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ABSTRACT Internet of Things (IoT) technology has become ubiquitous in a multitude of applications
and its use is growing. However, the expansion of IoT faces a major difficulty: scalability, that is, very
dense deployment of communicating devices is currently limited. In long-range networks, such as LoRa,
the downlink is critical because it limits the number of acknowledgements that can be sent, and consequently
reliability. It also limits the possibility to update the devices, which could be critical when they are deployed
for decades. To overcome those problems, we propose a solution, inspired by Non Orthogonal Multiple
Access (NOMA) techniques, to increase by at least one order of magnitude the number of devices that can
be addressed. While the approach differentiates the devices by the power allocated to them, it differs from
the vast majority of previous works on power domain NOMA because it does not require interference
cancellation. Instead, it benefits from the spectrum spreading of the modulation scheme (chirp spread
spectrum), where, at the end of the decoding phase, the information carried by a symbol is found in the
position of a peak in the Fourier domain. In the vast majority of cases, the information from different users
results in different peak positions, not creating any interference. In that sense, we get closer to avoidance
schemes such as time or frequency hopping, but without using a code. In this paper, we propose a new
solution for NOMA in the power domain that does not suffer from the limitations induced by interference
cancellation residues. The proposed system, including preamble detection and channel estimation, is
presented and evaluated by simulations. We demonstrate that our proposed scheme increases the number
of devices by one order of magnitude compared to the current system which allows addressing only one
user at a time and maintains full compatibility with the LoRa physical layer standard.

INDEX TERMS Chirp Spread Spectrum, LoRa, Multiuser detector, Power allocation, Scalability

I. INTRODUCTION

T
HE Internet of Things (IoT) is rapidly growing with
more than 20 billion devices expected to be connected

in the next 5 years, including more than 2 billion connected
through Low Power Wide Area Networks (LPWAN) [1].
Many applications, such as smart metering [2], [3], parking
space monitoring [4], [5], building monitoring [6], and smart
agriculture [7], [8] require low power operations and wide
communication coverage. LPWAN provides a good solution
for such requirements and LoRa is one of those protocols
which can enable such methods. Still, challenges remain in
order to provide robust and reliable communication links
and face the huge increase in the number of communicating
devices.

A. RELATED WORKS

So far the researches on LoRaWAN scalability have mainly
concerned the uplink and the Medium Access Control (MAC)
layer. Challenges of the radio channel access and the scala-
bility are discussed in [9]. Real world deployments of IoT
networks and LoRaWAN experimental analyses have been
conducted. The impact of an adaptive data rate is illustrated
as well as the impact of duty cycle restrictions on the LoRa
network. Scalability limits of LoRaWAN have been studied
for instance in [10], [11].

It is limited because of the regulatory constraints on the
channel and the use of random channel access rather than
because of LoRa technical limitations. In [11], it is shown
that the network can support only up to 120 nodes with a
data extraction rate over 0.9 and using a single gateway, a
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Spreading Factor (SF) of 12, a bandwidth of 125 kHz and
forward error correction with Code Rate 4/5. The authors
proposed a dynamic channel parameter setting (transmission
power, SF, bandwidth, and code rate) with multiple gateways
and showed a possible increase by one order of magnitude of
the number of users.

At the PHY layer, less work has been done and open
problems still remain. Still in the uplink, capture effect is
analyzed in [9], [12] and gives the idea of separating users
based on the received power. The authors in [13] proposed
to decode two desynchronized LoRa-like signals, received
concurrently in the same channel, with the same SF. The
approach is based on estimating the time shift between the
two received signals but the decoding works only if the signal
that has the highest power is received first. In [14] a different
approach is also proposed that decodes superposed LoRa
signals using the chirps timing information.

Those ideas have been further developed and extended
using a Serial Interference Cancellation (SIC) scheme to
decode signals from multiple users in the uplink [12], [15],
[16]. This leads to a significant increase in the possible
number of devices connected to the network. For instance,
in [16], a SIC receiver allows a receiver to recover multiple
signals transmitted in the same time slot (but not necessarily
synchronized) and with the same SF. A complete receiver
structure, with detection of packets, channel estimation, de-
tection of symbols, and interference cancellation is proposed
and shown to support 20 times more nodes than the classic
LoRa receiver. Practical implementation issues remain, how-
ever, to be addressed.

In [17] it is shown that multiple gateways and directional
antennas may be used to increase devices’ density by reduc-
ing the number of devices connected to a single antenna. This
approach can be combined with our proposal, which only
considers the Physical (PHY) layer.

The solutions proposed in the previously mentioned papers
concentrate solely on the uplink direction. However, it has
been shown [18] that the duty cycle restricts both the scal-
ability and the network’s reliability. In [19] an event-driven
simulator is implemented with multiple gateways and shows
that the network performance is significantly impacted by the
downlink duty cycle restrictions. The duty cycle is indeed
identified as the main scalability limiting factor in LoRaWAN
[20], [21].

However, to date, still only a few works tackle this im-
portant aspect of scalability issues of LoRa downlink traffic.
The authors in [22] present and evaluate gateway selection
solutions to improve the performance of LoRaWAN down-
link communications in terms of throughput. They consider
gateway selection algorithms based on load balancing and
received signal strength indicator with different deployment
scenarios.

Van et al. [23] conducts an analysis of the downlink
frame issue using the ns-3 network simulator. The authors
illustrate the main reasons behind the gateways congestion
by emphasizing the duty cycle limitation as well as the half-

duplex problem. They also propose a multi-gateway system
and assess the improvements based on lower duty cycle
saturation as well as load balancing among the gateways.
However, there is no explanation of how the load balancing
is performed.

A comprehensive analysis of the effects of downlink traffic
on LoRaWAN capacity was provided in recent paper [24].
The authors describe how the gateway’s half-duplex mode
and the sequential transmission leads to the duty cycle satura-
tion for downlink traffic. They also propose a multi-gateway
deployment, parallel transmission of downlink frames on the
same channel but with different orthogonal SF, and load
balancing among the deployed multiple gateways.

B. CONTRIBUTION

In the previously cited papers, no solution is proposed to
improve the situation at the PHY layer. In comparison to
the uplink, the downlink benefits from a crucial advantage:
the transmission to all users originates from the same ac-
cess point, allowing accurate synchronization of signals and
power allocation. Leveraging on this, we propose a power-
domain Non Orthogonal Multiple Access (NOMA) scheme
[25] that limits the impact of the duty cycle, half-duplex
mode, and sequential transmission of a LoRa network. Be-
sides, the complexity at the receiver level must remain low,
prohibiting the use of many advanced methods, so that a
SIC should be avoiding or would significantly limit the
possible number of simultaneous transmissions in practical
systems. Taking benefit from the Chirp Spread Spectrum
(CSS) modulation, the main novelty in our work is to propose
a power domain NOMA scheme without the need of a SIC
receiver. In addition to reducing the complexity, it also avoids
the residual error resulting from signal cancellation, which
means a significantly easier and less limited scheme to be
implemented in real systems.

The main contributions of the paper can be summarized as
follows:

1) We propose a superposition transmission scheme for
synchronized (downlink) CSS modulation which does
not require SIC.

2) We derive the Maximum Likelihood (ML) optimal
Multi User Detector (MUD). Due to its high complex-
ity, it cannot be implemented in practice, we there-
fore develop an approximation via the Cross Entropy
Method (CEM). Still too complex for end devices, this
receiver serves us as a reference.

3) We develop a suboptimal detection scheme which sig-
nificantly reduces the computation time compared with
the CEM, specifically designed for low cost devices.
This scheme does not require interference cancellation.
It benefits from the collision avoidance inherent in
CSS. This is a significant advantage of the method
since it avoids the limitations due to the propagation
of residual errors after each cancellation. Preamble
detection and channel estimation scheme are included
in our simulation results.

2 VOLUME 8, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034973, IEEE Access

Angesom A. Tesfay et al.: Multiuser Detection for Downlink Communication in LoRa-like Networks

4) We propose Power Allocation (PA) schemes to mini-
mize error probabilities and increase fairness between
users having good or bad channels.

Our scheme is very different from traditional NOMA, both
for the decoding approach and the PA scheme. Indeed, the
information in the decoded signal is carried by a frequency,
i.e., a peak in the Fourier domain. Most of the time, users
carry different information so that their peaks fall at different
positions, avoiding each other and the interference does not
accumulate. The scheme is more similar to time or frequency
hopping than to superposition coding or Direct Sequence
Code Division Multiple Access and does not require a spe-
cific code. As far as we know, this is the first time such
a NOMA scheme is proposed. A few papers have studied
downlink NOMA without SIC. In [26], a Pulse-Amplitude
modulation is studied and the Gray labeling without SIC very
close to a system using SIC. In [27], a downlink NOMA
technique without SIC is proposed using an algebraic lattice
to design modulations that guarantee all users to achieve full
diversity gain. These approaches, although not relying on
SIC, use a superposition coding scheme, and try to maximize
capacity or diversity gain. Besides, they are limited in the
number of users and only consider two. On the contrary, the
CSS that is used in LoRa is not maximizing the transmission
rate but our proposal can handle many more users. The
avoidance rather than superposition approach avoids the can-
cellation residue that significantly limits the possible number
of simultaneous transmissions.

We keep our analysis at the PHY layer level, although
characterizing in terms of goodput and latency could also
certainly highlight the benefits of our method. However, it
would be necessary to include channel coding schemes, pro-
tocol solutions, and re-transmission strategies that go beyond
the scope of this paper.

C. ORGANIZATION OF THE PAPER

This paper is organized as follows: the description of LoRa
technology is provided in section II. In section III, the pro-
posed multiple user transmission and reception schemes are
presented. Two power allocation strategies are described in
section III-D and section IV analyzes the simulation results.
Section V concludes the paper.

II. LORA TECHNOLOGY

In this section, we provide a short background for the down-
link protocol proposed in the widely used LoRaWAN.

A. LORAWAN DOWNLINK CAPABILITIES

LoRa defines a PHY Layer protocol and LoRaWAN is an
open standard defining a MAC protocol [28]. The downlink
capabilities differ depending on the node class (A, B or C)
[29]:

• Class A devices are of the lowest cost and energy
consuming nodes. They initiate the communication with
a pure ALOHA medium access. A transmission is fol-
lowed by two short downlink windows to receive a

response from the gateway. If the downlink traffic is
received in the first window, the second is disabled.

• Class B devices allow additional downlink traffic. They
are synchronized using periodic beacons sent by the
gateway in order to open an additional receive window
regardless of prior successful uplink transmissions. This
is achieved at the expense of some additional power
consumption in the end nodes.

• Class C devices are always listening and, consequently,
can receive packets at any time. They usually require
a permanent power source and can be used as access
points.

For battery operated class A or B devices and with an ex-
pected lifetime of several years, the downlink is very limited
in terms of the quantity of information that can be transmitted
because a very limited number of slots are available. How-
ever, this is not the only limitation. LoRa operates in the
license-free Industrial, Scientific and Medical (ISM) radio
band, and consequently, suffer severe limitations with respect
to channel access. Because the devices do not listen to the
channel before transmitting, the devices must adhere to the
duty cycle regulation imposed by the regulatory bodies, such
as the European Telecommunications Standards Institute
(ETSI) [30]. This restriction limits for a transmitting device
the time it can occupy the channel, for instance, 1% in Europe
(868−868.6 MHz band). This duty cycle is significant for the
downlink transmission and the gateway is extremely affected,
since after receiving multiple uplink frames, it is not able to
send downlink frames to all of the devices. This constraint
limits the capacity of downlink transmission in terms of the
maximum traffic supported and, consequently, impacts the
scalability of LoRaWAN networks.

B. CHIRP SPREAD SPECTRUM MODULATION

LoRa is based on CSS modulation [31], [32]. This modula-
tion is defined by its SF, ranging from 7 to 12 (SF 6 also
exists but corresponds in fact to a very different modulation
scheme and smaller SF also exists in the 2.4 GHz band). It
provides a trade-off between rate and communication range
for a fixed Bandwidth (B) [33]. The symbol consists in a
linear frequency change over the symbol duration Ts, where
Ts = 2SFT , T = 1/B. There are SF bits in one symbol and
increasing SF by 1 doubles the symbol duration with only
one added bit.

The instantaneous frequency can be described as the
derivative of the phase ϕ(t), i.e., f(t) = 1

2π
dϕ(t)
dt . The raw

upchirp x(t) is then defined by its instantaneous frequency
f(t) = Bt/Ts and given by

x(t) = e2ıπ
B

2Ts
t2 for t ∈

[

−
Ts

2
,
Ts

2

[

. (1)

The transmitted chirp of user i at time qTs, q ∈ {0, Q − 1},
where Q is the number of symbols transmitted in a packet,
is generated by applying left-shifting of the raw up-chirp
by δ

(i)
q = m

(i)
q T , as shown in Fig. 1. The transmitted data

symbol is represented by m
(i)
q ∈ {0, ..., 2SF −1}. The coded

VOLUME 8, 2020 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034973, IEEE Access

Angesom A. Tesfay et al.: Multiuser Detection for Downlink Communication in LoRa-like Networks

chirp of user i associated with the q-th symbol is

x(i)
q (t) =























exp
(

2ıπ
[

B
2Ts

t2 +
m(i)

q

Ts
t
])

,

t ∈
[

−Ts

2 , Ts

2 − δ
(i)
q

[

,

exp
(

2ıπ
[

B
2Ts

t2 +
(m(i)

q

Ts
−B

)

t
])

,

t ∈
[

Ts

2 − δ
(i)
q , Ts

2

[

.

(2)

Finally, the complex envelope of the transmitted signal of the
ith user is

x(i)(t) =

Q−1
∑

q=0

x(i)
q (t− qTs). (3)

(a)	Raw	Upchirp (b) Coded chirp  

FIGURE 1: Raw chirp and Coded chirp associated with m
(i)
q .

C. POWER CONSIDERATIONS

The maximum transmit power in an ISM band is restricted.
For LoRa (at 868 MHz), in Europe, this maximum is set to
14 dBm for uplink and 27 dBm for downlink. The noise level
of a receiver at room temperature is

N0(dBm) = −174 + 10 log10(B) + NF, (4)

where the first term is the thermal noise in 1 Hz of bandwidth
and can only be affected by changing the temperature of the
receiver. NF is the receiver noise figure which depends on
the hardware implementation and a typical 6 dB noise figure
is considered [33]. If we consider B = 250 kHz, the noise
power density at the receiver is −114 dBm.

III. PROPOSED MULTIUSER SCHEME

In this section, we present our proposed scheme. We first
present the transmitter design and the wireless channel
model. We then present our method for the receiver, starting
from the optimal detector formulation via the Maximum
Likelihood Detector (MLD) which we show has a combina-
torial complexity. To overcome this limitation, we propose an
algorithm which approximates the MLD with a much lower
complexity that is based on the CEM [34]. To further reduce
the computational complexity, we propose a low-complexity
multiuser detector that only searches for the closest peak to
the expected one. It is to be noted that the CEM based and
the low-complexity detectors will be used as references for
comparison. We did not found any competitive method in the

literature nor theoretical bounds for a method equivalent to
our NOMA proposal. The only one which would be relevant
would be a pure ALOHA scheme or a perfect Time Division
Multiple Access (TDMA) approach. Even if it is impractical
in real networks, this latter approach will be used also as a
comparison but our scheme significantly outperforms both.

We will also propose in this section two PA schemes. The
first one avoids ambiguities when two users transmit the same
information at the same time. The second distributes the
powers to ensure a constant distance between the power of
the desired peak and that of the nearest lower peak to improve
equity.

A. TRANSMITTED SIGNAL

To avoid the limitation due to the duty cycle, we propose to
transmit N frames simultaneously, with the same SF and on
the same frequency band. It is possible with Class B devices
that can be synchronized and in receive mode during the same
time frame. The objective is then to design a communication
strategy that allows us to superimpose N users in the duration
of a single packet.

The idea is to generate information streams for N end-
devices, modulate them using the CSS scheme, then add
all signals with different allocated powers to form a single
packet. A preamble and a common header are added at the
packet start. The information about the number of users and
the PA scheme is added in the header. At the receiver side,
the receivers select and decode the signal which corresponds
to their allocated power. The combined transmitted signal is

x(t) =
N
∑

i=1

√

p(i) x(i)(t), (5)

where p(i) is the power allocated to user i.

B. CHANNEL MODEL

We consider one cell of radius R with the gateway placed
at the center. A large number of devices are uniformly dis-
tributed within the cell and the gateway has to send infor-
mation to N of them. The distance from end-device i to the
gateway is denoted by d(i). The propagation channel is con-
sidered block and flat fading, so a single constant coefficient
throughout the packet’s duration. We consider path loss and
Rayleigh multipath fading χi. The signal amplitude decays
with increasing distance according to d(i)

−η/2
, where η is the

path loss exponent. The channel attenuation (in amplitude) is
expressed as h(i) = d(i)

−η/2
· χ(i).

In the following, the user we are trying to decode is
denoted by j and the signal it receives is

r(j)(t) = h(j)
N
∑

i=1

√

p(i) x(i)(t) + w(j)(t), (6)

where w(j)(t) is a complex Gaussian noise and h(j) the
channel between the access point and device j.
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C. RECEIVER DESIGN

The receiver acts in two steps: preamble detection and de-
modulation process.

First, the correlation between the received signal and the
known preamble sequence is calculated to detect the packet
and its start. This detection is easy because the preamble is
common to all the users, hence the power dedicated to it is
large. This step also allows us to estimate the user’s channel
from the maximum value of the correlation.

Second, we are interested in the decoding of symbol q. We
sample the received signal and note the samples

r(j)q [n] = r(j)(nT + qMT ),

where n is limited to the set Ω = {− 2SF

2 , . . . , 2SF

2 − 1}. We
have

r(j)q [n] = h(j)
N
∑

i=1

√

p(i) x(i)
q [n] + w(j)

q [n], (7)

where w
(j)
q [n] ∼ NC(0, σ

2
n) is a complex Gaussian thermal

noise (discussed in section II-C) and x
(i)
q [n] = x

(i)
q (nT ).

The received samples r
(j)
q [n] are then multiplied by the

conjugate complex form of the sampled upchirp. The sam-
pled upchirp is defined for n ∈ Ω and denoted by x[n] =
x(nT ). The signal corresponding to the q-th symbol after de-
chirping is written as

y(j)q [n] = r(j)q [n]x∗[n],

= h(j)
N
∑

i=1

√

p(i)e2ıπ
m

(i)
q

2SF n + w̃(j)
q [n].

(8)

To make a decision, we use the ML estimator. It is equivalent
to work with r

(j)
q [n], y(j)q [n] or even in the Fourier domain.

We did not get any tractable solution in the time domain so,
after compensating for the channel gain multiplying y

(j)
q [n]

by h(j)∗ (the ∗ denotes the complex conjugate -in the follow-
ing formulations, we assume a perfect channel estimation but
in the simulation part the estimated channel will be used),
we perform a Fast Fourier transform (FFT), as the traditional
LoRa receiver:

Z(j)
q [k] = Re

{

2SF−1
−1

∑

n=−2SF−1

(

h(j)∗y(j)q [n]
)

e−2ıπ nk

2SF

}

,

= |h(j)|2
N
∑

i=1

√

p(i)δ[k −m(i)
q ] +W (j)

q [k].

(9)

where W
(j)
q [k] ∼ NC(0, |h

(j)∗|2σ2
n/2) is the FFT of the

noise, δ[.] is Kronecker delta function, δ[n] = 1 for n = 0
and δ[n] = 0 for n 6= 0. We observe that the obtained vector
presents peaks at the positions corresponding to the source
symbols (δ[k −m

(i)
q ]).

The basic LoRa detector searches for the strongest peak
to decode a single user. This observation will be used in the
receiver architectures we propose.

Based on (9), we note

Z
(j)
q = |h(j)|2X(j)

q +W
(j)
q , (10)

which is the 2SF -dimensional received vector after FFT.
We want to implement a multiuser detection scheme. To
do so, we express the log likelihood function. mq =

{m
(1)
q , . . . ,m

(N)
q } is the information vector and we assume

an independent and identically distributed noise vector W(j)
q :

Λ = logP
(

Z
(j)
q

∣

∣

∣h(j),mq

)

,

= log
2SF

−1

Π
k=0

P

(

Z(j)
q [k]

∣

∣

∣h(j),mq

)

,

=
2SF

−1
∑

k=0

logP
(

|h(j)|2X(j)
q [k] +W (j)[k]

∣

∣

∣h(j),mq

)

.

(11)

Because all operations are linear and given mq ,
|h(j)|2X

(j)
q [k] +W

(j)
q [k] is a Gaussian random variable with

mean |h(j)|2X
(j)
q [k], variance σ2

n and we have

m̂q = argmax
mq∈Q

2SF
−1∑

k=0

log




1√

π|h(j)|2σ2
n

e
−

(

Z
(j)
q [k]−|h(j)|2X

(j)
q [k]

)2

|h(j)|2σ2
n





= argmin
mq∈Q

‖Z(j)
q − |h(j)|2X(j)

q ‖2,

(12)

where Q :=
[

0, . . . , 2SF − 1
]N

is the set of all possible
symbols. As expected in the Gaussian independent noise
case, maximizing the likelihood function Λ is equivalent to
minimizing the Euclidean distance between the transmitted
signal X(j)

q and the received one Z(j)
q . However, this problem

does not give an analytical expression for the solution. The
difficulty is that m(i)

q can take any integer value between 0
and 2SF−1, meaning that with N users, the MLD is required
to evaluate 2N.SF possible source combinations which is
impractical.

One common approach to overcoming the combinatorial
complexity is relaxing the problem by assuming that m
has a real-valued support. However, in our model this re-
laxation would not simplify the solution due to the non-
linear structure of the likelihood function, neither in time
nor in frequency. We therefore develop an alternative solution
which is based on a Monte Carlo sampling technique, known
as the CEM [34].

1) Cross Entropy Multiuser Detector

The CEM is a flexible Monte Carlo technique, which was
originally developed for rare-event probability estimation,
solving combinatorial, continuous, constrained, and noisy
optimization problems [35].

The basic idea is to generate a set of candidate solutions
(mq in our case consisting of N integers in {0, . . . , 2SF −
1}), select the best possible candidates, update the generating
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rule and iterate until convergence is obtained. One important
step is the possible solution generation: what distribution
for mq should be chosen? Let fm(.) be the Probability
Mass Function (PMF) of mq . The proposed cross entropy
algorithm is presented in algorithm 1.

Steps 1 to 3 define some parameters: the number of se-
quences we generate at each iteration, the number of se-
quences we keep to update the distribution and a parameter
that controls the speed of the convergence. Along with two
parameters chosen for the initialisation of the PMF of mq ,
these parameters are important and could be optimized be-
cause they represent a compromise between the complexity
burden and the accuracy of the algorithm. We chose param-
eters that ensure a good convergence rather than a reduced
complexity to perform close to the true ML.

Steps 4 to 9 initialize the PMF of mq . All values are possi-
ble but we give a slightly higher probability to the dominant
peaks. This reduces the necessary number of iterations. An
example is seen in Fig. 2, where the initial fm is represented.
The same PMF is used for each user.

Step 10 starts the main loop. We set the end of iterations
when for each user the probability of a given value is at least
0.85. This probability is set empirically.

From steps 11 to 17, we generate Nseq random sequences
m̃q according to fm and the corresponding decoded vector
Z̃

(j)
q [k]. This requires the channel estimate ĥ(j). The distance

with the true received sequence is also calculated. We chose
Nseq = 2000 to ensure enough variety in the generated
sequences and a good convergence of the algorithm.

Steps 18 and 19 select the Nkeep sequences leading to
the closest received vectors form the truly received one. We
chose Nkeep = 100, also ensuring a good convergence of
the algorithm. These sequences will be used in step 20 to
update fm by reinforcing the weights on symbols that have
been generated in the set of selected sequences. A parameter
δP is needed for this purpose and is empirically set to 0.003,
which has been shown to be a good compromise. A larger
value increases the convergence speed but also the number of
wrong decisions. The process is illustrated in Fig. 3 and Fig.
4, where we show the CEM values of fm per user after 15
and 30 iterations.

In practice, the CEM-MUD still incurs too high a computa-
tional complexity because it needs to generate many samples
and keep generating for several rounds in order to converge
to the true values. Therefore, we propose a new multiuser
approach based on peak detection and collision studies.

Remark: We implemented in algorithm 1 the full MUD. In

fact, when implemented at a specific receiver, the algorithm

can simply focus on the desired user. The stopping rule can

then be adapted (only the probability concerning the desired

user has to exceed the threshold).

2) Proposed Low-Complexity Multiuser Detector

To reduce the complexity we propose a simpler and more
direct strategy. In fact, when a good number of peaks is
found and because the power allocation scheme is known,

Algorithm 1 CEM-MUD for downlink LoRa.

Input: Received vector Z(j)
q , ĥ(j), N

Output: Decoded vector mq

1: Nseq ← 2000 (Number of generated sequences)
2: Nkeep ← 100 (Number of selected sequences)
3: δP ← 0.003 (Update parameter)
4: [p, l]← find peak values and indices of Z(j)

q

5: u← sort p in descending order
6: pos← l(u(1 : N)) % Select the N strongest peaks

7: fm ← N × 2SF matrix with all elements equal to 0.01
8: fm(:, pos)← 0.05
9: fm ← fm/

∑

fm (
∑

fm is the sum of all elements of

fm to normalize and have a probability mass function.)
10: while min of max of each line of fm less than 0.85 do

11: for idx = 1 to Nseq do

12: Generate a vector m̃q according to fm
13: Generate the source vector X̃q from m̃q and (3)
14: R̃

(j)
q [n]← ĥ(j)

X̃q[n]

15: Z̃
(j)
q [k]← Re{FFT (ĥ(l)∗

R̃
(j)
q [n])}

16: d(idx)← ‖Z
(j)
q − Z̃

(j)
q [k]‖2

17: end for

18: d← sort d in ascending order
19: Keep Nkeep sequences with the smallest d
20: Update fm by adding δP at each position given by the

selected sequences and normalizing.
21: end while

22: return m̃q corresponding to the smallest d.

it is straightforward to find the one corresponding to the
desired user. The CSS in fact allows an interferer avoidance
scheme in the Fourier domain at the receiver. In such a case,
it is not necessary to cancel interference from stronger users.
However, collisions, when two users transmit the same infor-
mation at the same time, make things more difficult, and if
not handled properly, may significantly limit the capabilities
of the approach. Our proposed algorithm has the following
two steps:

1) Peak detection using a threshold: the goal is to find the
peaks including the one from the desired user and the
larger ones. For instance, if the desired user is user j
(users are ordered from the strongest to the weakest
allocated power), we define a low enough threshold
that will allow us to detect the j strongest peaks but
high enough such that the weaker peaks will not be
detected.

2) Peak selection using a search method: if exactly j
peaks are detected, we choose the closest one from the
expected received amplitude and its position gives the
information of the desired user. Similarly, if more than
j peaks are detected, weaker peaks have probably col-
lided and we choose the closest one from the expected
received amplitude. Finally, if we detect less than j
peaks, it means that collisions occurred between the j
strongest users. In that case, we analyze all the possible
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FIGURE 2: CEM-MUD as per Algorithm 1, with N = 8 users and SF = 7. This figure represent fm = P(m = k) at the beginning
of the first iteration. Only one user is represented because the PMF fm is the same for all users.
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FIGURE 3: CEM-MUD as per Algorithm 1, with N = 8 users and SF = 7. In this example two collisions occur (mq =
{6, 79, 115, 79, 100, 100, 51, 87}). The figures represent fm at the beginning of the 16th iteration. We can see that if values tend
to gain in probability, the decision cannot be made yet.

collisions cases to choose the most likely and make a
decision.

Both steps (choosing the threshold and making a decision
when less than j peaks are detected) will be described in the
following.

Remark: In the second step when we detect exactly j peaks,

there is a case where we can miss the information of the

desired user, that is when two or more weaker users collided

and result in a peak larger than or equal to the desired user’s

peak but this desired peak is below the threshold or also

collided with another peak. This case is very rare and can be

generally avoided by the power allocation scheme described

in III-D1.

Threshold definition: Recall that we have N users or-
dered from the strongest allocated power to the weakest
one. We consider user j that we want to decode. We fix a
threshold in order to detect the j strongest peaks but not
the N − j weakest ones. The expected amplitude for user
i at receiver j is |h(j)|

√

p(i). The objective for choosing the
optimal threshold is by maximizing

p1 = P

(

|h(j)|
√

p(j) +W j
p [k] > γ

)

,
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FIGURE 4: CEM-MUD as per Algorithm 1, with N = 8 users and SF = 7. In this example two collisions occur (mq =
{6, 79, 115, 79, 100, 100, 51, 87}). The figures represent fm at the beginning of the 31st iteration. We can see that for each user
the probability is clearly converging towards a single value equal to one, all the others being zero. We also see that the decision
is good despite the two collisions that occur between users 2 and 4 and users 5 and 6.

and, at the same time, to minimize

p0 = P

(

|h(j)|
√

p(j+1) +W j
p [k

′] > γ
)

.

where W j
p [k] is the Gaussian noise and k and k′ denote the

frequencies where the peaks fall. If user j is the weakest one
(j = N ) we set p(N+1) = 0.

γ∗ = argmax
γ∈γ

[

P

(

|h(j)|
√

p(j) +W j
p [k] > γ

)

,

1− P

(

|h(j)|
√

p(j+1) +W j
p [k

′] > γ
)]

(13)

We have

p1 = Q

(

γ − h(j)
√

p(j)

σn

)

, (14)

p0 = Q

(

γ − h(j)
√

p(j+1)

σn

)

, (15)

where Q (.) is the Q-function [36]. We have consequently a
multi-objective optimization problem and the Pareto front is

easy to obtain. As a starting point, we will choose

γ = h(j)

√

p(j+1) +
√

p(j)

2
, (16)

but this parameter could be optimized in order to give more
weight to p1.

Making a decision: Let Npk be the number of peaks above
the threshold γ. The number of expected peaks is Nexp = j.
The decision rule is the following:

• If Npk ≥ Nexp, we assume no collision between strong
peaks and select the peak that has the closest value to
the expected one.

• If Npk < Nexp, we assume a collision occurred. We
scan for all possible combinations between the users
1 to j. Let m̆ be such a combination. We create a
vector adding the amplitudes of the peaks that collide.
We ordered the resulting values (including those that
did not collide) and calculate the Euclidean distance
with the ordered detected peaks. Scanning all possible
combinations, we minimize the euclidean distance in
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(12) to select the most probable one and deduce the
estimated information of the desired user.

Algorithm: The resulting proposed solution is given in
algorithm 2.

Step 1 determines the threshold and step 2 finds the peaks
above the threshold. Steps 3 and 4 initialize the value of the
decoded symbol (m0) and the minimum distance (M0).

Steps 5 to 16 are for the case when the number of peaks
is less than the threshold: collision occurred. In that case, we
scan all possible combinations giving the calculated number
of collisions. If the vector received for a generated sequence
is closer to the truly received vector (distance less than M0),
we update the values of m0 and M0. The number of combi-
nations to scan can become important when the number of
users and the number of collisions get large (see table 1) and
alternative strategies should be found for these rare events.

In the case when no collision is detected (the number of
detected peaks is at least the one we expected), we choose
the peak with the closest amplitude to the one we expect (step
18).

Algorithm 2 Proposed Multiuser Detection Algorithm (sin-
gle symbol)

Input: Received vector Z(j)
q , ĥ(j), N , p(j), p(j+1)

Output: Decoded symbol m(j)
q

1: Calculate γ according to (16)
2: u← Z

(j)
q > γ %Get the position of peaks larger than γ.

3: m0 ← 0 % Value of the selected combination

4: M0 ← ‖Z[u]‖2 % Initialize the distance

5: if length(u) < j then

6: while another combination of j−length(u) collisions
exist do

7: Choose a combination m̃q with m the symbol of
user j

8: Generate the source vector X̃q from m̃q and (3)
9: R̃

(j)
q [n]← ĥ(j)

X̃q[n]

10: Z̃
(j)
q [k]← Re{FFT (ĥ(j)∗

R̃
(j)
q [n])}

11: if ‖Z
(j)
q [u]− Z̃

(j)
q [u]‖2 < M0 then

12: m0 ← m
13: M0 ← ‖Z

(j)
q [u]− Z̃

(j)
q [u]‖2

14: end if

15: end while

16: m
(j)
q ← m0

17: else

18: m
(j)
q ← argmin

u

(

‖Z
(j)
q [u]− |ĥ(j)|2

√

p(j)‖2
)

19: end if

20: return m
(j)
q

3) Direct Peak Detection

As a reference, we also implement a detection based on
finding the peak with the closest amplitude to the expected
one. This receiver is the simplest one but does not provide
the means to resolve collisions. The decoding process with

N users is described as follows: search for the N strongest
peaks; select the peak that minimizes the distance between its
amplitude and the expected value |ĥ(j)|

√

p(j).

D. POWER ALLOCATION SCHEME

The power allocation allows us to differentiate the different
users at the receiver. In order to optimize the NOMA scheme,
we attribute the largest power to the user with the worst
channel [37], [38]. We can then allocate power based on two
different objectives: (a) to suppress ambiguities when colli-
sions occur and (b) increase fairness between the different
users.

1) Power Allocation 1: Suppressing ambiguities

The goal is to avoid that colliding users give rise to a peak
with an amplitude equal to another user or a combination
of other colliding users. We first order the users from the
strongest to the weakest based on an estimate of the channels
from a previous uplink (|ĥ(1)| > |ĥ(2)| > · · · > |ĥ(N)|). For
user j we allocate the power

pj =
2j−1

∑N
i=1 2

i−1
pt, (17)

where pt is the total power transmitted by the access point.
This guarantees that whatever collision occurs two peaks can
not have the same amplitude at the receiver side. However,
this results in a significant proportion of the available power
to be allocated to further users and the amplitude difference
gets small for the closest ones.

2) Power Allocation 2: Fair Spacing

We order the users based on an estimate of the channels from
a previous uplink from the weakest to the strongest (|ĥ(1)| <
|ĥ(2)| < · · · < |ĥ(N)|). We note h(0) = 0. We want that
whatever the receiver j, the gap between the peak amplitudes
of user j and of the weaker user j − 1 has always the same
value c,

|ĥ(j)|
√

p(j) − |ĥ(j)|
√

p(j−1) = c. (18)

We show in appendix A that the power allocated to user j
in that case is

p(j) = pt
A2

j
∑N

i=1 A
2
i

, (19)

where

Ai =
i
∑

l=1

1

|ĥ(l)|
. (20)

The drawback of this algorithm is that it depends on the
channel coefficients. The access point can estimate them on
previous uplinks but the quality of the scheme will depend
on the time coherence of the channels. We assume the time
coherence of the channels is long in many static IoT cases but
the impact of time evolution needs to be further investigated.
Theoretical performance analysis as the one in [39] for the
uplink would have been a significant added value. However,
contrary to other works on NOMA, performance is condi-
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tioned on collisions and gaps between allocated powers rather
than on Signal to Interference Ratio (SIR), where interference
is the sum of all interfering signals. It introduces combinato-
rial problems (probability of collisions, who collides, and so
on) but we have not yet solved the problem.

IV. RESULTS

This section has four main objectives: first, we show that
the MUD allows us to significantly increase the capacity
of a LoRa network. Second, we confirm that the proposed
algorithm delivers performance close to the CEM-MUD.
Third, we check the proposed PA schemes, including the
performance of the users according to their position (in terms
of channel gain) in the group of users simultaneously ad-
dressed. Fourth, we provide an analysis of the computational
complexity.

A. SIMULATION SETUP

We define a circular region inside which users are uniformly
distributed. The radius of the circle is R = 4, 5, 10 km
for SF = 7, 8, 10 respectively, and we choose the channel
attenuation coefficient η = 3.5. A complex Gaussian random
variable with mean 0 and variance 1 is drawn for each user to
model the Rayleigh fading and obtain the channel coefficient
as described in section III-B: h(i) = d(i)

−η/2
· χ(i).

However, to be connected to the network with a given SF,
the received power in the uplink has to be greater than the
receiver sensitivity Rs (we assume a transmit power of 14
dBm). For instance, Rs = −121.5, −124, −129 dBm for
SF = 7, 8, 10 respectively, and B = 250 kHz. Users
that do not respect this condition are discarded and drawn
again until N devices are connected. We consider that the
access point has a sufficient number of users to address, but
no selection scheme is implemented (users are independent
and identically distributed). We fix this number and the
transmitted packet is the superposition of all corresponding
signals.

The noise level of the receiver, as discussed in Section
II-C, is −114 dBm. The complete chirp spreading is simu-
lated in baseband and the coding of the information is done
for all users. We use a total transmit power of 27 dBm.

Monte Carlo simulations are used to evaluate the per-
formance of the proposed scheme. The parameter settings
for the cross entropy decoder are as follows: we generate
Nseq = 2000 sequences and keep Nkeep = 100 sequences
for the probability mass function update.

Packet detection and channel estimation are performed
using correlation with the known preamble. Common to all
users and transmitted with the full power, it does not generate
errors and the channel estimation is accurate. We present
the performance evaluation in terms of the average symbol
error rate (SER). Error correcting codes and a user selection
scheme should be included to derive a higher layer Key
Performance Indicator. This remains out of the scope of this
paper because we are only interested in the PHY layer.

B. PERFORMANCE OF THE THREE RECEIVERS

Figs. 5a and 5b illustrate the SER of a single user with
additive Gaussian noise (different SNR, which corresponds
to different radio link quality) in the presence of, respectively,
4 and 9 interfering users. The spreading factor is SF = 7,
B = 250 kHz, and Rs = −121.5 dBm. Power allocation
scheme 2 was used in these simulations. Slightly different
results are obtained with scheme 1 but without changing
the trends and conclusions. As a baseline, we also added
the single-user case, as a traditional LoRa link would do.
It shows the impact of the other users and the presence of
erroneous decisions due to peak ambiguities or collisions. At
equivalent Signal to Noise Ratio (SNR) we see, as expected,
a significant gain is SER (one decade at -15 dB in the case
of 5 simultaneous users). The MUD performance remains
however attractive.

The CEM-MUD has the best performance. It shows that
the multiuser scheme can be implemented and significantly
increases the number of users in the networks: 10 simulta-
neous users can be supported. These brute results are very
encouraging, especially because we did not consider any user
clustering scheme. If the network is highly populated, which
is when our proposal is interesting, we should search for the
best way to group users and ensure optimal performance.

The CEM-MUD significantly outperforms the simplest
receiver that only searches for the close peak amplitude. This
shows that it is important to have a multiuser approach and
implement a solution to account for collisions.

Finally, our proposed receiver and the cross entropy
method have almost similar performance, especially at high
SNR. This allows a solution for a low complexity implemen-
tation of a multiuser detector.

C. POWER ALLOCATION PERFORMANCE

Figs. 6a and 7a show the symbol error rate of a single user
with an additive Gaussian noise, SNR= −10 and −12 dB
respectively, and an increasing number (N −1) of interfering
users with N = 3, . . . , 13. In both cases, the power allocation
scheme 2 (fair allocation) exhibits better performance. This
is more significant in Fig. 7a when the SNR is smaller so
that the user is in the weak users. This can be observed from
Figs. 6b and 7b, where the histogram of the position of the
desired user when users are ordered from the weakest channel
(strongest allocated power) to the best channel. For instance,
in the case with N = 12, it is seen that the mean position
is between 3 and 4 in Fig. 7b (SNR= −12 dB) when it is
between 10 and 11 in Fig. 6b (SNR= −10 dB). This latter
case sees a larger benefit with the second power allocation
scheme, which comes from the fairness approach and the
fact that for the first allocation scheme, the gap between
amplitudes is small for the users with the good channels.

This analysis is confirmed in Figs. 8 and 9 where the
average symbol error rate is plotted for different SF (SF =
7, 8, 9, and 10) and the two power allocation schemes. These
two plots also show that the proposed MUD exhibits good
performance whatever the SF. As a comparison, the actual
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(a) Performance of a single user in the presence of 4 interfering users.
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(b) Performance of a single user in the presence of 9 interfering users.

FIGURE 5: SER for different SNR values of a single user, when SF = 7, and B = 250 kHz.
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(a) SER of a single user in the presence N − 1 interfering users. (b) Position of the user of interest (jth) compared to the interfering users.

FIGURE 6: Performance of the proposed MUD when SNR = −10 dB, SF = 8, and B = 250 kHz.

implementation of LoRa allows us to address only one user
at a time. This means that we can increase by an order of
magnitude the number of users that can be addressed in a
single time slot.

D. FAIRNESS

The previous section analyzed the mean error (among all
users) but did not consider the SER difference between users
with a good or a bad channel.

The SER difference between individual users is shown in
Fig. 10. Users are randomly chosen at each round but errors
are added depending on their order (from the worst to the
best channel). User one for instance is the one with the worst
channel, so the one with the highest allocated power. Both
power allocation schemes are considered, and we use N = 7

and 13. In the first power allocation scheme, ambiguities
are avoided but the gap between allocated powers is rapidly
decreasing and does not take the channel into account. For
the last users (in fact users with the best channel) the gap
between allocated powers is not sufficient resulting in an
increased SER. On the contrary, the second scheme offers
a fairer allocation, slightly increasing the SER for the far
users (the first ones) but keeping a more constant value and
significantly improving performance in comparison to the
other allocation scheme for the last users.

E. COMPUTATIONAL COMPLEXITY ANALYSIS

We compare the computational complexity of the three de-
coding algorithms namely Direct peak detection, Cross En-
tropy, and proposed receivers. Our evaluation is considering
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(a) SER of a single user in the presence N − 1 interfering users. (b) Position of the user of interest (jth) compared to the interfering users.

FIGURE 7: Performance of the proposed MUD when SNR = −12 dB, SF = 8, and B = 250 kHz.

3 5 7 9 11 13 15

N (Number of Users)

10-5

10-4

10-3

S
E

R
 (

S
ym

bo
l E

rr
or

 R
at

e)

Power Allocation 2, SF = 8
Power Allocation 1, SF = 8
Power Allocation 2, SF = 7
Power Allocation 1, SF = 7

FIGURE 8: SER of the proposed MUD for different N , Noise
level of −114 dBm, SF=7, 8, and B = 250 kHz.

the decoding of a single symbol. This study gives a broad idea
of the complexity but we did not try to optimize the algorithm
implementation.

1) Direct peak detection

For each symbol, we repeat the following operations:

1) Multiply by the downchirp (2SF multiplications),
2) FFT (complexity O(2SF . log(2SF )).

The final complexity for this simple receiver is
O(2SF . log(2SF )).

2) CEM

If we assume that generating a sample from a given PMF
and updating a PMF are both O(1), the complexity of the
CEM algorithm depends on the number of operations that
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FIGURE 9: SER of the proposed MUD for different N , Noise
level of −114 dBm, SF=9, 10, and B = 250 kHz.

are iterated. These operations as depicted in algorithm 1 and
their associated complexity for a single symbol are

1) Line 12 (Generate m̃q) is O(N)
2) Line 13 (Generate the source vector X̃q) is O(N.2SF )

3) Line 14 (R̃(j)
q [n]← ĥ(j)

X̃q[n]) is O(2SF )
4) Line 15 (FFT) is O(2SF log(2SF ))
5) Line 16 (distance) is O(2SF )

The listed operations are repeated Nseq.Nite times, where
Nite is the number of iteration before convergence which was
observed to be around 30. The PMF updating involves only
additions and one normalization and will be O(Nkeep).

Therefore, the overall complexity is dominated by the
2SF repeated N times in line 13 and log(2SF ) in the FFT
calculation done for each tested sequence. These figures are
of similar order and fixed. In the end we can state that the

12 VOLUME 8, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034973, IEEE Access

Angesom A. Tesfay et al.: Multiuser Detection for Downlink Communication in LoRa-like Networks

N = 7

1 2 3 4 5 6 7

Order of the jth user

0

0.5

1

1.5

2

S
E

R

10-4

Power Allocation 1
Power Allocation 2

N = 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Order of the jth user

0

0.5

1

S
E

R

10-3

Power Allocation 1
Power Allocation 2

FIGURE 10: SER of individual users when N = 7 and 13, SF
= 8, Noise level of −114 dBm, and B = 250 kHz.

complexity of the CEM is O(Nseq.Nite.N.2SF ).

3) Proposed method

In our proposal, after peak detection, the complexity is equal
to the first approach as long as the number of the detected
peaks is equal to or larger than the number of expected peaks.

In the case where fewer peaks are detected, the complexity
will be given by the FFT operation that we will need to
repeat Mc times, Mc being the number of possible collision
combinations we have to scan (steps 6-15 in algorithm 2).
For a reasonable number of users and collisions, this number
remains low (see table 1). So, finally, the overall complexity
is O(E[Mc].2

SF log(2SF )).
In fact, the time needed to decode a symbol is random and

depends on Mc, which is directly linked with the number of
users N and collisions Nc occurring. It is easily seen that the
probability to have no collision with N users independently
and uniformly selecting a number in {1, ..., 2SF } is

P{No Collision} =

∏N−1
i=0 (2SF − i)

2N.SF
(21)

It is, for instance, 0.697 when SF = 7 and N = 10 and
goes up to 0.961 when SF = 8 and N = 5. In the case
when a collision occurs, the number of combinations to be
scanned is presented in table 1 and can become very large in
the rare cases when N is larger than 10 and Nc larger than 4
for instance.

4) Comparison

It is clearly seen from the previous analysis that the CEM
is much more complex than the two others. Our proposed
approach is only complex in some rare cases when the
number of considered users is large and several collisions
occur. Probably it will not be possible to implement these
cases in low-cost devices and alternative strategies to address
them will be necessary.

To complement our study, table 2 compares the mean
computational time Rt (in seconds) of the three receivers,
which is required to decode a single user’s packet when the
length of the packet is Q = 100 symbols, and B = 250
kHz, and SNR = −12.5 dB. To evaluate the differences
we used a MATLAB-based software implementation of the
digital part of the receiver on a standard computer, but it gives
us a general idea about the computational complexity.

TABLE 1: Number of different combinations Mc when Nc

collisions occur leading to Npk observed peaks when Nexp

were expected.

❍
❍

❍
❍
❍

N
Nc 1 2 3 4 5

1 0 0 0 0 0
2 1 0 0 0 0
3 3 1 0 0 0
4 6 7 1 0 0
5 10 25 15 1 0
6 15 65 90 31 1
7 21 140 350 301 63
8 28 266 1050 1701 966
9 36 462 2646 6951 7700
10 45 750 5880 22827 42525
11 55 1155 11880 63987 179487
12 66 1705 22275 159027 627396
13 78 2431 39325 359502 1899612
14 91 3367 66066 752752 5135130
15 105 4550 106470 1479478 12662650

TABLE 2: Average computational time Rt (in second) to
decode a single user (jth) when SF = 7, and N users.

N jth user position Direct Peak Proposed CEM-MUD

5 5 0.0046 0.0059 5.5179
10 8 0.0062 0.0114 17.3731
15 13 0.0077 0.0233 32.6277
20 16 0.0093 0.4254 52.3609

As expected, the ordered peak receiver is much faster
at the price of significantly degraded performance. On the
other hand, the CEM-MUD has much better performance but
the complexity is highly increased. The computation time is
multiplied by 1200 for 5 users and the coefficient increases
with the number of users.

Our proposed receiver has performance close to the CEM-
MUD with a significantly reduced computation time. Indeed,
this time is more than 900 times less than the CEM-MUD
except when the number of simultaneous packets becomes
large (20 in table 2).

V. CONCLUSION

In this paper, we proposed a new joint multiuser receiver for
downlink LoRa networks to face the scalability issue in the
downlink. Our proposal is inspired by power domain NOMA
but does not require the use of a SIC receiver. Doing so, we
avoid the limitation of NOMA resulting from the residues
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remaining after each cancellation. A second concern for
using NOMA in IoT is the low-cost end devices that cannot
support computational complexity. The ML does not give an
analytical solution and cannot be used. We proposed a sub-
optimal approach based on the CEM, which is efficient but
remains too complex. Consequently, we derived a simplified
method that allows resolving collision but keeps complexity
low. We have shown that instead of one single packet per time
slot, we could transmit more than 10 packets per time slots
and even more, keeping the symbol error rate (without error
correcting codes) below 10−3.

.

APPENDIX A POWER ALLOCATION 2

Let us consider N users with estimated channels ĥ(i), i =
1, · · · , N order from the weakest to the strongest channel:
|ĥ(1)| < |ĥ(2)| < · · · < |ĥ(N)|. We note ĥ(0) = 0. We
want that whatever the receiver j, the gap between the peak
amplitudes of user j and j − 1 is always the same, c. We
denote pt the total transmit power. We write h(i) = |ĥ(i)| for
the rest of this annex for lighter expressions. We want























h(1)
√

p(1) − 0 = c

h(2)
√

p(2) − h(2)
√

p(1) = c
...

h(N)
√

p(N) − h(N)
√

p(N−1) = c

p(1) + p(2) + p(3) + · · ·+ p(N) = pt

We note

Ai =
(

i
∑

j=1

1

h(j)

)2

, (22)

Starting with the weakest user (i = 1) we have

p(1) =

(

c

h(1)

)2

= c2A1, (23)

If we assume

p(l) = c2Al, (24)

then from

h(l+1)
√

p(l+1) − hl+1)
√

p(l) = c, (25)

and using (24), we have
√

p(l+1) =
c

h(l+1)
+
√

p(l),

= c





1

h(l+1)
+

l
∑

j=1

1

h(j)



 ,

= c





l+1
∑

j=1

1

h(j)



 ,

= c
√

Al+1. (26)

which proves that (24) is true for all i = 1, · · · , N .

We then use the final equation in (22)

Pt =
N
∑

j=1

p(j) = c2
N
∑

j=1

Aj , (27)

which gives

c =

√

pt
∑N

j=1 Aj

. (28)

We finally obtain p(l) = pt
A2

l
∑N

i=1 A
2
i

which is (19).
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