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Abstract. Traditionally, a multiuser problem is a constrained optimization problem character-
ized by a set of users, an objective given by a sum of user-specific utility functions, and a collection
of linear constraints that couple the user decisions. The users do not share the information about
their utilities, but do communicate values of their decision variables. The multiuser problem is to
maximize the sum of the users-specific utility functions subject to the coupling constraints, while
abiding by the informational requirements of each user. In this paper, we focus on generalizations of
convex multiuser optimization problems where the objective and constraints are not separable by user
and instead consider instances where user decisions are coupled, both in the objective and through
nonlinear coupling constraints. To solve this problem, we consider the application of gradient-based
distributed algorithms on an approximation of the multiuser problem. Such an approximation is
obtained through a Tikhonov regularization and is equipped with estimates of the difference between
the optimal function values of the original problem and its regularized counterpart. In the algorith-
mic development, we consider constant steplength primal-dual and dual schemes in which the iterate
computations are distributed naturally across the users, i.e., each user updates its own decision only.
Convergence in the primal-dual space is provided in limited coordination settings, which allows for
differing steplengths across users as well as across the primal and dual space. We observe that a
generalization of this result is also available when users choose their regularization parameters in-
dependently from a prescribed range. An alternative to primal-dual schemes can be found in dual
schemes which are analyzed in regimes where approximate primal solutions are obtained through a
fixed number of gradient steps. Per-iteration error bounds are provided in such regimes and exten-
sions are provided to regimes where users independently choose their regularization parameters. Our
results are supported by a case-study in which the proposed algorithms are applied to a multi-user
problem arising in a congested traffic network.

1. Introduction. This paper deals with generic forms of multiuser problems
arising often in network resource management, such as rate allocation in communica-
tion networks [7, 9, 13, 22, 23, 25]. A multiuser problem is a constrained optimization
problem associated with a finite set of N users (or players). Each user i has a con-
vex cost function fi(xi) that depends only on its decision vector xi. The decision
vectors xi, i = 1, . . . , N are typically subject to a finite system of linear inequalities
aTj (x1, . . . , xN ) ≤ bj for j = 1, . . . ,m, which couple the user decision variables. The
multiuser problem is formulated as a convex minimization of the form

minimize

N∑

i=1

fi(xi)

subject to aTj (x1, . . . , xN ) ≤ bj , j = 1, . . . ,m (1.1)

xi ∈ Xi, i = 1, . . . , N,

where Xi is the set constraint on user i decision xi (often Xi is a box constraint). In
many applications, users are characterized by their payoff functions rather than cost
functions, in which case the multiuser problem is a concave maximization problem.
In multiuser optimization, the problem information is distributed. In particular, it
is assumed that user i knows only its function fi(xi) and the constraint set Xi.
Furthermore, user i can modify only its own decision xi but may observe the decisions
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(xj)j 6=i of the other users. In effect, every user can see the entire vector x. Finally, it
is often desirable that the algorithmic parameters (such as regularization parameters
and steplengths) be chosen with relative independence across users since it is often
challenging to both mandate choices and enforce consistency across users.

The goal in multiuser optimization is to solve problem (1.1) in compliance with
the distributed information structure of the problem. More specifically, our focus
is on developing distributed algorithms that satisfy several properties: (1) Limited
informational requirements: Any given user does not have access to the utilities or
the constraints of other users; (2) Single timescale: Two-timescale schemes for solving
monotone variational problems require updating regularization parameters at a slow
timescale and obtaining regularized solutions at a fast timescale. Coordinating across
timescales is challenging and our goal lies in developing single timescale schemes;
and (3) Limited coordination of algorithm parameters: In truly large-scale networks,
enforcing consistency across algorithm parameters is often challenging and ideally,
one would like minimal coordination across users in specifying algorithm parameters.

Our interest is in first-order methods, as these methods have small overhead per
iteration and they exhibit stable behavior in the presence of various sources of noise in
the computations, as well as in the information exchange due to possibly noisy links
in the underlying communication network over which the users communicate.

Prior work [7, 9, 13, 22, 23, 25] has largely focused on multiuser problem (1.1).
Both primal, primal-dual and dual schemes are discussed typically in a continuous-
time setting (except for [13] where dual discrete-time schemes are investigated). Both
dual and primal-dual discrete-time (approximate) schemes, combined with simple
averaging, have been recently studied in [14–16] for a general convex constrained
formulation. All of the aforementioned work establishes the convergence properties
of therein proposed algorithms under the assumption that the users coordinate their
steplengths, i.e., the steplength values are equal across all users.

This paper generalizes the standard multiuser optimization problem, defined
in (1.1), in two distinct ways: (1) The user objectives are coupled by a congestion
metric (as opposed to being separable). Specifically, the objective in (1.1) is replaced

by a system cost given by
∑N

i=1 fi(xi) + c(x1, . . . , xN ), with a convex coupling cost
c(x1, . . . , xN ); and (2) The linear inequalities in (1.1) are replaced with general convex
inequalities. In effect, the constraints are nonlinear and not necessarily separable by
user decisions.

To handle these generalizations of the multiuser problem, we propose approximat-
ing the problems with their regularized counterparts and, then, solving the regularized
problems in a distributed fashion in compliance with the user specific information (user
functions and decision variables). We provide an error estimate for the difference be-
tween the optimal function values of the original and the regularized problems. For
solving the regularized problems, we consider distributed primal-dual and dual ap-
proaches, including those requiring inexact solutions of Lagrangian subproblems. We
investigate the convergence properties and provide error bounds for these algorithms
using two different assumptions on the steplengths, namely that the steplengths are
the same across all users and the steplengths differ across different users. These results
are extended to regimes where the users may select their regularization parameters
from a broadcasted range.

The work in this paper is closely related to the distributed algorithms in [5, 27]
and the more recent work on shared-constraint games [29, 30], where several classes
of problems with the structures admitting decentralized computations are addressed.
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However, the algorithms in the aforementioned work hinge on equal steplengths for all
users and exact solutions for their success. In most networked settings, these require-
ments fail to hold, thus complicating the application of these schemes. Furthermore,
due to the computational complexity of obtaining exact solutions for large scale prob-
lems, one is often more interested in a good approximate solution (with a provable
error bound) rather than an exact solution.

Related is also the literature on centralized projection-based methods for opti-
mization (see for example books [3,8,21]) and variational inequalities [8,10–12,20,24].
Recently, efficient projection-based algorithms have been developed in [1,2,18,26] for
optimization, and in [17,19] for variational inequalities. The algorithms therein are all
well suited for distributed implementations subject to some minor restrictions such as
choosing Bregman functions that are separable across users’ decision variables. The
aforementioned algorithms will preserve their efficiency as long as the stepsize values
are the same for all users. When the users are allowed to select their stepsizes within
a certain range, there may be some efficiency loss. By viewing the stepsize variations
as a source of noise, the work in this paper may be considered as an initial step into
exploring the effects of “noisy” stepsizes on the performance of first-order algorithms,
starting with simple first-order algorithms which are known to be stable under noisy
data.

A final note is in order regarding certain terms that we use throughout the paper.
The term “error analysis” pertains to the development of bounds on the difference
between a given solution or function value and its optimal counterpart. The term
“coordination” assumes relevance in distributed schemes where certain algorithmic
parameters may need to satisfy a prescribed requirement across all users. Finally, it
is worth accentuating why our work assumes relevance in implementing distributed
algorithms in practical settings. In large-scale networks, the success of standard dis-
tributed implementations is often contingent on a series of factors. For instance, con-
vergence often requires that steplengths match across users, exact/inexact solutions
are available in bounded time intervals and finally, users have access to recent updates
by the other network participants. In practice, algorithms may not subscribe to these
restrictions and one may be unable to specify the choice of algorithm parameters, such
as steplengths and regularization parameters, across users. Accordingly, we extend
standard fixed-steplength gradient methods to allow for heterogeneous steplengths
and diversity in regularization parameters.

The paper is organized as follows. In Section 2, we describe the problem of in-
terest, motivate it through an example and recap the related fixed-point problem.
In Section 3, we propose a regularized primal-dual method to allow for more general
coupling among the constraints. Our analysis is equipped with error bounds when
step-sizes and regularization parameters differ across users. Dual schemes are dis-
cussed in Section 4, where error bounds are provided for the case when inexact primal
solutions are used. The behavior of the proposed methods is examined for a multiuser
traffic problem in Section 5. We conclude in Section 6.

Throughout this paper, we view vectors as columns. We write xT to denote the
transpose of a vector x, and xT y to denote the inner product of vectors x and y. We
use ‖x‖ =

√
xTx to denote the Euclidean norm of a vector x. We use ΠX to denote

the Euclidean projection operator onto a set X, i.e., ΠX(x) , argminz∈X ‖x− z‖.

2. Problem Formulation. Traditionally, the multiuser problem (1.1) is charac-
terized by a coupling of the user decision variables only through a separable objective
function. In general, however, the objective need not be separable and the user de-

3



cisions may be jointly constrained by a set of convex constraints. We consider a
generalization to the canonical multiuser optimization problem of the following form:

minimize f(x),

N∑

i=1

fi(xi) + c(x)

subject to dj(x)≤ 0 for all j = 1, . . . ,m, (2.1)

xi ∈ Xi for all i = 1, . . . , N,

where N is the number of users, fi(xi) is user i cost function depending on a de-
cision vector xi ∈ R

ni and Xi ⊆ R
ni is the constraint set for user i. The function

c(x) is a joint cost that depends on the user decisions, i.e., x = (x1, . . . , xN ) ∈ R
n,

where n =
∑N

i=1 ni. The functions fi : R
ni → R and c : R

n → R are convex
and continuously differentiable. Further, we assume that dj : Rn → R is a contin-
uously differentiable convex function for every j. Often, when convenient, we will
write the inequality constraints dj(x) ≤ 0, j = 1, . . . ,m, compactly as d(x) ≤ 0 with
d(x) = (d1(x), . . . , dm(x))T . Similarly, we use ∇d(x) to denote the vector of gradi-
ents ∇dj(x), j = 1, . . . ,m, i.e., ∇d(x) = (∇d1(x), . . . ,∇dm(x))T . The user constraint
sets Xi are assumed to be nonempty, convex and closed. We denote by f∗ and X∗,
respectively, the optimal value and the optimal solution set of this problem.

Before proceeding, we motivate the problem of interest via an example drawn
from communication networks [9, 25], which can capture a host of other problems
(such as in traffic or transportation networks).

Example 1. Consider a network (see Fig 2.1) with a set of J link constraints
and bj being the finite capacity of link j, for j ∈ J. Let R be a set of user-specific
routes, and let A be the associated link-route incidence matrix, i.e., Ajr = 1 if j ∈ r
implying that link j is traversed on route r, and Ajr = 0 otherwise.
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Fig. 2.1. A network with 3 users and 5 links.

Suppose, the rth user has an associ-
ated route r and a rate allocation (flow)
denoted by xr. The corresponding utility
of such a rate is given by Ur(xr). As-
sume further that utilities are additive im-
plying that total utility is merely given
by
∑

r∈R Ur(xr). Further, let c(x) repre-
sent the congestion cost arising from us-
ing the same linkages in a route. Under
this model the system optimal rates solve
the following problem.

maximize
∑

r∈R

Ur(xr)− c(x)

subject to Ax ≤ b, x ≥ 0. (2.2)

At first glance, under suitable concavity assumptions on the utility functions and
congestion cost, problem (2.2) is tractable from the standpoint of a centralized al-
gorithm. However, if the utilities are not common knowledge, then such centralized
schemes cannot be employed; instead our focus turns to developing distributed itera-
tive schemes that respect the informational restrictions imposed by the application.

We are interested in algorithms aimed at solving system optimization problem (2.1)
by each user executing computations only in the space of its own decision variables.
Our approach is based on casting the system optimization problem as a fixed point
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problem through the variational inequality framework. Toward this goal, we let

L(x, λ) = f(x) + λT d(x), X = X1 ×X2 × · · · ×XN .

We also write x = (xi;x−i) with x−i = (xj)j 6=i to denote a vector where xi is viewed
as variable and x−i is viewed as parameter. We let R

m
+ denote the nonnegative or-

thant in R
m. Under suitable strong duality conditions, from the first-order optimality

conditions and the decomposable structure of X it can be seen that (x∗, λ∗) ∈ X×R
m
+

is a solution to (2.1) if and only x∗
i solves the parameterized variational inequalities

VI(Xi,∇xi
L(xi;x

∗
−i, λ

∗)), i = 1, . . . , N , and λ∗ solves VI(R+
m,−∇λL(x∗, λ)). A vec-

tor (x∗, λ∗) solves VI(Xi,∇xi
L(xi;x

∗
−i, λ

∗)), i = 1, . . . , N and VI(Rm
+ ,−∇λL(x∗, λ))

if and only if each x∗
i is a zero of the parameterized natural map1 Fnat

Xi
(xi;x

∗
−i, λ

∗) = 0,
for i = 1, . . . , N, and λ∗ is a zero of the parameterized natural map Fnat

R
m
+
(λ;x∗) = 0,

i.e.,

Fnat
Xi

(xi;x
∗
−i, λ

∗) , xi −ΠXi
(xi −∇xi

L(xi;x
∗
−i, λ

∗)) for i = 1, . . . , N,

Fnat
R

+
m
(λ;x∗) , λ−Π

R
+
m
(λ+∇λL(x∗, λ)),

where ∇xL(x, λ) and ∇λL(x, λ) are, respectively, the gradients of the Lagrangian
function with respect to x and λ. Equivalently, letting x∗ = (x∗

1, . . . , x
∗
N ) ∈ X, a

solution to the original problem is given by a solution to the following system of
nonsmooth equations:

x∗ = ΠX(x∗ −∇xL(x∗, λ∗)),
λ∗ = ΠR

m
+
(λ∗ +∇λL(x∗, λ∗)). (2.3)

Thus, x∗ solves problem (2.1) if and only if it is a solution to the system (2.3) for
some λ∗ ≥ 0. This particular relation motivates our algorithmic development.

We now discuss the conditions that we use in the subsequent development. Specif-
ically, we assume that the Slater condition holds for problem (2.1).

Assumption 1. (Slater Condition) There exists a Slater vector x̄ ∈ X such that
dj(x̄) < 0 for all j = 1, . . . ,m.

Under the Slater condition, the primal problem (2.1) and its dual have the same
optimal value, and a dual optimal solution λ∗ exists. When X is compact for example,
the primal problem also has a solution x∗. A primal-dual optimal pair (x∗, λ∗) is also
a solution to the coupled fixed-point problems in (2.3). For a more compact notation,
we introduce the mapping Φ(x, λ) as

Φ(x, λ) , (∇xL(x, λ),−∇λL(x, λ)) = (∇xL(x, λ),−d(x)), (2.4)

and we let z = (x, λ). In this notation, the preceding coupled fixed-point problems
are equivalent to a variational inequality requiring a vector z∗ = (x∗, λ∗) ∈ X × R

m
+

such that

(z − z∗)TΦ(z∗) ≥ 0 for all z = (x, λ) ∈ X × R
m
+ . (2.5)

In the remainder of the paper, in the product space R
n1 × · · · × R

nN , we use
‖x‖ and xT y to denote the Euclidean norm and the inner product that are induced,

1See [8], volume 1, 1.5.8 Proposition, page 83.
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respectively, by the Euclidean norms and the inner products in the component spaces.
Specifically, for x = (x1, . . . , xN ) with xi ∈ R

ni for all i, we have

xT y =
N∑

i=1

xT
i yi and ‖x‖ =

√
√
√
√

N∑

i=1

‖xi‖2.

We now state our basic assumptions on the functions and the constraint sets in
problem (2.1).

Assumption 2. The set X is closed, convex, and bounded. The functions fi(xi),
i = 1, . . . , N , and c(x) are continuously differentiable and convex.

Next, we define the gradient map

F (x) =
(
∇x1

(f1(x1) + c(x))T , . . . ,∇xN
(fN (xN ) + c(x))T

)T
,

for which we assume the following.
Assumption 3. The gradient map F (x) is Lipschitz continuous with constant L

over the set X, i.e.,

‖F (x)− F (y)‖ ≤ L‖x− y‖ for all x, y ∈ X.

3. A Regularized Primal-Dual Method. In this section, we present a dis-
tributed gradient-based method that employs a fixed regularization in the primal and
dual space. We begin by discussing the regularized problem in Section 3.1 and pro-
ceed to provide bounds on the error in Section 3.2. In Section 3.3, we examine the
monotonicity and Lipschitzian properties of the regularized mapping and develop the
main convergence result of this section in Section 3.4. Notably, the theoretical results
in Section 3.4 prescribe a set from which users may independently select steplengths
with no impact on the overall convergence of the scheme. Finally, in Section 3.5, we
further weaken the informational restrictions of the scheme by allowing users to select
regularization parameters from a broadcasted range, and we extend the Lipschitzian
bounds and convergence rates to this regime.

3.1. Regularization. For approximately solving the variational inequality (2.5),
we consider its regularized counterpart obtained by regularizing the Lagrangian in
both primal and dual space. In particular, for ν > 0 and ǫ > 0, we let Lν,ǫ denote the
regularized Lagrangian, given by

Lν,ǫ(x, λ) = f(x) +
ν

2
‖x‖2 + λT d(x)− ǫ

2
‖λ‖2. (3.1)

The regularized variational inequality requires determining a vector z∗ν,ǫ = (x∗
ν,ǫ, λ

∗
ν,ǫ) ∈

X × R
m
+ such that

(z − z∗ν,ǫ)
TΦν,ǫ(z

∗
ν,ǫ) ≥ 0 for all z = (x, λ) ∈ X × R

m
+ , (3.2)

where the regularized mapping Φν,ǫ(x, λ) is given by

Φν,ǫ(x, λ) , (∇xLν,ǫ(x, λ),−∇λLν,ǫ(x, λ)) = (∇xL(x, λ) + νx,−d(x) + ǫλ). (3.3)

The gradient map ∇xLν,ǫ(x, λ) is given by

∇xLν,ǫ(x, λ) , (∇x1
Lν,ǫ(x, λ), . . . ,∇xN

Lν,ǫ(x, λ))
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where ∇xi
Lν,ǫ(x, λ) = ∇xi

(
f(x) + λT d(x)

)
+νxi. It is known that, under some condi-

tions, the unique solutions z∗ν,ǫ of the variational inequality in (3.2) converge, as ν → 0
and ǫ → 0, to the smallest norm solution of the original variational inequality in (2.5)
(see [8], Section 12.2). We, however, want to investigate approximate solutions and
estimate the errors resulting from solving a regularized problem instead of the original
problem, while the regularization parameters are kept fixed at some values.

To solve the variational inequality (3.2), one option lies in considering projection
schemes for monotone variational inequalities (see Chapter 12 in [8]). However, the
lack of Lipschitz continuity of the mapping precludes a direct application of these
schemes. In fact, the Lipschitz continuity of Φν,ǫ(z) cannot even be proved when the
functions f and dj have Lipschitz continuous gradients. In proving the Lipschitzian
property, we observe that the boundedness of the multipliers cannot be assumed in
general. However, the “bounding of multipliers λ” may be achieved under the Slater
regularity condition. In particular, the Slater condition can be used to provide a
compact convex region containing all the dual optimal solutions. Replacing R

m
+ with

such a compact convex set results in a variational inequality that is equivalent to
(3.2),

Determining a compact set containing the dual optimal solutions can be accom-
plished by viewing the regularized Lagrangian Lν,ǫ as a result of two-step regulariza-
tion: we first regularize the original primal problem (2.1), and then we regularize its
Lagrangian function. Specifically, for ν > 0, the regularized problem (2.1) is given by

minimize fν(x),

N∑

i=1

(

fi(xi) +
ν

2
‖xi‖2

)

+ c(x)

subject to dj(x)≤ 0 for all j = 1, . . . ,m, (3.4)

xi ∈ Xi for all i = 1, . . . , N.

Its Lagrangian function is

Lν(x, λ) = f(x) +
ν

2
‖x‖2 + λT d(x) for all x ∈ X, λ ≥ 0, (3.5)

and its corresponding dual problem is

maximize vν(λ), min
x∈X

Lν(x, λ)

subject to λ≥ 0.

We use v∗ν to denote the optimal value of the dual problem, i.e., v∗ν = maxλ≥0 vν(λ),
and we use Λ∗

ν to denote the set of optimal dual solutions. For ν = 0, the value v∗0 is
the optimal dual value of the original problem (2.1) and Λ∗

0 is the set of the optimal
dual solutions of its dual problem.

Under the Slater condition, for every ν > 0, the solution x∗
ν to problem (3.4) exists

and therefore strong duality holds [4]. In particular, the optimal values of problem
(3.4) and its dual are equal, i.e., f(x∗

ν) = v∗ν , and the dual optimal set Λ∗
ν is nonempty

and bounded [28]. Specifically, we have

Λ∗
ν ⊆






λ ∈ R

m
∣
∣
∣

m∑

j=1

λj ≤
f(x̄) + ν

2 ‖x̄‖2 − v∗ν
min1≤j≤m{−dj(x̄)}

, λ ≥ 0






for all ν > 0.

When the Slater condition holds and the optimal value f∗ of the original problem (2.1)
is finite, the strong duality holds for that problem as well, and therefore, the preceding
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relation also holds for ν = 0, with v∗0 being the optimal value of the dual problem
for (2.1). In this case, we have f∗ = v∗0 , while for any ν > 0, we have v∗ν = f(x∗

ν)
for a solution x∗

ν of the regularized problem (3.4). Since f(x∗
ν) ≥ f∗, it follows that

v∗ν ≥ v∗0 for all ν ≥ 0, and therefore,

Λ∗
ν ⊆






λ ∈ R

m
∣
∣
∣

m∑

j=1

λj ≤
f(x̄) + ν

2 ‖x̄‖2 − v∗0
min1≤j≤m{−dj(x̄)}

, λ ≥ 0






for all ν ≥ 0,

where the set Λ∗
0 is the set of dual optimal solutions for the original problem (2.1).

Noting that a larger set on the right hand side can be obtained by replacing v∗0 with
any lower-bound estimate of v∗0 [i.e., v(λ̄) for some λ̄ ≥ 0], we can define a compact
convex set Dν for every ν ≥ 0, as follows:

Dν =






λ ∈ R

m
∣
∣
∣

m∑

j=1

λj ≤
f(x̄) + ν

2‖x̄‖2 − v(λ̄)

min1≤j≤m{−dj(x̄)}
, λ ≥ 0






for every ν ≥ 0, (3.6)

which satisfies

Λ∗
ν ⊂ Dν , for every ν ≥ 0. (3.7)

Observe that v∗0 ≤ v∗ν ≤ vν′ for 0 ≤ ν ≤ ν′, implying that D0 ⊆ Dν ⊆ Dν′ . Therefore,
the compact sets Dν are nested, and their intersection is a nonempty compact set D
which contains the optimal dual solutions Λ∗

0 of the original problem.
In the rest of the paper, we will assume that the Slater condition holds and the

set X is compact (Assumption 2), so that the construction of such nested compact
sets is possible. Specifically, we will assume that a family of nested compact convex
sets Dν ⊂ R

m
+ , ν ≥ 0, satisfying relation (3.7) has already been determined. In this

case, the variational inequality of determining zν,ǫ = (xν,ǫ, λν,ǫ) ∈ X ×Dν such that

(z − zν,ǫ)
TΦν,ǫ(zν,ǫ) ≥ 0 for all z = (x, λ) ∈ X ×Dν , (3.8)

has the same solution set as the variational inequality in (3.2), where λ is constrained
to lie in the nonnegative orthant.

3.2. Regularization error. We now provide an upper bound on the distances
between xν,ǫ and x∗

ν . Here, xν,ǫ is the primal component of zν,ǫ, the solution of the
variational inequality in (3.8) and x∗

ν is the solution of the regularized problem in (3.4)
for given positive parameters ν and ǫ.

Proposition 3.1. Let Assumption 2 hold except for the boundedness of X.
Also, let Assumption 1 hold. Then, for any ν > 0 and ǫ > 0, for the solution
zν,ǫ = (xν,ǫ, λν,ǫ) of variational inequality (3.8), we have

ν‖x∗
ν − xν,ǫ‖2 +

ǫ

2
‖λν,ǫ‖2 ≤ ǫ

2
‖λ∗

ν‖2 for all λ∗
ν ∈ Λ∗

ν ,

where x∗
ν is the optimal solution of the regularized problem (3.4) and Λ∗

ν is the set of
optimal solutions of its corresponding dual problem.

Proof. The existence of a unique solution x∗
ν ∈ X of problem (3.4) follows from

the continuity and strong convexity of fν . Also, by the Slater condition, the dual
optimal set Λ∗

ν is nonempty. In what follows, let λ∗
ν ∈ Λ∗

ν be an arbitrary but fixed
dual optimal solution for problem (3.4). To make the notation simpler, we use ξ to
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denote the pair of regularization parameters (ν, ǫ), i.e., ξ = (ν, ǫ). When the interplay
between the parameters is relevant, we will write them explicitly.

From the definition of the mapping Φξ it follows that the solution zξ = (xξ, λξ) ∈
X×Dν is a saddle-point for the regularized Lagrangian function Lξ(x, λ) = L(x, λ)+
ν
2‖x‖2 − ǫ

2‖λ‖2, i.e.,

Lξ(xξ, λ) ≤ Lξ(xξ, λξ) ≤ Lξ(x, λξ) for all x ∈ X and λ ∈ Dν . (3.9)

Recalling that Λ∗
ν ⊆ Dν , and by letting λ = λ∗

ν in the first inequality of the preceding
relation, we obtain

0 ≤ Lξ(xξ, λξ)− Lξ(xξ, λ
∗
ν) = (λξ − λ∗

ν)
T d(xξ)−

ǫ

2
‖λξ‖2 +

ǫ

2
‖λ∗

ν‖2. (3.10)

We now estimate the term (λξ −λ∗
ν)

T d(xξ) =
∑m

j=1(λξ,j −λ∗
ν,j)dj(xξ) by considering

the individual terms, where λ∗
ν,j is the j-th component of λ∗

ν . By convexity of each
dj , we have

dj(xξ) ≤ dj(x
∗
ν) +∇dj(xξ)

T (xξ − x∗
ν) ≤ ∇dj(xξ)

T (xξ − x∗
ν),

where the last inequality follows from x∗
ν being a solution to the primal regularized

problem (hence, dj(x
∗
ν) ≤ 0 for all j). By multiplying the preceding inequality with

λξ,j (which is nonnegative) and by adding over all j, we obtain

m∑

j=1

λξ,jdj(xξ) ≤
m∑

j=1

λξ,j∇dj(xξ)
T (xξ − x∗

ν).

By the definition of the regularized Lagrangian Lξ(x, λ), we have

m∑

j=1

λξ,j∇dj(xξ)
T (xξ − x∗

ν) = ∇xLξ(xξ, λξ)
T (xξ − x∗

ν)− (∇f(xξ) + νxξ)
T
(xξ − x∗

ν)

≤ − (∇f(xξ) + νxξ)
T
(xξ − x∗

ν),

where the inequality follows from ∇xLξ(xξ, λξ)
T (xξ − x∗

ν) ≤ 0, which holds in view
of the second inequality in saddle-point relation (3.9) with x = x∗

ν ∈ X. Therefore,
by combining the preceding two relations, we obtain

m∑

j=1

λξ,jdj(xξ) ≤ − (∇f(xξ) + νxξ)
T
(xξ − x∗

ν). (3.11)

By convexity of each dj , we have dj(xξ) ≥ dj(x
∗
ν)+∇dj(x

∗
ν)

T (xξ−x∗
ν) By multiplying

the preceding inequality with −λ∗
ν,j (which is non-positive) and by adding over all j,

we obtain

−
m∑

j=1

λ∗
ν,jdj(xξ) ≤ −

m∑

j=1

λ∗
ν,jdj(x

∗
ν)−

m∑

j=1

λ∗
ν,j∇dj(x

∗
ν)

T (xξ − x∗
ν)

=

m∑

j=1

λ∗
ν,j∇dj(x

∗
ν)

T (x∗
ν − xξ),
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where the equality follows from (λ∗
ν)

T d(x∗
ν) = 0, which holds by the complementarity

slackness of the primal-dual pair (x∗
ν , λ

∗
ν) of the regularized problem (3.4). Using the

definition of the Lagrangian function Lν in (3.5) for the problem (3.4), we have

m∑

j=1

λ∗
ν,j∇dj(x

∗
ν)

T (x∗
ν − xξ) = ∇xLν(x

∗
ν , λ

∗
ν)

T (x∗
ν − xξ)− (∇f(x∗

ν) + νx∗
ν)

T
(x∗

ν − xξ)

≤ − (∇f(x∗
ν) + νx∗

ν)
T
(x∗

ν − xξ),

where the inequality follows from relation ∇xL(x∗
ν , λ

∗
ν)

T (x∗
ν − xξ) ≤ 0, which in turn

holds since (x∗
ν , λ

∗
ν) is a saddle-point of the Lagrangian function Lν(x, λ) over X×Dν

and xξ ∈ X. Combining the preceding two relations, we obtain

−
m∑

j=1

λ∗
ν,jdj(xξ) ≤ − (∇f(x∗

ν) + νx∗
ν)

T
(x∗

ν − xξ) = (∇f(x∗
ν) + νx∗

ν)
T
(xξ − x∗

ν).

The preceding relation and inequality (3.11), yield

(λξ−λ∗
ν)

T d(xξ) =

m∑

j=1

(λξ,j−λ∗
ν,j)dj(xξ) ≤ (∇f(x∗

ν)−∇f(xξ))
T (xξ−x∗

ν)−ν‖xξ−x∗
ν‖2.

From the monotonicity of ∇f , we have (∇f(x∗
ν) − ∇f(xξ))

T (xξ − x∗
ν) ≤ 0, thus

implying (λξ−λ∗
ν)

T d(xξ) ≤ −ν‖xξ−x∗
ν‖2. Finally, by combining the preceding relation

with (3.10), and recalling notation ξ = (ν, ǫ), we obtain for any solution x∗
ν ,

ν‖xν,ǫ − x∗
ν‖2 +

ǫ

2
‖λν,ǫ‖2 ≤ ǫ

2
‖λ∗

ν‖2 for all λ∗ ∈ Λ∗
ν , (3.12)

thus showing the desired relation.
As an immediate consequence of Proposition 3.1, in view of Λ∗

ν ⊂ Dν , we have

‖xν,ǫ − x∗
ν‖ ≤

√
ǫ

2ν
max
λ∗∈Dν

‖λ∗‖ for all ν > 0 and ǫ > 0. (3.13)

This relation provides a bound on the distances of the solutions x∗
ν of problem (3.4)

and the component xν,ǫ of the solution zν,ǫ of the regularized variational inequality in
(3.8). The relation suggests that a ν larger than ǫ would yield a better error bound.
Note, however, that increasing ν would correspond to the enlargement of the set Dν ,
and therefore, increasing value for maxλ∗∈Dν

‖λ∗‖. When the specific structure of
the sets Dν is available, one may try to optimize the term

√
ǫ
2ν maxλ∗∈Dν

‖λ∗‖ with
respect to ν, while ǫ is kept fixed. In fact, the following result provides a simple result
when Dν is specified using the Slater point x̄.

Lemma 3.2. Under the assumptions of Proposition 3.1, for a fixed ǫ > 0, the
tightest bound for ‖xν,ǫ − x∗

ν‖ is given by

‖xν,ǫ − x∗
ν‖ ≤





√

ǫ
(
f(x̄)− v(λ̄)

)

min1≤j≤m{−dj(x̄)}
‖x̄‖



 .

Proof. Using ‖x‖2 ≤ ‖x‖1, from relation (3.13) we have

‖xν,ǫ − x∗
ν‖ ≤

√
ǫ

2ν

(

max
λ∈Dν

‖λ‖2
)

≤
√

ǫ

2ν

(

max
λ∈Dν

‖λ‖1
)

.
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But by the structure of the set Dν , we have that

√
ǫ

2ν

(

max
λ∈Dν

‖λ‖1
)

=

√
ǫ

2ν

(
f(x̄) + ν

2‖x̄‖2 − v(λ̄)

min1≤j≤m{−dj(x̄)}

)

=

√
ǫ

2ν

(
f(x̄)− v(λ̄)

min1≤j≤m{−dj(x̄)}

)

+

√
νǫ

2

( 1
2‖x̄‖2

min1≤j≤m{−dj(x̄)}

)

=

√
ǫ√

2 min1≤j≤m{−dj(x̄)}

(
a√
ν
+ b

√
ν

)

,

where a = f(x̄) − v(λ̄) and b = 1
2‖x̄‖2. It can be seen that the function h(ν) =

a/
√
ν+b

√
ν has a unique minimum at ν∗ = a

b , with the minimum value h(ν∗) = 2
√
ab.

Thus, we have

√
ǫ

2ν

(

max
λ∈Dν

‖λ‖1
)

≤





√

ǫ
(
f(x̄)− v(λ̄)

)

min1≤j≤m{−dj(x̄)}



 ‖x̄‖,

implying the desired estimate.

When the set X is bounded, as another consequence of Proposition 3.1, we may
obtain the error bounds on the sub-optimality of the vector xν,ǫ by using the preced-
ing error bound. Specifically, we can provide bounds on the violation of the primal
inequality constraints dj(x) ≤ 0 at x = xν,ǫ. Also, we can estimate the difference in
the values f(xν,ǫ) and the primal optimal value f∗ of the original problem (2.1). This
is done in the following lemma.

Lemma 3.3. Let Assumptions 2 and 1 hold. For any ν, ǫ > 0, we have

max {0, dj(xν,ǫ)} ≤ Mdj
Mν

√
ǫ

2ν
for all j = 1, . . . ,m,

|f(xν,ǫ)− f(x∗)| ≤ MfMν

√
ǫ

2ν
+

ν

2
D2,

with Mdj
= maxx∈X ‖∇dj(x)‖ for each j, Mf = maxx∈X ‖∇f(x)‖, Mν = maxλ∈Dν

‖λ‖
and D = maxx∈X ‖x‖.

Proof. Let ν > 0 and ǫ > 0 be given, and let j ∈ {1, . . . ,m} be arbitrary. Since
dj is convex, we have

dj(xν,ǫ) ≤ dj(x
∗
ν) +∇dj(x

∗
ν)

T (xν,ǫ − x∗
ν) ≤ ‖∇dj(x

∗
ν)‖ ‖xν,ǫ − x∗

ν‖,

where in the last inequality we use dj(x
∗
ν) ≤ 0, which holds since x∗

ν is the solution
to the regularized primal problem (3.4). Since X is compact, the gradient norm
‖∇dj(x)‖ is bounded by some constant, say Mdj

. From this and the estimate

‖xν,ǫ − x∗
ν‖ ≤

√
ǫ

2ν
‖λ∗

ν‖, (3.14)

which follows by Proposition 3.1, we obtain

dj(xν,ǫ) ≤ Mdj

√
ǫ

2ν
‖λ∗

ν‖,
11



where λ∗
ν is a dual optimal solution of the regularized problem. Since the set of dual

optimal solutions is contained in the compact set Dν , the dual solutions are bounded.
Thus, for the violation of the constraint dj(x) ≤ 0, we have

max{0, dj(xν,ǫ)} ≤ Mdj
Mν

√
ǫ

2ν
,

where Mν = maxλ∈Dν
‖λ‖. Next, we estimate the difference |f(xν,ǫ) − f(x∗)|. We

can write

|f(xν,ǫ)− f(x∗)| ≤ |f(xν,ǫ)− f(x∗
ν)|+ f(xν)− f∗, (3.15)

where we use 0 ≤ f(x∗
ν)− f∗. By convexity of f , we have

∇f(x∗
ν)

T (xν,ǫ − x∗
ν) ≤ f(xν,ǫ)− f(x∗

ν) ≤ ∇f(xν,ǫ)
T (xν,ǫ − x∗

ν).

Since xν,ǫ, x
∗ ∈ X and X is compact, by the continuity of the gradient ‖∇f(x)‖, the

gradient norm is bounded over the set X, say by a scalar Mf , so that

|f(xν,ǫ)− f(x∗
ν)| ≤ Mf ‖xν,ǫ − x∗

ν‖.

Using the estimate (3.14) and the boundedness of the dual optimal multipliers, similar
to the preceding analysis, we obtain the following bound

|f(xν,ǫ)− f(x∗
ν)| ≤ MfMν

√
ǫ

2ν
.

By substituting the preceding relation in inequality (3.15), we obtain

|f(xν,ǫ)− f(x∗)| ≤ MfMν

√
ǫ

2ν
+ f(xν)− f∗.

Further, by using the estimate f(x∗
ν) − f∗ ≤ ν

2 maxx∈X ‖x‖2 = ν
2D

2 of Lemma 7.1
(see appendix), we obtain the desired relation.

Next, we discuss how one may specify ν and ǫ. Given a threshold error δ on the
deviation of the obtained function value from its optimal counterpart, we have that
|f(xν,ǫ)− f(x∗)| < δ, if the following holds

MfMν

√
ǫ

2ν
+

ν

2
D2 < δ.

But by the structure of the set Dν , we have that

Mν =

√
ǫ

2ν

(

max
λ∈Dν

‖λ‖1
)

=

√
ǫ

2ν

(
f(x̄) + ν

2‖x̄‖2 − v(λ̄)

min1≤j≤m{−dj(x̄)}

)

=

√
ǫ

2ν

(
f(x̄)− v(λ̄)

min1≤j≤m{−dj(x̄)}

)

+

√
νǫ

2

( ‖x̄‖2

2

min1≤j≤m{−dj(x̄)}

)

=
1√

2 min1≤j≤m{−dj(x̄)}

(
a
√
ǫ√
ν

+ b
√
ǫν

)

,
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where a = f(x̄)− v(λ̄) and b = ‖x̄‖2

2 . Thus, we have

MfMν

√
ǫ

2ν
+

ν

2
D2 ≤ Mf√

2 min1≤j≤m{−dj(x̄)}

(
a
√
ǫ√
ν

+ b
√
ǫν

)

+
ν

2
D2 < δ.

Next, we may choose parameters ν and ǫ so that the above inequality is satisfied. The
expression suggests that one must choose ǫ < ν (as Mf could be large). Thus setting
ǫ = ν3, we will obtain a quadratic inequality in parameter ν which can subsequently
allow for selecting ν and therefore ǫ.

Unfortunately, the preceding results do not provide a bound on ‖xν,ǫ − x∗‖ and
indeed for the optimal ν∗ minimizing ‖xν,ǫ − x∗‖, the error in ‖xν,ǫ − x∗

ν‖ can be
large (due to error in ‖x∗

ν − x∗‖). The challenge in obtaining a bound on ‖x∗
ν,ǫ − x∗‖

implicitly requires a bound on ‖x∗
ν − x∗‖ which we currently do not have access to.

Note that by introducing a suitable growth property on the function, one may obtain
a handle on ‖x∗

ν − x∗‖.

3.3. Properties of Φν,ǫ. We now focus on characterizing the mapping Φν,ǫ

under the following assumption on the constraint functions dj for j = 1, . . . ,m.

Assumption 4. For each j, the gradient ∇dj(x) is Lipschitz continuous over X
with a constant Lj > 0, i.e.,

‖∇dj(x)−∇dj(y)‖ ≤ Lj‖x− y‖ for all x, y ∈ X.

Under this and the Slater assumption, we prove and the strong monotonicity and
the Lipschitzian nature of Φν,ǫ(x, λ).

Lemma 3.4. Let Assumptions 2–4 hold and let ν, ǫ ≥ 0. Then, the regularized
mapping Φν,ǫ is strongly monotone over X × R

m
+ with constant µ = min{ν, ǫ} and

Lipschitz over X ×Dν with constant LΦ(ν, ǫ) given by

LΦ(ν, ǫ) =
√

(L+ ν +Md +MνLd)2 + (Md + ǫ)2, Ld =

√
√
√
√

m∑

j=1

L2
j ,

where L is a Lipschitz constant for ∇f(x) over X, Lj is a Lipschitz constant for
∇dj(x) over X, Md = maxx∈X ‖∇d(x)‖, and Mν = maxλ∈Dν

‖λ‖.
Proof. We use λ1,j and λ2,j to denote the jth component of vectors λ1 and λ2.

For any two vectors z1 = (x1, λ1), z2 = (x2, λ2) ∈ X × R
m
+ , we have

(Φν,ǫ(z1)− Φν,ǫ(z2))
T (z1 − z2)

=

(
∇xL(x1, λ1)−∇xL(x2, λ2) + ν(x1 − x2)

−d(x1) + ǫλ1 + d(x2)− ǫλ2

)T (
x1 − x2

λ1 − λ2

)

= (∇f(x1)−∇f(x2))
T (x1 − x2) + ν‖x1 − x2‖2

+

m∑

j=1

(λ1,j∇dj(x1)− λ2,j∇dj(x2))
T (x1 − x2)

−
m∑

j=1

(dj(x1)− dj(x2))(λ1,j − λ2,j) + ǫ‖λ1 − λ2‖2.

13



By using the monotonicity of ∇f(x), and by grouping the terms with λ1,j and λ2,j ,
separately, we obtain

(Φν,ǫ(z1)− Φν,ǫ(z2))
T (z1 − z2) ≥ ν‖x1 − x2‖2

+

m∑

j=1

λ1,j

(
dj(x2)− dj(x1) +∇dj(x1)

T (x1 − x2)
)

+

m∑

j=1

λ2,j

(
dj(x1)− dj(x2)−∇dj(x2)

T (x1 − x2)
)
+ ǫ‖λ1 − λ2‖2.

Now, by non-negativity of λ1,j , λ2,j and convexity of dj(x) for each j, we have

λ1,j

(
dj(x2)− dj(x1) +∇dj(x1)

T (x1 − x2)
)
≥ 0,

λ2,j

(
dj(x1)− d(x2)−∇dj(x2)

T (x1 − x2)
)
≥ 0.

Using the preceding relations, we get

(Φν,ǫ(z1)− Φν,ǫ(z2))
T (z1 − z2) ≥ ν‖x1 − x2‖2 + ǫ‖λ1 − λ2‖2 ≥ min{ν, ǫ} ‖z1 − z2‖2,

showing that Φν,ǫ is strongly monotone with constant µ = min{ν, ǫ}.
Next, we show that Φν,ǫ is Lipschitz over X ×Dν . Thus, given ν, ǫ ≥ 0, and any

two vectors z1 = (x1, λ1), z2 = (x2, λ2) ∈ X ×Dν , we have

‖Φν,ǫ(z1)− Φν,ǫ(z2)‖
=

∥
∥
∥
∥

(
∇f(x1)−∇f(x2) + ν(x1 − x2) +

∑m
j=1 (λ1,j∇dj(x1)− λ2,j∇dj(x2))

−d(x1) + d(x2) + ǫ(λ1 − λ2)

)∥
∥
∥
∥

≤ ‖∇f(x1)−∇f(x2)‖+ ν‖x1 − x2‖+

∥
∥
∥
∥
∥
∥

m∑

j=1

(λ1,j∇dj(x1)− λ2,j∇dj(x2))

∥
∥
∥
∥
∥
∥

+‖d(x1)− d(x2)‖+ ǫ‖λ1 − λ2‖. (3.16)

By the compactness of X (Assumption 2) and the continuity of ∇dj(x) for each
j, the boundedness of ∇d(x) = (∇d1(x), . . . ,∇dm(x))T follows, i.e.,

‖∇d(x)‖ ≤ Md for all x ∈ X and some Md > 0. (3.17)

Furthermore, by using the mean value theorem (see for example [3], page 682, Prop.
A.22), we can see that d(x) is Lipschitz continuous over the set X with the same
constant Md. Specifically, for all x, y ∈ X, there exists a θ ∈ [0, 1] such that

‖d(x)− d(y)‖ = ‖∇d(x+ θ(y − x))(x− y)‖ ≤ Md‖x− y‖.

By using the Lipschitz property of ∇f(x) and d(x), and by adding and subtracting
the term

∑m
j=1 λ1,j∇dj(x2), from relation (3.16) we have

‖Φν,ǫ(z1)− Φν,ǫ(z2)‖ ≤ L‖x1 − x2‖+ ν‖x1 − x2‖+
m∑

j=1

λ1,j ‖∇dj(x1)−∇dj(x2)‖

+
m∑

j=1

|λ1,j − λ2,j | ‖∇dj(x2)‖+Md‖x1 − x2‖+ ǫ‖λ1 − λ2‖,
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where we also use λ1,j ≥ 0 for all j. By using Hölder’s inequality and the boundedness
of the dual variables λ1, λ2 ∈ Dν , we get

m∑

j=1

λ1,j ‖∇dj(x1)−∇dj(x2)‖ ≤‖λ1‖

√
√
√
√

m∑

j=1

‖∇dj(x1)−∇dj(x2)‖2

≤Mν

√
√
√
√

m∑

j=1

L2
j ‖x1 − x2‖,

where in the last inequality we also use the Lipschitz property of ∇dj(x) for each j.
Similarly, by Hölder’s inequality and the boundedness of ∇d(x) [see (3.17)], we have

m∑

j=1

|λ1,j − λ2,j | ‖∇dj(x2)‖ ≤ Md‖λ1 − λ2‖.

By combining the preceding three relations and letting Ld =
√
∑m

j=1 L
2
j , we obtain

‖Φν,ǫ(z1)− Φν,ǫ(z2)‖ ≤(L+ ν +Md +MνLd)‖x1 − x2‖+ (Md + ǫ)‖λ1 − λ2‖.

Further, by Hölder’s inequality, we have

‖Φν,ǫ(z1)− Φν,ǫ(z2)‖ ≤
√

(L+ ν +Md +MνLd)2 + (Md + ǫ)2
√

‖x1 − x2‖2 + ‖λ1 − λ2‖2
= LΦ(ν, ǫ)‖z1 − z2‖,

thus showing the Lipschitz property of Φν,ǫ.

3.4. Primal-dual method. The strong monotonicity and Lipschitzian nature
of the regularized mapping Φν,ǫ for given ν > 0 and ǫ > 0, imply that standard pro-
jection algorithms can be effectively applied. Our goal is to generalize these schemes
to accommodate the requirements of limited coordination. While in theory, conver-
gence of projection schemes relies on consistency of primal and dual step-lengths, in
practice, this requirement is difficult to enforce. In this section, we allow for different
step-lengths and show that such a scheme does indeed result in a contraction.

Now, we consider solving the variational inequality in (3.8) by using a primal-dual
method in which the users can choose their primal steplengths independently with
possibly differing dual steplengths. In particular, we consider the following algorithm:

xk+1
i = ΠXi

(xk
i − αi∇xi

Lν,ǫ(x
k, λk)),

λk+1 = ΠDν
(λk + τ∇λLν,ǫ(x

k, λk)), (3.18)

where αi > 0 is the primal steplength for user i and τ > 0 is the dual steplength.
Next, we present our main convergence result for the sequence {zk} with zk = (xk, λk)
generated using (3.18).

Theorem 3.5. Let Assumptions 2–4 hold. Let {zk} be a sequence generated by
(3.18). Then, we have

‖zk+1 − zν,ǫ‖ ≤ √
qν,ǫ‖zk − zν,ǫ‖ for all k ≥ 0,
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where qν,ǫ is given by

qν,ǫ =







1 + α2
maxL

2
Φ(ν, ǫ)− 2µτ + (αmin − τ)max{1− 2ν, M2

d}
+2(αmax − αmin)LΦ(ν, ǫ), for τ < αmin ≤ αmax;

1 + α2
maxL

2
Φ(ν, ǫ)− 2αminµ

+2(αmax − αmin)LΦ(ν, ǫ), for αmin ≤ τ < αmax;

1 + τ2L2
Φ(ν, ǫ)− 2µαmin + (τ − αmin)max{1− 2ǫ, M2

d}
+2(αmax − αmin)LΦ(ν, ǫ), for αmin ≤ αmax ≤ τ,

where αmin = min1≤i≤N{αi}, αmax = max1≤i≤N{αi}, Md = maxx∈X ‖∇d(x)‖, µ =
min{ν, ǫ} and LΦ(ν, ǫ) is as defined in Lemma 3.4.

Proof. Let {αi}Ni=1 be the user dependent steplengths of the primal iterations
and let αmin = min1≤i≤N{αi} and αmax = max1≤i≤N{αi} denote the minimum and
maximum of the user steplengths. Using xi,ν,ǫ = ΠXi

(xi,ν,ǫ − αi∇xi
Lν,ǫ(xν,ǫ, λν,ǫ)),

non-expansive property of projection operator and Cauchy-Schwartz inequality, it can
be verified that

‖xk+1 − xν,ǫ‖2 ≤ ‖xk − xν,ǫ‖2 + α2
max‖∇xLν,ǫ(x

k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)‖2

− 2αmin(∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ))

T (xk − xν,ǫ)

+ 2(αmax − αmin)‖∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)‖‖xk − xν,ǫ‖,

and

‖λk+1 − λν,ǫ‖2 ≤ ‖λk − λν,ǫ‖2 + τ2‖(−d(xk) + ǫλk)− (−d(xν,ǫ) + ǫλν,ǫ)‖2
−2τ(−d(xk) + ǫλk + d(xν,ǫ)− ǫλν,ǫ)

T (λk − λν,ǫ).

Summing the preceding two relations, we obtain

‖zk+1 − zν,ǫ‖2 ≤ ‖zk − zν,ǫ‖2 +max{α2
max, τ

2}‖Φ(zk)− Φ(zν,ǫ)‖2

− 2αmin(∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ))

T (xk − xν,ǫ)

+ 2(αmax − αmin)‖∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)‖ ‖xk − xν,ǫ‖

− 2τ(∇λLν,ǫ(x
k, λk)−∇λLν,ǫ(xν,ǫ, λν,ǫ))

T (λk − λν,ǫ). (3.19)

We now consider three cases:
Case 1 (τ < αmin ≤ αmax): By adding and subtracting

2τ(∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ))

T (xk − xν,ǫ),

we see that relation in (3.19) can be written as

‖zk+1 − zν,ǫ‖2 ≤ ‖zk − zν,ǫ‖2 + α2
max‖Φν,ǫ(z

k)− Φν,ǫ(zν,ǫ)‖2

− 2τ(Φν,ǫ(z
k)− Φν,ǫ(zν,ǫ))

T (zk − zν,ǫ)

− 2(αmin − τ)
(
∇xLν,ǫ(x

k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)
)T

(xk − xν,ǫ)

+ 2(αmax − αmin)‖∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)‖‖xk − xν,ǫ‖.

By Lemma 3.4, the mapping Φν,ǫ is strongly monotone and Lipschitz with constants
µ = min{ν, ǫ} and LΦ(ν, ǫ), respectively. Hence, from the preceding relation we obtain

‖zk+1 − zν,ǫ‖2 ≤ (1 + α2
maxL

2
Φ(ν, ǫ)− 2τµ)‖zk − zν,ǫ‖2

− 2(αmin − τ)
(
∇xLν,ǫ(x

k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)
)T

(xk − xν,ǫ)

+ 2(αmax − αmin)‖∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)‖‖xk − xν,ǫ‖.
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Now ‖∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)‖‖xk−xν,ǫ‖ ≤ ‖Φ(zk)−Φ(zν,ǫ)‖‖zk−zν,ǫ‖ ≤

LΦ(ν, ǫ)‖zk − zν,ǫ‖2 and thus we get

‖zk+1 − zν,ǫ‖2 ≤ (1 + α2
maxL

2
Φ(ν, ǫ)− 2τµ)‖zk − zν,ǫ‖2 + 2(αmax − αmin)LΦ(ν, ǫ)‖zk − zν,ǫ‖2

− 2(αmin − τ)
(
∇xLν,ǫ(x

k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)
)T

(xk − xν,ǫ).
(3.20)

We next estimate the last term in the preceding relation. By adding and subtracting
∇xLν,ǫ(xν,ǫ, λ

k), we have

(
∇xLν,ǫ(x

k, λk) − ∇xLν,ǫ(xν,ǫ, λν,ǫ))
T
(xk − xν,ǫ)

=
(
∇xLν,ǫ(x

k, λk)−∇xLν,ǫ(xν,ǫ, λ
k)
)T

(xk − xν,ǫ)

+
(
∇xLν,ǫ(xν,ǫ, λ

k)−∇xLν,ǫ(xν,ǫ, λν,ǫ)
)T

(xk − xν,ǫ).

Using the strong monotonicity of ∇xLν,ǫ, and writing the second term on the right
hand side explicitly, we get

(
∇xLν,ǫ(x

k, λk) − ∇xLν,ǫ(xν,ǫ, λν,ǫ))
T
(xk − xν,ǫ) ≥ ν‖xk − xν,ǫ‖2

+

m∑

j=1

(
∇dj(xν,ǫ)(λ

k
j − λν,ǫ,j)

)T
(xk − xν,ǫ)

≥ ν‖xk − xν,ǫ‖2

−1

2






∥
∥
∥
∥
∥
∥

m∑

j=1

∇dj(xν,ǫ)(λ
k
j − λν,ǫ,j)

∥
∥
∥
∥
∥
∥

2

+ ‖xk − xν,ǫ‖2




 ,

where the last step follows by noting that ab ≥ − 1
2 (a

2 + b2). Using Cauchy-Schwartz
and Hölder’s inequality, we have

∥
∥
∥
∥
∥
∥

m∑

j=1

∇dj(xν,ǫ)(λ
k
j − λν,ǫ,j)

∥
∥
∥
∥
∥
∥

2

≤





m∑

j=1

‖∇dj(xν,ǫ)‖ |λk
j − λν,ǫ,j |





2

≤





m∑

j=1

‖∇dj(xν,ǫ)‖2


 ‖λk − λν,ǫ‖2

≤ M2
d ‖λk − λν,ǫ‖2,

where in the last step, the boundedness of ∇d(x) over X was employed (‖∇d(x)‖ ≤
Md). By combining the preceding relations, we obtain

(
∇xLν,ǫ(x

k, λk) − ∇xLν,ǫ(xν,ǫ, λν,ǫ))
T
(xk − xν,ǫ)

≥ −1

2

(
(1− 2ν)‖xk − xν,ǫ‖2 +M2

d‖λk − λν,ǫ‖2
)

≥ −1

2
max{1− 2ν, M2

d}‖zk − zν,ǫ‖2.

If the above estimate is substituted in (3.20), we obtain

‖zk+1 − zν,ǫ‖2 ≤ qν,ǫ‖zk − zν,ǫ‖2,

where qν,ǫ = 1 + α2
maxL

2
Φ(ν, ǫ) − 2µτ + (αmin − τ)max{1 − 2ν, M2

d} + 2(αmax −
αmin)LΦ(ν, ǫ), thus showing the desired relation.
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Case 2 (αmin ≤ τ < αmax): By adding and subtracting

2αmin(∇λLν,ǫ(x
k, λk)−∇λLν,ǫ(xν,ǫ, λν,ǫ))

T (λk − λν,ǫ),

for τ < αmax relation (3.19) reduces to

‖zk+1 − zν,ǫ‖2 ≤ ‖zk − zν,ǫ‖2 + α2
max‖Φ(zk)− Φ(zν,ǫ)‖2

− 2αmin(Φ(z
k)− Φ(zν,ǫ))

T (zk − zν,ǫ)

− 2(τ − αmin)(∇λLν,ǫ(x
k, λk)−∇λLν,ǫ(xν,ǫ, λν,ǫ))

T (λk − λν,ǫ)

+ 2(αmax − αmin)‖∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)‖‖xk − xν,ǫ‖,

which by Lipschitz continuity and strong monotonicity of Φ implies,

‖zk+1 − zν,ǫ‖2 ≤ (1 + α2
maxL

2
Φ(ν, ǫ)− 2αminµ)‖zk − zν,ǫ‖2

+ 2(αmax − αmin)‖∇λLν,ǫ(x
k, λk)−∇λLν,ǫ(xν,ǫ, λν,ǫ)‖‖λk − λν,ǫ‖

+ 2(αmax − αmin)‖∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)‖‖xk − xν,ǫ‖.

Using Hölder’s inequality, we get

‖zk+1 − zν,ǫ‖2 ≤ (1 + α2
maxL

2
Φ(ν, ǫ)− 2αminµ)‖zk − zν,ǫ‖2

+ 2(αmax − αmin)‖Φ(zk)− Φ(zν,ǫ)‖‖zk − zν,ǫ‖.

Finally using Lipschitz continuity of Φ we get

‖zk+1 − zν,ǫ‖2 ≤ q‖zk − zν,ǫ‖2,

where qν,ǫ = 1 + α2
maxL

2
Φ(ν, ǫ)− 2αminµ+ 2(αmax − αmin)LΦ(ν, ǫ).

Case 3 (αmin ≤ αmax ≤ τ): Note that

(∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ))

T (xk − xν,ǫ)

=
(
Φν,ǫ(z

k)− Φν,ǫ(zν,ǫ)
)T

(zk − zν,ǫ)

−(−d(xk) + ǫλk + d(xν,ǫ)− ǫλν,ǫ)
T (λk − λν,ǫ).

Thus, from the preceding equality and relation (3.19), where αmax < τ , we have

‖zk+1 − zν,ǫ‖2 ≤ ‖zk − zν,ǫ‖2 + τ2‖Φ(zk)− Φ(zν,ǫ)‖2

− 2αmin(Φ(z
k)− Φ(zν,ǫ))

T (zk − zν,ǫ)

− 2(τ − αmin)(∇λLν,ǫ(x
k, λk)−∇λLν,ǫ(xν,ǫ, λν,ǫ))

T (λk − λν,ǫ)

+ 2(αmax − αmin)‖∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)‖‖xk − xν,ǫ‖.

By Lemma 3.4, the mapping Φν,ǫ is strongly monotone and Lipschitz with constants
µ = min{ν, ǫ} and LΦ(ν, ǫ), respectively. Hence, it follows

‖zk+1 − zν,ǫ‖2 ≤ (1 + τ2L2
Φ(ν, ǫ)− 2αminµ)‖zk − zν,ǫ‖2

− 2(τ − αmin)(∇λLν,ǫ(x
k, λk)−∇λLν,ǫ(xν,ǫ, λν,ǫ))

T (λk − λν,ǫ)

+ 2(αmax − αmin)‖∇xLν,ǫ(x
k, λk)−∇xLν,ǫ(xν,ǫ, λν,ǫ)‖‖xk − xν,ǫ‖,
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which can be further estimated as

‖zk+1 − zν,ǫ‖2 ≤ (1 + τ2L2
Φ(ν, ǫ)− 2αminµ)‖zk − zν,ǫ‖2 + 2(αmax − αmin)LΦ(ν, ǫ)‖zk − zν,ǫ‖2

− 2(τ − αmin)(∇λLν,ǫ(x
k, λk)−∇λLν,ǫ(xν,ǫ, λν,ǫ))

T (λk − λν,ǫ).
(3.21)

Next, we estimate the last term on the right hand side of the preceding relation.
Through the use of Cauchy-Schwartz inequality, we have

(
d(xk)− d(xν,ǫ)

)T
(λk − λν,ǫ) ≤

1

2

∥
∥d(xk)− d(xν,ǫ)

∥
∥
2
+

1

2
‖λk − λν,ǫ‖2.

By the continuity of the gradient mapping of d(x) = (d1(x), . . . , dm(x))T and its
boundedness (‖∇d(x)‖ ≤ Md), using the Mean-value Theorem we further have

∥
∥d(xk)− d(xν,ǫ)

∥
∥
2 ≤ M2

d‖xk − xν,ǫ‖2.

From the preceding two relations we have

(
d(xk)− d(xν,ǫ)

)T
(λk − λν,ǫ) ≤

M2
d

2
‖xk − xν,ǫ‖2 +

1

2
‖λk − λν,ǫ‖2,

which when substituted in inequality (3.21) yields

‖zk+1 − zν,ǫ‖2 ≤
(
1 + τ2L2

Φ(ν, ǫ)− 2µαmin + 2(αmax − αmin)LΦ(ν, ǫ)
)
‖zk − zν,ǫ‖2

+(τ − αmin)(1− 2ǫ)‖λk − λν,ǫ‖2 + (τ − αmin)M
2
d‖xk − xν,ǫ‖2.

The desired relation follows by observing that

(1− 2ǫ)‖λk − λν,ǫ‖2 +M2
d‖xk − xν,ǫ‖2 ≤ max{1− 2ǫ, M2

d} ‖zk − zν,ǫ‖2.

An immediate corollary of Theorem 3.5 is obtained when all users have the same
steplength. More precisely, we have the following algorithm:

xk+1 = ΠX(xk − α∇xLν,ǫ(x
k, λk)),

λk+1 = ΠDν
(λk + τ∇λLν,ǫ(x

k, λk)), (3.22)

where α > 0 and τ > 0 are, respectively, primal and dual steplengths. We present
the convergence of the sequence {zk} with zk = (xk, λk) in the next corollary.

Corollary 3.6. Let Assumptions 2–4 hold. Let {zk} be a sequence generated
by (3.22) with the primal and dual step-sizes chosen independently. Then, we have

‖zk+1 − zν,ǫ‖ ≤ √
qν,ǫ‖zk − zν,ǫ‖ for all k ≥ 0,

where qν,ǫ is given by

qν,ǫ = 1− 2µmin{α, τ}+max{α2, τ2}L2
Φ(ν, ǫ) + θ(α, τ),

and θ(α, τ) ,

{
(α− τ)max{1− 2ν, M2

d} for τ ≤ α,
(τ − α)max{1− 2ǫ, M2

d} for α < τ,
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µ = min{ν, ǫ} and L2
Φ(ν, ǫ) is as given in Lemma 3.4.

Note that when αmin = αmax = τ and τ < 2µ/L2
Φ(ν, ǫ), Theorem 3.5 implies the

standard contraction result for a strongly monotone and Lipschitz mapping. However,
Theorem 3.5 does not guarantee the existence of a tuple (αmin, αmax, τ) resulting in
a contraction in general, i.e., does not ensure that qν,ǫ ∈ (0, 1). This is done in the
following lemma.

Lemma 3.7. Let qν,ǫ be as given in Theorem 3.6. Then, there exists a tuple
(αmin, αmax, τ) such that qν,ǫ ∈ (0, 1).

Proof. It suffices to show that there exists a tuple (αmin, αmax, τ) such that

0 < 1 + α2
maxL

2
Φ(ν, ǫ)− 2µτ + (αmin − τ)max{1− 2ν, M2

d}
+2(αmax − αmin)LΦ(ν, ǫ) < 1 τ < αmin ≤ αmax

0 < 1 + α2
maxL

2
Φ(ν, ǫ)− 2αminµ

+2(αmax − αmin)LΦ(ν, ǫ) < 1 αmin ≤ τ < αmax

0 < 1 + τ2L2
Φ(ν, ǫ)− 2µαmin + (τ − αmin)max{1− 2ǫ, M2

d}
+2(αmax − αmin)LΦ(ν, ǫ) < 1 αmin ≤ αmax ≤ τ.

Also, it suffices to prove only one of the cases since the other cases follow by in-
terchanging the roles of τ and αmin or τ and αmax . We consider the case where
τ < αmin ≤ αmax. Here, if αmax < 2µ/L2

Φ(ν, ǫ) then there is β < 1 such that setting
τ = βαmax we have q < 1. To see this let αmin = β1αmax such that β < β1 ≤ 1 and
max{1− 2ν,M2

d} = M2
d . Consider

qν,ǫ − 1 = −2µτ + α2
maxL

2
Φ(ν, ǫ) + (αmin − τ)M2

d + 2(αmax − αmin)LΦ(ν, ǫ).

Setting τ = βαmax, αmin = β1αmax, the preceding relation reduces to

qν,ǫ − 1 = −2µβαmax + α2
maxL

2
Φ(ν, ǫ) + αmax(β1 − β)M2

d + 2αmax(1− β1)LΦ(ν, ǫ).

Using β < β1 ≤ 1 we obtain

qν,ǫ − 1 ≤ −2µβαmax + α2
maxL

2
Φ(ν, ǫ) + αmax(1− β)M2

d + 2αmax(1− β)LΦ(ν, ǫ).

We are done if we show that the expression on the right hand side of the preceding
relation is negative for some β i.e.,

−2µβαmax + α2
maxL

2
Φ(ν, ǫ) + αmax(1− β)M2

d + 2αmax(1− β)LΦ(ν, ǫ) < 0.

Following some rearrangement it can be verified that

β >
αmaxL

2
Φ(ν, ǫ) +M2

d + 2LΦ(ν, ǫ)

2µ+M2
d + 2LΦ(ν, ǫ)

.

Since we have αmaxL
2
Φ(ν, ǫ) < 2µ it follows that the expression on right hand side of

the preceding relation is strictly less than 1 and we have

β ∈
(
αmaxL

2
Φ(ν, ǫ) +M2

d + 2LΦ(ν, ǫ)

2µ+M2
d + 2LΦ(ν, ǫ)

, 1

)

,

implying that we have β ∈ (0, 1).
The previous result is motivated by several issues arising in practical settings.

First there may be errors due to noisy links in the communication network, which may
cause inconsistencies across steplengths. Often, it may be difficult to even enforce
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this consistency. As a consequence, we examine the extent to which the convergence
theory is affected by a lack of consistency. A related question is whether one can,
in a distributed setting, impose alternative requirements that weaken consistency.
This can be achieved by setting bounds on the primal and dual steplengths which are
independent. For instance, if αmax < 2µ

L2
Φ
(ν,ǫ)

, then it suffices to choose τ independently

as τ ≤ βαmax ≤ β 2µ
L2

Φ
(ν,ǫ)

, where β is chosen independently. Importantly, Lemma 3.7

provides a characterization of the relationship between αmin, αmax and τ using the
values of problem parameters, to ensure convergence of the scheme. Expectedly, as
the numerical results testify, the performance does deteriorate when there αi’s and τ
do not match.

Finally, we remark briefly on the relevance of allowing for differing steplengths.
In distributed settings, communication of steplengths may be corrupted via error due
to noisy communication links. A majority of past work on such problems (cf. [13,14])
requires that steplengths be consistent across users. Furthermore, in constrained
regimes, there is a necessity to introduce both primal (user) steplengths and dual
(link) steplengths. We show that there may be limited diversity across all of these
parameters while requiring that these parameters together satisfy some relationship.
One may question if satisfying this requirement itself requires some coordination. In
fact, we show that this constraint is implied by a set of private user-specific and dual
requirements on their associated steplengths, allowing for ease of implementation.

3.5. Extension to independently chosen regularization parameters. In
this subsection, we extend the results of the preceding section to a regime where the
ith user selects its own regularization parameter νi. Before proceeding, we provide
a brief motivation of such a line of questioning. In networked settings specifying
steplengths and regularization parameters for the users at every instant is generally
challenging. Enforcing consistent choices across these users is also difficult. An alter-
native lies in broadcasting a range of choices for steplengths, as done in the previous
subsection. In this section, we show that an analogous approach can be leveraged for
specifying regularization parameters, with limited impacts on the final results. Im-
portantly, the benefit of these results lies in the fact that enforcement of consistency
of regularization parameters is no longer necessary. We start with definition of the
regularized Lagrangian function with user specific regularization terms. In particular,
we let

LV,ǫ(x, λ) = f(x) +
1

2
xTV x+ λT d(x)− ǫ

2
‖λ‖2 (3.23)

where V is a diagonal matrix with diagonal entries ν1, . . . , νN . In this case, letting
νmax , max

i∈{1,...,N}
{νi}, for some x̄ ∈ X and λ̄ ≥ 0, we define the set Dνmax

given by:

Dνmax
=






λ ∈ R

m
∣
∣
∣

m∑

j=1

λj ≤
f(x̄) + νmax

2 ‖x̄‖2 − v(λ̄)

min1≤j≤m{−dj(x̄)}
, λ ≥ 0






. (3.24)

We consider the regularized primal problem (2.1) with the regularization term 1
2x

TV x.
We let Λ∗

V be the set of dual optimal solutions of such regularized primal problem.
Then, relation (3.6) holds for Λ∗

V and Dνmax
, i.e., Λ∗

V ⊆ Dνmax
and, therefore, the

development in the preceding two sections extends to this case as well. We let x∗
V

and λ∗
V denote primal-dual of the regularized primal problem with the regularization

term 1
2x

TV x. Analogously, we let x∗
V,ǫ and λ∗

V,ǫ denote respectively the primal and
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the dual part of the saddle point solution for LV,ǫ(x, λ) over X ×R
m
+ . We present the

modified results in the form of remarks and omit the details of proofs.
The bound of Proposition 3.1 when user i uses its own regularization parameter

νi will reduce to:

(x∗
V − xV,ǫ)

TV (x∗
V − xV,ǫ) +

ǫ

2
‖λV,ǫ‖2 ≤ ǫ

2
‖λ∗

V
‖2 for all λ∗

V ∈ Λ∗
V ,

and thus we have the following bound

‖x∗
V − xV,ǫ‖ ≤

√
ǫ

2νmin
max

λ∗∈Dνmax

‖λ∗‖,

where νmin , min
i∈{1,...,N}

{νi}.
The result in Lemma 3.3 is replaced by the following one.
Lemma 3.8. Let Assumptions 1 and 2 hold. For any νi > 0, i = 1, . . . , N, and

ǫ > 0, we have

max {0, dj(xV,ǫ)} ≤ Mdj
Mνmax

√
ǫ

2νmin
for all j = 1, . . . ,m,

|f(xV,ǫ)− f(x∗)| ≤ MfMνmax

√
ǫ

2νmin
+

νmax

2
D2,

with Mdj
= maxx∈X ‖∇dj(x)‖ for each j = 1, . . . ,m, Mf = maxx∈X ‖∇f(x)‖,

Mνmax
= max

λ∗∈Dνmax

‖λ∗‖ and D = maxx∈X ‖x‖.
Our result following Lemma 3.3 where we describe how one may choose param-

eters ǫ and ν to get within a given threshold error on the deviation of the obtained
function value from its optimal counterpart will have to be reconsidered using the ap-
propriate parameters νmin and νmax. More precisely, we will have |f(xV,ǫ)−f(x∗)| < δ
if we have

MfMνmax

√
ǫ

νmin
+

νmax

2
D2 < δ.

Following a similar analysis and using the structure of the set Dνmax
, we have

Mνmax

√
ǫ

2νmin
=

√
ǫ

2νmin

(

max
λ∈Dνmax

‖λ‖1
)

=

√
ǫ

2νmin

(
f(x̄) + νmax

2 ‖x̄‖2 − v(λ̄)

min1≤j≤m{−dj(x̄)}

)

=

√
ǫ

2νmin

(
f(x̄)− v(λ̄)

min1≤j≤m{−dj(x̄)}

)

+

√
ǫ

2νmin

( νmax

2 ‖x̄‖2
min1≤j≤m{−dj(x̄)}

)

,

Letting a = f(x̄)−v(λ̄)√
2 min1≤j≤m{−dj(x̄)}

and b = ‖x̄‖2

2
√
2 min1≤j≤m{−dj(x̄)}

, we have

MfMνmax

√
ǫ

νmin
+

νmax

2
D2 ≤ Mf




a
√
ǫ√

νmin
+ b

√

ǫν2max

νmin



+
νmax

2
D2 < δ.

Next, we may choose parameters νmin, νmax and ǫ so that the above inequality is
satisfied. The expression suggests that one must choose ǫ < νmin (as Mf could be

22



large). Thus, setting ǫ = νminν
2
max, we will obtain a quadratic inequality in parameter

νmax which can subsequently allow for selecting νmax and, therefore, selecting νmin

and ǫ.
Analogous to the definition of the mapping Φν,ǫ(x, λ) in (3.3), we define the

regularized mapping corresponding to the Lagrangian in (3.23). Specifically, we have
the regularized mapping ΦV,ǫ(x, λ) given by

ΦV,ǫ(x, λ) , (∇xLV,ǫ(x, λ),−∇λLV,ǫ(x, λ)) = (∇xL(x, λ) + V x,−d(x) + ǫλ).

The properties of ΦV,ǫ, namely, strong monotonicity and Lipschitz continuity remain.
Specifically, ΦV,ǫ is strongly monotone with the same constant µ as before, i.e., µ =
min{νmin, ǫ}. However, Lipschitz constant is not the same. Letting LΦ(V, ǫ) denote a
Lipschitz constant for ΦV,ǫ, we have

LΦ(V, ǫ) =
√

(L+ νmax +Md +Mνmax
Ld)2 + (Md + ǫ)2. (3.25)

The result of Theorem 3.5 can be expressed as in the following corollary.
Corollary 3.9. Let Assumptions 1-4 hold. Let {zk} be a sequence generated

by (3.18) with each user using νi as its regularization parameter instead of ν. Then,
we have

‖zk+1 − zV,ǫ‖ ≤ √
qV,ǫ‖zk − zV,ǫ, ‖

with qV,ǫ as given in Theorem 3.5, where LΦ(ν, ǫ) is replaced by LΦ(V, ǫ) from (3.25).

4. A Regularized Dual Method. The focus in Section 3 has been on primal-
dual method dealing with problems where a set of convex constraints couples the
user decisions. A key property of our primal-dual method is that both schemes have
the same time-scales. In many practical settings, the primal and dual updates are
carried out by very different entities so that the time-scales may be vastly different.
For instance, the dual updates of the Lagrange multipliers could be controlled by the
network operator and might be on a slower time-scale than the primal updates that
are made by the users. Dual methods have proved useful in multiuser optimization
problems and their convergence to the optimal primal solution has been studied for
the case when the user objectives are strongly convex [13,25].

In this section, we consider regularization to deal with the lack of strong con-
vexity of Lagrangian subproblems and to also accommodate inexact solutions of the
Lagrangian subproblems. For the inexact solutions, we develop error bounds. In-
exactness is essential in constructing distributed online schemes that require primal
solutions within a fixed amount of time. In the standard dual framework, for each
λ ∈ R

m
+ , a solution x(λ) ∈ X of a Lagrangian subproblem is given by a solution to

VI(X,∇xL(x, λ)), which satisfies the following inequality:

(x− x(λ))
T ∇xL(x(λ), λ) ≥ 0 for all x ∈ X,

where ∇λL(x(λ), λ) = ∇xf(x(λ)) +
∑m

j=1 λj∇dj(x(λ)). An optimal dual variable λ
is a solution of VI(Rm

+ ,−∇λL(x(λ), λ)) given by

(λ̂− λ)T (−∇λL(x(λ), λ)) ≥ 0 for all λ̂ ∈ R
m
+ ,

where ∇λL(x, λ) = d(x). We consider a regularization in both primal and dual space
as discussed in Section 3. In Section 4.1, we discuss the exact dual method and
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provide the contraction results in the primal and dual space as well as bounds on the
infeasibility. These results are extended to allow for inexact solutions of Lagrangian
subproblems in Section 4.2.

4.1. Regularized exact dual method. We begin by considering an exact dual
scheme for the regularized problem given by

xt = ΠX(xt − α∇xLν,ǫ(x
t, λt)), (4.1)

λt+1 = ΠDν
(λt + τ∇λLν,ǫ(x

t, λt)) for t ≥ 0, (4.2)

where the set Dν is as defined in (3.6). In the primal step (4.1), the vector xt denotes
the solution x(λt) of the fixed-point equation corresponding to the current Lagrange
multiplier λt.

We now focus on the conditions ensuring that the sequence {λt} converges to the
optimal dual solution λ∗

ν,ǫ and that the corresponding {x(λt)} converges to the primal
optimal x∗

ν,ǫ of the regularized problem. We note that Proposition 3.1 combined with
Lemma 3.3 provide bounds on the constraint violations, and a bound on the difference
in the function values f(x∗

ν,ǫ) and the primal optimal value f∗ of the original problem.
Lemma 4.1. Under Assumption 2, the function −d(x(λ)) is co-coercive in λ with

constant ν
M2

d

, where Md = maxx∈X ‖∇d(x)‖.
Proof. Let λ1 and λ2 ∈ R

m
+ . Let x1 and x2 denote the solutions to VI(X,∇xLν,ǫ(x, λ1))

and VI(X,∇xLν,ǫ(x, λ2)), respectively. Then, we have the following inequalities:

(x2 − x1)
T (∇fν(x1) +

m∑

j=1

λ1,j∇dj(x1)) ≥ 0,

(x1 − x2)
T (∇fν(x2) +

m∑

j=1

λ2,j∇dj(x2)) ≥ 0,

where λ1,j and λ2,j denote the jth component of vectors λ1 and λ2, respectively.
Summing these inequalities, we get

m∑

j=1

λ1,j(x2 − x1)
T∇dj(x1) +

m∑

j=1

λ2,j(x1 − x2)
T∇dj(x2)

≥ (x2 − x1)
T (∇fν(x2)−∇fν(x1)) ≥ ν‖x2 − x1‖2. (4.3)

By using the convexity of the functions dj and inequality (4.3), we obtain

(λ2 − λ1)
T (−d(x2) + d(x1)) =

m∑

j=1

λ1,j(dj(x2)− dj(x1)) +

m∑

j=1

λ2,j(dj(x1)− dj(x2))

≥
m∑

j=1

λ1,j(x2 − x1)
T∇dj(x1) +

m∑

j=1

λ2,j(x1 − x2)
T∇dj(x2)

≥ ν‖x2 − x1‖2. (4.4)

Now, by using the Lipschitz continuity of d(x), as implied by Assumption 2, we
see that ‖x2 − x1‖2 ≥ ν

M2
d

‖d(x2) − d(x1)‖2 with Md = maxx∈X ∇d(x), which when

substituted in the preceding relation yields the result.
We now prove our convergence result for the dual method, relying on the exact

solution of the corresponding Lagrangian subproblem.
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Proposition 4.2. Let Assumptions 1 and 2 hold, and let the step size τ be such
that

τ <
2ν

M2
d + 2ǫν

with Md = max
x∈X

∇d(x).

Then, for the sequence {λt} generated by the dual method in (4.2), we have

‖λt+1 − λ∗
ν,ǫ‖ ≤ q‖λt − λ∗

ν,ǫ‖ where q = 1− τǫ.

Proof. By using the definition of the dual method in (4.2) and the non-expansivity
of the projection, we obtain the following set of inequalities:

‖λt+1 − λ∗
ν,ǫ‖2 ≤ ‖λt + τ(d(xt)− ǫλt)−

(
λ∗
ν,ǫ + τ(d(x∗

ν,ǫ)− ǫλ∗
ν,ǫ)
)
‖2

= ‖(1− τǫ)(λt − λ∗
ν,ǫ)− τ

(
d(x∗

ν,ǫ)− d(xt)
)
‖2

= (1− τǫ)2‖λt − λ∗
ν,ǫ‖2 + τ2‖d(x∗

ν,ǫ)− d(xt)‖2

− 2τ(1− τǫ)(λt − λ∗
ν,ǫ)

T
(
d(x∗

ν,ǫ)− d(xt)
)
.

By invoking the co-coercivity of −d(x) from Lemma 4.1, we further obtain

‖λt+1 − λ∗
ν,ǫ‖2 ≤ (1− τǫ)2‖λt − λ∗

ν,ǫ‖2 +
(

τ2 − 2τ(1− τǫ)
ν

M2
d

)

‖d(x∗
ν,ǫ)− d(xt)‖2.

A contraction may be obtained by choosing τ such that (τ2 − 2τ(1− τǫ) ν
M2

d

) < 0

and τ <
1

ǫ
as given by τ <

2ν/M2
d

1 + 2ǫν/M2
d

<
1

ǫ
.

We therefore conclude that ‖λt+1 − λ∗
ν,ǫ‖2 ≤ (1− τǫ)2‖λt − λ∗

ν,ǫ‖2 for all t ≥ 0.
Next, we examine two remaining concerns. First, can a bound on the norm

‖xt−x∗
ν,ǫ‖ be obtained, where xt = x(λt)? Second, can one make a rigorous statement

regarding the infeasibility of xt, similar to that provided in the context of the primal-
dual method in Section 3?

Proposition 4.3. Let Assumptions 1 and 2 hold. Then, for the sequence {xt},
with xt = x(λt), generated by the dual method (4.1) using a step-size τ such that
τ < 2ν

M2
d
+2ǫν

, we have for all t ≥ 0,

‖xt − x∗
ν,ǫ‖ ≤ Md

ν
‖λt − λ∗

ν,ǫ‖ and max{0, dj(xt)} ≤ M2
d

ν
‖λt − λ∗

ν,ǫ‖.

Proof. From relation (4.4) in the proof of Lemma 4.1, the Cauchy-Schwartz
inequality and the boundedness of ∇dj(x) for all j = 1, . . . ,m, we have

‖xt − x∗
ν,ǫ‖2 = ‖x(λt)− x(λ∗

ν,ǫ)‖2

≤ 1

ν

(
λt − λ∗

ν,ǫ)
T (−d(x(λt)) + d(x(λ∗

ν,ǫ))
)

≤ Md

ν
‖λt − λ∗

ν,ǫ‖‖x(λt)− x(λ∗
ν,ǫ)‖,
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implying that ‖xt − x∗
ν,ǫ‖ ≤ Md

ν ‖λt − λ∗
ν,ǫ‖. Furthermore, a bound on max{0, dj(xt)}

can be obtained by invoking the convexity of each of the functions dj and the bound-
edness of their gradients, as follows:

dj(x
t) ≤ dj(x

∗
ν,ǫ) +∇dj(x

∗
ν,ǫ)

T (xt − x∗
ν,ǫ) ≤ Md‖xt − x∗

ν,ǫ‖ ≤ M2
d

ν
‖λt − λ∗

ν,ǫ‖,

where in the second inequality we use dj(x
∗
ν,ǫ) ≤ 0. Thus, a bound on the violation

of constraints dj(x) ≤ 0 at x = xt is given by max{0, dj(xt)} ≤ M2
d

ν ‖λt − λ∗
ν,ǫ‖.

4.2. Regularized inexact dual method. The exact dual scheme requires solv-
ing the Lagrangian subproblem to optimality for a given value of the Lagrange mul-
tiplier. In practical settings, primal solutions are obtained via distributed iterative
schemes and exact solutions are inordinately expensive from a computational stand-
point. This motivates our study of the error properties resulting from solving the
Lagrangian subproblem inexactly for every iteration in dual space. In particular, we
consider a method executing a specified fixed number of iterations, say K, in the pri-
mal space for every iteration in the dual space. Our intent is to provide error bounds
contingent on K. The inexact form of the dual method is given by the following:

xk+1(λt) = ΠX(xk(λt)− α∇xLν,ǫ(x
k(λt), λt)) k = 0, . . . ,K − 1, t ≥ 0, (4.5)

λt+1 = ΠDν

(
λt + τ∇λLν,ǫ(x

K(λt), λt)
)

t ≥ 0. (4.6)

Throughout this section, we omit the explicit dependence of x on λ, by letting xk(t) ,
xk(λt). We have the following result.

Lemma 4.4. Let Assumptions 1–4 hold. Let {xk(t)}, k = 1, . . . ,K, t ≥ 0 be
generated by (4.5) using a step-size α, with 0 < α < 2

Lf
where Lf = L+ ν+MνLd, L

and Ld are Lipschitz constants for the gradient maps ∇f and ∇d respectively, while
Mν = maxλ∈Dν

‖λ‖. Then, we have for all t and all k = 1, . . . ,K,

‖xk(t)− x(t)‖ ≤ qk/2p ‖x0(t)− x(t)‖,

where x(t) := x(λt) solves the Lagrangian subproblem corresponding to the multiplier
λt and qp = 1− αν(2− αLf ).

Proof. We observe that for each λt the mapping ∇xLν,ǫ(x
k(λt), λt) of the La-

grangian subproblem is strongly monotone and Lipschitz continuous. The geometric
convergence follows directly from [10], page 164, Theorem 13.1.

Our next proposition provides a relation for ‖λt+1−λ∗
ν,ǫ‖ in terms of ‖λt−λ∗

ν,ǫ‖2
with an error bound depending on K and t.

Proposition 4.5. Let Assumptions 2–4 hold. Let the sequence {λt} be generated
by (4.5)–(4.6) using a step-size α as in Lemma 4.4 and a step-size τ such that

τ < min

{
2ν

M2
d + 2ǫν

,
2ǫ

1 + ǫ2

}

with Md = max
x∈X

‖∇d‖.

We then have for all t ≥ 0,

‖λt+1 − λ∗
ν,ǫ‖2 ≤ qt+1

d ‖λ0 − λ∗
ν,ǫ‖2 +

1− qt+1
d

1− qd
M2

d

(

qdq
K
p + 2τ2Mx q

K/2
p

)

,

where qp = 1− αν(2− αLf ), qd = (1− τǫ)2 + τ2, and Mx = maxx,y∈X ‖x− y‖.
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Proof. In view of (4.6) and the non-expansive property of the projection, we have

‖λt+1 − λ∗
ν,ǫ‖2 ≤

∥
∥(1− τǫ)(λt − λ∗

ν,ǫ)− τ
(
d(x∗

ν,ǫ)− d(xK(t))
)∥
∥
2

= (1− τǫ)2‖λt − λ∗
ν,ǫ‖2 + τ2 ‖d(x∗

ν,ǫ)− d(xK(t))‖2
︸ ︷︷ ︸

Term1

−2τ(1− τǫ) (λt − λ∗
ν,ǫ)

T
(
d(x∗

ν,ǫ)− d(xK(t))
)

︸ ︷︷ ︸

Term2

. (4.7)

Next, we provide bounds on terms 1 and 2. For term 1 by adding and subtracting
d(x(t)), we obtain

‖d(x∗
ν,ǫ)− d(xK(t))‖2 = ‖d(x∗

ν,ǫ)− d(x(t)) + d(x(t))− d(xK(t))‖2

≤ ‖d(x∗
ν,ǫ)− d(x(t))‖2 + ‖d(x(t))− d(xK(t))‖2 + 2‖d(x∗

ν,ǫ)− d(x(t))‖‖d(x(t))− d(xK(t))‖.

By using the Lipschitz continuity of d(x) for x ∈ X, we further have for all t ≥ 0,

‖d(x∗
ν,ǫ)− d(xK(t))‖2 ≤ ‖d(x∗

ν,ǫ)− d(x(t))‖2 + ‖d(x(t))− d(xK(t))‖2
+2M2

d‖x∗
ν,ǫ − x(t)‖ ‖x(t)− xK(t)‖. (4.8)

Now, we consider term 2, for which by adding and subtracting d(x(t)), and by using
the co-coercivity of −d(x(λ)) (see (4.4)), we obtain

(λt − λ∗
ν,ǫ)

T
(
d(x∗

ν,ǫ)− d(xK(t))
)

= (λt − λ∗
ν,ǫ)

T
(
d(x∗

ν,ǫ)− d(x(t))
)
+ (λt − λ∗

ν,ǫ)
T
(
d(x(t))− d(xK(t))

)

≥ ν

M2
d

‖d(x∗
ν,ǫ)− d(x(t))‖2 + (λt − λ∗

ν,ǫ)
T
(
d(x(t))− d(xK(t))

)
.

Thus, we have

−2τ(1− τǫ)(λt − λ∗
ν,ǫ)

T
(
d(x∗

ν,ǫ)− d(xK(t))
)
≤ −2τ(1− τǫ)

ν

M2
d

‖d(x∗
ν,ǫ)− d(x(t))‖2

+τ2‖λt − λ∗
ν,ǫ‖2 + (1− τǫ)2

∥
∥d(x(t))− d(xK(t))

∥
∥
2
. (4.9)

From relations (4.7), (4.8) and (4.9), by grouping the corresponding expressions ac-
cordingly, we obtain

‖λt+1 − λ∗
ν,ǫ‖2 ≤

(
(1− τǫ)2 + τ2

)
‖λt − λ∗

ν,ǫ‖2

+

(

τ2 − 2τ(1− τǫ)
ν

M2
d

)

‖d(x∗
ν,ǫ)− d(x(t))‖2

+
(
(1− τǫ)2 + τ2

)
‖d(x(t))− d(xK(t))‖2

+2τ2M2
d‖x∗

ν,ǫ − x(t)‖ ‖x(t)− xK(t)‖.

By Lemma 4.4, we have ‖xK(t)−x(t)‖ ≤ q
K/2
p ‖x0(t)−x(t)‖ with qp = 1−αν(2−αLf ).

By using this, the Lipschitz continuity of d(x) over X, and ‖x∗
ν,ǫ − x(t)‖ ≤ Mx where

Mx = maxx,y∈X ‖x− y‖, we obtain

‖λt+1 − λ∗
ν,ǫ‖2 ≤

(
(1− τǫ)2 + τ2

)
‖λt − λ∗

ν,ǫ‖2 +
(

τ2 − 2τ(1− τǫ)
ν

M2
d

)

M2
dM

2
x

+
(
(1− τǫ)2 + τ2

)
M2

d q
K
p + 2τ2M2

dMx q
K/2
p .
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By choosing τ such that

τ < min

{
2ν

M2
d + 2ǫν

,
2ǫ

1 + ǫ2

}

,

we ensure that (1 − τǫ)2 + τ2 < 1 and τ2 − 2τ(1 − τǫ) ν
M2

d

< 0. Therefore for such a

τ , by letting qd = (1− τǫ)2 + τ2, we have

‖λt+1 − λ∗
ν,ǫ‖2 ≤ qd‖λt − λ∗

ν,ǫ‖2 + qdM
2
d q

K
p + 2τ2M2

dMx q
K/2
p ,

and by recursively using the preceding estimate, we obtain

‖λt+1 − λ∗
ν,ǫ‖2 ≤ qt+1

d ‖λ0 − λ∗
ν,ǫ‖2 +

1− qt+1
d

1− qd
M2

d

(

qdq
K
p + 2τ2Mx q

K/2
p

)

.

Note that by Proposition 4.5, we have limK→∞ qKp = 0 since qp < 1 and, hence,

the term
1−qt+1

d

1−qd
M2

d (qdq
K
p + 2τ2Mx q

K/2
p ) converges to zero. This is precisely what

we expect: as the Lagrangian problem is solved to a greater degree of exactness, the
method approaches the exact regularized counterpart of section 4.1. Also, note that
when K is fixed the following limiting error holds

lim
t→∞

‖λt+1 − λ∗
ν,ǫ‖2 ≤ 1

1− qd
M2

d

(

qdq
K
p + 2τ2Mx q

K/2
p

)

.

We now establish bounds on the norm ‖xK(t) − x∗
ν,ǫ‖ and the constraint violation

dj(x) at x = xK(t) for all j.

Proposition 4.6. Under assumptions of Proposition 4.5, for the sequence {xK(t)}
generated by (4.5)–(4.6) we have for all t ≥ 0,

‖xK(t)− x∗
ν,ǫ‖ ≤ qK/2

p Mx +
Md

ν
‖λt − λ∗

ν,ǫ‖,

max{0, dj(xK(t))} ≤ Md

(

qK/2
p Mx +

Md

ν
‖λt − λ∗

ν,ǫ‖
)

,

where qp, Mx and Md are as defined in Proposition 4.5.

Proof. Consider ‖xK(t) − x∗
ν,ǫ‖. By Lemma 4.4 we have ‖xK(t) − x(t)‖ ≤

q
K/2
p ‖x0(t)−x(t)‖, while by co-coercivity of −d(x), it can be seen that ‖x(t)−x∗

ν,ǫ‖ ≤
Md

ν ‖λt − λ∗
ν,ǫ‖. Hence,

‖xK(t)− x∗
ν,ǫ‖ ≤ ‖xK(t)− x(t)‖+ ‖x(t)− x∗

ν,ǫ‖ ≤ qK/2
p Mx +

Md

ν
‖λt − λ∗

ν,ǫ‖,

where we also use ‖x0(t)− x(t)‖ ≤ Mx. For the constraint dj , by convexity of dj and
using dj(x

∗
ν,ǫ) we have for any t ≥ 0,

dj(x
K(t)) ≤ dj(x

∗
ν,ǫ) +∇d(x∗

ν,ǫ)
T (xK(t)− x∗

ν,ǫ)

≤ ‖∇d(x∗
ν,ǫ)‖ ‖xK(t)− x∗

ν,ǫ‖ ≤ Md

(

qK/2
p Mx +

Md

ν
‖λt − λ∗

ν,ǫ‖
)

,
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where in the last inequality we use the preceding estimate for ‖xK(t) − x∗
ν,ǫ‖. Thus,

for the violation of dj(x) at x = xK(t) we have,

max{0, dj(xK(t))} ≤ Md

(

qK/2
p Mx +

Md

ν
‖λt − λ∗

ν,ǫ‖
)

.

One may combine the result of Proposition 4.6 with the estimate for ‖λt − λν,ǫ‖
of Proposition 4.5 to bound the norm ‖xK(t) − x(t)‖ and the constraint violation
max{0, dj(xK(t))} in terms of initial multiplier λ0 and the optimal dual solution λ∗

ν,ǫ.
An obvious challenge in implementing such schemes is that convergence relies on

exact primal solutions. Often, there is a fixed amount of time available for obtaining
primal updates, leading us to consider whether one could construct error bounds
for dual schemes where an approximate primal solution is obtained through a fixed
number of gradient steps.

Finally, we discuss an extension of the preceding results to the case of indepen-
dently chosen regularization parameters. Analogous to Section 3.5, we extend the
results of dual method to the case when user i selects a regularization parameter νi
for its own Lagrangian subproblem. As in Section 3.5, the results follow straight-
forwardly from the results developed so far in this section. We briefly discuss the
modified results here for completeness.

As in Section 3.5, Lagrange multiplier λ belongs to set Dνmax
defined in (3.24). In

this case, similar to the proof of Lemma 4.1, it can be seen that the function −d(x(λ))
is co-coercive in λ with constant νmin

M2
d

. The result of Proposition 4.2 will require the

dual steplength τ to satisfy the following relation:

τ <
2νmin

M2
d + 2ǫνmin

.

Similarly, the result of Proposition 4.3 will hold with νmin replacing the regularization
parameter ν i.e., for τ such that τ < 2νmin

M2
d
+2ǫνmin

, we have for all t ≥ 0,

‖xt − x∗
V,ǫ‖ ≤ Md

νmin
‖λt − λ∗

V,ǫ‖ and max{0, dj(xt)} ≤ M2
d

νmin
‖λt − λ∗

V,ǫ‖.

Finally, Lemma 4.4 will hold with Lf defined by Lf = L + νmax + MνLd and qp =
1−ανmin(2−αLf ). Also, for the result of Proposition 4.5 to hold, the dual steplength
τ should be required to satisfy

τ < min

{
2νmin

M2
d + 2ǫνmin

,
2ǫ

1 + ǫ2

}

.

5. Case Study. In this section, we report some experimental results for the al-
gorithms developed in preceding sections. We use the knitro solver [6] on Matlab 7
to compute a solution of the problem and examine the performance of our proposed
methods on a multiuser optimization problem involving a serial network with mul-
tiple links. The problem captures traffic and communication networks where users
are characterized by utility/cost functions and are coupled through a congestion cost.
This case manifests itself through delay arising from the link capacity constraints. In
Section 5.1, we describe the underlying network structure and the user objectives and

29



we present the numerical results for the primal-dual and dual methods, respectively.
In each instance, an emphasis will be laid on determining the impact of the exten-
sions, specifically independent primal and dual step-lengths and independent primal
regularization (primal-dual), and inexact solutions of the Lagrangian subproblems
(dual).

- User Flow

- Multipliers

Fig. 5.1. A network with 5 users and 9 links.

5.1. Network and user data. The network comprises of a set of N users
sharing a set L of links (see Fig. 5.1 for an illustration). A user i ∈ N has a cost
function fi(xi) of its traffic rate xi given by

fi(xi) = −ki log(1 + xi) for i = 1, . . . , N. (5.1)

Each user selects an origin-destination pair of nodes on this network and faces con-
gestion based on the links traversed along the prescribed path connecting the selected
origin-destination nodes. We consider the congestion cost of the form:

c(x) =

N∑

i=1

∑

l∈L

xli

N∑

j=1

xlj , (5.2)

where, xlj is the flow of user j on link l. The total cost of the network is given by

f(x) =

N∑

i=1

fi(x) + c(x) =

N∑

i=1

−ki log(1 + xi) +

N∑

i=1

∑

l∈L

xli

N∑

j=1

xlj .

Let A denote the adjacency matrix that specifies the set of links traversed by
the traffic generated by the users. More precisely, Ali = 1 if traffic of user i goes
through link l and 0 otherwise. It can be seen that ∇c(x) = 2ATAx and thus the
Lipschitz constant of the gradient map ∇f(x) is given by L =

√∑

i k
2
i + 2‖ATA‖.

Throughout this section, we consider a network with 9 links and 5 users. Table 5.1
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User(i) Links traversed ki
1 L2, L3, L6 10
2 L2, L5, L9 0
3 L1, L5, L9 10
4 L6, L4, L9 10
5 L8, L9 10

Table 5.1

Network and User Data

summarizes the traffic in the network as generated by the users and the parameters
ki of the user objective. The user traffic rates are coupled through the constraint of
the form

∑N
i=1 Alixi ≤ Cl for all l ∈ L , where Cl is the maximum aggregate traffic

through link l. The constraint can be compactly written as Ax ≤ C, where C is the
link capacity vector and is given by C = (10, 15, 20, 10, 15, 20, 20, 15, 25).

Regularized Primal-Dual Method. Figure 5.2 shows the number of iterations
required to attain a desired error level for ‖zk − z∗ν,ǫ‖ with {zk} generated by primal-
dual algorithm (3.22) for different values of the step-size ratio β = α/τ between
the primal step-size α and dual stepsize τ . Note that in this case each user has
the same step-size and the regularization parameter. Relations in Lemma 3.7 are
used to obtain the theoretical range for the ratio parameter β and the corresponding
step-lengths. The regularization parameters ν and ǫ were both set at 0.1, such that
µ = min{ν, ǫ} = 0.1 and the algorithm was terminated when ‖zk − z∗ν,ǫ‖ ≤ 10−3. It
can be observed that the number of iterations required for convergence decreases as
the step-size ratio of approaches the value 1.
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Fig. 5.2. Performance of Primal-Dual Method for independent step-sizes in primal and dual
space.

Figure 5.3 illustrates the performance of the primal-dual algorithm in terms of the
number of iterations required to attain ‖zk− z∗ν,ǫ‖ < 10−3 as the steplength deviation
in primal space αmax − αmin increases. All users employ the same regularization
parameter νi = ν = 0.1 and the dual regularization parameter ǫ is chosen to be 0.1.
The plot demonstrates that, as the deviation between users’ step-sizes increases, the
number of iteration for a desired accuracy also increases.

Next, we let each user choose its own regularization parameter νi with uniform
distribution over interval (νmin, 0.1) for a given νmin ≤ 0.1. Figure 5.4 shows the
performance of the primal-dual algorithm in terms of the number of iterations required
to attain the error ‖zk − z∗V,ǫ‖ < 10−3 as νmin is varied from 0.01 to 0.1. The dual
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Fig. 5.3. Performance of Primal-Dual method for deviation in user step-size.

steplength was set at τ = 1.9µ/L2
Φ, where µ = min{νmin, ǫ} with ǫ = 0.1. The

primal stepsizes that users employ are the same across the users and are given by
αi = α = βτ , where β is as given in Lemma 3.7. As expected, the number of
iterations increases when νmin decreases.
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Fig. 5.4. Performance of Primal-Dual method as user minimum regularization parameter νmin

varies.

Regularized Dual Method. Figure 5.5(a) compares dual iterations required
to reach an accuracy level of ‖λk − λ∗

ν,ǫ‖ ≤ 10−6 for each K where {λk} is generated
using dual method (4.6) and K is the number of iterations in the primal space for
each λk. The regularization parameter ǫ is varied from 0.0005 to 0.0025, while ν is
fixed at 0.001. The primal step-size is set at α = 0.25/Lf and the dual step-size is
taken as τ = 0.75ν/M2

d (see Section 4). Faster dual convergence was observed as K
was increased for all ranges of parameters tested. For the case when ν = 0.001 and
ǫ = 0.001, Figure 5.5(b) shows the dependency of total number of iterations required
(primal × dual) for ‖λk−λ∗

ν,ǫ‖ ≤ 10−6 as the number K of primal iterations is varied.
It can be observed that beyond a threshold level for K, the total number of iterations
starts increasing. In effect, the extra effort in obtaining increasingly exact solutions
to the Lagrangian subproblem is not met with faster convergence in the dual space.

6. Summary and conclusions. This paper focuses on a class of multiuser op-
timization problems in which user interactions are seen in the user objectives (through
congestion or delay functions) and in the coupling constraints (as arising from shared
resources). Traditional algorithms rely on a high degree of separability and cannot
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Fig. 5.5. Inexact Dual Method: (a) Comparison of dual iterations for a fixed number K of
primal iterations; (b) Dependency of the total number of primal and dual iterations as the number
K of primal iterations varies.

be directly employed. They also rely on coordination in terms of uniform or equal
step-sizes across users. The coordination requirements have been weakened to various
degrees in the present work, which considers primal-dual and dual gradient algo-
rithms, derived from the fixed-point formulations of the regularized problem. These
schemes are analyzed in an effort to make rigorous statements regarding convergence
behavior as well as provide error bounds in regularized settings that limited coordi-
nation across step-length choices and inexact solutions. Our main contributions are
summarized next:

(1) Regularized primal-dual method: Under suitable convexity assumptions, we
consider a regularized primal-dual projection scheme and provide error bounds
for the regularized solution and optimal function value with respect to their
optimal counterparts. In addition, we also obtain a bound on the infeasibility
for the regularized solution. We also show that, under some conditions, the
method can be extended to allow not only for independent selection of primal
and dual stepsizes as well as independently chosen steplengths by every user
but also when users choose their regularization parameter independently.

(2) Regularized dual method: In contrast with (1), applying dual schemes would
require an optimal primal solution for every dual step. We show the contrac-
tive nature of a regularized dual scheme reliant on exact primal solutions.
Furthermore, we develop asymptotic error bounds where for each dual iter-
ation, the primal method for solving the Lagrangian subproblem terminates
after a fixed number of steps. We also provide error bounds for the obtained
solution and Lagrange multiplier as well as an upper bound on the infeasibil-
ity. Finally, we extend these results to the case when each user independently
chooses its regularization parameter.

It is of future interest to consider the algorithms proposed in [17, 19] as applied
to multiuser problem, whereby the users are allowed to implement step-sizes within
a prescribed range of values. For this, at first, we would have to develop the error
bounds for the algorithms in [17,19] for the case when different users employ different
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steplengths.

7. Appendix. Lemma 7.1. Let Assumption 2 hold. Then, for each ν > 0, we
have

0 ≤ f(x∗
ν)− f∗ ≤ ν

2
(D2 − ‖x∗

ν‖2) where D = max
x∈X

‖x‖.

Proof. Under Assumption 2, both the original problem and the regularized prob-
lem have solutions. Since the regularized problem is strongly convex, the solution
x∗
ν ∈ X is unique for every ν > 0. Furthermore, we have

fν(x
∗
ν)− fν(x) ≤ 0 for all x ∈ X.

Letting x = x∗ in the preceding relation, and using fν(x) = f(x) + ν
2‖x‖2 and

f∗ = f(x∗) we get

f(x∗
ν)− f∗ ≤ ν

2

(
‖x∗‖2 − ‖x∗

ν‖2
)
.

Since x∗ ∈ X solves the original problem and x∗
ν ∈ X, we have 0 ≤ f(x∗

ν) − f(x∗).
Thus, from f∗ = f(x∗), using D = maxx∈X ‖x‖, it follows that 0 ≤ f(x∗

ν) − f∗ ≤
ν
2

(
‖x∗‖2 − ‖x∗

ν‖2
)
≤ ν

2 (D
2 − ‖x∗

ν‖2).
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