA system capacity with LMMSE receivers has been studied
in [175, 176], where the spreading-coding tradeoff11 has been addressed for systems
with multiuser receivers. An improved LMMSE receiver, less sensitive to the time
delay estimation errors, has been proposed in [177]. Receivers suitable for blind
adaptation utilizing the minimum output energy (MOE) criterion have been stud-
ied in [178, 179, 180, 181]. It has been shown that the linear filter optimal in the
MOE sense is equal to the linear filter optimal in the MMSE sense [178]. A blind
receiver performing both the MOE filtering and timing estimation has been studied
in [182]. Another blind algorithm, namely a linearly constrained constant modulus
algorithm, has been applied in [183].

Decentralized linear receivers include MAI-whitening filters, which model the
multiple-access interference as colored noise. The filters are then designed to whiten
the colored MAI-noise plus the AWGN. The MAI-whitening filters have been stud-
ied in [184, 185, 186, 187, 188]. The implemention of the MAI-whitening filters
is difficult, since it requires information on the MAI covariance. Approximate im-
plementation results in adaptive receivers similar to their LMMSE counterparts
[186].

The linear multiuser receivers process ideally the complete received data block,
the length of which approaches infinity in asynchronous CDMA systems. In other
words, the memory-length of the linear equalizer type receivers is infinite. In
[54] it was shown that as Nb → ∞ the decorrelating detector approaches a time-
invariant, stable digital multichannel infinite impulse response (IIR) filter with
z-domain transfer function

Dd(z) =
[
R(2)z−2 + R(1)z−1 + R(0) + R(−1)z + R(−2)z2

]−1

. (2.58)

The input of Dd(z) is the matched filter bank output vector sequence y(n). Since
the matrix algebraic structure of the LMMSE detector is similar to that of the
decorrelating detector, (2.58) can be generalized for it. The corresponding result
applies for the noise-whitening detector as well [154]. The detectors can be pre-
sented in the form of (2.58) in systems with time-invariant signature waveforms
only. The implementation of the multichannel IIR filter of the form (2.58) is not
straightforward due to the symbolic computation of the inverse. Any multichannel
IIR filter of the form (2.58) can also be represented in the form

D(z) =

∞∑

i=−∞
D(−i)zi, (2.59)

where the blocks D(−i) ∈ IRKL×KL define the filter coefficients. Truncation of
(2.59) to obtain finite impulse response (FIR) filters has been suggested in [54] for

11The spreading-coding tradeoff deals with the question how much of the bandwith expansion
should be invested in forward error-correcting encoding and how much should be invested in
spreading.
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the decorrelating detector. However, the effect of such a truncation on the detector
performance was not analyzed. The truncation of the noise-whitening detector has
been studied independently in [158], but the effect of detector memory-length to
the performance has not been analyzed.

Several other ways to obtain finite memory-length multiuser detectors have been
proposed. The most natural way is to leave symbol intervals regularly without
transmission. This will result in finite blocks of transmitted symbols and obviously
the detectors would then have finite memory-length [189, 190]. In [189], such an
approach was called “isolation bit insertion”. This, however, degrades the bandwith
efficiency and requires some form of synchronism between users. Other approaches
to obtain finite memory-length multiuser detectors include nonlinear subtraction of
estimated multiple-access interference (“edge correction”) [191], and hard decision
approximation of decorrelator [161], which ends up with the decision directed,
nonlinear MAI canceler. One-shot detection [49, 192] has also been studied. FIR
designs have been considered in [193].

In addition to the infinite memory, the linear multiuser receivers have relatively
high implementation complexity due to the matrix inversion as in (2.55), (2.56), or
(2.57). An approximate update algorithm has been proposed in [194, 191]. How-
ever, the algorithm is restricted to track only small changes in the correlations
caused by minor delay changes. Approximate multistage linear equalizer type de-
tectors have been proposed in [190]. Their computational requirements are still a
cubic function of the number of users. Another approach called δ-adjusted mul-
tiuser detection has been proposed in [195], but its near-far resistance is still an
open problem.

2.2.3.2. Interference cancellation

The idea of interference cancellation (IC) receivers is to estimate the multiple-
access and multipath induced interference and then subtract the interference es-
timate from the MF bank (or MRC) output. The interference cancellation can
be derived as an approximation of the MLSD receiver with the assumption that
the data, amplitude, and delays of the interfering users (or a subset of them) are
known [55]. There are several principles of estimating the interference leading to
different IC techniques. The interference can be canceled simultaneously from all
users leading to parallel interference cancellation (PIC), or on a user by user basis
leading to serial (successive) interference cancellation (SIC). Also groupwise serial
(GSIC) or parallel (GPIC) interference cancellation are possible. The interference
estimation can utilize tentative data decisions. The scheme is called hard decision
(HD) interference cancellation. If tentative data decisions are not used, the scheme
is called soft decision (SD) interference cancellation. The interference cancellation
can also iteratively improve the interference estimates. Such a technique is utilized
in multistage receivers.

The multistage hard-decision parallel interference cancellation (HD-PIC) output
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at the mth stage can be presented as [55]

y[HD−PIC](m) = y −
(
R− INbKL

)
Ĉ(m− 1)Ab̂(m− 1), (2.60)

where Ĉ(m − 1) and b̂(m − 1) denote the tentative channel and data estimates
provided by the stage m − 1 of the multistage HD-PIC receiver. The multistage
PIC can be initialized by any linear equalizer type receiver. In the soft-decision
parallel interference cancellation (SD-PIC) the amplitude-data product is estimated
linearly without making an explicit data decision, or a tentative data decision with
a soft nonlinearity (such as hyperbolic tangent of linear clipper) is made. In other

words, the product Ĉ(m− 1)Ab̂(m− 1) of the estimates Ĉ(m− 1), b̂(m− 1), and A
in (2.60) is replaced by an estimate ̂(CAb)(m− 1) of the product CAb. In contrast
to the linear equalizer type multiuser receivers, the PIC receivers have inherently
finite memory. The output of the HD-PIC receiver for the nth symbol interval is

y
(n)
[PIC](m) = y(n) − Ψ̂

(n)
[PIC](m). (2.61)

The multiple-access interference estimate Ψ̂
(n)
[PIC](m) has the form

Ψ̂
(n)
[PIC](m) =

PP IC∑

i=−PP IC

(R(−i) − δi,0IKL) Ĉ(n+i)(m− 1)Ab̂(n+i)(m− 1), (2.62)

where δi,j is the Kronecker delta, PPIC = ⌈T+Tm

T ⌉, and ⌈x⌉ denotes the smallest
integer larger than or equal to x. The tentative estimates and decisions may be
replaced by final ones at those symbol intervals for which they are available [161].
The result is decision-feedback HD-PIC receiver.

The multistage HD-PIC receiver has been proposed and analyzed for AWGN
channels in [196, 55, 197, 198, 199, 200, 201]. The corresponding receivers for
slowly fading channels have been studied in [202, 203, 204, 205, 206, 207, 208], and
for relatively fast fading channels in [209, 210, 211, 57]. The HD-PIC receivers for
transmissions with diversity encoding has been analyzed in [212], and for systems
with multiple data rates has been studied in [213]. HD-PIC receivers for trellis-
coded modulated CDMA systems in AWGN channels have been studied in [111].
The application of the HD-PIC to multiuser delay estimation in relatively fast
fading channels has been considered in [214, 215, 57]. The SD-PIC receivers with
linear data-amplitude product estimation for slowly fading channels have been con-
sidered in [216, 217], and for multicellular systems in [218]. The SD-PIC receivers
with soft nonlinearity have been considered for AWGN channels in [219, 220, 221].
Modifications of the PIC receiver have also been presented. Replacing the matrix(
R− INbKL

)
Ĉ(m− 1)A in (2.60) by an adaptively controlled weighting matrix for

AWGN channels has been proposed in [219, 222, 223, 224, 225]. A partial PIC
receiver with a weighting matrix in front of the matrix

(
R− INbKL

)
Ĉ(m− 1)A in

(2.60) has been proposed in [226, 227, 228]. The weights were chosen in an ad hoc
manner according to the reliability of the interference estimates. By applying the
expectation-maximization (EM) or the space alternating generalized EM (SAGE)
algorithm a class of iterative multistage receivers is obtained [229, 230, 231, 232].
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The iterative EM or SAGE based receivers lead to the application different mod-
ified interference cancellation principles. The effect of delay estimation errors on
the performance of the HD-PIC receiver has been considered in [113], and to the
SD-PIC receiver in [216].

The serial interference cancellation is performed on user by user basis [233, 234].
In the SIC, the amplitude and data of user 1 are estimated first. Using the obtained
estimates the MAI estimate of user 1 is subtracted from the MF outputs of the rest
of the users. Then the amplitude and data of user 2 are estimated, and the MAI
estimate of user 2 is subtracted from the MF outputs of the users k = 3, 4, . . . ,K
etc. The cancellation should start with the user with the largest average power
(indexed as user 1), the second powerful user (indexed as user 2) should be canceled
next etc. The ordering is a problem in relatively fast fading channels, since it must
be updated frequently. SD-SIC has been considered in [234, 235, 217], and HD-
SIC in [233, 236, 237, 238, 239]. The SIC for multirate CDMA communications has
been studied in [240, 241]. The SIC has the inherent problem that in asynchronous
CDMA systems the processing window of user 1 must ideally be K symbols so
that the MAI caused by users 1, 2, . . . ,K − 1 can be canceled from the MF output
of user K [51]. Another problem with the SIC is that it may not yield good
enough performance in heavily loaded CDMA systems, where the performance of
the conventional receiver is poor. The reason for that is that the SIC is initialized
by a conventional receiver for user 1. If the MAI estimate of the signal of user 1 is
poor in the cancellations, the estimation errors propagate to all users. The SIC has
good performance in systems where the powers of users differ significantly. This
cannot be the case in systems with very large number of users. The effect of delay
estimation errors to the SD-SIC has been considered in [242] and to the HD-SIC
in [243]. The combination of the PIC and the SIC receivers has been studied in
[244].

The groupwise interference cancellation receivers detect the symbols of the users
within some group and form an estimate of the MAI caused by the users within that
group based on the symbol decisions. The MAI estimate is then subtracted from the
other users’ MF outputs. The groupwise interference cancellation can be performed
either serially or in parallel. The groupwise serial interference cancellation has been
proposed in [245], and the groupwise parallel interference cancellation in [246, 247].
The grouping can also be performed on consecutive symbols of a particular user
in time [246, 247]. The groupwise SIC has been proposed also for multiple data
rate CDMA systems utilizing multiple processing gains [248, 249]. The detector
for a group of users can, in principle, apply any known multiuser detector, such
as the conventional detector, the decorrelating detector, the PIC detector, or the
maximum likelihood sequence detector. The groupwise interference cancellation is
a special case of more general groupwise multiuser receivers [250, 251].

The interference cancellation can also be combined to linear equalizer type re-
ception. Most often that is based on decision-feedback of the detected symbols
to perform a subtractive cancellation of part of the MAI. The DF-IC in conjunc-
tion with the noise-whitening detector has been considered in [155, 154], and in
conjunction with an adaptive equalizer in [252, 253]. The DF-IC receiver for con-
volutionally encoded CDMA transmissions in AWGN channels has been studied in
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[144].

2.2.3.3. Other multiuser receivers

Most suboptimal multiuser receivers fit into the categories presented in Sections
2.2.3.1 and 2.2.3.2. The other most interesting techniques are reviewed briefly in
this section.

In addition to the linear equalization or interference cancellation, the MLSD
can be approximated by partial trellis-search algorithms. The log-likelihood met-
ric (2.53) is computed for a subset of all possible data vectors b. Different criteria
to choose the subsets result in different partial trellis-search algorithms. The ap-
plication of sequential decoding has been proposed in [254]. Some of the groupwise
multiuser receivers discussed above in Section 2.2.3.2 can also be interpreted as
partial trellis-search algorithms [246]. Other partial tree-search algorithms have
been proposed in [255, 256]. A partial trellis-search algorithm for trellis-coded
modulated CDMA transmissions in AWGN channels has been studied in [111],
and for convolutionally encoded transmissions in [112].

Multiuser parameter estimation, i.e., the complex amplitude and delay estima-
tion has gained increasing interest. Since there is usually no a priori distribution
available for the delays, maximum likelihood estimation is usually selected to be the
optimal technique for delay acquisition and tracking [257, 258, 118]. This approach
has also been considered for amplitude estimation [259]. Suboptimal techniques
include subspace estimators [258, 260, 261, 262, 263], a hierarchical ML estimation
[264], large sample mean ML estimation [265], an extended Kalman filter [266, 267],
recursive least squares algorithm [267], and sequential estimation [268, 269]. The
amplitude estimation in AWGN channels with unknown delays has been the topic
in [270]. The estimation of the number of active users in AWGN channels has been
studied in [271, 272, 273, 274, 275].

Multiuser detection based on empirical distribution of the MAI has been pro-
posed in [276, 277, 278]. The distribution of the MAI is estimated by forming a
corresponding histogram, and the received symbol is selected so that it matches
best into the histogram.

Neural networks have been proposed to approximate the decision regions of
the optimal receivers. Multilayer perceptron networks both for centralized and
decentralized detection in AWGN channels have been proposed in [279] and single-
layer perceptron networks in [280]. Self-organizing maps for centralized detection in
AWGN channels have been studied in [281]. Radial basis functions for decentralized
detection in AWGN channels have been considered in [282]. Hopfield networks for
centralized detection in AWGN channels have been proposed in [283, 284].
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2.3. Problem formulation

Several interesting open problems exist in the field of multiuser receivers. From the
practical point of view, one of the most important questions is, whether multiuser
receivers are feasible in practical DS-CDMA systems or not. The question can
also be posed as whether the price paid in terms of implementation complexity is
worth the obtained performance improvement. The final answer is of course not
only technical but also commercial and, thus, out of the scope of this thesis. To
provide tools for the decision making process, some open problems related to the
multiuser receivers which are considered to be most promising from the practical
point of view, are addressed in this thesis. The multiuser receivers appearing possi-
bly practical include the class of linear equalizer type and interference cancellation
receivers12. As can be seen from the literature review in Section 2.2, the decorre-
lating multiuser receiver has received huge attention from the scientific community.
The interference cancellation is popular in the proposed CDMA system standards
mentioned at the end of Section 1.1. In the class of interference cancellation re-
ceivers the attention is focused on the HD-PIC receivers in this thesis. The PIC
is applied due to problems associated with SIC in purely asynchronous DS-CDMA
systems, and due to the potentially better performance of PIC as hard decisions
are applied [51]. Hard decisions yield usually better performance than soft deci-
sions, since HD receivers can utilize efficient channel estimators, whereas the SD
receivers cannot [51]. The groupwise interference cancellation receivers are defi-
nitely promising and interesting, but they are neglected in this thesis to make the
discussion clearer and simpler.

The key problems in the implementation of the linear equalizer type multiuser
detectors are the infinite memory-length, and the need for matrix inversion in the
detector update. The memory-length problem is the topic of Chapter 3, where finite
memory-length detection is studied. The matrix inversion problem is considered in
Chapter 5, where implementation algorithms for multiuser receivers are proposed.
The implementation requirements of both the linear equalizer type and the HD-
PIC receivers are also compared in Chapter 5. Emphasis is on detection in dynamic
CDMA systems, where the detectors must be updated frequently due to changes
in the number of users, in the signature waveforms, in the delays, or in the received
amplitudes. The HD-PIC receivers are relatively straightforward to implement in
principle, although a large variety of different modifications exist. The performance
of the linear equalizer type and the HD-PIC multiuser receivers with real DA or
DD channel estimation has been studied only very little. The performance analysis
and comparisons of the decorrelating and HD-PIC in Rayleigh fading channels is
therefore the topic of Chapter 4.

12Several other receiver techniques described in Section 2.2.3.3, may very well become practical
after a while. However, most of them are currently rather immature.



3. Finite memory-length linear multiuser detection

Most of the linear equalizer type multiuser detectors can be characterized as an
inverse of some form of correlation matrix, as discussed in Chapter 2. In an ideal
implementation their memory equals the data packet length, which often can be
assumed to approach infinity. The linear multiuser detectors for an asynchronous
CDMA system can be presented as multichannel IIR filters. Although stable ver-
sions of the multiuser detector filters are known to exist in many cases, FIR filters
are more robust in practical systems. Multichannel IIR filters are also complicated
to update as a change in correlations occurs, whereas multichannel FIR filters
admit easier update formulation. Variations in the number of users, in their sig-
nature waveforms (e.g., due to a hand-over in a cellular system), or in their delays
change the correlations. In such a case, the multiuser detectors must be updated
accordingly to match to the new received signal. In this chapter, it is shown that
the infinite memory-length detectors can be accurately approximated by detectors
with finite and also relatively short memory-length. In particular, it is shown that
near-far resistance to a high degree can be obtained by moderate memory-lengths.
This result provides a mechanism to implement near-far resistant linear multiuser
detectors in systems in which the number of users or their propagation delays
change over time.

The detectors studied in this chapter process the MF filter bank output vector
and the multipath combining is performed after the multiuser processing. The
analysis in this chapter assumes that the channel is constant, i.e., the effects due
to fading are neglected. The assumption is justified since the effect of detector
memory-length to the performance of the detection can be characterized equally
in an additive white Gaussian noise as well as in a fading channel.

The chapter is organized as follows. Linear finite memory-length multiuser de-
tectors are defined in Section 3.1. The results of the stability analysis of finite
memory-length detectors are presented in Section 3.2. The effects of the finite
memory-length on the bit error probability, the asymptotic multiuser efficiency,
and the near-far resistance of the detectors are analyzed in Section 3.3. In Sec-
tion 3.4, the results are illustrated by numerical examples. Finally, the results are
summarized and discussed in Section 3.5.



51

3.1. Linear FIR multiuser detectors

The idea to be considered is to replace the NbKL×NbKL detector matrix T by a
NKL×KL detector matrix. A finite memory-length linear multiuser detector of
length N = 2P + 1 (referred to as an FIR detector for brevity) is defined as1

DN =
(

D(P ) · · · D(1) D(0) D(−1) · · · D(−P )
)⊤

∈ IRNKL×KL, (3.1)

where the blocks D(i) ∈ IRKL×KL, i ∈ {−P, . . . , P} define a partition of the de-
tector DN . The infinite memory-length linear multiuser detector (referred to as an
IIR detector) D corresponding to the FIR detector DN is defined as

D = DN , N → ∞. (3.2)

The linear multiuser FIR detector output

y
(n)
[LIN ] = D⊤

Ny(n) ∈ CKL (3.3)

provides a decision statistic for the symbols b(n). The output can be expressed by
(2.27) and (2.28) as

y
(n)
[LIN ] = F⊤A(n)b(n) + µ(n)(b(n)

e ) + w
(n)
[LIN ] = F̄⊤Ā(n)b̄

(n)
+ w

(n)
[LIN ], (3.4)

where F = R(n)DN and F̄ = R̄⊤(n)DN are the convolutions of the multiuser
channel impulse response R(n) or R̄(n) and the multiuser detector DN ,

µ(n)(b(n)
e ) = D(P )R(n−P )(2)C(n−P−2)Ab(n−P−2)

+ D(P )R(n−P )(1)C(n−P−1)Ab(n−P−1)

+ D(P − 1)R(n−P+1)(2)C(n−P−1)Ab(n−P−1)

+ D(−P + 1)R⊤(n+P+1)(2)AC(n+P+1)b(n+P+1)

+ D(−P )R⊤(n+P+2)(1)AC(n+P+1)b(n+P+1)

+ D(−P )R⊤(n+P+3)(2)AC(n+P+2)b(n+P+2) (3.5)

is the response of the symbols outside the processing window, i.e., the edge ef-

fect due to finite detector memory-length, and w
(n)
[LIN ] = D⊤

Nw(n) is a zero mean

Gaussian random vector with covariance matrix σ2D⊤
NR(n)DN . In systems with

time-varying signature waveforms the above formulation should be interpreted as
a snap-shot of the time-varying detector on a particular symbol interval. Filtering
interpretation of an arbitrary multichannel linear FIR detector is illustrated in Fig.
3.1.

To design FIR detectors, or in other words, to find in some sense good NKL×
KL matrices DN , the truncation of IIR detectors is first considered. This was

1Note that the time index n is left out for notational convenience, although the detector DN

and the convolution matrix F depend on n if the signature waveforms are time-varying.
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Fig. 3.1. A FIR linear multiuser detector.

suggested in [54] for the decorrelating detector. A linear multiuser detector D[d]N

satisfying
R(n)D[d]N = UN , (3.6)

where UN = (0KL, . . . ,0KL, IKL,0KL, . . . ,0KL)⊤ ∈ {0, 1}NKL×KL, will be called
the truncated decorrelating detector. It is clear that D[d]N is the NKL × KL

middle block column, i.e., the middle KL columns, of the inverse of R(n). A linear
multiuser detector D[ms]N satisfying

[R(n) + σ2(C(n)A(n)AH(n)CH(n))−1]D[ms]N = UN , (3.7)

will be called the truncated LMMSE detector.2 A linear multiuser detector D[nw]N

satisfying
L(n)D[nw]N = UN , (3.8)

will be called the truncated noise-whitening detector.
An alternative to truncation is to optimize detectors based on the finite proc-

essing-window length model (2.28). To generalize the decorrelating detector we
should find a zero-forcing detector D̄[d]N ∈ IRNKL×KL satisfying

R̄⊤(n)D̄[d]N = UN , (3.9)

which does not have a unique solution. A unique detector can be found by selecting
the pseudoinverse (i.e., Moore-Penrose generalized inverse), which yields the best

2Note that at high signal-to-noise ratios (σ2 → 0) or at high interference levels (Ek → ∞) the
LMMSE detector approaches the decorrelating detector.
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least squares solution to (3.9). Since R(n) is positive definite, R̄(n) has full rank
with more columns than rows. Thus, the pseudoinverse solution defines the optimal
FIR decorrelating detector

D̄[d]N = mbc
{
(R̄(n)R̄⊤(n))−1R̄(n)

}
, (3.10)

where mbc denotes “middle block column of”. It should be noted that the above
detector is the optimal FIR decorrelator in the sense that it minimizes the least
squares error in the solution of (3.9). However, there is no guarantee that the
detector D̄[d]N would yield lower bit error probability than the truncated decorre-
lating detector D[d]N . Since the optimal FIR detector forces the MAI due to edge

symbols b(n)
e to minimum, it cannot any more force the MAI due to symbols b(n)

to zero. This trade-off can introduce a performance penalty in some cases.
The optimal FIR LMMSE detector is by (2.28) and [88, Sec. 12.5]3

D̄[ms]N = mbc
{

(R(n))−1R̄(n)[R̄⊤(n)(R(n))−1R̄(n)

+σ2(C(n)A(n)AH(n)CH(n))−1]−1
}
. (3.11)

If all diagonal values of σ2(C(n)A(n)AH(n)CH(n))−1 are non-zero, matrix

R̄⊤(n)(R(n))−1R̄(n) + σ2(C(n)A(n)AH(n)CH(n))−1

is nonsingular and (3.11) has a unique solution. If σ2 → 0, the inverse in (3.11)
does not exist. In that case there is no noise term in the model in (2.28) and
the problem can be viewed to be deterministic and underdetermined. In that case
there is no LMMSE detector. It should be noted that, contrary to the optimal FIR
decorrelator, the optimal FIR LMMSE detector is never inferior to the truncated
LMMSE detector. Obviously, it is computationally simpler to update the truncated
detectors than the optimal ones. What is more, computation of the truncated FIR
detectors is numerically more stable in practical implementations. However, both
classes of FIR detectors are studied for completeness.

It is clear that the use of FIR detectors instead of the IIR ones causes some
performance loss. The performance analysis of the FIR detectors will be carried
out in Section 3.3. However, to be able to quantify the performance loss, the
stability of linear multiuser detectors is analyzed in the next section.

3.2. Stability of detectors

In this section, conditions for the stability of the multiuser detectors are first dis-
cussed. Although it proves to be impossible to find an easy test for detector

3The same result in a different form has been derived in [161]. The expression in (3.11) is
more appropriate for further derivations in subsequent sections than the expression given in [161,
Eq. (4.3)].



54

stability, the analysis gives insight into the problem. Furthermore, the analysis
provides us with tools to derive two interesting results for stable detectors.

For notational simplicity, the analysis in this section is presented for an AWGN
channel with one propagation path (i.e., L = 1, and C = INb

, R(n)(2) = 0K , ∀ n).
However, the generalization of the analysis to the multipath channel case (L ≥ 2)
is straightforward.

A multiuser detector DN is defined to be stable if and only if the impulse response
of the IIR detector is decaying, i.e., D(−P ), and D(P ) → 0K , as N → ∞ (or
equivalently P → ∞). The above definition is a consequence of the standard
stability definition of a digital IIR filter [285, pp. 81–82]. It is intuitively clear
that, if a multiuser detector is stable, the IIR detector can be truncated to a
FIR detector with little performance degradation if the memory-length N is large
enough. This can be predicted from (3.5), where the response of the symbols
outside the processing window satisfies µ(n) → 0, as N → ∞.

For systems with time-invariant signature waveforms, it was shown in [54] that
the truncated decorrelating detector is stable if and only if4

det[R⊤(1)ejω + R(0) + R(1)e−jω ] 6= 0, ∀ ω ∈ [0, 2π). (3.12)

It is clear that (3.12) is difficult to evaluate for all possible delay combinations.
Therefore, the most practical solution is to compute numerical examples to deter-
mine whether a detector is stable or not. This is particularly true for systems with
time-varying signature waveforms, as will be discussed below.

The result (3.12) was derived via a z-domain approach, which is not applicable
in systems with time-varying signature waveforms. For that reason a time-domain
analysis is needed5. First a dimension symbol N is added to R(n) in (2.37) and
the time interval index (n) is dropped to yield RN . To simplify the notations,
the non-zero blocks in ith block column of RN are denoted by R⊤

i (1), Ri(1), and
Ri+1(0) etc.6. Let the inverse of RN be

TN = R−1
N =




T11(N) T⊤
21(N) · · · T⊤

N,1(N)

T21(N) T22(N) · · · T⊤
N,2(N)

...
...

...
TN,1(N) TN,2(N) · · · TN,N (N)


 ∈ IRNK×NK , (3.13)

where each Tij(N) ∈ IRK×K . The dependence on N is included in the ar-
gument, since the blocks are different for different N . Note that Dd(−P ) =
TN,P+1(N). Thus, the stability of the truncated decorrelating detector is equiva-
lent to TN,P+1(N) → 0K , as N → ∞. The following recursive expressions (3.14)
and (3.15), which are proved in Appendix 1, provide the tools to study the stability

4Time index n is not needed in R(i), since the signature waveforms are time-invariant and the
delays are assumed to be constant.

5The analysis will also apply to systems with time-invariant signature waveforms, since the
time-invariant case can be viewed as a special case of a system with time-varying signature
waveforms.

6In the second column, for example, R⊤

2 (1) = R⊤(n−P+1)(1), R2(0) = R(n−P+1)(0),

R3(1) = R
(n−P+2)(1) etc.
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of the detectors. For any i, j ∈ {1, 2, . . . , N − 1}

Ti,j(N) = Ti,j(N − 1) + T⊤
N−1,i(N − 1)R⊤

N(1)TN,N (N)RN (1)TN−1,j(N − 1),
(3.14)

TN,j(N) = TN,N(N)RN (1)TN−1,j(N − 1). (3.15)

For any 1 ≤ i < N it is obtained by induction from (3.15) that

TN,i(N) =
N∏

j=i+1

[Tj,j(j)Rj(1)]Ti,i(i). (3.16)

A sufficient condition for the stability of the detector, that is for

TN,i(N) → 0K , as N → ∞, (3.17)

is
∣∣∣λmax

[
R⊤

j (1))T−2
j,j (j)Rj(1)

] ∣∣∣ < 1, ∀ j ∈ {i+ 1, i+ 2, . . . , N} [286, p. 69], where

λmax(A) denotes the eigenvalue of the argument matrix A with the largest absolute
value. The above condition is, however, often overly stringent. It was not satisfied
in most of the numerical examples computed, but still the detectors were stable in
nearly all cases. In other words, it is very difficult to provide necessary conditions
for detector stability. Numerical examples are often the only practical way to verify
the stability of detectors.

For systems with time-invariant signature waveforms it has been shown via
the z-domain approach that the stability of the decorrelating detector implies the
uniqueness of the limiting IIR detector [54]. The corresponding result for systems
with time-varying signature waveforms is posed in the following proposition and
proved in Appendix 1.

Proposition 1 If the truncated decorrelating, LMMSE, or noise-whitening detec-
tors are stable, the limiting IIR detectors are unique.

The truncated detectors neglect the edge effect caused by the symbols outside
the observation window, while the optimal FIR detectors take it into consideration.
On the other hand, the stability of the detectors implies that the edge effect at
the detector output approaches zero as N is large. Thus, it is expected that the
truncated and the optimal FIR detectors should approach the same limiting IIR
detector, if they are stable. This is indeed the case under mild conditions as stated
below and proved in Appendix 1.

Proposition 2 Assume that the received energies Ek and noise power spectral
density σ2 satisfy 0 < Ek

σ2 <∞, ∀ k ∈ {1, 2, . . . ,K}. Assume also that the decorre-
lating and LMMSE detectors are stable. Then both the truncated LMMSE detector
D[ms]N (3.7) and the optimal FIR LMMSE detector D̄[ms]N (3.11) converge to the
same IIR LMMSE detector as the detector memory-length N approaches infinity,
i.e.,

D̄[ms] = D[ms]. (3.18)
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The corresponding result for the decorrelating detectors as in Proposition 2,
does not have such simple formulation. However, both the truncated decorrelating
detector D[d]N (3.6) and the optimal FIR decorrelating detector D̄[d]N (3.10) con-
verge to the same IIR decorrelating detector as the processing window length N
approaches infinity, i.e.,

D̄[d] = D[d] (3.19)

under mild conditions. The conditions are described at the end of Appendix 1.
It was noted in Section 3.1 that the truncated detectors are easier to compute

than the optimal FIR detectors. Moreover, the above results justify the use of
truncated detectors with a large enough memory-length.

3.3. Performance analysis

In the performance analysis it is assumed that BPSK data modulation is applied,
and that the carrier phases satisfy φk = 0. However, the extension to more general
cases is straightforward. The delays are assumed to be fixed. For notational
simplicity and clarity the analysis is performed for a single-path channel (L = 1)
in Section 3.3.1. The extension to a multipath channel is presented in Section
3.3.2. The signature waveforms are assumed to be time-invariant for notational
convenience so that the discrete-time index can be removed from the correlation
matrices.

3.3.1. Single-path channel

The kth user’s average bit error probability of a linear FIR detector is obtained by
averaging over all possible interfering symbol combinations [197]. Since in a single-
path channel, C = INbK×NbK , the error probability can be expressed by using (3.4)
in the forms

Pk =
1

2(N+2)K−1

∑

b̄
(n)∈{−1,1}(N+2)K

b
(n)

k
=0

Q



√
Ek(F)(P+1)K+k,k − f̄

⊤
k Ā(n)b̄

(n)

√
σ2[D⊤

NR(n)DN ]kk


 (3.20)

=
1

2(N+2)K−1

∑

b̄
(n)∈{−1,1}(N+2)K

b
(n)

k
=0
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Q



√
Ek(F)(P+1)K+k,k − f

⊤
k A(n)b

(n) − µ
(n)
k (b(n)

e )√
σ2[D⊤

NR(n)DN ]kk


 , (3.21)

where fk and f̄k are the kth columns of F and F̄ defined after (3.4). The term√
Ek(F)(P+1)K+k,k is the desired signal component, f̄

⊤
k Ā(n)b̄

(n)
= f⊤

k A(n)b(n) +

µ
(n)
k (b(n)

e ) is the remaining MAI, and σ2[D⊤
NR(n)DN ]kk is the Gaussian noise vari-

ance at the detector output. Note that the bit error probability can also be ex-
pressed in a more compact form as

Pk =
1

2(N+2)K−1

∑

b̄
(n)∈{−1,1}(N+2)K

b
(n)

k
=1

Q


 f̄

⊤
k Ā(n)b̄

(n)

√
σ2[D⊤

NR(n)DN ]kk


 . (3.22)

The expression for error probability of an IIR detector is as in (3.21) with

µ
(n)
k (b(n)

e ) = 0, since there is no edge term with IIR detectors. It is easy to see from
(3.5) and (3.21) that in the case of a stable detector the effect of the edge symbols
b(n−P−1) and b(n+P+1) can be made arbitrarily small by selecting large enough
memory-lengthN . In the case of the decorrelating detector this becomes even more
clear. Since by (3.6) (F)(P+1)K+k,k = 1, fk = 0 (except (fk)(P+1)K+k = 1), and

[D⊤
NR(n)DN ]kk = [Dd(0)]kk, the error probability of the truncated decorrelator

simplifies from (3.21) to

P[d]k =
1

22K

∑

b
(n)
e ∈{−1,1}2K

Q



√
Ek − µ

(n)
[d]k(b(n)

e )
√
σ2[Dd(0)]kk


 . (3.23)

With a large enough N , [Dd(0)]kk approaches the value of the IIR detector by

Proposition 1, and µ
(n)
[d]k approaches zero if the decorrelator is stable. Thus, the

stable decorrelator approaches the performance of the IIR detector with a large
enough memory-length N .

In the following the asymptotic multiuser efficiency (2.49) and the near-far re-
sistance (2.50) of the linear FIR detectors will be analyzed. With large argument

values we can approximate Q(x) ≈ exp(−x2/2)
2 . At high signal-to-noise ratios the

worst case symbol combination dominates the value of the sum in the numerator
of (3.20) or (3.21) [54]. Thus, using (3.21) the AME of an arbitrary linear FIR
multiuser detector is

ηk =
1

Ek
max2





0, min
b̄
(n)∈

{−1,1}(N+2)K

b
(n)

k
=0

√
Ek(F)(P+1)K+k,k − f

⊤
k Ā(n)b̄

(n)

√
[D⊤

NR(n)DN ]kk





(3.24)
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=
1

Ek
max2





0, min
b̄
(n)∈{−1,1}(N+2)K

b
(n)

k
=1

f̄
⊤
k Ā(n)b̄

(n)

√
[D⊤

NR(n)DN ]kk




. (3.25)

The minimum above is obtained from the worst possible interfering symbol com-

bination, i.e., with symbols (b̄
(n)

)i = sgn[(f̄k)i], ∀ i ∈ {1, 2, . . . , (P + 1)K + k −
1, (P + 1)K + k + 1, . . . , NK}.

After evaluating the square in (3.24), the AME for the truncated decorrelating
detector becomes

η[d]k =

{
0, if µmax

[d]k ≥
√
Ek

1−ρ[d]k

Dkk(0) , if µmax
[d]k <

√
Ek

, (3.26)

where ρ[d]k =
2
√

Ekµmax
[d]k −(µmax

[d]k )2

Ek
describes the degradation due to the edge effect,

and

µmax
[d]k = max

b
(n)
e ∈{−1,1}2K

µ
(n)
[d]k(b(n)

e )

=
∑

l 6=k

{
| [Dd(P )R(1)]kl | + | [Dd(−P )R⊤(1)]kl |

} √
2El (3.27)

is the maximum absolute value of µ
(n)
[d]k. The AME of the IIR decorrelator is as in

(3.26) with ρ[d]k = 0, since the edge effect has reduced to zero.

It can be verified from (3.26) that η[d]k > 0 if and only if µmax
[d]k <

√
Ek. In

other words, the truncated decorrelating detector has a positive AME if and only
if the maximum value of the remaining MAI component at the detector output is
smaller than the desired users’ amplitude. If any interfering amplitude approaches
infinity, µmax

[d]k at the output of a FIR detector also approaches infinity. Thus, it

is clear that the FIR detectors cannot be near-far resistant in a strict sense7. For
that reason power limited near-far resistance will be defined as

η̄k = inf
0≤El≤Emax,l 6=k

ηk, (3.28)

where Emax is finite. In wireless communication systems, for example, Emax is
determined by the accuracy of the power control of the CDMA system. If a FIR
detector is stable, µmax

k can be made arbitrarily small by selecting N large enough
for any Emax. This implies that the truncated decorrelating detector (and also
LMMSE and data-aided noise-whitening detectors) with large enough (but finite)
memory-length, can be made near-far resistant given an arbitrarily large (but fi-
nite) upper bound for the received powers of the interfering users. By (3.19) it is
noted that, with N large enough, the above discussion applies to the optimal FIR
decorrelator as well.

7The use of truncated MF outputs [49] makes an FIR detector strictly near-far resistant. The
price is that the data of only very small number of users can be detected.
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From (3.24) it is seen that the power limited NFR for the FIR detectors can
be computed by substituting El = Emax ∀ l 6= k. Thus, the power limited NFR
is a function of the ratio Emax/Ek only. Let Emin be the minimum received
energy per symbol a user needs to have to be served by the CDMA system. The
worst case power limited near-far resistance η̄k can be computed by substituting
Ek = Emin and El = Emax ∀ l 6= k in (3.24). In practice Emax, Emin, and N
are design parameters of the CDMA system and a trade-off between them must
be considered. The larger N the more complicated the implementation of the
detector is. On the other hand, large N poses milder requirements for the power
control of the system. In a digital signal processing (DSP) implementation large N
introduces more round-off errors and implementation noise so that in practice there
is a finite optimal value for N given the ratio Emax/Emin and the implementation
constraints (filter structure, floating point number word length etc.).

3.3.2. Multipath channel

The performance analysis for a fixed, known multipath channel is conceptually
similar to that of a single-path channel. The output vector of the linear detector

y
(n)
[LIN ] is multiplied by the complex conjugate of a multipath combining matrix.

The optimal combining vector for user k in the known multipath channel is [129,
p. 20]

c̃
(n)
k = D−1

[d]k,k(0)ck, (3.29)

where D[d]k,k(0) denotes the kth L× L diagonal block of the matrix D[d](0). The

optimal combiner matrix C̃(n) is then formed from the vectors c̃
(n)
k as in (2.13).

Therefore, the maximal ratio combined vector is

y
(n)
[LIN,MRC] = C̃H(n)y

(n)
[LIN ] = C̃H(n)F⊤C̄(n)Ā(n)b̄

(n)
+ C̃H(n)w

(n)
[LIN ]. (3.30)

Let (C̃(n))k denote the kth column of C̃(n). Then the bit error probability expres-
sion (3.22) can be generalized to the form

Pk =
1

2(N+2)K−1

∑

b̄
(n)∈{−1,1}(N+4)K

b
(n)

k
=1

Q


 (C̃(n))H

k f̄
⊤
k C̄(n)Ā(n)b̄

(n)

√
σ2(C̃(n))H

kD⊤
NR(n)DN (C̃(n))k


 . (3.31)
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Similarly, the asymptotic multiuser efficiency expression (3.25) for the multipath
channel case becomes

ηk =
1

Ek
max2





0, min
b̄
(n)∈{−1,1}(N+4)K

b
(n)

k
=1

(C̃(n))H

kf⊤
k C̄(n)Ā(n)b̄

(n)

√
[(C̃(n))H

kD⊤
NR(n)DN (C̃(n))k]k




. (3.32)

The near-far resistance analysis and the discussion of Section 3.3.1 can be applied
to the multipath channel as well.

3.4. Numerical examples

The performance and stability of the detectors is studied by numerical examples.
Direct-sequence spread-spectrum waveforms with BPSK data and spreading mod-
ulation as well as coherent detection are considered. The number of users is 33 or
20 with a processing gain of 31, i.e., the chip duration Tc = T/31. A length 31 Gold
sequence family is used in the examples with time-invariant signature waveforms.
A random code family of length 6200 chips is used in the examples with time-
varying signature waveforms so that the results are averaged over 6200/31 = 200
symbols. The carrier phases are assumed to be zero. The results are averaged
over ten different, randomly selected delay combinations in the examples where
time-invariant signature waveforms are applied. Two kinds of chip waveforms are
considered. One is a rectangular chip waveform, the length of which is limited
to one chip interval. The other chip waveform is a raised cosine waveform, the
length of which is limited to two chip intervals (Fig. 3.2). Examples illustrating
the detector stability are considered in Section 3.4.1, and the bit error probability
as well as the power limited near-far resistance results in Section 3.4.2.

3.4.1. Detector stability

The detector stability is illustrated by simulating the convergence of the edge blocks
D(P ) and D(−P ) of the truncated decorrelating and LMMSE detectors versus the
detector memory-length. Time-invariant signature waveforms are used. The mean
absolute values of the elements of D(P ) and D(−P ) are presented in Figs. 3.3 and
3.4 for rectangular and raised cosine chip waveforms, respectively. The received
energies are equal and the SNR is to be 10 dB with the LMMSE detector.

The results show that both detectors are stable in all cases, except the decor-
relator is unstable, when K = 33, L = 3 and the rectangular chip waveform is
applied. It should be noted that the decorrelating detector was not unstable with
all delay combinations, but with one only. The one poor delay combination makes
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Fig. 3.2. Raised cosine chip waveform.

the decorrelating detector look unstable also in the average. Actually, the results
in Figs. 3.3 and 3.4 are somewhat too pessimistic in the sense that averaging the
absolute values of the edge blocks D(P ) and D(−P ) gives too much emphasis to
the large values obtained with a poor delay combination. The conclusion will also
be confirmed by the examples in the Section 3.4.2. However, the results demon-
strate that the detector stability appears to be a mild assumption. Furthermore, it
is seen that increasing the channel load KL makes the detector to converge more
slowly with increasing P . This applies in particular to the decorrelating detector,
whereas the convergence of the edge blocks of the LMMSE detector suffer rather
little penalty from increased channel load. The phenomenon is easy to understand
by comparing (3.6) and (3.7). The matrix that needs to be inverted when comput-
ing the LMMSE detector in (3.7), is more diagonally dominant than the matrix
to be inverted when computing the decorrelating detector in (3.6). Thus, the
computation of the LMMSE detector is understandably numerically more robust
than the computation of the decorrelating detector. Comparing Figs. 3.3 and 3.4
demonstrates that the filtering of the chip waveform has very minor impact to the
convergence speed of the edge blocks D(P ) and D(−P ) versus the memory-length.
Since the detectors are always stable with the raised cosine chip waveform, the
filtering of the chip waveform makes the system more robust.

3.4.2. Detector performance

The error probabilities are estimated for low signal-to-noise ratio by (3.22) or (3.31).
Data-aided detection is assumed for the noise-whitening detector, which may not
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be practical. However, the effect of finite memory-length can be well illustrated by
examples assuming data aided detection. The performance at high signal-to-noise
ratios is evaluated by computing AME’s using expressions (3.25) or (3.32). The
results are represented versus the half memory-length P . All the interfering users
are assumed to have the same energy per symbol, which is denoted by Emax in the
figures. Correspondingly the energy per symbol of the desired user is denoted by
Emin. The performance of the ideal IIR detector is estimated with the assumption
that the edge symbols are zero, and the detector has a large enough block size.

The results of examples with time-invariant signature waveforms are presented
in Figs. 3.5–3.6 and 3.9–3.10. Time-varying signature waveforms yield the results
in Figs. 3.7–3.8. The performance of several detectors in a single-path channel is
shown in Figs. 3.5–3.8. The performance of the truncated decorrelating detector
for three numbers of propagation paths (L = 1, 2, 3) is shown in Figs. 3.9–3.10. The
results in Fig. 3.10 assume that the chip waveform is the raised cosine waveform,
in other examples the chip waveform is the rectangular waveform. The truncated
decorrelating and the LMMSE detectors are considered only in the examples with
time-varying signature waveforms, since the analysis of the optimal FIR and noise-
whitening detectors would be computationally intensive. For clarity, the bit error
probabilities of the ideal LMMSE detector have not been plotted for the cases
Emax/Emin = 10 dB and Emax/Emin = 20 dB in Figs. 3.6 and 3.8, since they are
very close to the bit error probability of the decorrelating detector.

It can be seen from Fig. 3.5 that the asymptotic loss in signal-to-noise ratio
converges relatively fast. With P = 6 the performance is the same as with an ideal
IIR detector even in the case Emax/Emin = 20 dB. With perfect power-control
(Emax/Emin = 0 dB), value P = 4 is required. A 10 dB increase in the MAI level
implies that the value of P must be roughly incremented by one to maintain the
same performance. In other words, loosening the power-control requirements sig-
nificantly calls for only very minor increase in the required detector memory-length.
It is seen from Fig. 3.6 that at lower signal-to-noise ratios the value P = 4 yields
the same performance as the ideal IIR detector in all cases. From Figs. 3.7 and
3.8 it seen that similar conclusions can be drawn for a system with time-varying
signature waveforms. However, the performance of the ideal IIR detector is slightly
better with the time-invariant than with time-varying signature waveforms. This is
understandable due to small crosscorrelations of the Gold sequences. On the other
hand, a system with time-varying signature waveforms requires slightly smaller
FIR detector memory-lengths than the system with time-invariant signature wave-
forms, particularly, at high signal-to-noise ratios. In [158], a similar behavior was
observed and discussed for the noise-whitening detector. An intuitive explanation
can be seen from (3.16). In systems with time-varying signature waveforms the
elements in the matrix Rj(1) are (at least approximately) random variables with
zero mean and are independent for different values of j. Thus, the elements of the
matrix product Tj,j(j)Rj(1) have also zero mean. In systems with time-invariant
signature waveforms, on the other hand, the matrices Rj(1) are the same for dif-
ferent values of j and there is “less randomness” in the elements of Tj,j(j)Rj(1).
Therefore, time-varying signature waveforms introduce more averaging out into the
product in (3.16) and result in a faster convergence of the detector to a zero matrix
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as the detector memory-length N → ∞.
From Figs. 3.6 and 3.8 it is seen that the optimal FIR detectors perform slightly

better at low signal-to-noise ratios than the truncated ones with small values of
P . However, with moderate values of P both are equivalent to the ideal IIR de-
tectors, as is expected by Proposition 2. From Figs. 3.5 and 3.7 it seen that at
high signal-to-noise ratios, on the other hand, the truncated decorrelating detector
slightly outperforms the optimal FIR decorrelator. The reason can be understood
from the expressions for AME. Although the contribution due to the symbols out-

side the processing window (µ
(n)
k (b(n)

e )) for the optimal FIR decorrelating detector
in (3.24) is smaller than for the truncated FIR decorrelating detector in (3.26),

the MAI due to other symbols f⊤
k A(n)b(n) in (3.24) is larger. Furthermore, the

desired signal’s energy per symbol
√
Ek(F)(P+1)K+k,k may be lower, and the en-

hanced additive white Gaussian noise
√

[D⊤
NR(n)DN ]kk in (3.24) may be larger

than the corresponding quantities in (3.26) yielding lower asymptotic multiuser
efficiency. Thus, the optimal FIR detectors do not yield any universal performance
improvement in comparison to the truncated detectors.

It can be seen from Figs. 3.9 and 3.10 that the AME is degraded due to increased
interference caused by multipath propagation. However, moderate memory-lengths
(P ≤ 6) are sufficient to obtain performance close to the ideal decorrelating detec-
tor except in the extreme cases of a severe near-far problem and/or high channel
load (K = 33 and L = 3). The performance of the decorrelating detector with
raised cosine chip waveform (Fig. 3.10) is in general better than with rectangular
waveforms. The reason is the fact that filtering smoothes out the CDMA signals
and reduces the crosscorrelations between the signature waveforms. However, for
the high channel load (K = 33 and L = 3) case, the performance with raised cosine
chip waveforms is poor. This is understandable due to bandwith limitation posed
by filtering. In other words, the linear decorrelating detector is close to its ultimate
capacity limit, when K = 33 and L = 3. The results in Figs. 3.9(a) and 3.10(a)
confirm that the stability results in Figs. 3.3(a) and 3.4(a) can indeed be somewhat
misleading, as predicted in Section 3.4.1. The truncated decorrelating detector is in
the average unstable with the rectangular chip waveform and stable with the raised
cosine chip waveform in the three-path case according to the results in Figs. 3.3(a)
and 3.4(a). However, the corresponding power limited near-far resistance results
in Figs. 3.9(a) and 3.10(a) give a contradicting result: the system with rectangular
chip waveform outperforms the system with the raised cosine chip waveform.

The numerical examples show that moderate memory-lengths (roughly N ≤ 13)
give performance close to ideal IIR detectors in most cases. Even under a severe
near-far problem (Emax/Emin = 20 dB) the optimal near-far resistance is obtained
with detector memory-length N = 13 except with very high channel load. The use
of FIR detectors loosens the required accuracy of the power-control significantly
with very moderate detector memory-lengths.
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3.5. Conclusions

Linear multiuser detectors in asynchronous multiuser systems, whose signature
waveforms are allowed to be time-invariant or time-varying, have been discussed.
Two classes of linear FIR multiuser detectors, namely the truncated and the op-
timal FIR detectors, approximating the ideal IIR detectors were defined. The
truncated detectors were obtained by simply truncating the corresponding IIR de-
tector, whereas the optimal FIR detectors were derived by optimizing the detector
to the finite processing window model.

Numerical examples showed that the detectors are stable under relatively mild
conditions. The stability was shown to imply asymptotic uniqueness of the limiting
IIR detector also in the case of time-varying signature waveforms. The truncated
and the optimal FIR detectors approach asymptotically the same IIR detector
under relatively mild conditions.

The performance of the finite memory-length detectors was analyzed. It was
shown that the truncated decorrelating, LMMSE, and data-aided noise-whitening
detectors can be made near-far resistant under a given ratio between maximum
and minimum received power of users by selecting an appropriate memory-length.
Numerical examples demonstrated the fact that moderate memory-lengths of either
truncated or optimal FIR detectors are sufficient to gain the performance of the
ideal IIR detectors even under a severe near-far problem. At very high channel loads
the decorrelating detector may become unstable, but the LMMSE detector is more
robust. If the memory-lengths are small, the optimal FIR detectors outperform
the truncated ones at low signal-to-noise ratios. However, at high signal-to-noise
ratios the truncated detectors have better performance. The required memory-
lengths tend to be smaller with time-varying than with time-invariant signature
waveforms.

The use of FIR detectors instead of the IIR detectors makes the linear multiuser
detection possible in CDMA systems in which the number of users, their propaga-
tion delays, or the signature waveforms change over time. An example of the time-
varying signature waveforms is a CDMA system using spreading sequences longer
than one symbol interval (an R-CDMA system). The truncated FIR detectors are
easier to update to the changes in a communication system than the optimal FIR
detectors. Because the optimal FIR detectors do not yield any universal perfor-
mance improvement, the truncated detectors with appropriate memory-length are
clearly the detectors of choice in practice. The required memory-length depends
on other system parameters, especially on the ratio of maximum and minimum re-
ceived powers. It should also be noted that the results give insight into the design
of decentralized linear (adaptive LMMSE) detectors as well. Similar dependence
of the performance on the memory-length is naturally valid also for them.
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Fig. 3.3. Mean absolute values of the edge detector blocks D(P ) and D(−P ) of

truncated decorrelating and LMMSE detectors for different numbers of multi-

path components versus half memory-length P with time-invariant signature

waveforms and rectangular chip waveform; (a) K = 33, (b) K = 20. The curves

marked by circles ◦ denote the LMMSE detector, and curves without circles

denote the decorrelating detector.
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Fig. 3.4. Mean absolute values of the edge detector blocks D(P ) and D(−P ) of

truncated decorrelating and LMMSE detectors for different numbers of multi-

path components versus half memory-length P with time-invariant signature

waveforms and raised cosine chip waveform; (a) K = 33, (b) K = 20. The

curves marked by circles ◦ denote the LMMSE detector, and curves without
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4. Multiuser demodulation in Rayleigh fading
channels

Multiuser demodulation in relatively fast fading channels is analyzed in this chap-
ter. The goal is to find efficient receivers with moderate implementation complexity
for multiuser demodulation. Coherent detection is considered to obtain a superior
performance. Therefore, complex channel coefficient estimation is obviously a ma-
jor problem to solve. Multiuser receivers for fading channels have been considered
in the past, as discussed in Chapter 2. However, several open problems still exist.
Even a clear presentation of the optimal demodulation technique for time-varying
multipath channel is not available in the open literature. The performance of dif-
ferent proposed multiuser receivers has not been compared. Furthermore, the effect
of various channel estimation algorithms to the receiver performance in general and
to receiver performance differences in particular has gained very limited attention
so far. For the parallel interference cancellation receiver it has been shown that the
effect of complex channel coefficient estimation to the overall receiver performance
is substantial [57]. Thus, the overall receiver design and especially the channel
estimation problem in relatively fast Rayleigh fading channels are important prob-
lems.

In this chapter, the focus will be on the following three problems. First, the per-
formance difference between optimal and suboptimal complex channel coefficient
estimation is evaluated. Second, data-aided and decision-directed complex channel
coefficient estimation are compared. Third, the bit error rates of the decorrelating
and the parallel interference cancellation receivers are compared. The delays of the
user signals are assumed to be perfectly known throughout the chapter.

The chapter is organized as follows. The optimal multiuser detector for unknown
Rayleigh fading channels is presented in Section 4.1. Suboptimal decorrelating
and parallel interference cancellation receivers with either DA or decision-directed
complex channel coefficient estimation are considered in Section 4.2. In Section
4.3, performance of the suboptimal receivers is studied and numerical examples
are presented. The results are summarized and discussed in Section 4.4.
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4.1. Optimal receiver

The complete transmitted data block must be demodulated in the optimal MLSD
multiuser receiver [47]. Therefore, the complete data block model (2.8) is consid-
ered. To find the optimal MLSD receiver for a frequency-selective Rayleigh fading
channel the derivation by Kailath [84, 78] is extended to the multiuser detection
problem. The covariance matrix Σc of the channel coefficient vector c is assumed
to be known in the detector derivation. The maximum likelihood sequence detector
(often called maximum likelihood sequence estimator [23]) makes its decision as

b̂[MLSD] = arg max
b∈ΞNbK

p(y|b), (4.1)

where p(y|b) is the probability density function (pdf) of the MF bank output
vector y conditioned on the data vector b. Since c and w are complex Gaussian
random vectors independent of each other, y in (2.16) conditioned on b is a complex
Gaussian random vector with zero mean and covariance matrix

Σy|b = RΣh|bR + σ2R, (4.2)

where
Σh|b = BΣcB∗ (4.3)

is the covariance matrix of h = CAb conditioned on the data vector b, and

B = diag
(
A1b

(0)
1 IL, A2b

(0)
2 IL, . . . , AKb

(0)
K IL, A1b

(1)
1 IL, . . . , AKb

(Nb−1)
K IL

)

∈CNbKL×NbKL. (4.4)

Note that the covariance matrix Σc (2.45) of the channel coefficients (2.40) is
insensitive to the data sequence b. Thus, the pdf of y conditioned on b becomes

p(y|b) =
1

πNbKL det(Σy|b)
exp(−yHΣ−1

y|by). (4.5)

By substituting (4.5) into (4.1), the MLSD rule can be expressed in the form

b̂[MLSD] = arg min
b∈ΞNbK

{
ln[det(Σy|b)] + yHΣ−1

y|by
}
, (4.6)

where ln(.) is the natural logarithm. If constant envelope modulation is applied,
det(Σy|b) does not depend on b [287] and can therefore be neglected in the mini-
mization. In that case the MLSD rule becomes

b̂[MLSD] = arg min
b∈ΞNbK

yHΣ−1
y|by. (4.7)

By applying the matrix inversion lemma (A1.4) in (4.2) the inverse of the covariance
matrix has the form

Σ−1
y|b = σ−2R− σ−2(R + σ−2Σ−1

h|b)
−1. (4.8)
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Since the first term σ−2R in (4.8) does not depend on the data b, the MLSD rule
(4.7) becomes

b̂[MLSD] = arg max
b∈ΞNbK

ĥ
H

[MMSE]y, (4.9)

where
ĥ[MMSE] = (R + σ−2Σ−1

h|b)
−1y (4.10)

is the minimum mean squared error estimate of the vector h [88] conditioned on
the data. In other words, the optimal MLSD receiver estimates the received noise-
less signal, and multiplies (correlates) the matched filter bank output with the
estimated complex amplitude vector. In other words, the result is a generalization
of the well-known estimator-correlator receiver [85, Chap. 2] to multiuser system
with multiple propagation paths. Since the estimation and correlation must be
performed for all possible data sequences, the MLSD receiver is prohibitively com-
plex for practical implementation. Therefore, suboptimal multiuser detectors and
channel estimators are studied in the following sections.

4.2. Suboptimal receivers

A natural way to approximate the optimal multiuser MLSD receiver is to detect
the data detection by estimating the complex channel coefficients. The channel
can be estimated from the received signal if the effect of the data symbols can be
removed from the MF bank output. This is possible if known (pilot) symbols are
available or if symbol decisions are utilized in channel estimation1 [89].

By the analysis in Section 4.1, the optimal channel estimation strategy from
detection point of view is the linear estimation minimizing the mean squared error
of the complex channel coefficient estimate (4.10). However, the ideal LMMSE
estimator is often impossible to implement, since the channel covariance matrix
Σc depends on the signal-to-noise ratios and the fade rates of all the users, and is
usually unknown. Furthermore, the matrix inversion in (4.10) has high computa-
tional complexity. Adaptive versions of the LMMSE channel estimator have been
proposed for single-user systems [103, 288]. For multiuser systems a multichannel
adaptive receiver would be needed. Adaptation of such filters is difficult. There-
fore, the LMMSE complex channel coefficient estimation appears to be impractical
for most applications. A simplified channel estimator is obtained by decoupling
the estimation of complex channel coefficients of the users from each other. In
other words, the NbKL-dimensional joint channel estimation problem can be ap-
proximated by KL distinct channel estimation problems for Nb symbol intervals2.

1The received complex amplitudes CA are assumed to consist of the Rayleigh fading channel
coefficients (C) and much more slowly changing transmitted complex amplitudes (A). Since the
transmitted complex amplitudes are assumed to be known, the complex amplitude estimation is
considered to be the estimation of the Rayleigh fading channel (C) in the sequel.

2This is the standard approach which has been used in deriving most suboptimal multiuser
receivers described in Chapter 2.
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The implementation complexity is reduced in this way considerably, and real-time
complex channel coefficient estimation becomes possible. Therefore, the considered
receiver structure performs first the interference suppression, which separates the
NbKL dimensional joint channel estimation and data detection problems to KL
distinct channel estimation and data detection problems for Nb symbol intervals
by reducing both multiple-access and intersymbol interference. Then the complex
channel coefficients are estimated for all multipath components separately. Finally,
the MF outputs are maximal ratio combined. The receiver structure is a general-
ization of the receivers in [127, 57], and it is illustrated in Fig. 4.1. In the rest of
the chapter receivers with the structure as in Fig. 4.1 are studied. The alternatives
for the channel estimation block in Fig. 4.1 are considered in Section 4.2.1, and for
the interference suppression block in Section 4.2.2.
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Fig. 4.1. A multiuser receiver structure for a Rayleigh fading channel.

4.2.1. Channel estimation

In the considered receiver structure (Fig. 4.1) the channel estimation problems of
users are separated from each other. Therefore, the channel estimation techniques
of the single-user receivers can be applied. As in single-user receivers, the channel
estimation blocks in Fig. 4.1 are assumed to include the a block removing of the
effect of the data modulation and a channel estimation filter or several channel
estimation filters. The effect of the data modulation can be removed by multiplying
the interference suppression output by the complex conjugate of the current data
symbol in data-aided or decision-directed channel estimation. Non-data-aided or
blind channel estimation will not be considered in this chapter. Finite impulse
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response channel estimation filters will be considered in the sequel, but infinite
impulse response filters could also be applied in the receiver structure of Fig. 4.1.
A general complex channel coefficient estimation filter structure is illustrated in
Fig. 4.2. The symbol J denotes the distance of the data or pilot symbols used in
channel estimation. The symbols Ppr and Psm denote the number of coefficients
in the prediction and smoothing parts of the channel estimation filter [88, p. 400],
respectively. Since the past samples are always available for channel estimation,
it is assumed that Ppr > 0 in all cases. If Psm = 0, and vk,l(0) = 0, the channel
estimation filter is a linear predictor, which uses only the past samples for complex
channel coefficient estimation. If Psm = 0, and vk,l(0) 6= 0, the channel estimation
filter is a linear “filter”, which uses the past samples and the current sample for
complex channel coefficient estimation. If Psm > 0, the channel estimation filter
is a linear smoother, which uses both the past and future samples for complex
channel coefficient estimation. The current sample may (vk,l(0) 6= 0) or may not
(vk,l(0) = 0) be used.
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Fig. 4.2. A general channel estimation filter structure.

Let the channel estimation filter input vector for the lth path of user k at

time interval n be denoted by q
(n)
k,l . The corresponding channel estimation filter is

denoted by vector v
(n)
k,l . The channel estimate can then be expressed in the form

ĉ
(n)
k,l = v

H(n)
k,l q

(n)
k,l . (4.11)

The optimal channel estimation filter in the LMMSE sense for decoupled channel
estimation is the Wiener filter [88, Sec. 12.4]

v
(n)
k,l = Σ−1

q
(n)

k,l

Σ
q

(n)

k,l
,c

(n)

k,l

, (4.12)

where Σ
q

(n)

k,l

is the covariance matrix of the channel estimation filter input vector,

and Σ
q

(n)

k,l
,c

(n)

k,l

is the covariance vector between the channel estimation filter input

vector and the desired channel coefficient c
(n)
k,l to be estimated. The optimal channel

estimation filter depends naturally on the interference suppression scheme, since it
determines the input correlation matrix Σ

q
(n)

k,l

.
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It is assumed that the channel statistics are constant over the observation win-
dow, which is a relatively mild assumption. Since the channel statistics depend on
the vehicle speed, which is not known at the receiver, the optimal Wiener channel
estimation filters require the estimation of the channel correlation function. The
LMMSE channel estimation filters may also be approximated by adaptive channel
estimation filters as in single-user communications [103, 288], or in a multiuser case
[57].

In data-aided channel estimation the delay in Figs. 4.1 and 4.2 is set to J = Np,
where Np is the distance of the pilot symbols (Fig. 4.3). I.e., every Npth symbol
of the transmitted symbol stream is a pilot symbol known by the receiver. The
channel is estimated by interpolating the samples at the pilot intervals. The channel
estimation filter input vector for ith (i ∈ {1, 2, . . . , Np − 1}) data symbol in the
frame3 is

q
(n)
k,l =

(
y
(n−i−PprNp)

[MUD]k,l , . . . , y
(n−i)
[MUD]k,l, y

(n+Np−i)

[MUD]k,l , . . . , y
(n+Np−i+PsmNp)

[MUD]k,l

)⊤

∈CPpr+Psm , (4.13)

and the corresponding channel estimation filter is

v
(n)
k,l =

(
v
(n)
k,l (−Ppr), . . . , v

(n)
k,l (−1), v

(n)
k,l (1), . . . , v

(n)
k,l (Psm)

)⊤ ∈ CPpr+Psm . (4.14)

The removal of the effect of the data, i.e., multiplication of y
(n−i)
[MUD]k,l by b

∗(n−i)
k

is neglected for notational convenience in (4.13). In other words, the channel is
interpolated over past and future samples of the interference suppression output
corresponding the Ppr past and Psm future pilot symbols. The optimal channel
estimation filter is naturally different for each data symbol in the data frame.

PILOT DATA DATA DATA DATA PILOT

Np

Fig. 4.3. Data frame structure.

In decision-directed channel estimation, the delay in Figs. 4.1 and 4.2 is set to
J = 1. Since the future data symbol decisions are not available, a linear predictor
with Psm = 0, and vk,l(0) = 0 is often applied. The channel estimation filter input
vector is in that case

q
(n)
k,l =

(
y
(n−Ppr)

[MUD]k,l, . . . , y
(n−1)
[MUD]k,l

)⊤ ∈ CPpr , (4.15)

3In other words, the symbol b
(n−i)
k

is the closest pilot symbol before the symbol b
(n)
k

, and the

symbol b
(n+Np−i)

k
is the closest pilot symbol after the symbol b

(n)
k

.
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and the channel estimation filter is

v
(n)
k,l =

(
v
(n)
k,l (−Ppr), . . . , v

(n)
k,l (−1)

)⊤ ∈ CPpr . (4.16)

Channel estimation based on a smoother usually yields better results than the es-
timation based on a predictor, since more information on the channel coefficients
can be utilized. A smoother can be applied with DD channel estimation if tenta-
tive data decisions are available for the current and future symbols. The channel
estimation filter input vector is in that case

q
(n)
k,l =

(
y
(n−Ppr)

[MUD]k,l, . . . , y
(n−1)
[MUD]k,l, y

(n)
[MUD]k,l, y

(n+1)
[MUD]k,l, . . . , y

(n+Psm)
[MUD]k,l

)⊤

∈CPpr+Psm+1, (4.17)

and the channel estimation filter is

v
(n)
k,l =

(
v
(n)
k,l (−Ppr), . . . , v

(n)
k,l (−1), v

(n)
k,l (0), v

(n)
k,l (1), . . . , v

(n)
k,l (Psm)

)⊤

∈CPpr+Psm+1. (4.18)

A technique to apply smoothers in DD channel estimation has been proposed
for single-user communications in [103]. Tentative decisions can be obtained by
using linear predictor for channel estimation. The decisions can then be delayed
by Psm symbol intervals to be utilized in the smoother. In other words, the chan-
nel is estimated in two stages. The channel estimator structure is illustrated in
Fig. 4.4. First, a linear predictor of length Ppr using the inputs (4.15) is applied

to obtain first stage channel estimates ĉ
(n)
k,l (pr). They are then used in the max-

imal ratio combiner to produce tentative data decisions b̂
(n)
k (pr). The effect of

data symbols is removed by using the past tentative decisions made based on the
predicted complex channel coefficients. Second, the final channel estimates are
obtained by using a linear smoother of length Ppr + Psm + 1. The MUD outputs

y
(n−Ppr−Psm)

[MUD]k,l , . . . , y
(n−1)
[MUD]k,l, y

(n)
[MUD]k,l are processed by the smoother to produce

the final channel estimates ĉ
(n−Psm)
k,l (sm). The effect of data symbols is removed

by utilizing the delayed tentative decisions provided by the first stage predicted
channel estimates. The channel estimates obtained from the smoother are applied

in a maximal ratio combiner, and final data decisions b̂
(n−Psm)
k (pr) are made. The

use of the smoother improves the channel estimation performance in comparison
to the use of the predictor alone, since the memory of the fading channel can be
utilized more efficiently. The smoother naturally causes an extra decision delay of
Psm symbols, which may not be acceptable in some applications.

The DD channel estimation is sensitive to decision errors, which may cause
hang-up (cycle slip), i.e., a locking to incorrect carrier phase with a 180 degree
offset in comparison to the correct phase (with BPSK modulation). Usually some
countermeasures to protect the channel estimator from hang-up are needed. The
DD channel estimators require pilot symbols to be inserted into the data frame.
Also some hang-up detection and correction scheme may be necessary. A simple
way to detect hang-ups is to make decisions on the pilot symbols and to check
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Fig. 4.4. Two-stage DD channel estimator structure.

whether the decisions are correct or not. If a decision error was made, an error-
counter, which is set to zero at the beginning of the transmission, is incremented
by one. If a correct decision was made, the error-counter is decremented by one,
unless the value of the counter is zero. If the error-counter exceeds a pre-determined
value, the channel estimator is declared to be in hang-up. Then the phase of the
samples of the interference suppression output in the channel estimator is rotated
180 degrees (with BPSK modulation), and the error-counter is reset to zero.

The DA channel estimation is more robust than DD estimation, since decision
errors are not a problem, and, thus, there are no hang-ups. Its drawback is that it
may require a shorter pilot symbol distanceNp than DD. The DA channel estimator
also causes longer decision delay than DD channel estimation. The performance of
DA and DD channel estimation is studied and compared in Section 4.3.

4.2.2. Interference suppression

The interference suppression block in the receiver of Fig. 4.1 may in general apply
any multiuser receiver algorithm capable to process KL input propagation paths
and provide KL outputs. For continuous, unpacketized, asynchronous transmis-
sion the truncated decorrelating detector and the parallel interference canceler are
among the most promising alternatives in relatively fast fading channels for cen-
tralized receivers from practical point of view, as discussed in Chapters 2 and 3.
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The LMMSE detector of Chapter 3 is not considered any further, since it requires
continuous updates due to complex channel coefficient variations in fading chan-
nels. Thus, the decorrelating and the PIC receivers are studied and compared in
this chapter.

The truncated decorrelating detector described in Chapter 3 is used in the exam-
ples. The truncated decorrelator imposes a decision delay of P symbols. Therefore,
the total decision delay in conjunction with a smoother for channel estimation is
P + Psm symbol intervals. Since the decorrelator needs neither complex channel
coefficient estimates nor data decisions for MAI suppression, the feedback in Fig.
4.1 is not needed if the decorrelator is applied.

The PIC receiver needs both tentative complex channel coefficient estimates and
data decisions to perform MAI suppression as seen from (2.61). The interference
cancellation may be performed in several stages. The complex channel coefficient
estimates may be formed independently in different stages or the complex channel
coefficient of the last stage may be fed back to the former stages, for example.
Therefore, there is a large variety of different PIC receiver versions available. The
performance of some alternatives is studied in more detail in [289]. Based on those
studies, a two-stage PIC receiver is applied in the sequel. It uses always the latest
complex channel coefficient and data estimates that are available. In other words,
for past symbol intervals the final symbol decisions and complex channel coefficient
estimates are used in the interference cancellation. Tentative symbol decisions are
used for the current and future symbol intervals. The latest final complex channel
coefficient estimate is used for the current and future symbol intervals. Although
this approach neglects changes in the complex channel coefficients, it has been
shown to be superior to the use of tentative complex channel coefficient estimates
[289].

4.3. Receiver performance analysis and results

The performance of multiuser receivers in Rayleigh fading channels is considered
in this section. In Section 4.3.1, the performance of the linear receivers is analyzed.
The ideal DA joint LMMSE channel estimator and decorrelator combined with de-
coupled channel estimator is compared. Bit error probability and channel capacity
of the DA decorrelating receiver are also analyzed. Furthermore, the performance
of the DA and DD decorrelating receivers is compared. The performance of the DD
decorrelator and parallel interference canceler is compared in Section 4.3.2. The
sensitivity of the bit error rate of the decorrelating and PIC receivers to channel
estimation errors as well as the BER in an estimated channel are studied.

Numerical examples are considered. Some of them are obtained via theoretical
analysis and the others are based on Monte-Carlo computer simulations. Simula-
tions are used since the effect of decision errors to the performance of the DD chan-
nel estimation and the HD-PIC receivers is difficult to analyze. Direct-sequence
spread-spectrum waveforms with BPSK data and spreading modulation are con-
sidered. A Gold sequence family with processing gain 31 is used. The delays of the



83

users and propagation paths are assumed to be uniformly distributed into
[
0, T

)

and
[
0, Tm

)
, respectively. Delay spread is assumed to be Tm = T/2. One and

two-path channel examples are considered. In the two-path channel case, equal

power paths, i.e., E
(
|ck,1|2

)
= E

(
|ck,2|2

)
= 1

2 , are used. The vehicle speeds are

equal for all users. The vehicle speed is 86 km/h (43 km/h in some examples in
Section 4.3.1), the carrier frequency is 1.8 GHz, and the symbol rate is 16 kbits/s
(i.e., fdT = 0.009). The resulting normalized channel autocorrelation function is
illustrated in Fig. 4.5. Both optimal and suboptimal channel estimation filters are
considered. The optimal channel estimation filters are matched to the true channel
correlation function (vehicle speed) and to the true average signal-to-noise ratio.
The suboptimal channel estimation filters are Wiener filters optimized for a single-
user channel and the autocorrelation function assuming vehicle speed of 50 km/h
and an average SNR of 10 dB. The fixed, suboptimal channel estimation filters
are used for all users and average SNR’s. The data-aided channel estimators use
an interpolator of length 6 (Psm = Ppr = 3) (except in some examples in Section
4.3.1) and sample spacing of J = Np. The decision-directed channel estimators
use the two-stage channel estimation described in Section 4.2.1 with a predictor
of length Ppr = 10 and a smoother of length 21 (Psm = Ppr = 10). The sample
spacing is J = 1 in both the predictor and smoother. In the simulations of the
DD channel estimators every tenth symbol is a pilot symbol, i.e., Np = 10. The
hang-up detection scheme described in Section 4.2.1 with a threshold of 2 erroneous
decisions on pilot symbols is also used. Simulations include examples with equal
transmitted energies for all users, and examples with a near-far problem (about
one third of the users have 10 dB larger transmitted energy per symbol than the
other, desired users). The edge effect to the decorrelator due to a finite processing
window (Chapter 3) is neglected in the analysis. However, the simulations include
the edge effect, which was observed to be of minor importance.

4.3.1. Performance of linear receivers

4.3.1.1. MSE of DA channel estimation

The channel estimation performance assuming correct decisions on the data is an-
alyzed to find the expression for the mean squared error of the channel estimators.
The optimal joint estimation of all users’ channels as in (4.10) is compared to the
decoupled channel estimation as described in Section 4.2.1. For simplicity and to
enable a fair comparison, a DA channel estimation with a data symbol interval
J = 1 is applied in the examples. The data packet size is assumed to equal the
processing window length, i.e., Nb = N . The decorrelator is applied as the in-
terference suppression scheme in the decoupled channel estimation. Therefore, the
input to the joint LMMSE estimator is y ∈ CNKL, and the inputs to the decoupled

channel estimators are q
(n)
k,l =

(
y
(0)
[d]k,l, y

(1)
[d]k,l, . . . , y

(N)
[d]k,l

)⊤ ∈ CN , ∀ k, l.
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Fig. 4.5. Channel autocorrelation function.

The performance of the optimal joint LMMSE channel estimator of (4.10) is
described by the error covariance matrix [88, p. 391]

Σ
h−ĥ[MMSE]|b = (Σ−1

h|b + σ−2R)−1, (4.19)

where each diagonal element of Σ
h−ĥ[MMSE]

is equal to the mean squared error of

the optimal LMMSE estimator for that particular channel coefficient. The MSE of
the decoupled channel estimator can be expressed in the form [88, p. 388]

MSE[d]k,l = σ2

h
(n)

k,l

− ΣH

q
(n)

k,l
,h

(n)

k,l

Σ−1

q
(n)

k,l

Σ
q

(n)

k,l
,h

(n)

k,l

, (4.20)

where σ2

h
(n)

k,l

= E(|h(n)
k,l |2).

The optimal joint LMMSE channel estimator (4.10) utilizes the information em-
bedded in the dependence of the channel noise components of the MF outputs of
different users and multipath components, whereas the decoupled channel estima-
tor neglects that information. If the optimal Wiener filter of (4.12) is applied at
the decoupled channel estimator, the information of the fading process is utilized
as efficiently as in the joint LMMSE estimator. Therefore, it can be conjectured
that in several cases, the performance difference between the joint LMMSE and
decoupled estimators is minor. This hypothesis is tested by evaluating the normal-
ized MSE’s of the joint LMMSE and decoupled channel estimators given in (4.19)
and (4.20), respectively. The normalized MSE of the estimate ĉ of some parameter
c is

MSE =
E

(
|c− ĉ|2

)

E
(
|c|2

) . (4.21)
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The results are depicted in Figs. 4.6 and 4.7 for one and two-path channels, re-
spectively. Two vehicle speeds (43 and 86 km/h) and processing window sizes
(N = Nb = 7 and N = Nb = 21) are considered in the examples.

The channel estimation performance is worse in a two-path channel than in
a one-path channel. There are two reasons for that. Firstly, an increase in the
channel load KL causes more linear dependence between the signals. Therefore,
there is more noise enhancement in the decorrelating and joint LMMSE receivers.
Secondly, in the examples the received power of a particular user is divided into two
components, which both must be estimated independently, in a two-path channel.
In a one-path channel, on the other hand, all the power can be utilized in the
estimation of the single propagation path. In that sense, the normalization (2.41)
is somewhat misleading, and the curves of Fig. 4.7 could be shifted 3 dB to the
left.

It can be seen from the figures that the performance advantage of the joint
LMMSE channel estimator over the decoupled channel estimator is indeed minor
in most cases as predicted above. In the two-path channel with a small observa-
tion window (N = 7) the difference is the largest, roughly 1 dB. It can also be
seen that the performance difference due to vehicle speed is very small, as long
as optimal channel estimation filters are applied. Thus, it can be concluded that
the decorrelating receiver is capable of providing near optimal channel estimation
performance with significantly simpler implementation than the joint LMMSE es-
timator. If decision-directed channel estimation is applied, the result may be even
more favorable for the channel estimator using decorrelator, since it is insensitive
to the decisions of the other users, whereas the joint LMMSE estimator is not.

4.3.1.2. BEP of DA decorrelating receiver

The performance of the data-aided decorrelating receiver is analyzed to obtain the
expression for the average bit error probability. The analysis has similarities to
[56, 123], where the channel was assumed to be known, or to [127], where error-
free DD channel estimation4 was considered. Here, DA detection with a pilot
symbol distance larger than one (Np > 1) is assumed. The decision variable of the
decorrelating receiver for user k after maximal ratio combining can be expressed
in the form

y
(n)
[d,MRC]k = c̃

(n)H

k y
(n)
[d]k, (4.22)

where
c̃
(n)
k =

(
c̃
(n)
k,1 , c̃

(n)
k,2 , . . . , c̃

(n)
k,L

)
∈ CL (4.23)

is the combing vector, and

y
(n)
[d]k =

(
y
(n)
[d]k,1, y

(n)
[d]k,2, . . . , y

(n)
[d]k,L

)
∈ CL (4.24)

4Error-free DD channel estimation means actually DA channel estimation with pilot symbol
distance one (Np = 1).
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observation window is (a) N = 7, (b) N = 21.



87

0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

Channel estimation performance of DA joint and decoupled estimators

Average signal−to−noise ratio [dB]

M
ea

n
 s

q
u
ar

ed
 e

rr
o
r

−−−− decorrelator

······ joint LMMSE

single-user bound

◦ speed 86 km/h

× speed 43 km/h

K = 20; L = 2

(a)

0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

Channel estimation performance of DA joint and decoupled estimators

Average signal−to−noise ratio [dB]

M
ea

n
 s

q
u
ar

ed
 e

rr
o
r

−−−− decorrelator

······ joint LMMSE

single-user bound

◦ speed 86 km/h

× speed 43 km/h

K = 20; L = 2

(b)

Fig. 4.7. Mean squared errors of DA joint LMMSE and decoupled decorrelated

channel estimators in a frequency-selective fading channel (L = 2) for two

vehicle speeds; observation window is (a) N = 7, (b) N = 21.



88

includes the decorrelator outputs for user k. The optimal choice for c̃
(n)
k , given the

complex channel coefficient estimate ĉ
(n)
k , is c̃

(n)
k = D−1

[d]k,k(0)ĉ
(n)
k (Section 3.3.2).

Let

Q =
1

2

(
0L IL

IL 0L

)
∈ {0, 1

2
}2L×2L, (4.25)

and
ν = (c̃

⊤(n)
k ,y

⊤(n)
[d]k )⊤ ∈C2L. (4.26)

By rewriting (4.22) the decision variable y
(n)
[d,MRC]k can be expressed in the form

y
(n)
[d,MRC]k = νHQν. (4.27)

The decorrelator output vector y
(n)
[d]k conditioned on the data symbol b

(n)
k is a

complex Gaussian random vector. Assuming that the weight vector c̃
(n)
k is also

Gaussian5 the probability of bit error for user k can be expressed in the case of
BPSK modulation as [287]

Pk =

2L∑

i=1
λi<0

2L∏

j=1
j 6=i

1

1 − λj

λi

, (4.28)

where λi, i = 1, 2, . . . , 2L are the eigenvalues of the matrix Σν , and

Σν =




Σ
c̃
(n)

k

Σ
c̃
(n)

k
,y

(n)

[d]k

ΣH

c̃
(n)

k
,y

(n)

[d]k

Σ
y

(n)

[d]k


 (4.29)

is the covariance matrix of the vector ν. The covariance matrix (4.29) depends on
the channel estimation filter. Although the error probability expression in (4.28)
is not very intuitive, it is extremely useful in computing numerical examples. The
reason is that it can express the probability of bit error for any channel estimation
filter.

The probability of error is computed for several values of the pilot symbol dis-
tance Np with interpolation, as described in Section 4.2.1. The length of the
smoother satisfies Ppr = Psm = 3, i.e., in total six consecutive pilot symbols are
used to estimate the complex channel coefficients. Both optimal and suboptimal
smoothers are applied. The results with the optimal channel estimation filter are
presented in Fig. 4.8, and with the suboptimal channel estimation filter in Fig. 4.9.

The results show that with the optimal channel estimation filters the bit error
probability performance is excellent even at large SNR’s. A distance of Np <
30 yields performance that is free of error probability saturation. A distance of
Np > 45 is so large that the error probability starts to saturate at high SNR’s
(SNR > 30 dB). From low to moderate SNR’s the performance loss due to increased
pilot symbol distance is relatively low. For example, at error probability of 10−2

5Gaussian assumption holds for any DA linear channel estimation filter.
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Fig. 4.8. Bit error probabilities of DA decorrelating receiver for different pilot
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Fig. 4.9. Bit error probabilities of DA decorrelating receiver for different
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the differences in the required SNR between Np = 5 and Np = 50 are about 4.5
dB and 3.5 dB for one and two-path channels, respectively. If suboptimal channel
estimation filters are applied, the error floor is a significantly more severe problem.
Even with a pilot symbol distance of Np = 5, the bit error probability saturates at
high SNR’s. From low to moderate SNR’s the performance loss due to increased
pilot symbol distance is also larger than with optimal channel estimation filters.
For example, at BER = 10−2 the differences in the required SNR between Np = 5
and Np = 30 are ∞ dB and about 5 dB for one and two-path channels, respectively.

It can be concluded that superior performance can be obtained even with large
pilot symbol distances if optimal channel estimation filters can be applied. The
fixed, suboptimal channel estimation filters cause a severe performance loss at high
SNR’s. However, at low SNR’s fairly good performance can be obtained even with
a suboptimal channel estimation filter if the pilot symbol distance is small enough
(roughly Np ≤ 10 in the examples).

4.3.1.3. Channel capacity of DA decorrelating receiver

The above analysis provided results on the bit error probability of the DA decor-
relating receiver for different pilot symbol distances. The use of pilot symbols
improves the bit error rate performance, but reduces the effective data rate. More
specifically, if every Npth symbol is a pilot symbol, the effective data rate is the

nominal data rate multiplied by the factor
Np−1

Np
. Thus, the challenge is to select

the pilot symbol distance so that the overall channel capacity is maximized. This
problem is not easy to solve in practical examples, since the solution depends on
the channel encoding and decoding schemes applied. Therefore, the pilot symbol
distance should be jointly optimized with the complete signal design.

To give some insight into the pilot symbol distance optimization problem, the
fundamental limit provided by the information theoretic Shannon’s channel ca-
pacity is studied. For simplicity, it is assumed that the information bit stream
is encoded, and transmitted through the fading multiple-access channel. It is
assumed that the receiver consists of a decorrelating multiuser receiver and DA
channel estimation, after which hard decision decoding is performed. Then the
bit error probability analysis above applies to these hard decisions. The complete
communications system can then be modeled as a binary symmetric channel [22,
pp. 186-187] from a single-user point of view. In other words, from the coding point
of view the channel of user k is a binary symmetric channel with error probability
Pk given in (4.28). Thus, the Shannon capacity of the kth user is [22, pp. 14, 187],
[23, p. 381]

CAPk =
Np − 1

Np

[
1 + Pk log2(Pk) + (1 − Pk) log2(1 − Pk)

]
. (4.30)

The Shannon capacity is the data rate at which a user can obtain an asymptotically
error-free transmission as the signal-to-noise ratio approaches infinity, by applying
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the very best encoding scheme that can exist with optimal decoding. The results
provided by the Shannon capacity analysis are optimistic in the sense that the very
best encoding scheme cannot be applied in practice, since the scheme is allowed to
be arbitrarily complicated and there is no design rule to find that scheme. On the
other hand, the capacity results are pessimistic in the sense that by applying soft
decision decoding the performance can be improved.

The Shannon capacity (4.30) is evaluated for the bit error probability results
presented in Figs. 4.8–4.9. The results are presented in Figs. 4.10 and 4.11. From
the capacity results the optimal pilot symbol distances yielding the maximal Shan-
non capacity were determined. The optimal pilot symbol distances are illustrated
versus SNR in Fig. 4.12.

The results demonstrate that the optimal pilot symbol distance depends strongly
on the SNR. At low SNR’s the optimal pilot symbol distance is rather low, whereas
at high SNR’s very large pilot symbol distances can be tolerated for maximal
channel capacity if optimal channel estimation filters could be applied. The use
of suboptimal channel estimation filters degrade the capacity, especially, at high
SNR’s. At low SNR’s the differences in the capacity are significantly smaller. From
Fig. 4.12, it can be seen that at SNR’s of 16–20 dB and higher, the optimal pilot
symbol distance depends heavily on the channel estimation.

It can be concluded based both on the bit error probability examples (Figs.
4.8–4.9) and on the capacity examples (Figs. 4.10–4.11) that the choice of the
channel estimation filters is crucial in data transmission with very low bit error rate
requirement. Thus, in data transmission systems there is clearly need for optimal
or near-optimal channel estimation filters. In speech transmission, on the other
hand, the fixed channel estimation filters can provide a satisfactory performance if
the system requirements can tolerate a moderate pilot symbol distance (Np ≈ 10).

4.3.1.4. BER of DA and DD decorrelating receivers

The bit error probability of the DA decorrelating receiver is compared to the bit er-
ror rate of the DD decorrelating receiver. Inspired by the results in Section 4.3.1.3,
pilot symbol distance Np = 10 is used. The results of the analysis (DA decorre-
lator) and Monte-Carlo computer simulations (DD decorrelator) are presented in
Fig. 4.13.

It can be seen from Fig. 4.13 that the DA decorrelating receiver outperforms the
DD decorrelating receiver by approximately 1 dB with optimal channel estimation
filters both in the cases L = 1 and L = 2. Fig. 4.13(a) (L = 1) shows that the DA
decorrelating receiver outperforms the DD decorrelating receiver by approximately
2.5 dB at BER = 2 × 10−2 with suboptimal channel estimation filters, and the
performance difference increases with increasing SNR. Fig. 4.13(b) (L = 2) shows
that in the two-path channel the performance difference between the DA and DD
decorrelating receivers is significantly smaller than in the one-path channel. This
is understandable, since the decisions are more reliable due to diversity, and the
DD decorrelating receiver can also yield superior performance. At high SNR’s,
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Fig. 4.10. Channel capacities of DA decorrelating receiver for different signal-

to-noise ratios (SNR = 0, 4, 8, 12, 40 dB from down to upwards) with optimal

channel estimation filters; (a) L = 1, (b) L = 2.
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Fig. 4.11. Channel capacities of DA decorrelating receiver for different signal-

to-noise ratios (SNR = 0, 4, 8, 12, 40 dB from down to upwards) with sub-

optimal channel estimation filters; (a) L = 1, (b) L = 2.
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Fig. 4.12. Optimal pilot symbol distances in Shannon capacity sense.

however, the BER of the DD decorrelating receiver saturates if suboptimal chan-
nel estimation filters are be applied. It can be concluded that both the DA and
DD decorrelating receivers provide relatively good performance if optimal chan-
nel estimation filters are applied. Furthermore, the DA decorrelating receiver is
more robust to the channel estimation filter mismatch than the DD decorrelating
receiver. In a two-path channel, where the decisions are rather reliable, the DD
decorrelating receiver gives satisfactory performance also with suboptimal channel
estimation filters.

4.3.2. Performance comparisons of decorrelating and PIC

receivers

4.3.2.1. Sensitivity of BER to channel estimation errors

The sensitivity of the bit error rate to channel estimation errors is studied with-
out simulating the channel estimation process implicitly. The detection with the
decorrelating and the PIC receivers is simulated assuming that the channel esti-

mates ĉ
(n)
k,l with mean squared error MSE are given. The estimates are generated

in the simulations assuming a decomposition ĉ
(n)
k,l = c

(n)
k,l + ∆c

(n)
k,l , where ∆c

(n)
k,l
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is the channel estimation error. It is further decomposed in the form ∆c
(n)
k,l =

∆c
(n)
k,l (lag) + ∆c

(n)
k,l (noise), where ∆c

(n)
k,l (lag) is the lag error due to channel varia-

tions and suboptimal channel estimation [23], and ∆c
(n)
k,l (noise) is the error due to

the additive white Gaussian noise. In the examples, the absolute value of the lag
error is assumed to be constant for one signal-to-noise ratio value, and the error
due to the AWGN is assumed to be a complex Gaussian random variable with
zero mean and variance σ2

k,l(noise), which is the variance of the AWGN at the
output of the optimal channel predictor of length 10 (Ppr = 10, J = 1). The errors

∆c
(n)
k,l (noise) and ∆c

(n′)
k′,l′(noise) are assumed to be independent if k 6= k′ or l 6= l′

or n 6= n′. The absolute value of the lag error term is

|∆c(n)
k,l (lag)| =

√
MSE − σ2

k,l(noise), (4.31)

and its phase is assumed to be uniformly distributed into [0, 2π).

An exactly known channel (∆c
(n)
k,l = 0 or MSE = 0), and three positive MSE

levels (MSE = MSEmin, MSE = 1.5MSEmin, MSE = 2MSEmin), where
MSEmin is the mean squared error of the form (4.20) with the optimal predic-
tor (Ppr = 10, J = 1) and no decision errors, are considered. The results are
shown in Figs. 4.14 and 4.15 for one and two-path channels, respectively. Both the
cases of equal received energies and a near-far problem are considered.

It can be seen from the Figs. 4.14 and 4.15 that in a perfectly known channel
the PIC receiver clearly outperforms the decorrelating receiver, especially with di-
versity (Fig. 4.15). This is intuitive, since increasing the channel load KL increases
the noise enhancement in the decorrelator. Furthermore, the diversity offered by
the two-path channel makes the decisions and MAI estimate in the PIC receiver
more reliable. However, the PIC receiver is more sensitive to channel estimation
errors than the decorrelating receiver, which is also understandable. The decor-
relator completely decouples the reception of different users, whereas in the PIC
receiver the channel estimation errors propagate to MAI estimates and degrade
the performance for all users. In the single-path channel, the performance of the
PIC and decorrelating receivers is nearly the same if the channel estimation error is
large. In the two-path channel case, the PIC receiver outperforms the decorrelating
receiver in the presence of channel estimation errors. An exception is the presence
of a near-far problem and large channel estimation errors if the system operates at
high SNR’s (see Fig. 4.15(b)). It can be concluded that the PIC receiver yields of-
ten better performance than the decorrelating receiver. However, the decorrelating
receiver is more robust to the channel estimation errors than the PIC receiver.

4.3.2.2. BER in optimally estimated channel

The decision-directed channel estimator structure is studied. Optimal channel
estimation filters are applied. The simulations are performed for different numbers
of active users (K = 8, 20, 32). The BER results are shown in Figs. 4.16 and
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Fig. 4.14. Sensitivity of BER to channel estimation errors in a flat fading

channel (L = 1) for different MSE levels (MSE = (0, 1, 1.5, 2) × MSEmin from

down to upwards); (a) equal received energies, (b) near-far problem.
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4.17 for one and two-path channels, respectively. Both the cases of equal received
energies and a near-far problem are considered.

It can be seen from Fig. 4.16 that the PIC and the decorrelating receivers have
nearly the same performance in a one-path channel. When comparing to Fig. 4.14,
it is observed that the complex channel coefficient estimation is more challenging
for the PIC receiver than for the decorrelating receiver. Fig. 4.17 demonstrates
that the PIC receiver outperforms the decorrelating receiver in a two-path channel.
This is understandable due to the increased noise enhancement in the decorrelating
receiver caused by the larger channel load KL. However, in a heavily loaded
CDMA system with K = 32 under a near-far problem (K = 32 in Figs. 4.16(b)
and 4.17(b)), the BER of the PIC receiver saturates at high SNR’s due to decision
errors degrading the MAI estimates. The decorrelating receiver does not suffer
from BER saturation. A similar phenomenon has been observed in an AWGN
channel even with lower channel loads [248]. It can be concluded that, in general,
the PIC receiver slightly outperforms the decorrelating receiver if optimal channel
estimation filters are applied. However, at high SNR’s and channel loads the PIC
receiver suffers from BER saturation, whereas the decorrelating receiver does not.

4.3.2.3. BER in suboptimally estimated channel

The decision-directed channel estimators with suboptimal channel estimation filters
are applied. The simulations are performed forK = 20 active users only to simplify
simulations. The BER results are shown in Figs. 4.18 and 4.19 for one and two-
path channels, respectively. Both the cases of equal received energies and a near-far
problem are considered.

It can be seen from Fig. 4.18 that the PIC and the decorrelating receiver have
nearly the same performance in a one-path channel also with suboptimal channel
estimation filters. Fig. 4.19 demonstrates that the PIC receiver outperforms the
decorrelating receiver in two-path channels with suboptimal channel estimation fil-
ters at relatively low SNR’s. At high SNR’s the performance loss due to suboptimal
channel estimation is more severe for the PIC receiver than for the decorrelating
receiver, as expected. The problem is of course even more severe under a near-far
problem (Figs. 4.18(b) and 4.19(b)). It can be concluded that at high SNR’s the
PIC receiver suffers from the BER saturation, whereas the decorrelating receiver
does not. Therefore, the PIC receiver has the potential to benefit more from adap-
tive channel estimation filters approximating the optimal channel estimation filters
than the decorrelating receiver.
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4.4. Conclusions

Multiuser demodulation in relatively fast Rayleigh fading channels has been studied
in this chapter. The optimal maximum likelihood sequence detector was derived.
It estimates the received noiseless signal and correlates the received signal with the
estimate. The estimation-correlation must be performed for all possible received
data sequences. Due to the prohibitive complexity of the optimal receiver, subopti-
mal demodulators were considered. They decouple the data detection and complex
channel coefficient estimation from each other, and estimate the channel coefficients
and detect the data for all users separately. Both data-aided and decision-directed
complex channel coefficient estimation with optimal and suboptimal channel esti-
mation filters were considered. The performance of the decorrelating and parallel
interference cancellation receivers were compared.

The mean squared error of DA linear channel estimators was analyzed. It was
shown that the decoupled complex channel coefficient estimation in the decorrelat-
ing receiver can achieve performance that is very close to that of the joint LMMSE
estimator. The bit error probability and the channel capacity of the DA decorre-
lating receiver were analyzed. It was shown that very large pilot symbol distances
can be tolerated with optimal channel estimation filters, whereas suboptimal chan-
nel estimation requires a significantly denser pilot symbol insertion. Based on the
results of the chapter, it can be concluded that adaptive channel estimation filters
[103, 288, 57] capable to approximate the optimal channel estimation filters are
crucial in data transmission, where very low BER is required. In speech transmis-
sion, fixed channel estimation filters give satisfactory performance in most cases.
However, the PIC receivers are rather sensitive to channel estimation errors, and
they may need adaptive channel estimation filters also with a relatively high BER
requirement.

The DA complex channel coefficient estimation is more robust than DD complex
channel coefficient estimation, which may suffer from BER saturation caused by
hang-ups at high SNR’s. The DA channel estimation causes a longer decision delay
than DD channel estimation. The DA channel estimation needs different channel
estimation filters for different symbols in the data frame, whereas one filter (two
filters in two-stage DD channel estimation) is enough for DD channel estimation.
The adaptation of several channel estimation filters is more difficult than a single
filter. On the other hand, DA channel estimation is less sensitive to channel esti-
mation filter mismatch, and fixed filters may yield satisfactory performance with
DA estimation, even though that was not the case with DD channel estimation.
Thus, both DA and DD complex channel coefficient estimation appear as viable
methods for multiuser receivers.

The PIC receiver achieves better performance in known channels than the decor-
relating receiver, but it is more sensitive to complex channel coefficient estimation
errors than the decorrelating receiver, and at high channel loads it suffers from
BER saturation, whereas the decorrelating receiver does not. On the other hand,
the decorrelating receiver’s operation relies on exact delay estimation for all users
[151], and it is probably more sensitive to delay estimation errors than the PIC
receiver. Furthermore, at higher channel loads the decorrelator is rather sensitive
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to the delay combinations of the users, as noted in some examples in Chapter 3.
Therefore, a further study considering delay estimators is required to get a more
realistic comparison on the performance of the PIC and the decorrelating receivers.
With the existing knowledge both the decorrelating and the PIC receivers seem to
be possible alternatives for multiuser receivers from the performance point of view.
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Fig. 4.15. Sensitivity of BER to channel estimation errors in a frequency-
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Fig. 4.16. Bit error rates with DD channel estimation and optimal channel
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Fig. 4.18. Bit error rates with DD channel estimation in a flat fading channel
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Fig. 4.19. Bit error rates with DD channel estimation in a frequency-selective
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5. Multiuser detection in dynamic CDMA systems

Multiuser receiver implementation algorithms are considered in this chapter. The
problem is treated at the matrix algorithm level, and detailed algorithms or ar-
chitectures are not considered. The objective is to find efficient detection or de-
tector update algorithms for dynamic CDMA systems where the detectors must
be updated frequently due to changes in the number of users, in the signature
waveforms, in the delays, or in the received amplitudes. The goals are to find the
most efficient algorithms that exist and to analyze their implementation complex-
ity and performance. The attention is limited to two linear receivers, namely to
the truncated decorrelating and LMMSE detectors, and the hard-decision parallel
interference cancellation receiver. The algorithm implementation complexity is an-
alyzed in terms of flops1 and the number of clock cycles2 required by synchronous
DSP hardware3. The number of flops describes the computational burden of the
algorithms and the number of clock cycles illustrates to what extent the operations
can be performed in parallel.

Fixed single-path channels (L = 1) are assumed in the algorithm derivations and
numerical examples in this chapter. The choice is due to notational convenience and
to make the computer simulations feasible. The generalization of the algorithms to
the multipath case is straightforward. The implementation complexity expression
for the multipath case will then be obtained by substituting KL for K in the
expressions in Sections 5.1–5.2. The complexity expressions are summarized with
K replaced by KL in Section 5.3. The linear detection algorithms are presented
for the truncated decorrelating detector. Due to the similarity of decorrelating and
LMMSE detection, the generalization of the algorithms to the LMMSE detection is
obvious. Both time-invariant and time-varying signature waveforms are considered

1A floating point operation (flop) is defined to be a multiplication or an addition [156, p. 19].
2Required clock cycles are defined to be the minimum number of computation steps that are

required in the sense that the results of the previous computation step are needed in the following
step. A computation step is assumed to include all operations that can be performed independent
of each other. A multiplication followed by an addition are assumed to require two clock cycles
in total. The actual number of required clock cycles depends on implementation details and the
estimates given in this thesis are a lower bound to that.

3Synchronous DSP refers to the existence of a global clock which paces the computation flow
in the signal processing system.
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in this chapter. However, the superscript n describing the symbol interval is left
out from the correlation matrices R(n)(i) due to notational convenience throughout
the chapter.

The major problem is to find practical algorithms for linear multiuser detection.
The obvious reason for this is the fact that linear detectors are characterized as
inverses of some form of correlation matrices, and matrix inversion is a computa-
tionally intensive operation. Implementation of linear detection is considered in
the first two sections. Ideal linear detection and detector update algorithms, which
implement the multiuser detectors exactly (the effect of rounding errors is neglected
throughout the chapter), are studied in Section 5.1. Iterative algorithms, which
approximate the ideal linear detectors, are proposed in Section 5.2. In Section 5.3,
the implementation complexity of the decorrelating and PIC receivers is compared.
The results are summarized and discussed in Section 5.4.

5.1. Ideal linear detection

Ideal truncated linear detection is considered in this section. Detection algorithms
and their complexity are analyzed in Section 5.1.1. Detector computation algo-
rithms for synchronous and asynchronous CDMA systems are considered in Sec-
tions 5.1.2 and 5.1.3, respectively. The synchronous case is studied, since the
update algorithms can be later utilized in conjunction with iterative detection as
described in Section 5.2.

5.1.1. Detection algorithms

If the truncated linear detector DN is known, the detection can be performed as
expressed in (3.3). The detector DN is a NK × K matrix, i.e., it has NK2 ele-
ments. Vector y(n) has NK elements. The product D⊤

Ny(n) in (3.3) is equivalent
to the inner products of K vectors with NK elements each. One inner product
requires NK multiplications of a complex number by a real number (i.e., 2NK real
multiplications) and NK − 1 complex (i.e., 2(NK − 1) real) additions. Thus, one
inner product requires O[4NK] flops, where O[cxn] denotes a polynomial function
of x with order n and coefficient c for the highest order term4. The overall compu-
tational load is O[4NK2] flops. One inner product consists of NK inner products,
which can be computed in parallel, if sufficient hardware is available. Thus, the
multiplications need one clock cycle. If a NK input summing device is available,
another clock cycle is needed for additions. The K inner products are independent
of each other allowing parallel implementation. Thus, 2 clock cycles are needed in

4In addition to the dominant term xn the coefficients c in front of it need to be taken into
consideration in the computational complexity expressions. The constants are needed to make
distinctions to the complexities of some algorithms.
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total. As mentioned above, the clock cycle estimates are definitely optimistic, but
they yield lower bounds assuming that a multiplication and an addition take one
clock cycle each. The following implementation complexity calculations follow the
same principles as above and will not be presented.

The detector can be computed by solving the defining matrix equation. For
the truncated decorrelating detector (3.6) needs to be solved. The detector can be
solved by Cholesky factoring the correlation matrix R(n). Then (3.6) becomes

L⊤(n)L(n)D[d]N = UN . (5.1)

The solution of (5.1) by backward and forward substitutions [156] requiresO[6NK3]
flops, O[ 32NK

2] divisions, and 5NK clock cycles.
The detection can also be performed without directly computing the detector

DN itself, but by solving a linear matrix equation instead. For the truncated
decorrelating detector the equation

R(n)y
(n)
[d] = y(n) ⇔ L⊤(n)L(n)y

(n)
[d] = y(n) (5.2)

must be solved, and after that KL elements in the middle of the vector y
(n)
[d] are ex-

tracted to obtain y
(n)
[d] . The solution of (5.2) by backward and forward substitutions

[156] requires O[16NK2] flops O[NK] divisions and 5NK clock cycles.
The computation of the linear detector D[d]N , as well as the solution of the

detector output vector y
(n)
[d] without explicit detector computation, requires the

knowledge of the Cholesky factor L(n) of the correlation matrix R(n). Thus, the
algorithms for the Cholesky factor computation will be the core of the ideal linear
multiuser detection in dynamic CDMA systems. Cholesky factor computation will
be analyzed in Section 5.1.3 after considering the equivalent problem for the easier
synchronous CDMA systems in Section 5.1.2.

5.1.2. Detector update in synchronous systems

The detection in synchronous CDMA systems is significantly simpler than that in
asynchronous systems, since a one-shot detector is optimal. Because R(i) = 0, ∀i >
1, it is sufficient to update the Cholesky factor L̃ ∈ IRK×K of R(0) ∈ (−1, 1]K×K

instead of the Cholesky factor of R(n). It is also possible to update the inverse T =
R−1(0) ∈ IRK×K of R(0). The algorithms can also be applied straightforwardly
to update the inverse or the Cholesky factor of R(0) to correlation changes of one
path of one user in asynchronous systems in multipath channels.

It is assumed that the correlations of one user change, while the other correla-
tions remain constant5. In other words, if the correlations of user k change, the
elements of the kth row and the kth column of the matrix R(0) are altered. The

5The algorithms in this Section 5.1.2 are designed for systems with time-invariant signature
waveforms only.
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inverse or the Cholesky factor of R(0) are updated by computing the inverse or the
Cholesky factor of the reduced R(0) ((K − 1)× (K − 1) matrix) which is obtained
by removing the kth row and column from the old R(0). Based on that tentative
result, the new inverse or Cholesky factor of the true new R(0) is computed by
“adding” the kth row and column of the new R(0) to the reduced R(0). Therefore,
update algorithms are described below for the case of a new user entering the sys-
tem (the number of active users is incremented by one fromK to K+1), and for the
case of an old user leaving the system (the number of active users is decremented
by one from K + 1 to K). To make the expressions describing the changing num-
ber of users precise, a super-index of the form R(K)(0) and T(K) = (R(K)(0))−1

indicating the number of users K is included in subsequent matrix symbols in this
Section 5.1.2.

5.1.2.1. Inverse update

The key tools used in recursive inverse computations are the following two matrix
inversion formulae, which are special cases of (A1.4) and (A1.5), [88, pp. 571-572].
Woodbury’s identity is the rank one update

(A + vv⊤)−1 = A−1 − A−1vv⊤A−1

1 + v⊤A−1v
, (5.3)

where A is a nonsingular square matrix and v 6= 0 is a column vector with the same
dimension. Under the same conditions as above, we also have the order update
formula

(
1 v⊤

v A

)−1

=

(
(1 − v⊤A−1v)−1 −(1 − v⊤A−1v)−1v⊤A−1

−(A − vv⊤)−1v (A − vv⊤)−1

)
. (5.4)

As a new user enters the CDMA network, a row and a column must be
added to the correlation matrix. The new user will be indexed to be user 1 and
the indices of old users remaining in the network will be incremented by one. Let
the new user’s correlation vector ρ be

ρ = (R12(0), R13(0), . . . , R1,K+1(0))
⊤ ∈ (−1, 1)K . (5.5)

Now R(K+1)(0) can be partitioned as

R(K+1)(0) =

(
1 ρ⊤

ρ R(K)(0)

)
∈ (−1, 1](K+1)×(K+1). (5.6)

The new inverse matrix T(K+1) = (R(K+1)(0))−1 can be found by Gaussian elimi-
nation, but an order-recursive algorithm is more efficient. The inverse of R(K+1)(0)
is partitioned as

T(K+1) =

(
t t⊤

t T

)
, (5.7)



111

where T ∈ IRK×K , t ∈ (0,∞)K , and t ∈ IR. By using (5.3) and (5.4) the following
algorithm is obtained

t =
1

1 − ρ⊤T(K)ρ
, (5.8)

T = T(K) + tT(K)ρρ⊤T(K) = T(K) +
1

t
tt⊤, (5.9)

t = −Tρ = −tT(K)ρ. (5.10)

(5.8) follows directly from (5.4). From (5.4) it follows that

T = (R(K)(0) − ρρ⊤)−1

= T(K) +
T(K)ρρ⊤T(K)

1 − ρ⊤T(K)ρ

= T(K) + tT(K)ρρ⊤T(K), (5.11)

where the second equation follows by applying (5.3) to the first one. The third
equation follows by substituting (5.8) to the second. Both forms of (5.10) fol-
low directly from (5.4) and the fact that R(K)(0) and T(K) are symmetric. By
substituting T(K)ρ = − 1

t t from (5.10) back to (5.11) the last form of (5.9) follows.
As a new user enters the system, the operations in (5.8) require O[2K2] flops,

and one division. Solution of (5.9) demands O[K2] flops; (5.10) does not require
extra computations after (5.9) has been calculated. In total O[3K2] flops, and one
division are required. The minimum number of clock cycles to compute (5.8)–(5.10)
is 9.

As a user is leaving the CDMA network, the problem is opposite to the one
discussed above. Now the detector matrix T(K+1) is known and it has a partition
as in (5.7). The detector matrix T(K) must be computed. Assume that user 1
leaves the system. From (5.9) it follows that

T(K) = T − 1

t
tt⊤. (5.12)

The updating algorithm in the case the user indexed 1 leaves the system is
described in (5.12). On the other hand, if user k ∈ {2, 3, . . . ,K + 1} leaves the
system, the updating problem is a bit more complicated. The original correlation
matrix has the following partition

R(K+1)(0) =




R11 ρ1 R12

ρ⊤
1 1 ρ⊤

2

R⊤
12 ρ2 R22


 , (5.13)

where R11 ∈ IRk−1×k−1, R12 ∈ IRk−1×K−k+1 and R22 ∈ IRK−k+1×K−k+1, ρ1 ∈
IRk−1, and ρ2 ∈ IRK−k+1. The new detector matrix can be found by virtually
changing the indexing of users so that the leaving user is indexed to be 1. The
equivalent correlation matrix is then

R̃(K+1) = U⊤
k R(K+1)(0)Uk, (5.14)
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where Uk is a unitary permutation matrix of the form

Uk =
(

uk u1 · · · uk−1 uk+1 · · · uK+1

)
(5.15)

where the elements of the column vector uk ∈ {0, 1}K+1 are (uk)i = δk,i, ∀ i ∈
{1, 2, . . . ,K} and δk,i is the discrete Kronecker delta function. Thus, the equivalent
inverse becomes

T̃(K+1) = U⊤
k T(K+1)Uk. (5.16)

The detector matrix T(K) can be computed by using matrix T̃(K+1) in (5.12).
As an old user leaves the system, O[K2] flops, and K divisions are needed in

(5.12). At least 3 clock cycles are needed.

5.1.2.2. Cholesky factor update

As a new user enters the CDMA network, the Cholesky factorization

R(K)(0) = (L̃(K))⊤L̃(K) (5.17)

is assumed to be known and the new factorization

R(K+1)(0) = (L̃(K+1))⊤L̃(K+1) (5.18)

should be found in a recursive form. Let

L̃(K+1) =

(
l 01×K

l L

)
, (5.19)

where L ∈ IRK×K is a lower triangular matrix, l ∈ IRK , and l ∈ IR.
By substituting (5.19) into (5.18) we get

(L̃(K+1))⊤L̃(K+1) =

(
l2 + l⊤l l⊤L

L⊤l L⊤L

)
. (5.20)

By equating the corresponding parts in the above equation and in (5.6) the follow-
ing algorithm is obtained

L = L̃(K), (5.21)

solve L⊤l = ρ for l, (5.22)

l =
√

1 − l⊤l. (5.23)

The operation in (5.22) is a linear matrix equation with an upper triangular
coefficient matrix. Its solution demands O[K2] flops, and K divisions. The com-
putation in (5.23) requires K multiplications and additions, and one square root.
In total O[K2] flops, K divisions, and one square root are required. The number
of required clock cycles is 3K.
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As an alternative to the above algorithm we will also consider the Cholesky
factorization update based on QR factorization of the code matrix S(0) [156]. It is
assumed that the QR factorization

S(K)(0) = Q(K)L̃(K) (5.24)

is known. Now we are interested in computing the new L̃(K+1) for

S(K+1)(0) =
(

s S(K)(0)
)
, (5.25)

where s is the new spreading sequence. By (5.21)–(5.23) it is seen that only the first
column of L̃(K+1) needs to be computed6. In other words, the QR factorization of
the Ns ×K matrix (

s
0(Ns−K)×K

L̃(K)

)

must be computed. The result is

Q̃

(
s

0(Ns−K)×K

L̃(K)

)
=




0(Ns−K−1)×1 0(Ns−K−1)×K

l 01×K

l L̃(K)


 , (5.26)

where Q̃ is unitary. The computation can be performed efficiently by applying
(Ns−K−1) Givens rotations [156], which requires 9(Ns−K−1) flops, 2(Ns−K−1)
divisions, and (Ns−K−1) square roots. The computational complexity of the QR
factorization based Cholesky update is in general significantly lower than that of
the update based on correlation matrix. This is not true, however, if the number
of users is much smaller than the number of samples per symbol interval Ns. The
QR factorization based computation does not require the correlation computation.
That gives a further advantage in terms of computational complexity. It also
reduces the effect of rounding errors, which are otherwise introduced while rounding
the correlation coefficients after their computation.

As a user is leaving the CDMA network, the factorization

R(K+1)(0) = (L̃(K+1))⊤L̃(K+1) (5.27)

is assumed to be known and the factorization

R(K)(0) = (L̃(K))⊤L̃(K) (5.28)

needs to be computed. Let

L̃(K+1) =




L11 0 0
l⊤1 l3 0
L21 l2 L22


 , (5.29)

6The fact that only the first column changes can also be easily seen by properties of QR
factorizations [156]. This actually provides another proof for (5.21).
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where L11 ∈ IRk−1×k−1 and L22 ∈ IRK−k+1×K−k+1 are lower triangular matrices,
L21 ∈ IRK−k+1×k−1, l1 ∈ IRk−1, l2 ∈ IRK−k+1 are column vectors, and l3 ∈ IR is a
scalar. By (5.29) and definition of R(K)(0) = (L̃(K))⊤L̃(K) it follows that

R(K)(0) =

(
L⊤

11L11 + l1l
⊤
1 + L⊤

21L21 L⊤
21L22

L⊤
22L21 L⊤

22L22

)

=

(
L⊤

0 L⊤
21

0 L⊤
22

) (
L0 0
L21 L22

)
,

where L0 ∈ IRk−1×k−1 is a lower triangular matrix such that L⊤
0 L0 = L⊤

11L11+l1l
⊤
1 .

Thus, the matrix L̃(K) is

L̃(K) =

(
L0 0
L21 L22

)
. (5.30)

The result states that the Cholesky factorization cannot be updated totally
recursively, but the computation of a new factor of a (k − 1) × (k − 1) positive
definite matrix is necessary. Because the matrix to be Cholesky factored has the
special structure of the form L⊤

11L11 + l1l
⊤
1 , the computation can be performed

effectively by QR factorization [290]. Let

A = L⊤
11L11 + l1l

⊤
1 =

(
l1 L⊤

11

) (
l⊤1
L11

)
. (5.31)

Let the QR factorization of
(
l1,L

⊤
11

)⊤
be

(
l⊤1
L11

)
= Q′

(
0⊤

L0

)
, (5.32)

where Q′ ∈ IRk×k is unitary. By substituting (5.32) into (5.31) it is seen that

A =
(

l1 L⊤
11

) (
l⊤1
L11

)
= L⊤

0 L0. (5.33)

Thus, L0 may be computed by QR factorizing the matrix
(
l1,L

⊤
11

)⊤
, which can

be accomplished by applying K Givens rotations. Because L11 is already lower
triangular, this requires in total 6(k − 1)2 + 2(k − 1) flops, 2(k − 1) divisions, and
(k − 1) square roots [156].

The Cholesky factorization could again be computed by QR factoring the code
matrix S(K)(0). This does not, however, offer any simplification to the computa-
tions. (It would stop the accumulation of rounding errors.)

The drawback of the Cholesky factorization is that computing it requires square
roots, which may be a problem in some applications. The square roots can be
partly avoided by using a L⊤DL factorization instead of Cholesky factorization
[156].
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5.1.3. Detector computation in asynchronous systems

As in Section 3.2, a subindex is added to R(n) to denote its dimension yielding
RN ∈ (−1, 1]NK×NK. In the upcoming order-recursive derivations we will let
the dimension take the values m = 1, 2, . . . , N . In other words, Rm is R(n) with
dimension mK ×mK. Note that Rm can be partitioned as (compare to A1.1)

Rm =

(
R(0) γ⊤

m−1

γm−1 Rm−1

)
∈ IRmK×mK , (5.34)

where
γm−1 =

(
R⊤(1) 0K · · · 0K

)⊤ ∈ IR(m−1)K×K . (5.35)

The Cholesky factor Lm of Rm can be partitioned as [156]

Lm =

(
L11(m) 0⊤

ζm−1 Lm−1

)
∈ IRmK×mK , (5.36)

where Lm−1 ∈ IR(m−1)K×(m−1)K is the Cholesky factor of Rm−1,

ζm−1 =
(

L⊤
21(m) 0K · · · 0K

)⊤ ∈ IR(m−1)K×K , (5.37)

Lij(m) ∈ IRK×K is the ijth block of Lm, and 0 denotes a mK ×K matrix with
zero elements. In other words, the blocks that must be computed at the mth step
are L11(m) and L21(m). Note that

L⊤
mLm =

(
L⊤

11(m)L11(m) + ζ⊤
m−1ζm−1 ζ⊤

m−1Lm−1

L⊤
m−1ζm−1 L⊤

m−1Lm−1

)
. (5.38)

By equating the corresponding parts in (5.38) and in (5.34) and using the definitions
of γm−1 and ζm−1 it is found that we must solve

L⊤
11(m− 1)L21(m) = R(1) for L21(m) (5.39)

L⊤
11(m)L11(m) = R(0) − L⊤

21(m)L21(m) for L11(m), (5.40)

for all m ∈ {2, 3, . . . , N}.
Solving L21(m) in (5.39) corresponds to solving (K − 1) matrix equations each

giving one column of L21(m). The solution of L21(m) can be parallelized to (K−1)
separate linear equations. Each of the solutions requires O[K2] flops, K divisions
and at least 3K clock cycles due to backward substitutions. Thus, in total O[NK3]
flops, NK divisions, and 3NK clock cycles are required to compute all blocks
L21(m).

Solving L11(m) in (5.40) requires Cholesky factorization of the K × K matrix
R(0) − L⊤

21(m)L21(m). A QR factorization based approach to solve L11(m) is
derived below. Let L̃ be the Cholesky factor of R(0). Thus,

R(0) − L⊤
21(m)L21(m) = L̃⊤L̃ − L⊤

21(m)L21(m) =

(
jL⊤

21(m) L̃⊤ ) (
jL⊤

21(m) L̃⊤ )⊤
, (5.41)



116

where j2 = −1. Let the QR factorization of
(
jL⊤

21(m) L̃⊤ )⊤
be

(
jL21(m)

L̃

)
= Q

(
0K

L

)
, (5.42)

where Q is unitary, and L is lower-triangular. Substituting (5.42) into (5.41) yields

R(0) − L⊤
21(m)L21(m) = L⊤L, (5.43)

or L11(m) = L. In other words, L11(m) can be computed by QR factoring(
jL⊤

21(m) L̃⊤ )⊤
. The QR factorization can be computed by Householder reflec-

tions or Givens rotations [156], for example. The Householder reflections require
in total 4K clock cycles, and O[4K3] flops and K square roots [156, 41]. In total,
the computation of all blocks L11(m) requires O[4NK3] flops, NK square roots,
and at least 4NK clock cycles.

The computational requirements to complete the Cholesky factorization of R(n)

are found by summing the requirements to solve (5.39) and (5.40) for all values of
m. Thus, the computation of L(n) requires O[5NK3] flops, NK square roots, NK
divisions, and at least 7NK clock cycles.

The “skinny” QR factorization of the sample matrix S can be represented in the
form S = QL(n), where Q ∈ IR(N+1)Ns×NK is an orthogonal matrix [156, p. 217].
In other words, the Cholesky factor L(n) can be computed by QR factoring S. The
resulting computational requirements are difficult to analyze exactly. However,
they are lower bounded by O[NNsK

2] flops. Since Ns is assumed to be greater
than the number of users K to guarantee the positive-definiteness of R(n), the QR
factorization of the sample matrix S is usually computationally more intensive than
correlation matrix based approach. The QR factorization is numerically superior,
since the rounding errors introduced in the correlation computation are avoided.
The number of clock cycles is at least 4NK.

The computational requirements of solving the decorrelating detector are the
sum of the requirements to compute the Cholesky factor L(n) and to solve the
detector D[d] in (5.1). Thus, O[11NK3] flops, NK square roots, and O[32NK

2]
divisions are required to solve the decorrelating detector. Implementation by syn-
chronous digital signal processing requires at least 12NK clock cycles. The com-
putational requirements are linearly related to N , which was obtained by the use of
the sparsity of the matrices. The computational requirements are still large having
a cubic dependence on the number of users. If the number of users is large, the
computational burden of the detector update is substantial, and the operations
cannot be parallelized very effectively. At least in systems with time-varying sig-
nature waveforms, the proposed order-recursive algorithm may still be impractical
for the current DSP hardware in many applications.
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5.2. Iterative linear detection

To alleviate the implementation complexity of the ideal detector update described
in Section 5.1, iterative implementation of the decorrelating and the LMMSE detec-
tors will be studied in this section. The decorrelating detection can be represented
as a linear equation (5.2), which can be solved by several iterative methods. Their
advantage is the potential of offering significant savings in computational complex-
ity, since there is no need to invert or Cholesky factorize the matrix R(n) explicitly

prior to y
(n)
[d] being solved. Some of the iterative algorithms will be considered

in Section 5.2.1. In Section 5.2.2, an efficient way to initialize an iterative algo-
rithm for a multiuser detector is proposed. In Section 5.2.3, the performance of
the iterative detectors is studied.

5.2.1. Iterative algorithms

The most popular iterative algorithms to solve (5.2) include the steepest descent
(SD) and the conjugate gradient (CG) methods7 [156, 291, 292]. Both the SD
and CG methods utilize the fact that solving (5.2) is equivalent to minimizing the
function

Ω(h) =
1

2
hHR(n)h − hHy(n). (5.44)

In other words, the decorrelator output

y
(n)
[d] = min

h∈CNK

Ω(h) (5.45)

can be viewed as an estimate of the data-amplitude product vector h. The algo-
rithms start with some initial guess ĥ(0), from which the estimate of the minimum
of Ω(h) is improved by iterative steps. The mth estimate is computed in the form
ĥ(m) = ĥ(m − 1) + α(m)p(m), where p(m) is the new search direction, and the
coefficient α(m) is chosen so that Ω(ĥ(m)) is minimized given ĥ(m− 1) and p(m).
Different strategies to choose the search directions p(m) result in different iterative
algorithms. Since Ω(ĥ(m)) decreases most rapidly in the direction of the negative
gradient

q(m)=̂ − ∂Ω(h)

∂h
|
h=

ˆh(m)
= y(n) −R(n)ĥ(m), (5.46)

choosing p(m) as a function of q(m − 1) has proved out to be efficient yielding a
family of the so called gradient algorithms, such as the steepest descent and the
conjugate gradient algorithms.

7There are also several other simple iterative algorithms (e.g., Jacobi or Gauss-Seidel methods)
available. The Gauss-Seidel algorithm was also tested, but it yielded significantly worse results.
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5.2.1.1. Steepest descent and conjugate gradient algorithms

In the SD method the search direction is chosen simply to be the negative gradient
[156], i.e., p(m) = q(m − 1). The choice implies that the search directions may
be linearly dependent, even if m < NK and q(m) 6= 0, resulting in redundant
minimization of the function Ω(h). In the CG method the new search direction
p(m) is chosen so that it satisfies [156]

p(m) = arg min
p̃∈V⊥

m−1

‖p̃ − q(m− 1)‖, (5.47)

where Vm is the space spanned by vectors R(n)p(1), . . . ,R(n)p(m), and V⊥ denotes
the space orthogonal to V . It is easy to see that p(m) is R(n)-conjugate or R(n)-
orthogonal to the previous search directions, i.e.,

pH(m)R(n)p(i) = 0, ∀i < m. (5.48)

This condition guarantees that the search directions are linearly independent as
long as q(m − 1) 6= 0, since R(n) is positive definite [156]. Thus, the algorithm
results in the exact solution (neglecting the rounding errors) in NK steps or faster.
Moreover, in many cases a significantly smaller number of iterations yields solutions
that are close to the ideal one.

The computationally most complex operation in both SD and CG algorithms is
a matrix-vector multiplication of the form R(n)p(m). Due to the sparsity of R(n)

this requires O[2NK2] multiplications of a complex number by a real number and
O[2NK2] complex additions, i.e., in total O[8MNK2] flops are required, where
M is the number of iterations performed. Since the matrix-vector multiplication
consists of NK separate vector inner products, it lends itself to a fully parallel
implementation. The required number of clock cycles is found to be 11M for the
SD algorithm, and 14M for the CG algorithm by [156].

The correlation coefficients in the matrix R(n) must also be computed as a
change in the signature waveforms or in their timing occurs. A computation of
one coefficient requires 2Ns flops. If the signature waveforms are time-varying, all
the K2 new correlation coefficients need to be computed, and O[2NsK

2] ≤ O[2K3]
flops would be required on every symbol interval. In other words, the correlation
computation would be significantly more complicated than the iterative detection.
Thus, the whole method would loose much of its advantages. The applicability to a
highly parallel implementation would be the only one to remain. Fortunately, there
is another way to implement the CG algorithm [291, p. 610]. It is mathematically
equivalent to the CG algorithm described above. However, its input is the sampled
received waveform r instead of y(n), and it does not require the correlation matrix
computation. It solves the least-squares problem ĥ = argminh ‖Sh− r‖. Thus, it
will be referred to as CGL (conjugate gradient for solving least-squares problems)
algorithm. The details of the CGL algorithm can be found in [291, p. 610]. The
algorithm requires matrix-vector products of the form Sp(m) and S⊤ξ(m) on each
iteration, where ξ(m) ∈C(N+1)Ns is a vector needed in the CGL iteration [291, p.
610]. Thus, it requires in total O[8MNNsK] flops. The computational complexity
of the CGL algorithm is higher than that of CG algorithm. Since the correlation
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computation is not required separately, the overall complexity is lower with time-
varying signature waveforms or with rapidly changing delays. The required number
of clock cycles in the CGL algorithm is found to be 10M by [291, p. 610]. The
CG algorithm can be straightforwardly applied to LMMSE detection by replacing
the matrix R(n) by R(n) + σ2E−1. However, the application of the CGL algorithm
to LMMSE detection is not possible, since LMMSE detection does not have a
least-squares problem interpretation.

5.2.1.2. Preconditioned conjugate gradient algorithm

The convergence speed of the conjugate gradient algorithm is determined by the
condition number κ of R(n), which is defined as the eigenvalue ratio

κ(R(n)) =
λmax

(
R(n)

)

λmin

(
R(n)

) , (5.49)

where λmax(A) and λmin(A) denote the eigenvalues of a matrix A with the largest
and smallest absolute value, respectively. The larger the ratio, the slower the
convergence [156]. The convergence speed can be improved by a preconditioning
strategy [156]. The idea is to replace (5.2) by an equivalent equation

Řȟd = y̌(n), (5.50)

where Ř = G−1R(n)G−1, ȟd = Gy
(n)
[d] , y̌(n) = G−1y(n), and G ∈ IRNK×NK is a

symmetric, positive definite matrix used to improve the condition number. If the
QR factorization of G is G = QH, and H ≈ L (L is the Cholesky factor of R(n)), we
have Ř ≈ INK [156]. This means that the condition number κ(Ř) ≈ 1. In other
words, the application of the preconditioning strategy requires finding a matrix H
that is in some sense close to the Cholesky factor L. The resulting algorithm does
not include explicit reference to matrix G. The only extra complication that is
introduced to CG algorithm is the solution of a system of the form

H⊤Hz = q(m− 1) ⇔ z = (H⊤H)−1q(m− 1), (5.51)

see [156, pp. 527–529] for details.
The preconditioned conjugate gradient (PCG) algorithm is proposed for systems

in which the signature waveforms are time-invariant. A simple preconditioning
matrix is

H = diag(L̃, . . . , L̃) ∈ IRNK×NK , (5.52)

where L̃ is the Cholesky factor of R(0). The choice implies

(H⊤H)−1 = diag(R−1(0), . . . ,R−1(0)) ∈ IRNK×NK . (5.53)

The inverse matrix R−1(0) can be updated to correlation changes with compu-
tational complexity O[4K2] flops by applying the algorithms described in Section
5.1.2. The solution of the system (5.51) requires O[4NK2] flops so that the overall
computational complexity is O[12MNK2] flops. The PCG algorithm requires 16M
clock cycles by [156], i.e., two more per iteration than the standard CG algorithm.



120

5.2.2. Iterative sliding window detection

Both the steepest descent and the conjugate gradient algorithms converge to the
correct solutions with any initial guess under relatively mild conditions. A usual
choice for the initial guess is a zero vector if no a priori information of the correct
solution is available [156]. Since there is information about the vector h, it can be
expected that the zero vector is not the best possible initial guess. For example,
the matched filter output vector y(n) is clearly closer to the correct h than a
zero vector. For the case of truncated detection, where the data symbols in the
middle time interval of the observation window are detected, a sliding window
algorithm is now proposed. It uses as an initial guess the values computed during

previous symbol interval. More specifically, assume that a vector ĥ
(n0)

(M) ∈ CNK

was computed and ĥ(n0)(M) ∈ CK was obtained from the middle components of

ĥ
(n0)

(M). On the following symbol interval, where h(n0+1) is estimated, the last

(N − 1)K elements of ĥ
(n0)

(M) computed on the previous symbol interval are

substituted to be the first (N − 1)K elements of the new initial guess ĥ
(n0+1)

(0).
The last K elements of the new initial guess are substituted to be the matched
filter outputs, i.e., the last K element of y(n0+1).

5.2.3. Numerical performance evaluation

It is not possible to find useful analytical expressions for the average bit error
probability or mean squared error of the iterative detectors. For that reason Monte-
Carlo computer simulations are carried out. A 31-chip Gold sequence family used
in the simulation for the system with time-invariant signature waveforms. Random
signature sequences of length 6200 chips are used in the simulation for the system
with time-varying signature waveforms. A rectangular chip waveform is applied.
The number of users is K = 33. BPSK data and spreading modulation with
coherent detection are used. The carrier phases of users are set to zero. The delays
of the users are fixed, randomly selected, and they are the same in all simulations.
The interfering users have equal energies (marked by Ek in the illustrations). Most
of the simulations use the sliding window algorithm described in Section 5.2.2 with
window length N = 2P + 1 = 7. For purposes of comparison the SD, CG, and
PCG algorithms approximating both the decorrelating and LMMSE detectors are
simulated.

First, a system with data block length Nb = 1 (processing window naturally
had length N = Nb = 1) is simulated so that there is no need for the sliding
window algorithm, since the whole data block can be processed in the detector.
In Figs. 5.1(a) and 5.1(b) the simulated mean squared errors of the estimates ĥ(n)

are plotted versus the number of iterations, M . The effect of the initial guess is
also illustrated by using both a zero vector and the MF output vector as the initial
guess. In Fig. 5.1(a) the received energies are the same, whereas in Fig. 5.1(b) the
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near-far problem is emulated, since the desired user’s (k = 1) energy per symbol is
10 dB weaker than the energies of the interfering users. The signal-to-noise ratio
in the simulations is E1/σ

2 = 8 dB.
The results in Fig. 5.1(a) indicate that a moderate number of iterations yields

a performance close to that of the ideal detectors. The convergence of the CG
algorithm to the final solution is faster than that of the SD algorithm, as expected.
From Fig. 5.1(b) it is seen that in the case with a severe near-far problem more
iterations are required to get the ideal detector performance, and the CG algorithm
is superior to the steepest descent algorithm. It is noted from Figs. 5.1(a) and
5.1(b) that the matched filter output is a better initial guess than a zero vector,
as is expected. It can also be seen that the initial guess does not have an adverse
effect on the convergence, however, with a poor initial guess more iterations are
required to obtain a certain performance level.

The performance of the sliding window algorithms versus the number of itera-
tions per symbol interval is depicted in Figs. 5.2–5.3 and 5.4–5.5 for time-invariant
and time-varying signature waveforms, respectively. The mean squared errors are
presented in Figs. 5.2 and 5.4, and the bit error rates for the same example in Figs.
5.3 and 5.5. The signal-to-noise ratio in the simulations is again E1/σ

2 = 8 dB.
The results are similar to those described above. The number of required itera-
tions in the sliding window algorithms is relatively small. For the CG algorithm
four iterations per symbol are required to reach the minimum mean squared error
performance in the examples with a near-far problem and time-invariant signature
waveforms. A few more iterations are required in the examples with time-varying
signature waveforms. One more iteration is required to obtain the optimal bit error
rate than the optimal mean squared error, especially for the LMMSE detector. It
is also noted that the CG algorithm is clearly superior to the SD algorithm, as
expected. Preconditioning speeds up the convergence to the exact solution even
further.

The mean squared errors versus the signal-to-noise ratio per symbol for the
steepest descent, the conjugate gradient, and the preconditioned conjugate gradient
algorithms with time-invariant signature waveforms are illustrated in Figs. 5.6,
5.7, and 5.8, respectively. It can be seen that at signal-to-noise ratios of practical
interest (≤ 16 dB) the CG decorrelator requires only two iterations to reach the
MSE of the ideal decorrelator in the examples of equal received energies. It is noted
that at very high signal-to-noise ratio the CG algorithm requires more than five
iterations to achieve the minimum MSE in the examples with a near-far problem.
The MSE of the PCG algorithm differs only marginally from the MSE of the ideal
decorrelator even if only four iterations are performed when there is a near-far
problem.

An interesting result seen in the figures is that there are some iteration steps
where the iterative decorrelators “perform” better than the ideal decorrelator at
low signal-to-noise ratios. This is possible, since the decorrelating detector is not
optimal in the minimum mean squared error sense. The solutions provided by
iterative decorrelators do finally converge to the exact decorrelating solution, as
expected. During the iterative process the length of the error vector εd(m) is
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reduced at each step of the CG algorithm, where

εd(m) = y
(n)
[d] − ĥ(m) (5.54)

is the error vector between the true decorrelating solution y
(n)
[d] and the estimate

ĥ(m) computed by the iterative algorithm. In other words, it is guaranteed that
the estimates computed by the CG decorrelator converge to the correct solution

y
(n)
[d] and on each iteration the solution ĥ(m) gets closer to y

(n)
[d] . In the simulation,

on the other hand, the elementwise mean squared values of the error vector

e(m) = h − ĥ(m) (5.55)

are measured. Vector e(m) is the deviation between the true value of the received
data-amplitude product vector h and the estimate ĥ(m) computed by the itera-
tive algorithm. Reduction of the mean squared value of e(m) at each step is not
guaranteed. The iterative schemes also perform always worse than the LMMSE
detector, as expected. The phenomenon is discussed further in Appendix 2.

In Chapter 3 it was noted that the length of the decorrelating detector and
the ratio Emax/Emin of maximum and minimum energies are design parameters,
and a trade-off between them needs to be made. The same conclusion can be
made between the ratio Emax/Emin and the number of iterations in the iterative
implementation of the linear multiuser detectors.

All the numerical examples indicate a convergence to the exact solution after a
few iterations while there are NK = 231 unknown variables. The fast convergence
of the algorithms is to a large extent due to the initial guess as described in Section
5.2.2. As predicted, the performance of the iterative detectors is highly dependent
on the number of iterations performed. On the other hand, the implementation
complexity is also directly proportional to the number of iterations. Thus, the
iterative detectors provide a trade-off between the implementation complexity and
the performance of the detectors.

5.3. Complexity comparisons

The implementation of the parallel interference cancellation receiver is relatively
straightforward on the algorithm level considered in this work. The interference
cancellation in (2.62) requires O[4MK2] flops and 4M clock cycles, where M is
the number of cancellation stages. If the interference cancellation is performed
for the received spread-spectrum signal (i.e., for the MF input), the corresponding
cancellation requires O[4MNsK] flops and 4 clock cycles. The only update that is
needed (in addition to amplitude estimation) is the correlation computation as a
change in the communication system occurs.
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5.3.1. Summary of implementation complexities

The implementation complexity of some of the algorithms of this chapter are sum-
marized in Table 5.1. The detection given L refers to solving (5.2) by backward and
forward substitutions without computing the detector DN . Both the total number
of flops and the number of flops per detected symbol are shown for the detection
methods. The total number of flops only is presented for ideal detector computa-
tion methods, since the detector is updated occasionally and the number of flops
per symbol would not be a sensible measure of complexity. It should be noted that
the computational burden of the computation of the correlations between users’
signature waveforms is excluded from the comparisons. To obtain a better under-
standing of the complexity of different schemes an example is considered below.

Table 5.1. Summary of total implementation requirements of different algorithms.

flops flops/KL clock cycles
Cholesky factorization of R O[5N(KL)3] — 7NKL
QR factorization of S O[NNs(KL)2] — 4NKL
Detector computation given L O[6N(KL)3] — 5NKL
Matched filtering O[4NsKL] O[4Ns] 2
Lin. detection given D O[4N(KL)2] O[4NKL] 2
Lin. detection given L O[16N(KL)2] O[16NKL] 5NKL
Lin. SD detection O[8MN(KL)2] O[8MNKL] 11M
Lin. CG detection O[8MN(KL)2] O[8MNKL] 14M
Lin. CGL detection O[8MNNsKL] O[8MNNs] 10M
Lin. PCG detection O[12MN(KL)2] O[12MNKL] 16M
HD-PIC MF-OUT detection O[4M(KL)2] O[4MKL] 4M
HD-PIC MF-IN detection O[4MNsKL] O[4MNs] 4M

5.3.2. An example

The complexity of the update based on the ideal Cholesky factoring is determined
by the rate of delay changes and the frequency of changes in the number of users
or their signature waveforms. A mobile radio system example with the system
parameters from the FRAMES project [34] is presented to provide reasonable nu-
merical values for the parameters. Assume that the number of users is K = 256,
the number of multipath components is L = 4, the number of chips per symbol
(the processing gain) is Nc = 256, number of samples per chip is 5 to guarantee
that KL < Ns. This yields a total number of samples per symbol Ns = 1280. It

is assumed that the users have average vehicle speed of 80 km
h

. Assume also that
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the angle θ between the direction of the mobile unit movement with a line from a
vehicle to the base station is uniformly distributed into [0, π). The effective speed

causing distance change from the mobile to the base station is then 80 km
h

| cos(θ)|,
which results in an average value v ≈ 51 km

h
.

On a time-interval ∆t the delay of a user changes ∆τ = v∆t
clight

. A delay change is

said to be significant if it exceeds a predetermined level Tδ. It is assumed here Tδ =
T

2Ns
= Tc

10 , which is a strict synchronization requirement, but is supported by the
results in [151]. Thus, the number of symbols transmitted between significant delay

changes for any of the K users is on the average
clightTδ

vKT =
clight

8vKNc
≈ 32. Assume

that the symbol rate is 20.3 kbaud, i.e., the symbol interval is T = 49.261 µs. To
estimate the frequency of handovers, it is assumed that mobile users are driving
through a cell of diameter 1 km after which a handover occurs. Then the average
number of symbols transmitted between two handovers for any of the K users is
1000 m
KvT = 5597. Therefore, the delay changes are more common than handovers so

that the effect of the handovers on the implementation complexity can be neglected.
Assume that it is required that the detector is updated within 10 symbol in-

tervals (10T ) from a delay change. (Thus, the detector is updated during one
frame [34]). Referring to Table 5.1, the detector computation requires at least
12NKL clock cycles. Thus, the DSP hardware must have at least 12NKL clock
cycles in time 10T , and the minimum clock frequency becomes 7NKL

10T ≈ 320 MHz,
if N = 13. Since the detector update requires O[11N(KL)3] flops as seen from
Table 5.1, the DSP hardware must be able to perform about 11N(KL)3 flops in

time 10T . In other words, the DSP must have speed 11N(KL)3

10T ≈ 310 Tflops/s.
If the CG detection applies M = 124 iterations8 per symbol interval, the clock
frequency 14M/T = 35 MHz is required by Table 5.1. The required number of

arithmetic operations is 8MN(KL)2

T ≈ 280 Tflops/s. The corresponding clock fre-
quency requirement for the CGL algorithm is 10M/T = 25 MHz, and the number
of arithmetic operations 8MNNsKL

T ≈ 340 Tflops/s, as is easy to see from Table
5.1. If the PCG method applies M = 62 iterations on a symbol interval, it requires
the clock frequency 16M/T = 20 MHz, and the required number of arithmetic

operations is 12MN(KL)2

T ≈ 210 Tflops/s. Assuming two (M = 2) multistage it-
erations (as in the examples of Chapter 4) the HD-PIC receiver requires a speed
of 4M/T = 160 kHz, and a computation power of 4M(KL)2 = 8.4 Mflops/s. If
the HD-PIC receiver processes the received wideband signal, the DSP speed of
4MNsKL = 10 Mflops/s is required. Finally, to put the above numbers into per-
spective it is noted that the matched filtering requires the minimum clock frequency
of 2/T = 41 kHz, and the number of arithmetic operations 4NsKL ≈ 5.2 Mflops/s.
The results are summarized in Table 5.2.

The example illustrates that due to the higher degree of parallelism, the DSP
clock frequency requirements of the iterative algorithms are significantly less strin-
gent than those of the ideal detection. The number of flops required is also smaller.

8The number of required iterations was estimated by assuming that the number of necessary
iterations divided by the number of unknown variables is the same as in the numerical examples.
Since M = 4 iterations yield an excellent performance for K = 33 unknown variables in Section
5.2.3, it is assumed that M = 4

33
× KL ≈ 124 iterations are needed in the current example.
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Table 5.2. Results of the example.

flops flops/KL clock freq.
Matched filtering 5.2 Mflops/s 5.1 kflops/s 41 kHz
Detector computation 310 Tflops/s 300 Gflops/s 320 MHz
Lin. CG detection 280 Tflops/s 270 Gflops/s 35 MHz
Lin. CGL detection 340 Tflops/s 340 Gflops/s 25 MHz
Lin. PCG detection 210 Tflops/s 200 Gflops/s 20 MHz
HD-PIC MF-OUT detection 8.4 Mflops/s 8.2 kflops/s 160 kHz
HD-PIC MF-IN detection 10 Mflops/s 10 kflops/s 160 kHz

The iterative algorithms use the computation resources steadily, whereas the ideal
detector computation requires high computation peaks for detector computation.
The PCG algorithm is the simplest in terms of both required DSP clock frequency
and number of flops required. The CGL algorithm would clearly be the simplest
algorithm for linear multiuser detection in an R-CDMA system with time-varying
signature waveforms. The example also quantifies the well-known fact that the
parallel interference cancellation receivers are significantly simpler to implement
than the linear equalizer type receivers. The number of arithmetic operations that
needs to be performed in decorrelating receiver in a unit of time is roughly 2× 107

times the corresponding number for the HD-PIC receiver. The corresponding ratio
for the clock frequency is approximately 100. The number of arithmetic opera-
tions required by the parallel interference cancellation is roughly twice the number
required by the matched filter bank. The clock frequency is approximately four
times that of the MF bank. In that sense the parallel interference cancellation can
be considered to be a relatively simple technique to improve the performance of
the CDMA systems.

The linear detector implementation requires a very large number of flops per
second. The requirements for the processor clock frequency, on the other hand, are
moderate. Furthermore, the number of flops per second is not a perfect measure of
the implementation complexity, if an application specific integrated circuit (ASIC)
is used. In other words, if all the potential for parallelism (measured by the mini-
mum clock frequency) can be applied, the implementation of linear detectors will
become feasible in the future.

5.4. Conclusions

Implementation of multiuser receivers in synchronous and asynchronous CDMA
systems has been discussed. It was assumed that the delays, the signature wave-
forms, or the number of users may change over time. Algorithms for the ideal
linear decorrelating or LMMSE detector computation were derived. The detector
computation based on an order-recursive Cholesky factorization of the correlation
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matrix was shown to require O[11N(KL)3] flops and NKL square roots, and at
least 12NKL clock cycles. The computational load is huge, since it has cubic
dependence on the number of users times the number of multipath components.
Iterative detectors were investigated to reduce the complexity of the linear de-
tectors. Steepest descent and conjugate gradient algorithms were proposed for
the decorrelating and the LMMSE detector implementation. The computational
requirements of the algorithms are O[8M(KL)2] flops and at least 14M clock cy-
cles. Preconditioned conjugate gradient algorithm was studied to obtain faster
convergence. It requires O[12MN(KL)2] flops, and at least 16M clock cycles. A
conjugate gradient algorithm not requiring separate correlation computation was
proposed to be applied in CDMA systems with time-varying signature waveforms.
A sliding window algorithm utilizing the values computed on the previous symbol
interval was developed to reduce the required number of iterations. Simulation
results demonstrate that moderate number of iterations with the CG or the PCG
algorithm gives the essentially the same performance as the ideal detectors have.
The results show that the preconditioned conjugate gradient algorithm yields the
fastest convergence.

In the mobile communication example the preconditioned conjugate gradient al-
gorithm was found to be the simplest linear detection scheme for D-CDMA system
with time-invariant signature waveforms. The CGL version of the conjugate gra-
dient algorithm is found to be the simplest linear detection scheme for R-CDMA
system with time-varying signature waveforms. It was also noted that the parallel
interference cancellation receivers are significantly simpler to implement than the
linear receivers, as can be expected. The example demonstrated that the required
clock frequency for linear receivers is roughly 100 times that for HD-PIC receiver.
The corresponding factor for number of arithmetic operations is 2× 107. The par-
allel interference cancellation requires twice as many arithmetic operations as the
matched filter bank. The clock frequency requirement is four times that of the MF
bank. Thus, the PIC multiuser receivers are significantly more desirable from the
implementation point of view than the linear equalizer type multiuser receivers.
Furthermore, the PIC receivers are only moderately more complex to implement
than the conventional MF receivers.
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Fig. 5.1. Mean squared errors of the iterative decorrelating detectors with

time-invariant signature waveforms, Nb = N = 1, and SNR = 8 dB; (a) equal

received energies, (b) near-far problem.
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Fig. 5.2. Mean squared errors of the iterative decorrelating and LMMSE

sliding window detectors with time-invariant signature waveforms, Nb = 200,

N = 7, and SNR = 8 dB; (a) equal received energies, (b) near-far problem.
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Fig. 5.3. Bit error rates of the iterative decorrelating and LMMSE sliding

window detectors with time-invariant signature waveforms, Nb = 200, N = 7,

and SNR = 8 dB; (a) equal received energies, (b) near-far problem.
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Fig. 5.4. Mean squared errors of the iterative decorrelating and LMMSE

sliding window detectors with time-varying signature waveforms, Nb = 200,

N = 7, and SNR = 8 dB; (a) equal received energies, (b) near-far problem.
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Fig. 5.5. Bit error rates of the iterative decorrelating and LMMSE sliding

window detectors with time-varying signature waveforms, Nb = 200, N = 7,

and SNR = 8 dB; (a) equal received energies, (b) near-far problem.
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Fig. 5.6. Mean squared errors of the decorrelating steepest descent sliding

window detector for different numbers of iterations with time-invariant signa-

ture waveforms, Nb = 200, and N = 7; (a) equal received energies, (b) near-far

problem.
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Fig. 5.7. Mean squared errors of the decorrelating conjugate gradient sliding

window detector for different numbers of iterations with time-invariant signa-

ture waveforms, Nb = 200, and N = 7; (a) equal received energies, (b) near-far

problem.
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Fig. 5.8. Mean squared errors of the decorrelating preconditioned conjugate

gradient sliding window detector for different numbers of iterations with time-

invariant signature waveforms, Nb = 200, and N = 7; (a) equal received ener-

gies, (b) near-far problem.



6. Conclusions

6.1. Summary

Multiuser demodulation algorithms for centralized receivers of asynchronous DS-
CDMA systems in frequency-selective fading channels were considered. The liter-
ature on single-user fading channel receivers and on multiuser demodulation was
reviewed in Chapter 2. The problems to be analyzed in more detail were identified
based on the review.

The approximation of ideal infinite memory-length linear multiuser detectors
by finite memory-length detectors in asynchronous CDMA systems was consid-
ered in Chapter 3. The performance of the finite memory-length detectors was
analyzed. It was shown that the FIR detectors can be made near-far resistant
under a given ratio between maximum and minimum received power of users by
selecting an appropriate memory-length. Numerical examples demonstrated the
fact that moderate memory-lengths of the FIR detectors are sufficient to achieve
the performance of the ideal IIR detectors even under a severe near-far problem.
The required memory-length was shown to depend on other system parameters,
especially on the ratio of maximum and minimum received powers.

Multiuser demodulation in relatively fast fading channels was the topic of Chap-
ter 4. The optimal maximum likelihood sequence detector was derived. Due to
the prohibitive complexity of the optimal receiver, suboptimal demodulators were
considered. They decouple the data detection and complex channel coefficient
estimation and estimate the channel coefficients for all users separately after sup-
pressing the MAI. Decorrelating and parallel interference cancellation multiuser
receivers were considered. The results show that the decoupled complex channel
coefficient estimation yields excellent performance in comparison to joint LMMSE
estimation. Furthermore, it was concluded that optimal or near-optimal channel
estimation filters are crucial in data transmission where very low BER is required.
In speech transmission, fixed channel estimation filters were shown to give satis-
factory performance in most cases. The DA complex channel coefficient estimation
was shown to be more robust than the DD complex channel coefficient estimation,
which may suffer from BER saturation caused by hang-ups at high SNR’s. The
DD complex channel coefficient estimation was noted to be somewhat simpler to
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be implemented than the DA complex channel coefficient estimation. The PIC re-
ceiver was demonstrated to achieve better performance in known channels than the
decorrelating receiver, but it was observed to be more sensitive to complex channel
coefficient estimation errors than the decorrelating receiver. At high channel loads
the PIC receiver was seen to suffer from BER saturation, whereas the decorrelating
receiver was demonstrated to be free of the BER saturation.

The implementation issues of the multiuser receivers in dynamic CDMA sys-
tems were analyzed in Chapter 5. Implementation of linear multiuser detectors in
synchronous and asynchronous CDMA systems was studied. Algorithms for ideal
linear decorrelating or LMMSE detector computation were derived. The detector
computation was shown to have a cubic dependence on the number of users times
the number of multipath components. Iterative detectors were investigated to re-
duce the complexity of the linear detectors. Steepest descent, conjugate gradient,
and preconditioned conjugate gradient algorithms were proposed for decorrelating
and LMMSE detector implementation. The computational requirements for one
iteration were shown to be a quadratic function of the number of users times the
number of multipath components. Furthermore, the iterative detectors were proved
to be more applicable to parallel implementation than the ideal ones. A sliding
window algorithm utilizing the values computed on the previous symbol interval
was developed to reduce the number of required iterations. Simulation results
demonstrated that a moderate number of iterations gives the same performance
as the ideal detectors have. In the mobile communication example the well-known
fact that the parallel interference cancellation receivers are significantly simpler to
implement than the linear equalizer type receivers was quantified. What is more,
it was demonstrated that the PIC receiver is only moderately more complex to
implement than the conventional matched filter receiver.

6.2. Discussion

The results of the thesis show that the decorrelating multiuser receiver has often
a performance advantage over the hard decision parallel interference cancellation
receiver. This is especially true at high signal-to-noise ratios and/or with a poor
channel complex coefficient estimation accuracy. The price for the performance
advantages of the decorrelating receiver over the PIC receiver is the considerably
higher implementation complexity. The choice between the two receivers depends
clearly on the cost of DSP circuits. As the DSP techniques develop, the implemen-
tation cost may become insignificant sometimes in the future, and the choice of
receiver algorithms can be based on the performance only. However, the parallel
interference cancellation is clearly the choice as long as today’s or the next decade’s
technology is concerned. It should also be noted that the superior performance of
the decorrelating receiver requires very accurate estimation of the delays of the
received signal, which poses another strict implementation requirement. Further-
more, the performance of the PIC algorithms can probably be improved with a
moderate increase in complexity by the partial cancellation [226, 227, 228] men-
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tioned in Section 2.2.3.2.
Although the HD-PIC receivers are more suitable for practice than the linear

equalizer type receivers, the study of linear receivers has been and still is invaluable.
Since the linear receivers are easy to analyze, significant information and insight
about the multiuser demodulation problem can be obtained by studying them.

The attention in this thesis was limited to the linear equalizer type and hard
decision parallel interference cancellation multiuser receivers, since they appeared
to be among the most promising multiuser receiver techniques from the practical
point of view. Therefore, the choice of the PIC receiver is based on the comparison
to the linear equalizer type receivers only. Adaptive decentralized implementations
of the linear equalizer type receivers are significantly simpler than the centralized
ones. If the convergence problems associated to the adaptive receivers can be
overcome in the future, they may appear as one alternative for practical multiuser
receivers. However, the PIC receiver appears to be the most promising one for
the first generation of multiuser receivers. Notably the same principle has been
proposed for several evolving CDMA system standards, as mentioned in Section
1.1.

6.3. Future research directions

There are several interesting open problems in multiuser receivers requiring further
study. Some of them are discussed here in short.

The performance of the parallel interference cancellation receivers can possibly
be improved in some cases. As mentioned in Chapter 2, one alternative is to
weight the cancellation according to the reliability of the MAI estimates [227, 228].
However, a simple and robust way to measure the reliability and to determine the
cancellation weights remains to be found. Since the reliability depends on the state
of the communication channel, the weights should be adapted to the changes in
complex channel coefficients. That poses strict requirements to the speed of such
weight determination. Thus, simple adaptive weighting, as proposed in [225], may
not be fast enough in fading channels.

The thesis has concentrated on the reception of transmissions without forward
error correction coding. This was reasonable, since the emphasis was on the re-
ceiver algorithms to achieve coherent detection, i.e., to estimate the fading channel
coefficients reliably. From the data detection point of view channel encoding should
be taken into consideration. The encoded transmission and reception for CDMA
systems utilizing multiuser receivers are important research problems. The over-
all signal design (design of modulation and coding) for multiuser channels with
some efficient low complexity joint decoding algorithms for all users would be of
major interest. The goal could be to design a superior signal structure yielding
the best possible performance with a given degree of decoding complexity. That
would solve the spreading-coding tradeoff problem for the particular scenario. The
problem is probably intractable, but an iterative process towards that goal should
be continued.
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The impact of several system level aspects to the multiuser receiver performance
would be worth investigating. The same applies also vice versa. The impact of
multiuser receivers on the overall system capacity has not been analyzed thoroughly
yet. For example, the effect of the existence of multiple cells is often neglected in
the multiuser receiver analysis. Multiuser receivers could naturally handle the
intracell MAI by exploiting some ordinary multiuser receiver, e.g., a PIC receiver.
The intercell MAI, on the other hand, could be compressed by some decentralized
receiver technique. Multiuser receiver design and receiver performance in CDMA
systems with multiple data rates in realistic fading channels has been studied very
little. The application of groupwise multiuser receivers, where grouping could be
based on the data rates of the users, appears as an interesting alternative [249].
The performance of multiuser receivers with antenna arrays should also be taken
into consideration in the studies.

Centralized multiuser receivers have been considered in this thesis. There are,
however, several applications (e.g., downlink receiver of a mobile communication
system), where decentralized receivers need to be applied. There has been a con-
siderable amount of interest in decentralized adaptive receivers, as discussed in
Chapter 2. Several open problems still exist. A most severe problem is the fact
that there are convergence problems associated with most adaptive receivers due
to the large number of taps required by direct form FIR filters. Therefore, there is
room for further work on dimension reduction techniques to reduce the number of
filter taps needed, as well as for work on efficient adaptive algorithms to enhance
the convergence.

The effect of optimal and suboptimal channel estimation filters to the multiuser
receiver performance was studied in this thesis. However, there are only prelimi-
nary results on the application of adaptive channel estimation filters in conjunction
with multiuser receivers [57]. More work on the performance of different adaptive
algorithms is required. In general, the impact of various practical nonidealities
(e.g., delay estimation errors and quantization in DSP hardware) to the perfor-
mance of the receivers should be considered. The performance of the multiuser
receivers with more realistic channel models and system parameters should be
studied. The analysis of all real-life nonidealities is impossible, and Monte-Carlo
computer simulations of nonidealities are intractable due to long simulation times
and incomplete models for nonidealities. Thus, it will be necessary to carry out
hardware simulations and construct testbeds and trial systems to determine the
practical feasibility of multiuser demodulation for future communication systems.
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[39] Kärkkäinen K (1996) Code Families and Their Performance Measures for CDMA
and Military Spread-Spectrum Systems. Acta Universitatis Ouluensis C89, Univer-
sity of Oulu Press, Oulu, Finland.

[40] Batra A & Barry JR (1995) Blind cancellation of co-channel interference. Proc.
IEEE Global Telecommunication Conference (GLOBECOM), Singapore, 1: p 157–
162.

[41] Haykin S (1991) Adaptive Filter Theory Prentice Hall, Englewood Cliffs, New Jer-
sey, USA, 2nd edn.

[42] Widrow B & Stearns SD (1985) Adaptive Signal Processing. Prentice-Hall, Engle-
wood Cliffs, New Jersey, USA.

[43] Schneider KS (1979) Optimum detection of code division multiplexed signals. IEEE
Transactions on Aerospace and Electronic Systems 15(1): p 181–185.

[44] Kashihara TK (1980) Adaptive cancellation of mutual interference in spread spec-
trum multiple access. Proc. IEEE International Conference on Communications
(ICC), p 44.4.1–44.4.5.

[45] Kohno R, Imai H & Hatori M (1983) Cancellation technique of co-channel interfer-
ence in asynchronous spread-spectrum multiple-access systems. IEICE Transactions
on Communications 65-A: p 416–423.
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Stability analysis of linear detectors

Proof of equations (3.14) and (3.15): We define partitions

RN =

(
RN−1 γN−1

γ⊤
N−1 RN(0)

)
∈ IRNK×NK , (A1.1)

where RN−1 ∈ IR(N−1)K×(N−1)K ,

γN−1 =
(

0K · · · 0K RN (1)
)⊤ ∈ IR(N−1)K×K , (A1.2)

and

TN = R−1
N =

(
CN−1 αN−1

α⊤
N−1 TN,N (N)

)
∈ IRNK×NK , (A1.3)

where CN−1 ∈ IR(N−1)K×(N−1)K , and αN−1 ∈ IR(N−1)K×K .
By applying the matrix inversion formulae [88, pp. 571-572]

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1, (A1.4)

(
A B
C D

)−1

=

(
(A − BD−1C)−1 −(A− BD−1C)−1BD−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
, (A1.5)

and the fact that RN and TN are symmetric we obtain the following recursion
formulae

CN−1 = TN−1 + TN−1γN−1TN,N(N)γ⊤
N−1TN−1, (A1.6)

α⊤
N−1 = −TN,N(N)γ⊤

N−1TN−1. (A1.7)

Now (3.14) and (3.15) follow by the definitions of TN−1, γN−1, and αN−1. ⋄
Proof of Proposition 1: Assume that the decorrelating detector is stable,

and assume that integer j is such that N → ∞ implies (N − j) → ∞1. Then

1Condition states that j is such that its distance to N approaches infinity as N approaches
infinity. The condition is satisfied, e.g., if N = cj, where c is an arbitrary constant. For example,
since N = 2P + 1, it follows that N → ∞ ⇒ P → ∞.
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we have by the stability of the decorrelating detector TN−1,j(N − 1) → 0K , as
N → ∞. Assume that both i and j are such that N → ∞ implies (N − i) → ∞
and (N − j) → ∞. Then the increment part in (3.14) approaches zero matrix
as N → ∞, since both TN−1,i(N − 1) and TN−1,j(N − 1) → 0K , as N → ∞.
This guarantees the existence of a unique asymptotic limit for Ti,j(N − 1). Thus,
the uniqueness of the blocks Ti,P+1(N − 1), i = −P, . . . , P follows. Since the
decorrelating detector DN consists of the blocks Ti,P+1(N − 1), i = −P, . . . , P the
uniqueness of the IIR decorrelating detector has been shown. The uniqueness of
the LMMSE detector follows with exactly similar arguments. The uniqueness of
the noise-whitening detector follows easily from the uniqueness of the decorrelating
detector by analyzing the Cholesky factor of TN as N → ∞. ⋄

Proof of Proposition 2: The result follows by manipulation of (3.11). By
the definition of R̄(n), i.e., by R̄ =

(
ζ1,R(n), ζ2

)
∈ IRNK×(N+2)K , we can write

R̄(n)⊤(R(n))−1R̄(n) =




ζ⊤
1 (R(n))−1ζ1 ζ⊤

1 ζ⊤
1 (R(n))−1ζ2

ζ1 R(n) ζ2

ζ⊤
2 (R(n))−1ζ1 ζ⊤

2 ζ⊤
2 (R(n))−1ζ2


 . (A1.8)

Thus, except for the edges (the first and last K columns and rows) the matrix

H̄(n) = (R̄(n)⊤(R(n))−1R̄(n) + σ2Ē−1) (A1.9)

is the same as
H = (R(n) + σ2(E(n))−1). (A1.10)

If the assumptions of the Proposition 2 are valid, TN,1(N) → 0, as N → ∞, and

ζ⊤
1 (R(n))−1ζ2 = R(n−P−1)(1)T⊤

N,1R
⊤(n+P+1)(1) → 0, as N → ∞. (A1.11)

By utilizing the fact that the mathematical structure of the decorrelating and the
LMMSE detectors is similar, it can be seen from (3.14) that the effect of the first
and the last diagonal blocks of H̄(n) on the middle block column of (H̄(n))−1 goes
to zero as N → ∞. Thus, we have shown that

mbc
{
(H̄(n))−1

}
→ mbc

{
H−1

}
, as N → ∞. (A1.12)

Recall that the optimal FIR LMMSE detector is the middle block column of
(R(n))−1R̄(n)(H̄(n))−1 by (3.11). It is easy to verify by definitions that

(R(n))−1R̄(n) =
(

(R(n))−1ζ1 INK (R(n))−1ζ2

)
. (A1.13)

Matrix (R(n))−1R̄(n) is now identity except the first and last block columns.
By the stability assumptions the first and last blocks of the middle block col-
umn of (H̄(n))−1 approach zero so that the effect of the first and last block of
matrix (R(n))−1R̄(n) vanishes asymptotically. Thus, (R(n))−1R̄(n) acts asymp-
totically (N → ∞) as an identity to the middle block column of the matrix
(R(n))−1R̄(n)H̄(n). Proposition 2 is now proved by the above and (A1.12). ⋄
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Discussion on expression (3.19) to be valid: First note that by the
definition of R̄(n), we have

R̄(n)R̄(n)⊤ = R2 + ζ1ζ
⊤
1 + ζ2ζ

⊤
2 . (A1.14)

The structure of the matrix R̄(n)R̄(n)⊤ is similar to that of R(n). Furthermore, the
matrix is the same as R2 except the perturbations caused by ζ1ζ

⊤
1 and ζ2ζ

⊤
2 to the

first and last diagonal blocks. Now it easy to understand, that under conditions
similar to (3.17) being true the middle block row (or column) of (R̄(n)R̄(n)⊤)−1

approaches the middle block row (or column) of R−2. If, on the other hand, that is
the case, it is easy to see from (3.10) that D̄[d]N → D[d]N , as N → ∞, because the

zero blocks of R̄(n) remove the effect of perturbations caused by ζ1ζ
⊤
1 and ζ2ζ

⊤
2

to the first and last diagonal blocks of R̄(n)R̄(n)⊤ as N is sufficiently large.
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Eigenanalysis of detection based on conjugate
gradient algorithm

Let the correlation matrix (2.37) be presented with the eigenvalue decomposition
[291, Chap. 6]

R(n) = UΛU⊤, (A2.1)

where
Λ = diag(λ1, λ2, . . . , λNK), (A2.2)

λi, i = {1, 2, . . . , NK} are the eigenvalues of R(n), and the matrix U ∈ IRNK×NK

includes the corresponding orthonormal eigenvectors in its columns. Let ui be
the ith column of U . Let the estimation error vector of the decorrelating detector
output be

ǫd = ĥd − y =
[
(R(n))−1 − INK

]
y =

NK∑

i=1

(
1

λi
− 1)(u⊤

i y)ui, (A2.3)

and similarly the estimation error vector of the LMMSE detector output

ǫms = ĥms − y. (A2.4)

To explain the better performance of the CG method in comparison to the ideal
decorrelating detector it is first justified, why

‖ǫms‖ < ‖ǫd‖ (A2.5)

tend to be true, when there is no near-far problem. The result in (A2.5) states
that the LMMSE detector is a compromise between the conventional single user
matched filter detector and the decorrelating detector. Assume that the energies
satisfy Ek = El, ∀k, l and

γ =
Ek

σ2
. (A2.6)

Then it follows from (A2.3)

‖ǫd‖2 =
NK∑

i=1

(
1

λi
− 1)2(u⊤

i y)2 =
NK∑

i=1

f(λi)(u
⊤
i y)2, (A2.7)
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where f(x) = ( 1
x − 1)2. Since the LMMSE detector is similar to the decorrelating

detector R−1(n) replaced by (R(n) + γINK)−1, it follows that

‖ǫms‖2 =

NK∑

i=1

(
1

λi + γ−1
− 1)2(u⊤

i y)2 =

NK∑

i=1

f(λi + γ−1)(u⊤
i y)2, (A2.8)

By its derivative
df(x)

dx
= 2(

1

x2
− 1

x3
) (A2.9)

it is easy to see that f(x) decreases very fast, when x < 1, and increases slowly,
when x > 1. Usually some of the eigenvalues λi are greater than 1 and some are
smaller than 1. This implies that the values f(λi + γ−1) tend to be much smaller
than values f(λi), when λi < 1. Similarly, the values f(λi + γ−1) tend to be only
slightly larger than values f(λi), when λi > 1 justifying

‖ǫms‖ < ‖ǫd‖. (A2.10)

The CG method used for decorrelating detection reduces distance

ε(m) = ĥ(m) − ĥd. (A2.11)

at each iteration by smoothly increasing the subspace in which Ω(h) is minimized.
Assume that the initial guess is

ĥ(0) = y. (A2.12)

The LMMSE detector output is geometrically between the MF bank and decorre-
lating detector output vectors. Therefore, it is understandable that there exists m
such that for the mth iteration the estimate ĥ(m) is closer to ĥms than to ĥd. The
CG estimate in a way sweeps through the LMMSE estimate.
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