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Abstract—In this paper, we consider a multiple-input–multiple-
output (MIMO) fading broadcast channel and compute achievable
ergodic rates when channel state information (CSI) is acquired at
the receivers via downlink training and it is provided to the trans-
mitter by channel state feedback. Unquantized (analog) and quan-
tized (digital) channel state feedback schemes are analyzed and
compared under various assumptions. Digital feedback is shown to
be potentially superior when the feedback channel uses per channel
state coefficient is larger than �. Also, we show that by proper
design of the digital feedback link, errors in the feedback have a
minor effect even if simple uncoded modulation is used on the feed-
back channel. We discuss first the case of an unfaded additive white
Gaussian noise (AWGN) feedback channel with orthogonal access
and then the case of fading MIMO multiple access (MIMO-MAC).
We show that by exploiting the MIMO-MAC nature of the uplink
channel, a much better scaling of the feedback channel resource
with the number of base station (BS) antennas can be achieved.
Finally, for the case of delayed feedback, we show that in the re-
alistic case where the fading process has (normalized) maximum
Doppler frequency shift � � � � ���, a fraction � � �� of the
optimal multiplexing gain is achievable. The general conclusion of
this work is that very significant downlink throughput is achievable
with simple and efficient channel state feedback, provided that the
feedback link is properly designed.

Index Terms—Channel state feedback, MIMO broadcast
channel, MIMO downlink, training capacity.

I. INTRODUCTION

I
N the downlink of a cellular-like system, a base station

(BS) equipped with multiple antennas communicates with

a number of terminals, each possibly equipped with multiple re-

ceive antennas. If a traditional orthogonalization technique such

as time division multiple access (TDMA) is used, the BS trans-

mits to a single receiver on each time-frequency resource and

thus is limited to point-to-point multiple-input–multiple-output
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(MIMO) techniques [1], [2]. Alternatively, the BS can use mul-

tiuser MIMO to simultaneously transmit to multiple receivers

on the same time-frequency resource. Under the assumption of

perfect channel state information at the transmitter (CSIT) and

at the receivers (CSIR), a combination of single-user Gaussian

codes, linear beamforming and “dirty-paper coding” (DPC) [3]

is known to achieve the capacity of the MIMO downlink channel

[4]–[8]. When the number of BS antennas is larger than the

number of antennas at each terminal, the capacity of the MIMO

downlink channel is significantly larger than the rates achiev-

able with point-to-point MIMO techniques [4], [9], [10].

Given the widespread applicability of the MIMO downlink

channel model (e.g., to cellular, WiFi, and DSL), it is of great

interest to design systems that can operate near the capacity

limit. Although realizing the optimal DPC coding strategy still

remains a formidable challenge (see, for example, [11]–[13]), it

has been shown that linear beamforming without DPC performs

quite close to capacity when combined with user selection, again

under the simplifying assumption of perfect channel state infor-

mation (CSI; see, for example, [14] and [15]).

In real systems, however, CSI is not a priori provided

and must be acquired, e.g., through training. Acquiring the

channel state is a challenging and resource-consuming task

in time-varying systems, and the obtained information is in-

evitably imperfect. It is therefore critical to understand what

rates are achievable under realistic CSI assumptions, and in par-

ticular to understand the sensitivity of achievable rates to such

imperfections. To emphasize the importance of CSI, note that

in the extreme case of no CSIT at the BS and identical fading

statistics (and perfect CSIR) at all terminals, the multiuser

MIMO benefit is completely lost and point-to-point MIMO

becomes optimal [4].

A. Contributions of This Work

The focus of this paper is a rigorous information theoretic

characterization of the ergodic achievable rates of a fading

multiuser MIMO downlink channel in which the user terminals

(UTs) and the BS obtain imperfect CSIR/CSIT via downlink

training and channel state feedback.1 Converse results on the

capacity region of the MIMO broadcast channel with imperfect

channel knowledge are essentially open (see, for example,

[16] and [17] for some partial results). Here, we focus on the

achievable rates of a specific signaling strategy, zero-forcing

(ZF) linear beamforming. Consistent with contemporary wire-

less system technology, we assume that each UT estimates

1Since this work considers feedback schemes where the roles of transmitter
and receiver are reversed, we avoid using “transmitter” and “receiver” and prefer
the use of BS and UT instead, in order to avoid ambiguity.
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its own channel during a downlink training phase and then

feeds back its estimate over the reverse uplink channel to the

BS. The BS designs beamforming vectors on the basis of the

received channel feedback, after which an additional round of

downlink training is performed (essentially to inform the UTs

of the selected beamformers). Our results tightly bound the rate

that is achievable after this process in terms of the resources

(i.e., channel symbols) used for training and feedback and the

channel feedback technique.

The analysis of this paper inscribes itself in the line of works

dealing with “training capacity” [18] of block-fading channels.

Several previous and concurrent works have treated training

and channel feedback for point-to-pont MIMO systems (see,

for example, [19]–[25]) and, more recently, for MIMO broad-

cast channels (see, for example, [26]–[32]). However, this paper

presents a number of novelties relative to prior/concurrent work.

• Rather than assuming perfect CSIR at the UTs, we con-

sider the realistic scenario where the UTs have imperfect

CSIR obtained via downlink training. Because the imper-

fect CSIR is the basis for the channel feedback from the

UTs, this degrades the quality of the CSIT provided to the

BS in a nonnegligible manner.

• Instead of idealizing the feedback channel as a fixed-rate,

error-free bit pipe, we explicitly consider transmission

from each UT to the BS over the noisy feedback channel.

This reveals the fundamental joint source-channel coding

nature of channel feedback. In addition, this allows us to

meaningfully measure the uplink resources dedicated to

channel feedback and also allows for a comparison between

analog (unquantized) and digital (quantized) feedback. We

begin by modeling the feedback channel as an additive

white Gaussian noise (AWGN) channel (orthogonal across

UTs), and later generalize to a multiple-antenna uplink

channel that is shared by the UTs. In this way, we precisely

quantify the fundamental advantage of using the multiple

BS antennas for efficient channel state feedback.

• A fundamental property of the system is that UTs are un-

aware of the chosen beamforming vectors, because the

beamformers depend on all channels whereas each UT

only has an estimate of its own channel. Several previous

works (e.g., [26], [33], and [34]) have resolved this uncer-

tainty by making the unstated assumption that each UT has

perfect knowledge of the postbeamforming signal-to-in-

terference-plus-noise ratio (SINR). In contrast, we make

no such assumption and rigorously show that this ambi-

guity can be resolved by an additional round of (dedicated)

training.

• Most prior work has used a worst case uncorrelated noise

argument [35], [36], [18] to show that imperfect CSI, at

worse, leads to the introduction of additional Gaussian

noise and thus the achievable rate is lower bounded by the

mutual information with ideal CSI and reduced signal-to-

noise ratio (SNR). In our case, however, this same argu-

ment yields a largely uncomputable quantity and a further

step must be taken that yields a tractable lower bound in

terms of the rate difference between the ideal and actual

cases, rather than in terms of an SNR penalty.

• We consider delayed feedback and quantify in a simple

and appealing form the loss of degrees of freedom (pre-log

factor in the achievable rate) in terms of the fading channel

Doppler bandwidth, which is ultimately related to UT

velocity.

The analysis presented in this paper is relevant from at least

two related but different viewpoints. On the one hand, it pro-

vides accurate bounds on the achievable ergodic rates of the

linear ZF beamforming scheme with realistic channel estima-

tion and feedback. These bounds are useful at any operating

SNR (not necessarily large),2 and in subsequent work have been

used to optimize the system resources allocated for training

and feedback [38], [39]. On the other hand, it yields sufficient

conditions on the training and feedback such that the system

achieves the same multiplexing gain (also referred to as “pre-log

factor,” or “degrees of freedom”) of the optimal DPC-based

scheme under perfect CSIR/CSIT. Perhaps the most striking

fact about this second aspect is that the full multiplexing gain of

the ideal MIMO broadcast channel can be achieved with simple

pilot-based channel estimation and feedback schemes that con-

sume a relatively small fraction of the system capacity. Indeed,

a fundamental property of the MIMO broadcast channel is that

the quality of the CSIT must increase with SNR, regardless of

what coding strategy is used, in order for the full multiplexing

gain to be achievable [16], [17]. Under the reasonable assump-

tion that the uplink channel quality is in some sense proportional

to the downlink channel, our work shows that this requirement

can be met using a fixed number of downlink and uplink channel

symbols (i.e., system resources used for training and feedback

need not increase with SNR).

When there is a significant delay in the feedback loop,

the simple scheme analyzed in this paper does not attain full

multiplexing gain. However, for fading processes with nor-

malized Doppler bandwidth strictly less than 1/2, we show

the achievability of a multiplexing gain equal to ,

where is the number of BS antennas. This result follows

from a fundamental property of the noisy prediction error of the

channel process and is closely related to Lapidoth’s high-SNR

capacity of single-user fading channels without the perfect

CSIR assumption [40].

The paper is organized as follows. Section II introduces

the system model, describes linear beamforming, and defines

the baseline estimation, feedback, and beamforming strategy.

Section III develops bounds on the ergodic rates achievable by

the baseline scheme. In Section IV, we consider an AWGN

feedback channel and particularize the rate bounds to analog

and digital feedback (incorporating the effect of decoding

errors for digital feedback), and compare the different feedback

options. Section V generalizes the results to the setting where

the feedback link is a fading MIMO multiple-access channel

(MAC). Section VI considers time-correlated fading and the

2We notice here that a relatively high SNR (or SINR) regime is not so difficult
to achieve even in a multicell environment with intercell interference. Several re-
cent proposals for simple intercell coordination strategies, such as fractional fre-
quency reuse and/or intertwined cell coordination clusters, achieve rather large
SINR even for “edge” users. For example, in [37], such techniques are explored
for a realistic path loss and transmit power levels typical of the IEEE 802.16
m standard, and users at the cell edge are shown to operate at SINRs ranging
between 10 and 15 dBs.
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effect of delay in the feedback link. Some concluding remarks

are provided in Section VII.

II. SYSTEM MODEL

We consider a MIMO Gaussian broadcast channel modeling

the downlink of a system where a BS has antennas and

UTs have one antenna each. A channel use of such channel is

described by

(1)

where is the channel output at UT is the

corresponding AWGN, is the vector of channel co-

efficients from the th UT antenna to the BS antenna array (the

superscript refers to the Hermitian, or conjugate transpose)

and is the vector of channel input symbols transmitted by the

BS. The channel input is subject to the average power constraint

.

We assume that the channel state, given by the collection of

all channel vectors , varies in

time according to a block-fading model [41], where is con-

stant over each frame of length channel uses, and evolves

from frame to frame according to an ergodic stationary spa-

tially white jointly Gaussian process, where the entries of

are Gaussian independent identically distributed (i.i.d.) with el-

ements . Our bounds on the ergodic achievable rate

do not directly depend on the frame size ; rather, these bounds

depend only on whether the training, feedback, and data phases

all occur within a frame or in different frames. In Sections IV–V,

we consider the simplified scenario where the three phases all

occur within a single frame (i.e., the channel is constant across

the phases) and fading is independent across blocks, but we re-

move these simplifications in Section VI. It should also be no-

ticed that the rate lower bounds given in the following should

be multiplied by the factor , where denotes the

total number of channel uses per frame dedicated to training

and feedback. This factor is neglected in this paper since it is

common to all rate bounds and since in a typical

slowly fading system scenario. However, in the general case

where is not necessarily small with respect to , the amount

of training and feedback should be optimized by taking this mul-

tiplicative factor into account. Based on the bounds developed

in the present paper, this system optimization is carried out in

the follow-up works [38], [39].

A. Linear Beamforming

Because of simplicity and robustness to nonperfect CSIT,

simple linear precoding schemes with standard Gaussian coding

have been extensively considered: the transmit signal is formed

as , such that is a linear beamforming ma-

trix and contains the symbols from independently

generated Gaussian codewords. In particular, for , ZF

beamforming chooses the th column of to be a unit vector

orthogonal to the subspace .

We focus on the achievable ergodic rates under ZF linear

beamforming and Gaussian coding. In this case, the achievable

rate sum is given by

(2)

where the optimal power allocation is obtained by waterfilling

over the set of channel gains . Per-

formance can further be improved by using a user scheduling

algorithm to select in each frame an active user subset not larger

than (if , such selection must be performed if ZF is

used). Schemes for user scheduling have been extensively dis-

cussed, for example, in [42], [32], [15], and [43].

We focus, however, on the case with uniform power

allocation (across users and frames: ) and without

user selection, in which case the per-user ergodic rate is

(3)

Because is spatially white and is selected inde-

pendent of (by the ZF procedure), it follows that

is . As a result, is the ergodic

capacity of a point-to-point channel in Rayleigh fading

with average SNR , and thus can be written in

closed form as [44] where

[45]. In the remainder of the

paper, serves as a benchmark against which we compare

the achievable rates with imperfect CSI.

This restriction is dictated by a few reasons. On the one hand,

the case without selection makes closed-form anal-

ysis (in the presence of imperfect CSI) possible. In addition, the

maximum multiplexing gain is for all and hence

the case suffices to capture the fundamental aspects of

the problem (particularly at high SNR). Finally, recent results

[33], [46] show that the dependence on CSI quality is roughly

the same even when user selection is performed.

B. Channel State Estimation and Feedback

We assume that each UT estimates its channel vector from

downlink training symbols and then feeds this information back

to the BS. This scenario, referred to as “closed-loop” CSIT esti-

mation, is relevant for frequency-division duplexed (FDD) sys-

tems. Our baseline system is depicted in Fig. 1 and consists of

the following phases.

1) Common training: The BS transmits shared pilots

( symbols per antenna) on the downlink3. Each UT

estimates its channel from the observation

(4)

3If � is an integer, pilot symbols can be orthogonal in time, i.e., � pilots are
successively transmitted from each of the � BS antennas for a total of � �
channel uses. More generally, it is sufficient for � � to be an integer and to
use a unitary � � � � spreading matrix as described in [28]; in either case,
the effective received SNR is � .
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corresponding to the common training (downlink) channel

output, where . The minimum mean

square error (MMSE) estimate of given the obser-

vation is given by [47]

(5)

The channel can be written in terms of the estimate

and estimation noise as

(6)

where is independent of the estimate and is Gaussian

with covariance with

(7)

2) Channel state feedback: Each UT feeds back its channel

estimate to the BS immediately after completion of the

common training phase. We use

to denote the (imperfect) CSIT available at the

BS; the feedback is thus a mapping, possibly probabilistic,

from to . For now we leave the feedback scheme

unspecified to allow development of general achievability

bounds in Section III, and particularize to specific feedback

schemes from Section IV onwards.

In Section IV, we consider the simplified setting where

the feedback channel is an unfaded AWGN channel SNR

, orthogonal across UTs, but in Section V, we con-

sider the more realistic setting where the uplink channel

is a MIMO-MAC with fading. Furthermore, the baseline

model of Fig. 1 assumes no delay in the feedback, i.e., the

channel is constant across the training, feedback, and data

phases. In Section VI, we remove this assumption and con-

sider the case where feedback has delay and the channel

state changes from frame to frame according to a time-cor-

relation model.

We assume each UT transmits its feedback over

feedback channel symbols.

3) Beamformer selection: The BS selects the beamforming

vectors by treating the estimated CSIT as if it were the

true channel (we refer to this approach as “naive” ZF beam-

forming). Following the ZF recipe, is a unit vector or-

thogonal to the subspace . We

use the notation . Since and

the BS channel estimates are independent, the

subspace is -dimensional (with probability one)

and is independent of . The beamforming vector is

chosen in the 1-D nullspace of ; as a result, is inde-

pendent of the channel estimate and of the true channel

vector .

4) Dedicated training: Once the BS has computed the beam-

forming vectors , coherent detection of data at each UT is

enabled by an additional round of downlink training trans-

mitted along each beamforming vector. This additional

round of training is required because the beamforming

vectors are functions of the CSI at

the BS, while UT knows only or, at best, (if

error-free digital feedback is used). Therefore, the cou-

pling coefficients between the beamforming vectors and

the UT channel vector are unknown.

Let the set of the coefficients affecting the signal received

by UT be denoted by

where is the coupling coefficient between the

th channel and the th beamforming vector. The received

signal at the th UT is given by

(8)

where the interference at UT is denoted as

(9)

and is the useful signal coefficient. The dedicated

training is intended to allow the estimation of the coeffi-

cients in at each UT . This is accomplished by trans-

mitting orthogonal training symbols along each of the

beamforming vectors on the downlink, thus requiring a

total of downlink channel uses.4 The relevant obser-

vation model for the estimation of is given by

(10)

We denote the full set of observations available to UT as

In particular, we will consider explicitly the case where UT

estimates its useful signal coefficient using linear MMSE

estimation based on , i.e.,

(11)

Because is a unit vector independent of , the useful

signal coefficient is complex Gaussian with

unit variance. As a result, we have the representation

(12)

where and are independent and Gaussian with vari-

ance and , respectively, with

(13)

5) Data transmission: After the dedicated downlink training

phase, the BS sends the coded data symbols

for the rest of the frame duration. The effective channel

output for this phase is therefore given by the sequence of

corresponding channel output symbols given by (8), and

by the observation of the dedicated training phase given

by (10).

4If � � is an integer but � is not, the unitary spreading approach used for
common training can also be used here.
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Fig. 1. Channel estimation and feedback model.

When considering the ergodic rates achievable by the pro-

posed scheme, we implicitly assume that coding is per-

formed over a long sequence of frames, each frame com-

prising a common training phase, channel state feedback

phase, dedicated training phase, and data transmission.

We conclude this section with a few remarks. First, we

would like to observe that two phases of training, a common

“pilot channel” and dedicated per-user training symbols, are

a common practice in some wireless cellular systems, as for

example in the downlink of the third generation Wideband

CDMA standard [48] and in the MIMO component of future

fourth generation systems [49]. Second, we note that an alter-

native to FDD is time-division duplexing (TDD), where uplink

and downlink share in time-division the same frequency band.

In this case, provided that the coherence time is significantly

larger than the concatenation of an uplink and downlink slot

and hardware calibration, the downlink channel can be learned

by the BS from uplink training symbols [28], [50]. Although

we focus on FDD systems, in Remark 4.2, we note the straight-

forward extension of our results to TDD systems.

III. ACHIEVABLE RATE BOUNDS

We assume that the user codes are independently generated

according to an i.i.d. Gaussian distribution, i.e., the input sym-

bols are . The remainder of this section

is dedicated to deriving upper and lower bounds on the mu-

tual information achieved by such Gaussian inputs, indicated by

.

A. Lower Bounds

The following lower bound is obtained by using techniques

similar to those in [35], [18], and [36].

Theorem 1: The achievable rate for ZF beamforming with

Gaussian inputs and CSI training and feedback as described in

Section II-B can be bounded from below by

(14)

Proof: See Appendix I.

The conditional interference second moment in

(14) may be difficult to compute even by Monte Carlo simula-

tion, due to the complicated dependency of on (this de-

pendence is unknown even if the dedicated training is perfect,

i.e., ). However, we will not need to compute this

explicitly, as is seen in our next results.

A very useful measure is the difference between and ,

the achievable rate with ZF beamforming, and ideal CSI defined

in (3). The rate gap is defined as follows:

(15)

and is upper bounded in the following theorem.

Theorem 2: The rate gap incurred by ZF beamforming with

training and feedback as described in Section II-B with respect

to ideal ZF with equal power allocation is upperbounded by

(16)

Proof: See Appendix II.

For clarity of notation, we denote the RHS of the above, re-

ferred to as the rate gap upper bound, as

(17)

(18)

where the latter follows from a simple calculation of .

The term depends only on dedicated training; on the other

hand, is determined by the mismatch between

and the BS estimate (because is chosen orthogonal to

rather than ) and therefore depends on the common training

and feedback phases.

An obvious result of the rate gap upper bound is the following

lower bound to .

Corollary 3.1: The achievable rate for ZF beamforming with

Gaussian inputs and CSIT training and feedback as described in

Section II-B can be bounded from below by

(19)

Because only the estimate of is used in the derivation,

Corollary 3.1 is also a lower bound to .

B. Upper Bounds

A useful upper bound to is reached by providing each

UT with exact knowledge of the interference coefficients .

Thus, this is referred to as the “genie-aided upper bound.”

Theorem 3: The achievable rate for ZF beamforming with

Gaussian inputs and CSI training and feedback is upper bounded

by the rate achievable when, after the beamforming matrix is

chosen, a genie provides the th UT with perfect knowledge of

the coefficients

(20)

Proof: Since is a noisy version of , the data-pro-

cessing inequality yields

(21)
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Because conditioned on is complex Gaussian with vari-

ance while conditioned on

is complex Gaussian with variance , we

immediately obtain (20).

The practical relevance of Theorem 3 is twofold: on the one

hand, (20) is easy to evaluate by Monte Carlo simulation.5 On

the other hand, this bound can be approached for large , since

in this case each UT can accurately estimate all interference

coupling coefficients and not only the useful signal coefficient.

IV. CHANNEL STATE FEEDBACK OVER AN AWGN CHANNEL

In this section, we quantify the rate gap upper bound for

different feedback strategies under the assumption that the

feedback channel is an unfaded AWGN channel with the same

SNR as the downlink, i.e., , and that the UTs access the

channel orthogonally. Each UT uses feedback channel

symbols, and therefore the total number of feedback channel

uses is .

A. Analog Feedback

Analog feedback refers to transmission (on the feedback

link) of the estimated downlink channel coefficients by each UT

using unquantized quadrature-amplitude modulation (QAM)

[28], [32], [51], [52]. More specifically, each UT transmits on

the feedback channel a scaled version of its common downlink

training observation defined in (4). The resulting feedback

channel output (BS observation) relative to UT is given by

(22)

(23)

(24)

where represents the AWGN noise on the uplink feed-

back channel (variance ) and is the noise during the

common training phase. The power scaling corresponds

to the number of channel uses per channel coefficient (we

require so that each coefficient is transmitted at least

once), assuming that transmission in the feedback channel

has per-symbol power (averaged over frames) and that the

channel state vector is modulated by a unitary

spreading matrix [28]. Because and are each complex

Gaussian with covariance and are independent, is

complex Gaussian with covariance with

(25)

5It is usually difficult if not impossible to obtain in closed form the joint dis-
tribution of the coefficients � .

The BS computes the MMSE estimate of the channel vector

based on as

(26)

Using (24), the channel can be written in terms of the BS esti-

mate and estimation error as

(27)

where is independent of the estimate and is Gaussian with

covariance with

(28)

This characterization of can be used to derive the

rate gap upper bound for analog feedback.

Theorem 4: If each UT feeds back its channel coefficients

in analog fashion over channel uses of an AWGN uplink

channel with SNR , the rate gap upper bound is given by

[analog feedback (AF)] (29), shown at the bottom of the page.

Proof: See Appendix III.

It is straightforward to see that can be upper bounded

as

(30)

Hence, the rate gap is uniformly bounded for all SNRs and there-

fore the multiplexing gain is preserved (i.e.,

) in spite of the imperfect CSI.

An intuitive understanding of this rate loss is obtained if one

reexamines the UT received signal in the form used in Theorem

1

-

(31)

The imperfect CSI (at the UT and BS) effectively increases the

noise from the thermal noise level to the sum of the thermal

noise, self-noise, and interference power, and the rate gap upper

bound is precisely the logarithm of the ratio of the effec-

tive noise to the thermal noise power.

(29)
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Remark 4.1: In many systems, the uplink SNR is smaller than

the downlink SNR because UTs transmit with reduced power.

If the uplink SNR is rather than is equal to

the expression in Theorem 4 with replaced with . This

does not change the multiplexing gain, but can have a significant

effect on the rate gap.

Remark 4.2: It is easy to see that a TDD system with perfectly

reciprocal uplink–downlink channels where each UT transmits

pilots (a single pilot trains all BS antennas) in an or-

thogonal manner corresponds exactly to an FDD system with

perfect feedback and , because the

downlink training in an FDD system is equivalent to the uplink

training in a TDD system. Therefore, as a byproduct of our anal-

ysis, we obtain a result for TDD open loop CSIT estimation

(32)

(33)

Dedicated training is necessary even in TDD systems because

UTs do not know the channels of other UTs and thus are not

aware of the beamforming vectors used by the BS. Finally, note

that in TDD, a total of uplink training symbols and

downlink (dedicated) training symbols are needed.

B. Digital Feedback

We now consider “digital” feedback, where the estimated

channel vector is quantized at each UT and represented by

bits. The packet of bits is fed back by each UT to the BS. We

begin by computing the rate gap upper bound in terms of bits,

and later in the section relate this to feedback channel uses.

Following [21], [20], [19], and [26], we consider a specific

scheme for channel state quantization based on a quantization

codebook of unit-norm vectors in . The

quantization of the estimated channel vector is found

according to the decision rule

(34)

and thus is the quantization vector forming the minimum

angle with . The corresponding -bits quantization index is

fed back to the BS. Because is unit-norm, no channel mag-

nitude information is conveyed.

In [24] and [26], it is shown that for a random ensemble of

quantization codebooks referred to as random vector quantiza-

tion (RVQ), obtained by generating quantization vectors in-

dependently and uniformly distributed on the unit sphere in

(see [26] and references therein), the average (angular) distor-

tion is given by

(35)

where is the beta function and .

As in [26], we assume each UT uses an independently generated

codebook. For this particular quantization scheme, we can com-

pute the rate gap upper bound.

Theorem 5: If each UT quantizes its channel to bits (using

RVQ) and conveys these bits in an error-free fashion to the BS,

the rate gap upper bound is given by [digital feedback (DF)]

(36), shown at the bottom of the page.

Proof: See Appendix IV.

Using (35), the rate gap upper bound is further upper bounded

as

(37)

Comparing this to the rate gap in the analog feedback case (30),

we notice that the dependence on and is precisely the same

for both analog and digital feedbacks.

The next step is translating the rate gap upper bound so that it

is in terms of feedback symbols rather than bits. For the time

being, we will make the very unrealistic assumption that the

feedback link can operate error-free at capacity, i.e., it can reli-

ably transmit bits per symbol.6 The analog feed-

back considered before provides a noisy version of the channel

vector norm in addition to its direction. Although this informa-

tion is irrelevant for the ZF beamforming considered here, it

might be useful in some user selection algorithms such as those

proposed in [42], [32], [15], and [43]. In contrast, digital feed-

back based on unit-norm quantization vectors provides no norm

information. Thus, for fair comparison, we assume that

feedback symbols in the analog feedback scheme correspond to

feedback symbols for the digital feedback scheme;

i.e., a system using digital feedback could use one feedback

6This assumption is unrealistic in the context of this model because the feed-
back channel coding block length is very small and because the need for very
fast feedback (essentially delay-free) prevents grouping blocks of channel coef-
ficients and using larger coding block length.

(36)
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symbol to transmit channel norm information. An alternative

justification for this is to notice that the analog feedback system

could be modified to operate in channel symbols by

transmitting only the relative phases and amplitudes of

the channel coefficients, since the absolute norm and phase are

irrelevant to the ZF beamforming considered here.

Under this assumption, the number of feedback bits per mo-

bile is . Plugging this into (37)

gives

(38)

Similar to analog feedback, if , then the rate gap is upper

bounded and full multiplexing gain is preserved. However, it

should be noticed that for strictly larger than 1, digital feed-

back yields a term that vanishes as . This

should be contrasted with the constant term for the case of

analog feedback.

C. Effects of Feedback Errors

We now remove the optimistic assumption that the digital

feedback channel can operate error-free at capacity. In general,

coding for the CSIT feedback channel should be regarded as

a joint source-channel coding problem, made particularly inter-

esting by the nonstandard distortion measure and by the fact that

a very short block length is required. A thorough discussion of

this subject is out of the scope of this paper and is the matter

of current investigation (see, for example, [53] and [54]). Here,

we restrict ourselves to the detailed analysis of a particularly

simple scheme based on uncoded QAM. Perhaps surprisingly,

this scheme is sufficient to achieve a vanishing rate gap in the

high-SNR region, for an appropriate choice of the system pa-

rameters.

In the proposed scheme, the UTs perform quantization using

RVQ and transmit the feedback bits using plain uncoded QAM.

The quantization bits are randomly mapped onto the QAM sym-

bols (i.e., no intelligent bit-labeling or mapping is used). There-

fore, even a single erroneous feedback bit from UT makes

the BS’s CSIT vector essentially useless. Also, no particular

error detection strategy is used and thus the BS computes the

beamforming matrix on the basis of the received feedback, al-

though this may be in error.

We again let denote the number of channel uses

to transmit the feedback bits (per UT). Interestingly, even for

this very simple scheme, there is a nontrivial tradeoff between

quantization distortion and channel errors. In order to maintain a

bounded rate gap, the number of feedback bits must be scaled at

least as . Therefore, we

consider sending bits for

in channel uses, which corresponds to

bits per QAM symbol.

The symbol error rate for square QAM with constellation

points is bounded by [55]

(39)

where is the Gaussian probability

tail function. Using the fact that , we obtain the

upper bound

(40)

If , which corresponds to signaling at capacity with un-

coded modulation, does not decrease with SNR and system

performance is very poor. However, for , which cor-

responds to transmitting at a fraction of capacity, as

. The error probability of the entire feedback message

(transmitted in QAM symbols) is given by

(41)

where the inequality follows from the union bound. Note the

tradeoff between distortion and feedback error: large yields

finer quantization but larger , while small provides poorer

quantization but smaller .

Theorem 6: If each UT quantizes its estimated channel using

bits (using RVQ), and transmits on

the feedback link using channel uses with uncoded

QAM modulation, the resulting rate gap can be upper bounded

by

(42)

where is given by (40) and (41).

Proof: See Appendix V.

If , then the effect of feedback vanishes as

, somewhat similar to the case of error-free feedback. This is

because the feedback error probability decays exponentially as

, so that the term vanishes as

for all , while obviously vanishes for all

.

A number of simple improvements are possible. For example,

each UT may estimate its interference coefficients

from the dedicated training phase, and decide if its feedback

message was correctly received or was received in error by set-

ting a threshold on the interference power: if the interference

power is , then it is likely that a feedback error oc-

curred. If, on the contrary, it is , then it is likely

that the feedback message was correctly received. Interestingly,

for with , detecting feedback error
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events becomes easier and easier as increases and/or as the

number of antennas increases. In brief, for a large number of

antennas any terminal whose feedback message was received

in error is completely drowned into interference and should be

able to detect this event with high probability. Assuming that

the UTs can perfectly detect their own feedback error events as

described above, then they can simply discard the frames cor-

responding to feedback errors. The resulting achievable rate in

this case is lower bounded by

(43)

in light of (38) (after replacing instead of ) and of Corollary

3.1. Note that this rate lies between the achievable rate lower

bound obtained via the rate gap in (42) and the genie-aided

upper bound from Theorem 3.

Remark 4.3: It is interesting to notice that feedback errors

make the residual interference behave as an impulsive noise: it

has very large variance with small probability . It is there-

fore clear that detecting the feedback errors and discarding the

corresponding frames yields significant improvements. Using

this knowledge at the receiver [as in the rate bound (43)], avoids

the large “Jensen’s penalty” incurred by the rate gap in (42),

where the expectation with respect to the feedback error events

is taken inside the logarithm.

Remark 4.4: We notice here that the naive ZF strategy

examined in this paper is robust to feedback errors in the fol-

lowing sense: the residual interference experienced by a given

UT depends only on that particular UT feedback error proba-

bility. Therefore, a small number of users with poor feedback

channel quality (very high feedback error probability) does

not destroy the overall system performance. This observation

goes against the conventional wisdom that feedback errors are

“catastrophic.”

D. Comparison Between Analog and

Digital Channel Feedback

Based upon the bounds developed in the previous subsections

as well as the genie-aided upper bounds (computed using Monte

Carlo simulation), we can now compare analog, error-free dig-

ital, and QAM-based digital feedback. Because the effect of

downlink and common training is effectively the same for all

feedback strategies, we pursue this comparison under the as-

sumption of perfect CSIR, i.e., perfect common and dedicated

training corresponding to . From (30) and (38),

we have

(44)

Fig. 2. Achievable rate lower (dotted lines) and upper (solid lines) bounds for
analog, error-free digital, and QAM-based digital feedback for � � � and
� � �.

Fig. 3. Achievable rate upper bounds for analog, error-free digital, and QAM-
based digital feedback for � � � and � � �.

(45)

If , then analog and error-free digital feedback both

achieve essentially the same rate gap of 1 bit per channel user

(per UT). However, if , the rate gap for quantized

feedback vanishes for . This conclusion finds an

appealing interpretation in the context of rate-distortion theory.

It is well known (see, for example, [56] and references therein)

that “analog transmission” (the source signal is input directly to

the channel after suitable power scaling) is an optimal strategy

to send an i.i.d. Gaussian source over an AWGN channel with

the same bandwidth under quadratic distortion. In our case,

the source vector is (Gaussian and i.i.d.) and the feedback

channel is AWGN with SNR . Hence, the fact that analog

feedback cannot be essentially outperformed for is
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Fig. 4. Achievable rate lower (dotted lines) and upper (solid lines) bounds for
analog, error-free digital, and QAM-based digital feedback for � � � and

� 10 dB and � 20 dB.

expected. However, it is also well known that if the channel

bandwidth is larger than the source bandwidth (which corre-

sponds to the case where a block of source coefficients are

transmitted over channel uses with ), then analog

transmission is strictly suboptimal with respect to a digital

scheme operating at the rate-distortion bound, because the

distortion with analog transmission is whereas

it is for digital transmission.

This conclusion is confirmed by the numerical results shown

in Figs. 2 and 3. In Fig. 2, the lower and genie-aided upper

bounds are plotted for analog feedback, digital feedback without

error, and digital feedback with error (QAM) versus SNR for

an system with . For digital feedback with

error, the error detection bound in (43) is also included. The

analog and error-free digital feedback schemes perform virtu-

ally identically and achieve a rate approximately 3 dB away

from the perfect CSI benchmark. Note also that the gap be-

tween the upper and lower bounds is not very large. For digital

feedback with uncoded QAM,7 however, there is a substantial

gap between the upper and lower bounds; this gap and the per-

formance with error detection is explained by Remark 4.3. In

Fig. 3, only the genie-aided upper bounds are plotted (because

the lower and upper bounds are nearly identical and thus are dif-

ficult to distinguish) for the same setting with . We see

that digital feedback with uncoded QAM outperforms analog

feedback above approximately 5 dB, and that the rate with dig-

ital feedback (with or without errors) converges to the ideal rate

as predicted earlier. This figure confirms that the effect of feed-

back vanishes when digital feedback is used, with or without

errors, and . Finally, in Fig. 4, the bounds are plotted

as a function of for fixed SNR 10 dB and 20

dB. When analog and error-free digital feedback are

nearly equivalent, but as is increased the rate with error-free

digital quickly approaches the perfect CSI rate. When feedback

7These results are obtained by optimizing the value of � � � � � for each
SNR. We refer to this as “envelope,” that is, the plotted curve is the pointwise
maximum of the rate versus SNR curves for all �.

errors are introduced, digital feedback does eventually outper-

form analog and also approaches the ideal rate, but a larger is

required. It is also worth noticing that as the SNR is increased,

the value of at which digital (with or without errors) be-

gins to outperform analog decreases toward 1: this is to be ex-

pected based upon the fact that the effect of feedback vanishes

as for any for digital, whereas it does not for

analog feedback.

It is worth noting that the same basic conclusion, i.e., that

digital feedback (with or without errors) outperforms analog for

sufficiently large , also holds in the presence imperfect CSIR.

However, because imperfect CSIR leads to a residual term in

the rate gap expression that does not vanish (even for large ),

the absolute difference between digital and analog feedback is

reduced.

V. CHANNEL STATE FEEDBACK OVER THE MIMO-MAC

Orthogonal access in the feedback link requires

channel uses for the feedback, while the downlink capacity

scales at best as . When the number of antennas grows

large, such a system would not scale well with . On the other

hand, the inherent MIMO-MAC nature of the physical uplink

channel suggests an alternative approach, where multiple

UTs simultaneously transmit on the MIMO uplink (feedback)

channel and the spatial dimension is exploited for channel state

feedback as well. This idea was considered for an FDD system

in [28] and analyzed in terms of the mean square error of the

channel estimate provided to the BS.

As in [28], we partition the users into groups of size

, and let UTs belonging to the same group transmit their feed-

back signal simultaneously, in the same time frame. Each UT

transmits its channel coefficients over channel uses,

with . Therefore, each group uses channel sym-

bols and the total number of channel uses spent in the feedback

is . Choosing (e.g., ) yields a total

number of feedback channel uses that grows linearly with ,

such that the feedback resource converges to a fixed fraction

of the downlink capacity. We assume that the uplink feedback

channel is affected by i.i.d. block fading (i.e., has the same dis-

tribution as the downlink channel) and that there is no feedback

delay.

With respect to the analysis provided in [28], the present work

differs in a few important aspects: 1) we consider both analog

and digital feedback; 2) although our analog feedback model

is essentially identical to the FDD scheme of [28], we consider

optimal MMSE estimation rather than least squares estimation

(ZF pseudoinverse); and 3) we put out results in the context of

the rate gap framework that yields directly fundamental lower

bounds on achievable rates, rather than in terms of channel state

estimation error.

A. Analog Feedback

In an analog feedback scheme, each UT feeds back a scaled

noisy version of its downlink channel, given by

where is the observation provided by the common training

phase, defined in (4). Due to the symmetry of the problem, we

can focus on the simultaneous transmission of a single group of
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UTs. Let denote the uplink fading

matrix for this group of UTs (with i.i.d. entries, )

and let for

(46)

denote the transmitted symbol by UT for its th channel coef-

ficient, where is the th component of and, from (4),

is the common training AWGN. For simplicity, we assume that

the BS has perfect knowledge of the uplink channel state ; we

later consider the more general case and see that the main con-

clusions are unchanged.

The -dimensional received vector , upon which the

BS estimates the th antenna downlink channel coefficients

of all users in the group, is given by

(47)

where is an AWGN vector with i.i.d. elements

. From the i.i.d. jointly Gaussian statistics of

the channel coefficients, downlink noise and uplink (feedback

noise), it is immediate to obtain the MMSE estimator for the

downlink channel coefficient in the form

(48)

where we define the constant . The corre-

sponding MMSE, for given feedback channel matrix , is

given by

(49)

Theorem 7: If each UT feeds back its channel coefficients

in analog fashion over the MIMO-MAC uplink channel, with

groups of users simultaneously feeding back and

channel uses per group, the rate gap upper bound is given by

(50), shown at the bottom of the page, where we define the

average CSI estimation MMSE as

(51)

and where denote the eigenvalues of the

central Wishart matrix .

Furthermore, if , the rate gap is bounded and con-

verges at high SNR to the constant

(52)

Proof: See Appendix VI.

Comparing this expression to the rate gap for analog feedback

over an AWGN channel (30), we notice that an SNR (array) gain

of is achieved (on the feedback channel) when the feed-

back is performed over the MIMO-MAC because the feedback

(of users) is received over antennas.8 In addition, a factor

of fewer feedback symbols are required when the feedback

is performed over the MIMO-MAC ( versus ). On

the other hand, using the second line of the right-hand side of

(89) in Appendix VI it is immediate to show that for

the rate gap upper bound grows unbounded as .

From (52), we can optimize the value of (assuming

) for a fixed number of feedback channel uses, which we

denote by for some (if , there must be

at least two groups and thus we must have at least feed-

back symbols). By letting , we obtain .

Using this in (52), we have that minimizing the rate gap bound

is equivalent to maximizing the term for fixed and

. Therefore, the optimal group size is given by .

Substituting this value in (52) yields

(53)

and the corresponding total number of feedback symbols is

. Interestingly, we notice that in the regime of large

the term that dominates the optimized rate gap bound (53)

corresponds to the downlink common training phase. In fact,

the terms corresponding to dedicated training and feedback

vanish as increases.

When the total number of feedback symbols is larger or equal

to (i.e., ) numerical results verify that also at finite

SNR the choice yields the best performance both

in terms of the achievable rate lower bound and of the genie-

aided upper bound. Hence, the optimal MIMO-MAC feedback

strategy is a combination of TDMA and space-division multiple

access (SDMA). In contrast, when total number of feedback

symbols is strictly smaller than (i.e., ), choosing

with is the only option. Although this choice

yields an unbounded rate gap, it does provide reasonable per-

formance at finite SNRs.

A legitimate question at this point is the following: Is the con-

dition a fundamental limit of the MIMO-MAC analog

feedback in order to achieve a bounded rate gap, or is it due to

the looseness of Theorem 2? In order to address this question,

we examine the genie-aided rate upper bound of Theorem 3 and

obtain the following rate upper bound.

8At high SNR, the feedback from a particular UT is effectively received over
an interference-free ��������� channel because��� interfering signals
are nulled. However, this results in only an � �� multiplicative gain because
���� � � ���� � ��.

(50)
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Theorem 8: When a group of UTs feed back the

channel coefficients simultaneously over channels uses

of the fading MIMO-MAC, the difference between and the

genie-aided upper bound of Theorem 3 is uniformly bounded for

all SNRs.

Proof: See Appendix VII.

Theorem 8 suggests that if the UTs are able to obtain an es-

timate of their instantaneous residual interference level in each

frame, up to UTs can feedback their CSI at the same time.

The ability of estimating the interference coefficients [see

(8) and the comment following Theorem 3] depends critically

on the quality of the dedicated training. Hence, the dedicated

training has a direct impact on the design and efficiency of the

channel state feedback. Such interdependencies between the dif-

ferent system components can be illuminated thanks to the com-

prehensivesystemanalysiscarriedout in thisworkandaremissed

by making overly simplifying assumptions (e.g., genie-aided co-

herent detection with perfect knowledge of the coefficients ).

Remark 5.1: In [28], thesamemodel in (46) foranalogchannel

state feedback over the MIMO-MAC uplink channel is consid-

ered. Instead of the linear MMSE estimator considered here, a

ZF approach (via the pseudoinverse of the matrix ) is exam-

ined. In the case of , this yields an infinite error variance,

which does not make sense in light of the fact that each channel

coefficient has unity variance. This odd behavior can be avoided

by performing an additional componentwise MMSE step. As a

matterof fact,performanceverysimilar towhatwehavefoundfor

the full MMSE estimator can be obtained for by using a

ZFreceiver for thechannel state feedback, followedby individual

(componentwise) MMSE scaling. We omit the analysis of such

suboptimal scheme for the sake of brevity.

Remark 5.2: It isalsopossible toanalyzethemorerealisticsce-

nario where the uplink channel matrix is known imperfectly at

the BS. We consider the following simple training-based scheme:

the UTs within a feedback group transmit a preamble of

training symbols, where defines the uplink training

length (per UT). Without repeating all steps in the details, the up-

link channel admits the following decomposition:

(54)

where the channel estimate and estimation error are

jointly Gaussian and independent, with per-component variances

and , respectively, with . Now, the

MMSE estimation of the downlink channel coefficients is

conditional with respect to . By repeating all previous steps,

after a lengthy calculation that we do not report here for the sake

of brevity, we obtain the average estimation error in the form

(55)

where wasdefinedin(51).Bycomparing(55)with(87),

we notice that they differ only in the argument of the function

. The two expressions coincide for , consis-

tentwith the fact that corresponds toperfect estimation

of the channel matrix . Furthermore, for large SNR, the two ar-

guments differ by a constant multiplicative factor. Hence, apart

from this constant factor that depends on the uplink training pa-

rameter , the conclusions about the rate gap obtained for the

case of perfect uplink channel knowledge also hold for the case

of training-based uplink channel estimation.

B. Digital Feedback

In the case of digital feedback, we let UTs multiplex

their channel state feedback codewords at the same time. The

resulting MIMO-MAC channel model is again given by (47),

but now the vector contains the th symbols of the feedback

codewords of the UTs sharing the same feedback frame. As

in Section IV-B, we assume that feedback messages of

bits are sent in channel uses. Hence, the

feedback symbols transmitted by the UTs can be grouped in

an matrix, while the BS has an

observation upon which to estimate the transmitted symbols. We

again assume each feedback symbol has average energy .

Suppose that the BS receiver operates optimally, by using

a joint ML decoder for all the simultaneously transmitting

UTs. The high-SNR error probability performance of the

MIMO-MAC channel was characterized in terms of the diver-

sity-multiplexing tradeoff in [57]. In particular, when each user

transmits at rate bits/symbol (i.e., with multiplexing

gain ) over the MIMO-MAC with i.i.d. channel fading (as con-

sidered here), the optimal ML decoder achieves an individual

user average error probability

where the “dot-equality” notation, introduced in [58] and [57],

indicates that . The error proba-

bility SNR exponent is referred to as the optimal diversity

gain of the system. Particularizing the results of [57] to the case

of users with one antenna each, transmitting to a re-

ceiver with antennas, the optimal diversity gain is given by

for

otherwise.
(56)

This is the same exponent of a channel with a single user with

a single antenna, transmitting to a receiver with antennas

(single-input–multiple-output with receiver antenna diversity).

In other words, under our system parameters, each UT achieves

an error probability that decays with SNR as if TDMA on the

feedback link were used (as if the UT transmitted its feedback

message alone on the MIMO uplink channel). From what is said

above, it follows that the multiplexing gain of all UTs is given by

. Furthermore, from the derivation of Section IV-C, we

require that . It follows that the average feedback
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error message probability in the MIMO-MAC fading channel is

given by

(57)

where is some subpolynomial function, such that

for all fixed .

If we examine the rate-gap expression with digital feedback

(42), we see that in order to achieve a bounded rate gap, the error

probability must go to zero at least as fast as . From

(57), we have that for all such that

is strictly larger than 1, the resulting rate gap is bounded and the

effect of feedback errors vanishes. This imposes the condition

and , which is stricter than the con-

dition and needed in the case of TDMA an

unfaded feedback channel previously analyzed in Section IV-C.

We conclude that a bounded rate gap can also be achieved

with digital feedback on the MIMO-MAC uplink channel.

Therefore, also in this case, we can achieve a number of

feedback channel uses that scale linearly with the number

of the BS antennas . Explicit design of codes that achieve

the optimal divesity-multiplexing tradeoff of MIMO-MAC

channels is not an easy task in general. In the particular case of

users with one antenna each, simple explicit constructions

of MIMO-MAC codes for the digital channel state feedback

are presented [54]. These codes can be optimally decoded by

using a sphere decoder [59], [60] and achieve the performance

promised by the above analysis. It should be noticed, however,

that while in the AWGN case the term in the rate

gap expression vanishes rapidly (faster than polynomially, in

), in the MIMO-MAC fading case, it vanishes only as

. Thus, for finite SNR, the rate gap may

be significantly larger than in the case of unfaded feedback

channel and the optimal tradeoff between quantization dis-

tortion and the feedback error probability must be sought by

careful optimization of the parameters and (see details

in [61]). Also, the same observations about detecting feedback

errors at the UTs and discarding the corresponding frames

made at the end of Section IV-C apply here.

C. Numerical Example

Fig. 5 shows both the genie-aided upper bound of Theorem

3 and the lower bound based on (50) of analog feedback over

a fading MIMO-MAC for and . We assume

perfect CSIR. We notice that for , the lower bound co-

incides with the genie-aided upper bound and comes very close

to the performance of ZF with ideal CSIT. For , the

rate gap of the lower bound (50) is unbounded but the double

logarithmic growth yields a very small gap for a

wide range of practical SNRs. The genie-aided bound achieves a

constant rate gap even for , in accordance with Theorem

8. Although not shown here, a system using ,

and does outperform and

(both configurations use a total of eight feedback symbols per

frame) in terms of the lower bound and the genie-aided upper

Fig. 5. Impact of � with analog feedback over MIMO-MAC.

Fig. 6. Achievable rate lower bounds for analog and digital feedback for� �

� and 24 total feedback symbols.

bound throughout the SNR range shown; this validates our ear-

lier claim about the optimality of whenever at least

feedback symbols are used.

Fig. 6 compares the achievable rates of analog and digital

feedback schemes based on the rate gap (50) and (42), over a

fading MIMO-MAC for . For the digital feedback, we

assume that there exists some code achieving the outage prob-

ability (57) with . We compare both schemes for

the same total amount of the feedback symbols (24 symbols).

For the analog feedback, we choose , while for

the digital feedback, we let . We observe

that the digital feedback achieves near-optimal sum rate over the

all SNR ranges while the analog feedback achieves a constant

gap of roughly 0.7 bits per channel use. Surprisingly, the digital

feedback is able to let users transmit simultaneously while

vanishing both the quantization error and the feedback error.

VI. EFFECTS OF CSIT FEEDBACK DELAY

In this section, we wish to take into account the effect of

feedback delay in a setting where the fading is temporally corre-

lated. We assume that the fading is constant within each frame,

but changes from frame to frame according to a stationary
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random process. In particular, assuming spatial independence,

each entry of evolves independently according to the same

complex circularly symmetric Gaussian stationary ergodic

random process, denoted by , with mean zero, unit vari-

ance, and power spectral density (Doppler spectrum) denoted

by , and satisfying .

Notice that the discrete-time process has time that ticks

at the frame rate.

Because of symmetry and spatial independence, we can ne-

glect the UT index and the antenna index and consider scalar

rather than vector processes. Generalizing (4), the observation

available at each UT at time from the common training

phase takes on the form

(58)

where indicates the feedback delay in frames. This means that

the channel state feedback to be used by the BS at frame time is

formed from noisy observations of the channel up to time .

We consider a scheme where each UT at frame produces the

MMSE estimate of its channel at frame and sends this estimate

(using either analog or digital feedback) to the BS; the BS uses

the received feedback to choose the beamforming vectors used

for data transmission in frame .

A. Estimation Error at UT

The key quantity in the associated rate gap is the MMSE pre-

diction error at the UT. Let denote the MMSE estimate of

given the observations in (58). Given the joint Gaussianity

of and , we can write

(59)

where is the estimation MMSE, and and

are independent with . From classical

Wiener filtering theory [47], the one-step prediction

MMSE error is given by

(60)

where is the observation noise variance. The

filtering MMSE is related to as

(61)

The scenario considered in all previous sections corresponds to

i.i.d. fading (across blocks) and , in which case

(past observations are useless) and thus

, which coincides with (7). More in general, in this

section, we will consider9 for .

We distinguish two cases of channel fading statistics: Doppler

process and regular process.

9We focus on the case � � �, because it is very relevant in practical appli-
cations. For example, high-data rate downlink systems such as 1xEv-Do [62]
already implement a very fast channel state feedback with at most one frame
delay. Furthermore, the one-step prediction case allows an elegant closed-form
analysis.

• We say that is a Doppler process if is strictly

band-limited to , where is the maximum

Doppler frequency shift, given by , where is

the mobile terminal speed (m/s), is the carrier frequency

(Hz), is light speed (m/s), and is the frame duration (s)

[41]. A Doppler process satisfies ,

and has prediction error10

(62)

Therefore, .

• We say that is a regular process if

(see [40] and references therein). In particular, a

process satisfying the Paley–Wiener condition [47]

is regular.

For the case of no delay , for either type of process,

the estimation error goes to zero with the observation noise, i.e.,

as . However, they differ sharply in terms of

prediction error: is strictly positive for a regular process

(even as ), whereas for Doppler processes as

quantified in the following.

Lemma 1: The noisy prediction error of a Doppler process

satisfies

(63)

for , where is a constant term independent of .

Proof: Applying Jensen’s inequality to (62) from the fact

that , we obtain the upper bound

(64)

Using the fact that is increasing, we arrive at the lower bound

(65)

Combining these bounds, we obtain the result.

B. Rate Gap Upper Bound

When analog feedback is used, each UT transmits a scaled

version of its MMSE estimate over the feedback channel.

The only difference from the scenarios studied in Sections V-A

(AWGN feedback channel) and Section IV-A (MIMO-MAC

feedback channel) is that the estimation error at the UT is

rather than . As a result,

a simple calculation confirms that the expressions for the

rate gap upper bound given in Theorems 4 (AWGN) and 7

(MIMO-MAC) apply to the present if is sub-

stituted for . The same equivalence holds for

digital feedback: each UT quantizes its MMSE estimate ,

and as a result the rate gap upper bound given in Theorem 5

10As in [40], the same result holds for a wider class of processes such that
the Lebesgue measure of the set �� � ������ ���� � � ��� � 	� is equal to
� � �� , and such that 
���� ������ � �� where � is the support of
� ���.
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applies with the same substitution. For the sake of brevity, the

expressions for the rate gap upper bound are not provided here.

In fact, the effect of feedback delay is most clearly illustrated

by considering perfect feedback (i.e., ), in which case

(at frame ) the BS has perfect knowledge of , the UT’s

prediction of based on common training observations up

to frame . For the sake of simplicity, we further assume

perfect dedicated training (i.e., ), in which case the

rate gap upper bound is

(66)

We now analyze the cases of no delay and one-step delay for

both types of processes.

a) No Feedback Delay : Because using past ob-

servations can only help, the filtering error is no larger than the

error if the past is ignored, i.e., . It

thus follows that for both Doppler and regular processes the

rate gap is bounded. Based upon (61), Lemma 1, and the prop-

erty for regular processes, it is straightforward to

see that as for either

regular or Doppler processes. As a result, the rate gap upper

bound in (66) converges to at high SNR. This

matches the high-SNR expression for block-by-block estima-

tion in (30), showing that filtering does not provide a significant

advantage at asymptotically high SNR. However, as later illus-

trated through numerical results, this convergence occurs ex-

tremely slowly for Doppler processes or highly correlated reg-

ular processes, in which case filtering does provide a nonnegli-

gible gain over a wide range of SNRs.

b) Feedback Delay : For regular fading process,

since , the quantity increases

linearly with and thus the rate gap upper bound

grows like . As a result, the achievable rate lower bound

is bounded even as . In addition,

in Appendix VIII, we show that the genie-aided upper bound is

also bounded due to the fundamentally nondeterministic nature

of regular processes. This shows that with delayed feedback and

a channel that evolves according to a regular fading process, a

system that makes use of ZF naive beamforming to users

becomes interference limited. 11 This behavior holds even with

CSIR (i.e., letting ).

Fortunately, physically meaningful fading processes belong

to the class of Doppler processes, at least over a time span where

they can be considered stationary. For a practical relative speed

between BS and UT, such time span is much larger than any rea-

sonable coding block length. Hence, we may say that Doppler

processes are more the rule than the exception. In this case, the

system behavior is radically different. Using Lemma 1, at high

SNR, the rate gap upper bound is

(67)

11In order to have a noninterference limited system, we can always use TDMA
and serve one user at a time. However, in this case, the sum rate would grow like
������� � instead of� ������� � as promised by the MIMO downlink with
perfect CSIT.

and thus the rate gap grows like . Using this in the

rate lower bound of Corollary 3.1, and considering the pre-log

factor in high-SNR, we have that the system sum rate is lower

bounded by

(68)

This shows that a multiplexing gain of is achievable.

Remark 6.1: If perfect CSIR is assumed, an interesting singu-

larity is observed for Doppler processes. Under this assumption,

each UT is able to perform perfect prediction of its channel state

on the basis of its past noiseless observations of the channel, by

the definition of a Doppler process. Thus, it is as if there is no

delay and the full multiplexing gain of is achieved (even if the

feedback link is imperfect). On the other hand, if perfect CSIR is

not assumed and UTs learn their channel through common

training symbols, for any finite value of , a multiplexing gain

of only is achieved. This point illustrates, again, that

neglecting some system aspects may yield to erroneous conclu-

sions. In this case, by properly modeling imperfect CSIR, we

have illuminated the impact of the UT’s speed (which deter-

mines the channel Doppler bandwidth) on the system achiev-

able rates in a concise and elegant way.

Remark 6.2: It is interesting to notice here the parallel with

the results of [40] on the high-SNR capacity of the single-user

scalar ergodic stationary fading channel with no CSIR and no

CSIT, where it is shown that for a class of nonregular pro-

cesses that includes the Doppler processes defined here, the

high-SNR capacity grows like , where is the

Lebesgue measure of the set .

In our case, it is clear that . These results, as ours,

rely on the behavior of the noisy prediction error for small

.

C. Examples

We now present numerical results for the Jakes model and the

Gauss–Markov model, which are two widely used Doppler and

regular processes, respectively. The classical Jakes correlation

model has the following spectrum [63], [55]:

(69)

and autocorrelation function . No closed-form so-

lution is known for the prediction or filtering error. Under

the Gauss–Markov model (i.e., autoregressive of order 1), the

channel evolves in time as

(70)

where is the correlation coefficient and the in-

novation process is unit-variance complex Gaussian, i.i.d.
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Fig. 7. Achievable rate lower bounds with optimal filtering for the Jakes and
Gauss–Markov models for � � � and � � 10 km/h (� � ������ and � �

������). Also shown are the rates with perfect CSI and with block-by-block
estimation.

in time. The prediction error for such model can be written in

closed-form and is given by (see, for example, [32])

(71)

For the Jakes model, we have . In all results, we

consider 2 GHz and 1 ms. Motivated by the max-

imum-entropy principle [64], several works in wireless commu-

nication modeled channel fading as Gauss–Markov process with

one-step correlation coefficient , given by Jakes’

model. Comparing the performance of the true Jakes model with

its Gauss–Markov maximum-entropy approximation, we will

point out that the latter may be overly pessimistic for high-speed

mobile terminals.

In Fig. 7, the achievable rate lower bound with delay-free

feedback and optimal filtering is plotted versus SNR for

the Jakes and Gauss–Markov models, for 10 km/h

( and ), and . Filtering is seen to

provide an advantage with respect to block-by-block estimation

for a wide range of SNRs. For the Gauss–Markov model, this

advantage vanishes around 30 dB, whereas for Jakes’ model,

this advantage persists far beyond the range of this plot.

Using the same parameters, in Fig. 8, we plot the lower bound

for one-step prediction versus SNR for 3 and 10

km/h ( and ). This figure illustrates

the contrast between Doppler and regular processes: for Jakes’

model, the achieved rate is quite close to the perfect CSI rate

(although a slight loss in multiplexing gain is evident), whereas

the rate for the Gauss–Markov model saturates at sufficiently

high SNR due to the unpredictability inherent to the model. To

further emphasize the difference in behavior, in Fig. 9, we plot

the lower bound for one-step prediction versus , the

Fig. 8. Achievable rate lower bounds with optimal one-step prediction for the
Jakes and Gauss–Markov models for � � �.

Fig. 9. Achievable rate lower bounds with optimal one-step prediction versus
� for � � � and � � 10 km/h.

number of common training symbols per block, for 10

and 15 dB and 10 km/h. As increases (and thus the obser-

vation noise decreases), the rate for Jakes’ model converges to

the ideal case. On the other hand, the rate for the Gauss–Markov

model saturates at a rate strictly smaller than the ideal CSI rate

because there is strictly positive prediction error even if noise-

less past observations (i.e., ) are provided.

In conclusion, the most noteworthy result of this analysis is

that, under common fading models (Doppler processes), both

analog and digital feedback schemes achieve a potentially high

multiplexing gain even with realistic, noisy, and delayed feed-

back.

VII. CONCLUSION

This paper presents a comprehensive and rigorous analysis

of the achievable performance of ZF beamforming under

pilot-based channel estimation and explicit channel state feed-

back. We considered what we believe are the most relevant
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system aspects. In particular, the often neglected effect of

explicit channel estimation at the UTs is taken into account,

including both common training and dedicated training phases.

As for the feedback, our closed-form bounds allow for a de-

tailed comparison of analog and digital feedback schemes,

including the effects of the MIMO-MAC fading channel, of

digital feedback decoding errors, and of feedback delay.

Our results build on prior work, but generalize many results

and models. We have focused on the case of FDD, but our results

easily extend to TDD systems with channel reciprocity. It is

perhaps important to point out here that our results show that,

even in the case of FDD, a system with explicit CSIT feedback

can be implemented, where the number of training and feedback

channel uses scales linearly with the number of BS antennas,

and eventually with the downlink throughput.

The throughput of the system analyzed here can be improved

via the use of combined beamforming and user selection/sched-

uling. Simulation results show that a system with and

, with greedy scheduling as proposed in [15] and [32],

achieves a very small gap with respect to the optimal dirty-

paper coding and perfect CSIT case with the same parameters.

Although a clean closed-form analytical characterization of a

system with beamforming and user selection based on imper-

fect CSI appears to be difficult, recent results [33], [46] indi-

cate that the dependence on CSIT quality when user selection is

performed is roughly the same as the equal-power/no-selection

scenario analyzed here.

We would like to conclude by noticing that some practically

relevant extensions of the present work have been presented (by

the same authors and by others) since the submission of this

paper. In particular, the rate gap analysis was extended to the

very relevant case of MIMO OFDM with frequency-correlated

fading in [53], the optimal allocation of training and feedback

resources is considered in [38] and [39], explicit coding schemes

for the CSIT digital feedback MIMO-MAC channel are pre-

sented in [54], and comparisons between single-user and mul-

tiuser MIMO (based on the bounds developed here and related

approximations) are performed in [65].

APPENDIX I

PROOF OF THEOREM 1

The proof is closely inspired by [36, Lemma B.0.1]. First,

notice that since is a function of , by the data-processing

inequality, we have that

Then, because and

, a lower bound on mutual information is

derived by upper bounding as follows:

(72)

where holds for any deterministic function of and

follows from the fact that conditioning reduces entropy,

and follows by the fact that differential entropy is maximized

by a Gaussian random vector (RV) with the same second mo-

ment. Substituting (12) in (8), we have

(73)

where and are uncorrelated

and zero mean, even if we condition on , because

are independent, zero-mean Gaus-

sians. Thus, we have

(74)

Choosing that minimizes tightens the

bound. This corresponds to setting equal to the linear

MMSE estimate of given and , i.e.,

(75)

Using (74), the corresponding MMSE is given by

(76)

(77)

Replacing (77) into (72) and using , we

obtain (14).

APPENDIX II

PROOF OF THEOREM 2

Using the lower bound on from Theorem 1, we have

(78)

(79)
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where follows by dropping the nonnegative term

. Using the fact that is spatially white

and is selected independent of (by the ZF procedure), it

follows that is and .

Direct application of Lemma 2, which is provided below, with

and , thus proves .

Finally, follows from the concavity of and Jensen’s

inequality.

Lemma 2: If is a nonnegative random variable with

, for any and any

(80)

Proof: For all , define the function

(81)

Then, (80) is equivalent to the inequality . By the

concavity of and Jensen’s inequality, we have

(82)

In particular, . Moreover, is an expectation of

the composition of a concave function and a linear function of

, and is hence concave [66]. Thus, the concave function

for lies above the line joining the points and

. Hence, we have for , which

proves (80).

APPENDIX III

PROOF OF THEOREM 4

Using (18), to compute , we only need to find

(83)

where follows from (27), follows from the fact that

by naive ZF, is obtained from the

independence of and ( is a deterministic function of

), and follows from and .

APPENDIX IV

PROOF OF THEOREM 5

To compute the rate gap upper bound, we determine

by writing the channel in terms of the UT channel

estimate (which is quantized) and the UT estimation error:

from (6). This yields

(84)

where is obtained from the representation

and the fact that because is zero-mean

Gaussian and is independent of and , from the

independence of the channel norm and direction of ,

from (35) and from the property [26, Lemma 2]

and finally by

computing the expected norm of using

. The final result follows by using the

above result in the expression (16) for the rate gap.

APPENDIX V

PROOF OF THEOREM 6

We first decompose the interference variance term as

no fb. errors

fb. errors (85)

(86)

where no fb. errors is the same as in the error-free

case and is thus given in (84), while for the case of feedback

errors, we trivially have fb. errors . The final

result is reached by simply substituting

and using the bound in the beta function (35).

APPENDIX VI

PROOF OF THEOREM 7

Using the argument from the proof of Theorem III (analog

FB over AWGN channel), the expected interference coefficient

is equal to the variance of the channel estimation
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error. This quantity must be averaged over the uplink channel

matrix , and thus using symmetry and (49), is given by

(87)

where is defined in (51).

In order to obtain the high-SNR result, we first state a closed-

form expression for using well-known results from

multivariate statistics (see, for example, [67])

(88)

where the coefficients are given by

Based upon this, we can characterize the asymptotic behavior

of the product for . Using the asymptotic

expansion of , we have (89), shown at the bottom

of the page, where we used the facts

(90)

for (91)

for (92)

for (93)

APPENDIX VII

PROOF OF THEOREM 8

We can lower bound the genie-aided rate of Theorem 3 as

follows:

where follows by dropping the nonnegative terms, fol-

lows by conditioning with respect to the uplink channel ma-

trix and then applying Jensen’s inequality in the inner con-

ditional expectation, and follows by noticing

, where is defined in (49). Then, we

obtain an upper bound of for the gap between the ideal ZF rate

and the genie-aided rate given by

for

for

(89)
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(94)

where follows because the term

is independent of due to the symmetry over , follows by

using the same derivation that leads to (87) and (51), and the last

line follows by monotonicity of the log, where denotes the

minimum eigenvalue of .

Our goal is to show that the term in the last line of (94) is

bounded. To this purpose, we write the last line of (94) as the

sum of three terms

(95)

For , complex Gaussian with i.i.d. zero-mean compo-

nents, it is well known that is chi-squared with two degrees

of freedom and mean 1 [68]. Hence, the third term in (95) yields

The second term in (95) is bounded by a constant, independent

of , and finally the first term in (95), for high SNR, can be

written as . It follows that the terms in

the first and third terms of the upper bound cancel, so that (95)

is bounded. This establishes the result.

APPENDIX VIII

GENIE-AIDED UPPER BOUND FOR REGULAR

PROCESSES WITH DELAYED FEEDBACK

We show that the genie-aided upper bound of Theorem 3 is

uniformly bounded for any SNR when the noiseless prediction

error is positive. For analytical simplicity, we assume perfect

common training and perfect (delayed) feedback. Hence, the

only source of “noise” in the CSIT is due to the prediction error.

We can write , where is the one-

step prediction of from its (noiseless) past, and is

the prediction error. From what was stated earlier, we have that

and are jointly complex Gaussian, i.i.d. in

the spatial domain, with mean zero and variance per component

equal to and , respectively. It is useful to write

the error as , where .

From (20), the genie-aided upper bound is given by

where is orthogonal to . Using the fact that the upper

bound is nondecreasing in , we let in (96) and

obtain

(96)

where follows by applying Jensen’s inequality to the first

term and noticing that both and are

, follows by expressing

, is obtained by

noticing that is chi-square distributed with de-

grees of freedom and that is

beta distributed with parameters , and finally

is the Euler-Digamma function.
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