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Abstract— Two-way relaying, which enables bidirectional si-
multaneous data transmission between two nodes, is an efficient
means to reduce the spectral efficiency loss observed in conven-
tional half-duplex relaying schemes. In this paper, we consider a
multiuser cellular two-way relaying scenario with several mobile
stations (MSs) at one end of the bidirectional link and a single
base station (BS) serving all MSs at the other end. Both the
BS and the MSs exchange private messages simultaneously via
a single relay node, i.e., concurrent uplink and downlink, in
only two time slots, independent of the number of MSs. In
the downlink, while the relay separates different MSs spatially,
e.g., using either zero-forcing beamforming or zero-forcing dirty
paper coding, it benefits from XOR precoding followed by self-
interference cancellation, in order to separate messages within a
message pair to be exchanged between the BS and each MS. The
corresponding sum rate optimization problem is solved with an
iterative algorithm based on semidefinite programming.

Index Terms— Two-way relaying, MIMO, multiuser cellular
communications, precoding, convex optimization.

I. INTRODUCTION

Two-way relaying [1] has been proposed to reduce the
spectral efficiency loss in conventional half-duplex relaying
schemes [2], where two time-slots are required for the trans-
mission from source to destination, yielding a pre-log factor
1/2 in the corresponding rate expressions. Instead, in two-way
relaying, a bidirectional transmission link is established be-
tween source and destination via a relay, employing only two
time-slots. When compared to conventional one-way relaying
schemes that need four time slots for the same transmission,
the spectral efficiency doubles with the two-way relaying. The
two-way protocol consists of two phases, i.e., time slots. In the
first phase, both nodes transmit simultaneously via a multiple
access channel scenario to the relay. In the second phase,
the relay broadcasts a common message back to the nodes,
which is obtained by combining the received messages. Since
the nodes know their own transmitted signal, they subtract
the back-propagated self-interference prior to decoding. The
combination of the received messages can be either with
superposition coding [1] or XOR precoding [3].

The broadcast capacity region of two-way relaying has
been derived in [4], and furthermore, relay selection has been
proposed in [5] for two-way relaying. In [6], the effect of
transmit channel state information (CSI) is investigated at the
decode-and-forward (DF) relay, which is motivated by the
assumption that the relay has to estimate the multiple-input
multiple-output (MIMO) channels for decoding in the first
time slot anyway, and the channel stays the same in the second

phase. Considering MIMO nodes, design and optimization
of precoders have been presented for both the superposition
coding and the XOR precoding. Moreover, XOR precoding has
shown to provide higher sum rates than superposition coding
if transmit CSI (CSIT) is used.

In this paper, we extend the MIMO two-way relaying
scheme with XOR precoding to a multiuser cellular relaying
scenario, where there are a base station (BS) and K mobile
stations (MS) communicating via a single DF relay. While
the BS has private messages for each MS, the MSs want
to transmit their own messages to the BS; in other words,
there are K message pairs which need to be exchanged. A
similar scenario has been considered in [7], where, in contrary
to our case, one-way relaying, i.e., transmission from the BS
to MSs, is considered with an amplify-and-forward relay. In
the context of conventional MIMO two-way relaying [6], the
BS can serve each MS in a time-division multiple access
fashion via the relay, which, consequently, needs 2K time
slots. In contrary, we propose to serve all users only in 2
time slots coherently in the same frequency band, where the
relay separates different messages intended for the BS and
the MSs in two levels: individual messages for MSs are
separated spatially, whereas the separation of each member of
message pair between the BS and any MS is satisfied through
XOR precoding followed by self-interference cancellation. In
order to separate different MSs, we use either zero-forcing
beamforming (ZFBF) [8] or zero-forcing dirty paper coding
(ZFDPC) [9]. We aim at maximizing the sum rate of the
bidirectional transmissions between the BS and the MSs for
both schemes. A novel iterative semidefinite programming
based algorithm is proposed for sum rate maximization.1

II. SYSTEM AND SIGNAL MODEL

We consider a relay assisted wireless broadcasting scenario,
where there are a single transmitter, K receivers and a single
relay, each equipped with NT , NR, and M antennas, respec-
tively. As the transmitter sends private messages to the individ-
ual receivers, also the receivers have private and independent
messages to transmit to the transmitter. The aforementioned

1Notation: Boldface lowercase and capital letters indicate vectors and
matrices, respectively. The superscripts (·)∗, (·)T , (·)H stand for complex
conjugate, matrix transpose, complex conjugate transpose, respectively. The
operators E{·}, blkdiag{X1, X2, . . .}, Tr(X), and � denote expectation, a
block diagonal matrix with X1, X2, . . . on its diagonal, the trace of X, and
positive semidefiniteness, respectively. CN (0, σ2) stands for a zero-mean
complex normal distribution with variance σ2.
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Fig. 1. The bidirectional connection between the BS and K MSs.

communication scenario fits well into a cellular network
structure, in which the BS serves several MSs concurrently
through the downlink, and receives data from MSs through the
uplink. We establish a bidirectional connection between the BS
and the MSs via a relay station. It is assumed that there is no
direct link between the BS and MSs. The considered cellular
network structure is summarized in Fig. 1.

We assume frequency-flat block fading channels between
all nodes, where H ∈ C

M×NT , and Gi ∈ C
M×NR , i ∈

{1, . . . ,K} denote the uplink, i.e., transmission to the relay,
channel matrices between the BS and the relay, and between
the ith MS and the relay, respectively. Due to the reciprocity of
the channels in the downlink, i.e., tranmission from the relay,
the observed channel matrices at the BS and the ith MS are
simply HT and GT

i , respectively.
In the following, we present the principles of two-way

relaying for the considered scenario and the corresponding
transmission rate expressions. The communication protocol
consists of uplink and downlink phases with equal durations,
i.e., no time sharing. The channels are assumed to be constant
over two phases.

A. Phase 1 - Multiple Access:

In the first phase, the BS and the MSs transmit simultane-
ously to the relay, whereby none of the transmit nodes have
CSI knowledge. The BS wants to transmit the bit sequence
x(i)

BS to the ith MS and the ith MS wants to transmit the
bit sequence x(i)

MS to the BS. Defining the transmit signals of
the BS and ith MS as

(
x(1)

BS · · · x(K)
BS

) → sBS ∈ C
NT and

x(i)
MS → s(i)MS ∈ C

NR , respectively, the received signal rR at the
relay can be expressed as

rR = HsBS +
K∑

i=1

Gis
(i)
MS + nR, (1)

where the noise term is assumed to be nR ∼ CN (
0, σ2

RIM

)
,

and the transmit signals are subject to the power constraints
E{sH

BSsBS} ≤ PBS and E{(s(i)MS)
Hs(i)MS} ≤ PMS ∀i.

The relay decodes the information from the BS and the
MSs assuming that it has sufficient number of antennas for
perfect decoding of NT + KNR independent spatial sub-
streams. Using a Gaussian codebook, the achievable rates of
all nodes are theoretically described by the MIMO multiple
access channel (MAC) rate region [10]. Defining the set of all
nodes as N = {BS,MS1, . . . ,MSK}, the MAC rate region is
given by the following inequalities:

RS�R ≤ IS�R = log2

∣∣∣∣I+ δPBS

NTσ2
R

HHH +
∑
i∈S̃

PMS

NRσ2
R

GiG
H
i

∣∣∣∣(2)

for all S ⊆ N , where S̃ is the index set of MSs in S, and
δ = 1{BS}∈S indicates the presence of BS in S.

B. Phase 2 - Broadcast:

In the second phase, after decoding the received messages
perfectly, the relay needs to broadcast the messages to the
corresponding nodes through the reciprocal channels of the
first phase. The BS is supposed to be supplied with all s(i)MS’s,
i ∈ {1, . . . ,K}, whereas each MS intends to receive the
corresponding s(i)BS, i ∈ {1, . . . ,K}.

We assume that the transmit signal of the relay sR ∈ C
M

is determined by the decoded bit-sequences of the first phase,
i.e.,

(
x(1)

BS · · · x(K)
BS x(1)

MS · · · x(K)
MS

)
. As the relay transmits in the

second phase, the BS and the MSs decode the signals they
receive. Since they know the information they have transmitted
in the first phase (self-interference), they can cancel this
contribution and decode the other part of the information.

We use the XOR precoding scheme, which combines the
two information bit sequences on bit-level prior to encoding.
Specifically, the relay applies bitwise XOR operation on both
the ith decoded bit-sequences x(i)

BS and x(i)
MS, and codes the

resulting bit-sequences x(i)
R , i.e., x(i)

MS ⊕ x(i)
BS = x(i)

R → s(i)R .

Hence, while broadcasting the message pair
(
x(i)

MS, x
(i)
BS

)
, they

do not cause interference to each other, i.e., the messages
and the corresponding nodes are separated in bit-level. Next,
in order to separate different MSs spatially, the transmit
signal of the relay sR is obtained by superposing s(i)R ’s after
precoding each with the matrix Wi: sR =

∑K
i=1 Wis

(i)
R , where∑K

i=1 Tr(WiW
H
i ) ≤ PR. We explain the structure and the

optimization of the precoder matrices Wi in the following
sections, and present here only the rate expressions for the
general case.

The received signals at the BS and the MSs are given by

rBS =HT
K∑

i=1

Wis
(i)
R + nBS, and r(i)

MS = GT
i

K∑
i=1

Wis
(i)
R + n(i)

MS,

where the noise terms nBS ∼ CN (
0, σ2

BSINT

)
, and

n(i)
MS ∼ CN (

0, σ2
MSINR

)
. Since the BS is interested in

messages from all MSs, i.e., s(i)R ∀i, it decodes them all,
whereas the ith MS decodes only the s(i)R , assuming the rest
s(j)R , j 	= i, j ∈ {1, . . . ,K} as noise. After decoding, the
self-interference cancelation is done by applying a simple
XOR operation, i.e., x(i)

R ⊕ x(i)
MS = x(i)

BS, and x(i)
R ⊕ x(i)

BS = x(i)
MS.

Thus, the mutual information between the relay and the
corresponding nodes are given by:

IR�BS = log2

∣∣∣I +
1
σ2

BS

HT
K∑

i=1

(WiW
H
i )H∗

∣∣∣, (3)

I
(i)
R�MS = log2

∣∣∣∣∣I +
GT

i WiW
H
i G∗

i

σ2
MSI +

∑K
j=1,j �=i GT

j WjWH
j G∗

j

∣∣∣∣∣,∀i. (4)

The data transferred from the relay to the BS comprises
the private messages from all MSs’ intended for the BS,
whereas the mutual information (3) does not give explicit
information about the rates of the individual messages sent
from different MSs, i.e., I(i)

R�BS, ∀i ∈ 1, . . . ,K, but only the
sum rate of total data transmitted from the relay to the BS, i.e.,
IR�BS =

∑K
i=1 I

(i)
R�BS. Hence, the data rate of the individual
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Fig. 2. The rate region of the individual messages of each MS through the
transmission from the relay to the BS.

information sent from each MS to the BS, in so much as the
corresponding rate region needs to investigated.

In the following, we consider the K = 2 case, and present
the rate region for the data of individual MSs throughout the
transmission from the relay to the BS. Afterwards, the findings
will be generalized to an arbitrary value of K. Assume that the
decoder at the BS uses successive interference cancellation to
decode messages s(1)R and s(2)R , with a decoding order ψ. When
ψ1 = [1, 2], i.e., decode s(1)R assuming s(2)R is noise, and then
subtract the effect of s(1)R from the signal and decode s(2)R , the
achievable rates for both messages are expressed with

I
(2)
R�BS =log2

∣∣∣I +
1
σ2

BS

HT W2WH
2 H∗

∣∣∣, I(1)
R�BS =IR�BS − I

(2)
R�BS,

which represents point T1 in Fig. 2, and likewise, when
ψ2 = [2, 1], the achievable rates become

I
(1)
R�BS =log2

∣∣∣I +
1
σ2

BS

HT W1WH
1 H∗

∣∣∣, I(2)
R�BS =IR�BS − I

(1)
R�BS,

which is represented by point T2 in Fig. 2. The points between
T1 and T2 can be achieved by time-sharing between different
decoding orders, i.e., ψ1 and ψ2. The described rate region
resembles the conventional MAC rate region, except the fact
that time sharing is applied between the decoding orders, but
not between individual users. Basically, one can obtain the
aforementioned rate region also through rate-splitting or joint
decoding. The extension to any K > 2 case is trivial and
follows the same approach that can be followed for multiple
users MAC region, and hence, details are dropped here.
Finally, defining the set of messages belonging to different
MSs as M = {m1,m2, . . . ,mK}, the achievable rate region
for the MS messages transmitted from the relay to the BS is
described by the inequalities

R̆R�BSW ≤ ĬR�BSW = log2

∣∣∣∣∣I +
1
σ2

BS

HT
∑
i∈W

(WiW
H
i )H∗

∣∣∣∣∣, (5)

for all W ⊆ M, where the subscript BSW denotes the set
of MS messages transmitted from the relay to the BS, and
with this new notation ĬR�BSmi

stands for Ĩ(i)
R�BS for all i ∈

{1, . . . ,K}. Hence, with (5), IR�BS ⊂ {ĬR�BSW ∀W ⊆ M}.
In contrary to the aforementioned case, the transmission rate

of the messages from the BS to the individual MSs is not an
issue, since we optimize for sum rate of the BS. Depending
on the individual transmission rates of the messages from the
relay to each MS, i.e., I(i)

R�MS, the BS can allocate its total rate
accordingly to the individual private messages to the MSs.

We define RBS and RMSi
as the sum rate that the BS

broadcast to the MSs and the rate that the ith MS can transmit

data to the BS, respectively. Hence, the overall rate region
of the presented multiuser MIMO two-way relaying scheme
can be defined by combining all constraints related with the
MAC phase, i.e., IS�R ∀S ⊆ N , and the broadcast phase, i.e.,
I
(i)
R�MS ∀i, ĬR�BSW ∀W ⊆ M, such that we have

{RBS, RMS1 , . . . , RMSK
} ∈ IS�R ∪ I(i)

R�MS ∪ ĬR�BSW ,

for all S ⊆ N , W ⊆ M, and i = {1, . . . , N}. Note that the
final overall transmission rates should be multiplied with 1/2
in order to introduce the effect of two time-slots needed for
the relaying traffic pattern.

III. PRECODING AT THE RELAY

In the previous section we have derived the rate expressions
for two-way relaying but not specified the structure of the
precoding matrices at the relay. In this section, we present
how to design these precoders with the knowledge of CSIT.

Since we assume that there is no CSI at the transmitters
in the first phase, the maximum achievable rates are readily
available by (2). However, the achievable rates through the
downlink in the second phase are totally dependent on the
chosen precoding matrices and given by (3)-(4). The down-
link scenario we are considering is nothing but a modified
broadcast channel, where the relay broadcasts private messages
to the MSs, i.e., s(i)R to the ith MS, and there is a node,
different from the conventional broadcast channel, namely
the BS, which intends to receive all private messages, i.e.,
s(i)R ∀i. There are several MIMO broadcast (BC) transmission
schemes proposed in the literature, e.g. beamforming (BF),
ZFBF, dirty paper coding (DPC). Although the DPC is proven
to be the optimal in terms of maximizing the sum rate of
the conventional broadcast channel, it is not practical because
of its nonlinearity. Instead, we investigate two simpler but
suboptimal schemes, which are based on the ZFBF [8], and
the successive ZFDPC [9].

A. Zero-Forcing Beamforming

Neglecting the BS for the moment, we apply zero-
forcing between the MSs, and choose the precoding matri-
ces, Wi, such that they satisfy the zero-forcing condition
GT

j Wi = 0 for j 	= i, i = 1, . . . ,K. In other words, defining
G̃i = [G1 · · ·Gi−1 Gi+1 · · ·GK ]T , Wi is forced to lie in the
nullspace of G̃i. In order to transmit data to the ith MS, the
nullspace should not be empty, i.e., M > rank(G̃i). Hence,
the condition M > max1≤i≤K{rank(G̃i)} must be satisfied to
zero-force and transmit data concurrently to all MSs. Using the
zero-forcing Wzf

i , the received signal at the ith MS becomes

r(i)
MS = GT

i Wzf
i s(i)R + n(i)

MS, (6)

and substituting Wzf
i into (4), it modifies to

I
zf,(i)
R�MS = log2

∣∣∣I +
1

σ2
MS

GT
i Wzf

i (Wzf
i )HG∗

i

∣∣∣∣,

= log2

∣∣∣I +
1

σ2
MS

GT
i ViΛiV

H
i G∗

i

∣∣∣∣, (7)

where Vi = null(G̃i) and can be computed through the
singular value decomposition (SVD) of G̃i, and Λi is the
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covariance matrix of the ith message s(i)R . Next, the sum rate
of the transmitted data from the relay to all MSs becomes

Rsum
R�MS ≤

K∑
i=1

I
zf,(i)
R�MS = log2

∣∣∣∣I +
1

σ2
MS

GT ΛG∗
∣∣∣∣, (8)

where G = blkdiag{VT
1 G1, . . . ,V

T
KGK}, and

Λ = blkdiag{Λ1, . . . ,ΛK}. Deciding on the precoder
matrices, the mutual information between the relay and the
BS is obtained by substituting the corresponding Wzf

i into (3):

Izf
R�BS = log2

∣∣∣I +
1
σ2

BS

HT
K∑

i=1

(ViΛiV
H
i )H∗

∣∣∣. (9)

B. Successive Zero-Forcing Dirty Paper Coding

Zero-forcing beamforming based orthogonalization schemes
suffer from the restrictions on the necessary number of trans-
mit antenna, which in return limits the maximum number of
users that can be supported concurrently. Moreover, a complete
block diagonalization reduces the sum rate considerably when
compared with that of DPC based schemes. Hence, the propo-
sition of [9] to combine zero-forcing combined with DPC, will
be adopted to our scenario.

Neglecting again the BS, we define an ordered set of users
U with an order π and |U| = K, and force the precoding
matrix Wzfdpc

π(i) to lie in the null space of

Ği−1 = [Gπ(1) Gπ(2) · · · Gπ(i−1)]T for i ∈ {2, 3, . . . ,K}.
For i = 1, Ğ0 is assumed to be a zero matrix. Thus, the
received signal at the π(i)th MS becomes

r(π(i))
MS = GT

π(i)W
zfdpc
π(i) s(π(i))

R + n(π(i))
MS

+ GT
π(i)

∑i−1
j=1 Wzfdpc

π(i) s(π(i))
R︸ ︷︷ ︸

cancelled by DPC

+ GT
π(i)

∑K
j=i+1Wzfdpc

π(i) s(π(i))
R︸ ︷︷ ︸

cancelled by ZF

,

where the third summand, i.e., GT
π(i)

∑K
j=i+1 Wzfdpc

π(i) s(π(i))
R , is

cancelled by choosing Wzfdpc
π(i) in the nullspace of Ği−1, and

the second summand, i.e., GT
π(i)

∑i−1
j=1 Wzfdpc

π(i) s(π(i))
R , can be

assumed to not exist by applying successive dirty-paper coding
with noncausal knowledge of the interfering signals [9].

Substituting Wzfdpc
π(i) into (4), we obtain

I
zfdpc,(π(i))
R�MS = log2

∣∣∣I +
1

σ2
MS

GT
π(i)W

zfdpc
π(i) (Wzfdpc

π(i) )HG∗
π(i)

∣∣∣∣,

= log2

∣∣∣I +
1

σ2
MS

GT
π(i)Qi−1Γπ(i)Q

H
i−1G∗

π(i)

∣∣∣∣,

where Qi−1 = null(Ği−1) and can be computed through the
SVD of Ği−1, and Q0 is an identity matrix for i = 1; and
Γπ(i) is the covariance matrix of the π(i)th message. Next,
the sum rate of the transmitted data from the relay to all MSs
becomes

Rsum
R�MS ≤

K∑
i=1

I
zf,(i)
R�MS = log2

∣∣∣∣I +
1

σ2
MS

GT
π ΓG∗

π

∣∣∣∣, (10)

where Gπ = blkdiag{QT
0 Gπ(1), . . . ,Q

T
K−1Gπ(K)}, and

Γ = blkdiag{Γπ(1), . . . ,Γπ(K)}. Substituting the correspond-
ing precoding matrices Wzfdpc

i into (3), the mutual information
between the relay and the BS can be expressed as

Izfdpc
R�BS = log2

∣∣∣I +
1
σ2

BS

HT
K∑

i=1

(Qi−1Γπ(i)Q
H
i−1)H

∗
∣∣∣.

It should be noted that the aforementioned rate expressions
are for a given user order π; hence, the throughput can be
improved by searching over different user orders.

IV. MAXIMIZING THE SUM RATE

In this section, we optimize the precoding matrices for
both ZFBF and ZFDPC such that the sum rate, i.e.,
RBS +

∑K
i=1RMS,i, is maximized. In the following, we pro-

pose an iterative algorithm which exploits the geometry of the
intersection of the uplink and the downlink rate regions.

A. The Problem Formulation

The general sum rate optimization problem is formulated as

max
RBS,RMS,i,Ωi∀i

(
RBS +

K∑
i=1

RMS,i

)

subject to {RBS, RMS,1, . . . , RMS,K} ∈ CMAC

{RMS,1, . . . , RMS,K} ∈ CBS

RBS ≤ ∑K
i=1
I
(i)
R�MS,

∑K
i=1

Tr(Ωi) ≤ PR,Ωi � 0∀i, (11)

where CMAC is the set of all constraints related to the uplink,
as given in (2), and CBS is the set of all constraints related
to the transmission from the relay to the BS in the second
phase, as given in (5). The third constraint in (11) ensures
the total transmission rate of the BS, and finally, the fourth
constraint guarantees that the total relay power is bounded.
The optimization problem (11) is in its most general form
in the sense that both broadcasting schemes can be treated by
substituting the corresponding mutual information expressions
and Ωi, i.e., Ωi := Λi for ZFBF as defined in Section III-A
and Ωi := Γπ(i) for ZFDPC as defined in Section III-B.

The sum rate formulation suggests the fact that the trans-
mission rate of the ith common message s(i)R to the BS and
the ith MS, and consequently, RBS and

∑K
i=1R

(i)
MS, need not

to be equal to each other. In order to support unbalanced rates
for x(i)

R , zero padding can be used for the lower rated bit
sequence, i.e., for x(i)

BS or x(i)
MS. Let us explain this feature

with an example and say that I(i)
R�BS > I

(i)
R�MS. Then, the relay

pads zeros to the bit sequence x(i)
MS, and chooses the rate of

its codebook to be max
{
I
(i)
R�BS, I

(i)
R�MS

}
= I

(i)
R�BS. Likewise,

for decoding the ith message, the BS uses a codebook of size
proportional to I

(i)
R� BS. On the other hand, the ith MS has

the apriori knowledge for decoding, which informs the node
that there are some intentional and redundant zeros padded
to the received bit stream, i.e., the rate of information is
reduced correspondingly, and the node can shrink the size of
its codebook to be proportional to I(i)

R�MS. Thus, by using zero
padding and apriori knowledge at corresponding nodes, two-
way relaying can support unbalanced rate tuples for each ith
common message.
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B. Sum Rate Maximization Algorithm

Having K + 1 nodes exchanging information, i.e., one BS
and K MSs, we search for K+1 rate tuples inside a space of
K+1 dimensions, which is defined by the constraints in (11).
This K + 1 dimensional space is the intersection of the MAC
and BC rate regions through the first and the second phase,
respectively, and convex by definition, i.e., it is the convex
hull of all achievable K + 1 rate tuples.

In the following, before presenting the principles of the
general maximization algorithm, we firstly give a simple
motivating example for K = 2 case, and then, building on
this framework, the general sum rate maximization algorithm
for arbitrary K is presented.

1) 2-Dimensional Case: Each rate pair within the K + 1
rate tuple, i.e., (R̄α, R̄β), where α, β ∈ {BS,MS1, . . . ,MSK}
and α 	= β, is defined in a 2-dimensional convex rate region
Iα,β as depicted in Fig. 3 with the shaded area. The relation
between any tuple within this region can be expressed through
an angle φα,β ∈ [0, π/2] as R̄β = R̄α tan(φα,β). Hence, the
maximum possible sum rate of this pair, i.e., R̄α + R̄β =
R̄α(1+tan(φα,β)), for a given φ can be easily found through
the optimization

max τ subject to
(
τ, τ tan(φα,β)

) ∈ C(α,β)
MAC , C(α,β)

BC , (12)

where C(α,β)
MAC and C(α,β)

BC represent the convex MAC and
BC region constraints associated with the rate pair (α, β),
respectively; and we omit the power and semidefiniteness
constraints for notational simplicity. For a given apriori τ ,
(12) turns out to be a convex semidefinite feasibility check
problem. Hence, the problem (12) can be efficiently and
optimally solved by a bisection method (over τ ) combined
with semidefinite feasibility checks [6], [11], [12], but we
drop the explicit expressions for the brevity of the paper.
Computing the optimal maximal τ�, we find the optimal rate
pair (R̄φ

α, R̄
φ
β) = (τ�, τ� tan(φα,β)) which maximizes the

sum rate of the pair in the direction of φα,β . Next, since the
rate region Iα,β is convex in terms of φα,β , we can search
over the optimal φα,β that maximizes Rα + Rβ , using an
unconstrained minimization method, e.g., the gradient descent
method. To sum up, for each iteration of the descent algorithm,
i.e., for each chosen φα,β , we solve (12), and iterate φα,β , until
iterating further does not induce significant change in sum rate.

2) The General Case: Previously, we only consider the
constraints related to the individual chosen (α, β) pair, and
disregard the constraints enforced through the relation of the
chosen (α, β) pair with other nodes in the set N\{α, β}.
Hence, in the following, we extend the maximization opti-
mization to arbitrary number of K case by considering all
K + 1 dimensional MAC and BC phases’ constraints.

TABLE I

OVERALL SUM RATE MAXIMIZATION ALGORITHM———————————————————————————
initiate: → φ ∈ [0, π/2]
repeat: → solve Pφ for given φ

initiate: → Rmin
ν , Rmax

ν

repeat: → Rν = (Rmin
ν + Rmax

ν )/2
→ solve the feasibility problem for Rν , φ(

Rν , Rν tan(φν,μ1), . . . , Rν tan(φν,μK )
) ∈ CMAC,(

Rν , Rν tan(φν,μ1), . . . , Rν tan(φν,μK )
) ∈ CBC,∑K

i=1 Tr(Ωi) ≤ PR,Ωi � 0∀i,

→ if feasible
Rmin

ν := Rν

→ else
Rmax

ν := Rν

until: → Rmax
ν − Rmin

ν < ε

→ compute the search direction for φ : Δφ
numerical first derivative computation for sum rate

→ line search for choosing step size: t
→ update: φ = φ + tΔφ

until: → no further significant improvement on sum rate.
———————————————————————————

Since there are K + 1 rate dimensions and each pair
(α, β) out of K + 1 dimensions can be interpreted through
an angle φα,β , it may be conjectured that we need
(K + 1)!/(2(K − 1)!) angles to represent all relations be-
tween all dimensions, whereas, in essence, we need only K
angles. This statement can be proven by setting one dimension
fixed, say the νth one, and expressing all the rest K dimensions
in terms of the νth dimension and a corresponding angle. Thus,
the rates for all dimensions can be expressed as

(
Rν , Rν tan(φν,μ1), . . . , Rν tan(φν,μK

)
)
,

for any ν ∈ N , where μ1, . . . , μK are the members of the
set N\{ν}, and |N\{ν}| = K. Having the knowledge of the
vector φ = [φν,μ1 , . . . , φν,μK

], one can derive all other angles
through the relation

tan(φμi,μj
) =

tan(φν,μi
)

tan(φν,μj
)
, ∀i, j ∈ {1, . . . ,K}, i 	= j.

Hence, likewise the case in Section IV-B.1, for a given
vector φ, the maximum sum rate of the proposed cellular two-
way scheme can be obtained through

Pφ :

⎧⎪⎪⎨
⎪⎪⎩

maxRν ,Ω1,...,ΩK
Rν

subject to
∑K

i=1 Tr(Ωi) ≤ PR,Ωi � 0∀i,(
Rν , Rν tan(φν,μ1), . . . , Rν tan(φν,μK

)
) ∈ CMAC,(

Rν , Rν tan(φν,μ1), . . . , Rν tan(φν,μK
)
) ∈ CBC,

where CBC is the set of all constraints related to the broadcast
region in the second phase, i.e.,

CBC := CBS ∪
{
RBS ≤

K∑
i=1

I
(i)
R�MS

}
from (11).

The Pφ can be efficiently solved with a bisection method
combined with semidefinite feasibility checks [6], [11].

Since the K + 1 dimensional achievable rate region is
convex by definition, we can search over φ, whose elements
φi ∈ [0, π/2], i = 1, . . . ,K, using an unconstrained minimiza-
tion method. The overall sum rate maximization algorithm
is summarized in Table I. While implementing the bisection
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part of the proposed algorithm in Table I, Rmin
ν is set to

0, Rmax
ν is chosen large enough according to the operation

mean SNR value, and ε is a small positive number indicating
the precision of the bisection algorithm. Moreover, the search
direction for φ is found through a numerical first derivative
computation, i.e., (f(x+ ε) − f(x))/ε. The iterations for the
descent algorithm continues until the difference at the sum rate
becomes negligible for a new iteration. The convergence and
the optimality of the proposed algorithm are ensured through
the related conditions of the used methods and convexity of
the problem [11].

V. SIMULATIONS

In this section we present Monte Carlo simulation results. It
is assumed that all elements of {H,Gi,∀i} are independently
and identically distributed with CN (0, σ2

H) and CN (0, σ2
G).

The channel matrices are assumed to stay constant over the
two phases. All nodes use the same transmit power, i.e.,
P = PMS = PBS = PR, and have the same noise variance,
i.e., σ2 = σ2

MS = σ2
BS = σ2

R. Hence, the average signal-to-
noise ratios for the BS link and the MS links are defined as
SNRBS = σ2

HP/σ
2
n and SNRMS = σ2

GP/σ
2
n, respectively.

As a reference system, we assume a scheme, where the
relay (hence, the BS) serves MSs one by one, i.e., total
transmission lasts for 2K. In order to be fair to the reference
system, it is also assumed that the reference system em-
ploys multiuser diversity, i.e., depending on the instantaneous
channel conditions, the relay chooses the best user to serve.
Note that the sum rate for the reference system can also be
computed through the algorithm presented in Table I by setting
K = 1 and using the corresponding uplink and downlink rate
constraints. Throughout the simulations, we use the MATLAB
based semidefinite tool Yalmip [12] to solve the designed
semidefinite problems.

The average sum rates of the proposed and the reference
scheme with multiuser diversity is shown in Fig. 4, where
NT = 4, NR = 2 and M = 8, i.e., sufficiently enough
antennas for efficient decoding at all nodes. We investigate
the impact of unbalanced link quality, i.e., SNRBS = 10dB
and SNRMS ∈ [0, 20]dB. The proposed multiuser two-
way relaying scheme with both ZFBF and ZFDPC in the
downlink, proposes substantial improvement over the refer-
ence. Especially for the symmetric link quality case, i.e.,
SNRBS = SNRMS = 10dB, up to 4 bps/Hz is gained over
the reference for given operation parameters. As SNRMS

increases, the BS link turns out to be the bottleneck for the
sum rate, which suggests that increased number of users can
not be supported. This fact is also observed in the figure
such that the proposed and the reference schemes approach
each other for high SNRMS values. Moreover, as expected,
the ZFDPC based scheme performs always better than ZFBF
based one. As shown in the figure, the MAC sum mutual
information I{BS,MS1,...,MSK} stands as an upper bound to
achievable sum rate, which depicts that the first phase is the
ultimate bottleneck. Although not investigated in this paper,
it should be also noted that the proposed scheme can also
benefit from user selection for increased number of MSs, i.e.,
multiuser diversity.
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Fig. 4. Average sum rate versus SNRMS for K = 2, NT = 4, NR = 2,
M = 8 and SNRBS = 10dB.

VI. CONCLUSIONS

We extended the MIMO two-way relaying to the multiuser
case for XOR precoding. The separation of 2K messages to
the BS and K MSs is accomplished in two level: the interfer-
ence of exchanged messages between the BS and each MS is
cancelled by the usage of XOR precoding, and different MSs
are separated spatially. A novel iterative algorithm has been
proposed for sum rate maximization, which can be employed
in some other similar problems consisting rate region intersec-
tions. The proposed scheme is shown to provide substantial
sum rate gains over the conventional system with multiuser
diversity, which serves a single MS per relaying cycle.
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