
Multivalued Dependencies and a New Normal

Form for Relatknal Databases

RONALD FAGIN

IBM Research laboratory

A new type of dependency, which includes the well-known functional dependencies as a special
case, is defined for relational databases. By using this concept, a new (“fourth”) normal form
for relation schemata is defined. This fourth normal form is strictly stronger than Codd’s “im-
proved third normal form” (or “Boyce-Codd normal form”). It is shown that, every relation
schema can be decomposed into a family of relation schemata in fourth normal form without
loss of information (that is, the original relation can be obtained from the new relations by
taking joins).

Key words and phrases: database design, multivalued dependency, functional dependency,
fourth normal form, 4NF, third normal form, 3NF, Boyce-Codd normal form, normalization,
decomposition, relational database
CR Categories: 3.59, 4.33, 6.1

1. INTRODUCTION

The concept of “functional dependencies” [l, 3-6, 8, 10, 111 has proved to be useful

in the design and analysis of relational databases. In fact in one approach [3, 41
to the logical design of relational databases, functional dependencies are essentially

the only input. We introduce “multivalued dependencies,” which are a generaliza-

tion of functional dependencies. We believe that multivalued dependencies sig-
nificantly extend the understanding of logical database design. Multivalued de-
pendencies lead to a new (“fourth”) normal form for relational databases. Roughly
speaking, we say that a relation schema is in fourth normal form if all dependencies

(functional and multivalued) are the result of keys.
We now introduce multivalued dependencies and compare them with functional

dependencies, by wry of example. A precise definition appears in Section 2. Let

S(EMPLOYEE,SALARY,CHILD) be the relation that appears in Table I.

Following Codd [6], we say that the relation S obeys the functional dependency
EMPLOYEE-tSALARY. Intuitively this means that each employee has exactly

one salary. The precise meaning is that if two tuples (that is, rows) of S agree in
the EMPLOYEE column, then they agree in the SALARY column. When we say
that a functional dependency (or a multivalued dependency) holds for a relation

Copyright @ 1977, Association for Computing Machinery, Inc. General permission to repub-
lish, but not for profit, all or part of this material is granted provided that ACM’s copyright
notice is given and that reference is made to the publication, to its date of issue, and to the
fact that reprinting privileges were granted by permission of the Association for Computing
Machinery.
Authors’ address: IBM Research Laboratory K53/282, 5600 Cottle Road, San Jose, CA 95193.

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977, Pages 262-278.

A New Normal Form for Relational Databases l 263

Table I Table II

EMPLOYEE SALARY CHILD EMPLOYEE CHILD SALARY YEAR

Hilbert
Gauss
Gauss
Pythagoras

$40K
@OK
@OK
$20K

Hubert
Gwendolyn
Greta
Peter

Hilbert
Hilbert
Gauss
Gauss
Gauss
Gauss
Pythagoras
Pythagoras

Hubert $35K 1976
Hubert $40K 1976
Gwendolyn $40K 1975
Gwendolyn $5OK 1976
Greta $40K 1975
Greta $5OK 1976
Peter $15K 1975
Peter $20K 1976

schema S”, we mean that every relation S that is an instance (“snapshot”) of the
schema S* is constrained to obey the dependency. (For our purposes, a relation

schema is simply a set of column names, along with a set of dependencies, which

can be thought of as “integrity constraints.” See Cadiou [5] for a careful, thorough
discussion of relation schemata.) The relation schema S*(EMPLOYEE,SALARY,
CHILD), of which the relation S of Table I is an instance, “obeys” (that is, has

as a part of its definition) the functional dependency EMPLOYEE+SALARY.

So every instance must obey this functional dependency.

What are the multivalued dependencies? First, the multivalued dependency
EMPL~YEE++SALARY (which can be read “EMPLOYEE multidetermines
SALARY”) holds for S*, since functional dependencies (in which the left- and
right-hand sides are disjoint) turn out to be special cases of multivalued depen-

dencies. Furthermore the multivalued dependency EMPLOYEE++CHILD
holds for S* because intuitively, an employee’s set of children is completely deter-

mined by the employee and is “orthogonal” to the salary. In this case multivalued
dependencies remedy one of Schmid and Swenson’s [12] objections to functional
dependencies, that an employee “has” a set of children just as he “has” a salary

and there should be no arbitrary distinction. Thus both of the multivalued de-
pendencies EMPLOYEE++SALARY and EMPLOYEE++CHILD hold for
this schema.

As another example, let T*(EMPLOYEE,CHILD,SALARY,YEAR) be a re-
lation schema that specifies the children and salary history of each employee. An
instance T of T* appears in Table II. A tuple, such as (Pythagoras,Peter,$20K,

1976)) appears in relation T i$ (1) Pythagoras is an employee, (2) one of his children
is named Peter, and (3) during at least part of 1976, his salary was $20K. Although
T* has no functional dependencies, it does have the multivalued dependencies

EMPLOYEE++CHILD (as in the previous example), and also EM-
PLOYEF J++(SALARY,YEAR}, because intuitively, an employee’s salary history
is completely determined by the employee and is orthogonal to his set of children.

Caution: As we shall see, it does not follow from EMPLOYEE-+-+(SALARY,
YEAR] that either EMPLOYEE-t-SALARY or EMPLOYEE-++YEAR. The

pair { SALARY,YEAR) is in some sense a “cluster.”

Multivalued dependencies provide a necessary and sufficient condition for a
relation to be decomposable into two of its projections without loss of information

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

264 l Ronald Fagin

(in the usual sense that the original relation is guaranteed to be the natural join

of the two projections; note that in all cases the projections taken together never
contain more information than the original relation). An exact statement of the
equivalence between multivalued dependencies and decomposability without loss

of information appears in Theorem 1 of Section 2. As an example of the theorem,

the fact that the multivalued dependency EMPLOYEE--+-+CHILD holds for
T*(EMPLOYEE,CHILD,SALARY,YEAR) implies that T* can be decomposed

without loss of information into Tr*(EMPLOYEE,CHILD) and T2*(EMPLOYEE,
SALARY,YEAR). Under this decomposition, the relation T in Table II would

decompose into the relations T1(EMPLOYEE,CHILD) and T2(EMPLOYEE,
SALARY,YEAR) as given in Table III. This decomposition is desirable because,

for example, in the (undecomposed) schema T*(EMPLOYEE,CHILD,SALARY,

YEAR) an employee’s entire salary history is repeated once for every one of his
children. The original schema T” is in third normal form and even in the stronger
“Boyce-Codd normal form” [7] since it is “all key” (that is, no proper subset of

the four column names form a key for T*). However, as we shall see, it is not in
fourth normal form. To obtain fourth normal form, it is necessary to decompose

T* as above into T1* and Tz*. The example is due to Schmid and Swenson [12],
who recommend decomposition on semantic grounds.

In Section 2 we precisely define the concept “multivalued dependency.” We

also give a few simple properties.
In Section 3 we define a new (fourth) normal form by using multivalued de-

pendencies. We show that each relation schema in fourth normal form is auto-

matically in Boyce-Codd normal form. We also show that every relation schema
can be decomposed into a family of relation schematain fourth normal form without
loss of information.

In Section 4 we present an example of the fourth normal form normalization
process.

The last part of the paper (Sections 5-11) provides a more in-depth exploration
of multivalued dependencies. The topics covered are: various ways to view multi-
valued dependencies (Section 5) ; multivalued dependencies with the empty set

as the left-hand side (Section 6) ; transitivity (Section 7) ; the disjointness of the
left- and right-hand sides (Section S); a partitioning property that leads to a
generalized notation for multivalued dependencies (Section 9) ; interactions be-

tween functional and multivalued dependencies (Section 10) ; and multivalued de-
pendencies that hold for the projection of a relation (Section 11).

We note that Zaniolo independently discovered multivalued dependencies. In

Table III

EMPLOYEE CHILD EMPLOYEE

Hilbert Hubert Hilbert
Gauss Gwendolyn Hilbert
Gauss Greta Gauss
Pythagoras Peter Gauss

Pythagoras
Pythagoras

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

SALARY YEAR

$35K 1976
$40K 1976
$4OK 1975
$5OK 1976
$15K 1975
$20K 1976

A New Normal Form for Relational Databases l 265

[13] he presents illuminating examples to illustrate their use. Also, Delobel and

LBonard [9] define a concept, called “first-order hierarchical decomposition,”

that is related to the concept of multivalued dependencies.

2. DEFINITION OF MULTIVALUED DEPENDENCIES

In this section we define multivalued dependencies and give a few simple prop-
erties.

Let R(X1,. . . , X,, Y1,. . . , Y,, Zi, . . . , 2,) be a relation (i.e. a set of tuples)

with m + n + r column names (thus no column name appears twice). For nota-
tional convenience, we write boldface X for {Xl, . . . , X,] ; Y and Z are defined
analogously. Whenever we write, say, R(X,Y,Z), we assume automatically that

X, Y, and Z are pairwise disjoint as above. If xi, . . . , x, are entries that appear
under columns X1, . . . , X,, then we write x for (x1, . . . , x,); y and z are defined

analogously. Define Y l.z to be {y : (x,y,z) E R]. Of course Y,, is nonempty iff
x and z appear together in a tuple of R (with 21 in column Xi, etc.). The multi-

valued dependency X+dY is said to hold for R(X,Y,Z) if Y, depends only on

x; that is, if Y,, = Y,,< for each x, z, z’ such that Y,, and Y,l are nonempty.
As an example, recall the relation T(EMPLOYEE,CHILD,SALARY,YEAR)

in Table II. The multivalued dependency EMPLOYEE++CHILD holds for T

since, for example, CHILDQ.,,,,~~~~,~~~~ and CHILDGauss,~OK,l~~n6 both equal {Gwen-

dolyn,Greta] , and hence CHILD~auss.~~~K.~976 = CHILDGauss.~~K.~~7~.
We now give an example of the failure of the multivalued dependency

EMPLOYEE-t-tCHILD. Define a new relation T’ which is the result of deleting

the tuple (Gauss,Greta,$50K,1976) from T. Then EMPLOYEE++CHILD does
not hold for T’. The reason is that CHILD Causs,$40K,1976 and CHILDGauss.~0K,1976 are
unequal in T’; the former is (Gwendolyn,Greta) , while the latter is (Gwendolyn}.

As an aside, note that T’ is not an instance of the schema T*(EMPLOYEE,
CHILD,SALARY,YEAR) since T’ does not obey the multivalued dependency
EMPLOYEE++CHILD, which is a part of the definition of the schema T*.
As we see from the previous two paragraphs, multivalued dependencies may be
helpful in dealing with the problem of the updating of views [7]. In this paper we

do not explicitly pursue the “view updating” problem.
Note that the multivalued dependency X++Y has been defined only when

X and Y are disjoint. In a later paper [2] we find it convenient to generalize
slightly by allowing multivalued dependencies in which the left- and right-hand

sides are not necessarily disjoint. See Section 8 of this paper for a discussion. Except
in Section 8, we assume for the sake of simplicity that a multivalued dependency
X--t+Y is defined only when X and Y are disjoint.

We can modify the definition of multivalued dependency to obtain a definition
of functional dependency by not only requiring that Y,, depend only on x, but by
also requiring that Y, be a set that contains at most one member. Therefore func-

tional dependencies are special cases of multivalued dependencies (as long as the
left- and right-hand sides of the functional dependency are disjoint). We record
this observation in Proposition 1.

PROPOSITION 1. If X and Y are disjoint, and if the functional dependency X-+Y
holds for a relation R, then the multivalued dependency X++Y also holds for R.

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

266 ’ Ronald Fagin

Of course Proposition 1 (and later results) can be converted from statements

about relations to statements about relation schemata. For example, Proposition 1

implies that if the functional dependency X+Y holds for relation schema R” (that
is, if this functional dependency holds for every instance R of R*), then the multi-
valued dependency X-+-Y necessarily holds for R* (that is, this multivalued

dependency then necessarily holds for every instance R). We sometimes express

Proposition 1 loosely by saying that a functional dependency “is” a multivalued
dependency.

We now prove our claim in the Introduction that multivalued dependencies

provide a necessary and sufficient condition for a relation to be decomposable into

two of its projections without loss of information (in the sense that the original
relation is guaranteed to be the join of the two projections). Recall that the (“full”

or “natural”) join R(X,Y,Z) of Rl(X,Y) and R2(X,Z) is the set of tuples (x,y,z)
where (x,y) is a tuple of RI and where (x,z) is a tuple of Rx.

THEOREM 1. X-++Y holds for the relation R(X,Y,Z) iff R is the join of its

projections R1(X,Y) and Rz (X,Z) .
PROOF. It is simple to verify that R(X,Y,Z) is the join of its projections

R1(X,Y) and R2(X,Z) if? the following condition holds: Whenever (x,y,z) and

(x,y’,z’) are tuples of R, then so are (x,y’,z) and (x,y,z’) . This latter condition

holds iff Y, = Y,,I. The theorem now follows from the definition of multivalued

dependencies. 0
Since the right-hand side of the “ifI” in Theorem 1 is symmetric in the role of

Y and Z, the next proposition is immediate.

PROPOSITION 2 (Complementation). X+-+Y holds for R(X,Y,Z) if X+-+Z
holds.

For example, since EMPLOYEE+-+CHILD holds for the relation T(EM-
PLOYEE,CHILD,SALARY,YEAR) in Table II, it follows from Proposition 2

that so does EMPLOYEE++{ SALARY,YEAR) . This complementation property
is certainly not true in general of functional dependencies!

We now present a convenient generalization of our notation for multivalued
dependencies. Let X,Y1,Yz, . . . , Yk be sets which partition the column names of

WKY1,Y2, . . . ,Yk); that is, each column name of R is. contained in exactly one

of the sets X,Y1,Y2, . . . ,Yk. By X-++Y1 1 Y2 1 . . . 1 Yk, we mean that X++Yi
holds for each set Yr. As an example, we could write EMPLOYEE-CHILD 1

(SALARY,YEARJ for the schema T*(EMPLOYEE,CHILD,SALARY,YEAR).

If we consider the schema P*(EMPLOYEE,CHILD,SALARY,YEAR,SPOUSE),
which is like T* except that there is an additional column SPOUSE for the name
of the spouse, then P* would obey (have as part of its definition) EMPLOYEE++
CHILD 1 {SALARY,YEAR) 1 SPOUSE. This is shorthand for the three multi-
valued dependencies

EMPLOYEE++CHILD,
EMPLOYEE--+-+(SALARY,YEAR),
EMPLOYEE-+-SPOUSE.

In this case, not only would the multivalued dependency EMPLOYEE-++

SPOUSE hold as above, but so would the functional dependency EMPLOYEE+
SPOUSE (assuming no bigamy !) .

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

A New Normal Form for Relational Databases 267

It follows from Theorem 1 (which relates multivalued dependencies and joins)

that X-++Y, (. . .] Yk holds for R(X,Yi, . . . ,Yk) ilf R is the join of its projec-

tions R1(X,Y1), Rz(X,Y,), . . . ,Rk(X,Yk). If P is an instance of the schema
P*(EMPLOYEE,CHILD,SALARY,YEAR,SPOUSE), then it follows that P is

the join of its projections Pl(EMPLOYEE,CHILD), P,(EMPLOYEE,SALARY,

YEAR), and P,(EMPLOYEE,SPOUSE). So, P can be decomposed into P1, Pz,
and Pa without loss of information.

Note that by Proposition 2 (Complementation), X-+-+Y holds for R(X,Y,Z)

iff X-++Y] Z holds. We discuss further properties of this generalized notation in
Section 9.

3. A NEW NORMAL FORM

In this section we introduce fourth normal form. We show that fourth normal form

is strictly stronger than Boyce-Codd normal form [7] (an improved, stronger ver-

sion of Codd’s third normal form [6]). Furthermore, we show that every relation
schema is decomposable into a fourth normal form family of relation schemata.

If V is a subset of U, then the functional dependency U+V necessarily holds
(for every relation which contains U in its set of column names). We call such

functional dependencies “trivial.” A relation schema R* is in Boyce-Co& normal

form if, whenever a nontrivial functional dependency X+Y holds for R*, then so
does the functional dependency X-+A for every column name A of R*. Intuitively
all functional dependencies are the result of keys.

To define fourth normal form, we need the concept of “trivial multivalued de-
pendencies” (which should not be confused with trivial functional dependencies,
defined above). It is easy to verify that the multivalued dependencies X+-t,@
and X-++Y necessarily hold for R(X,Y). For example, the multivalued de-

pendency {A,B}-+-+C holds for every relation R(A,B,C) with exactly three columns
A,B,C. We call these “trivial multivalued dependencies.”

A relation schema R* is in fourth normal form (4NF) if, whenever a nontrivial

multivalued dependency X++Y holds for R*, then so does the functiunal depen-

dency X-A for every column name A of R*. Intuitively all dependencies are the
result of keys. In particular a 4NF relation schema can have no nontrivial multi-
valued dependencies that are not functional dependencies. Note the parallel be-

tween our definitions of Boyce-Codd normal form and 4NF.
THEOREM 2. If a relation schema R* is in 4NF, then it is in Boyce-Co&l normal

form.

PROOF. Assume that there is a relation schema R* that is in 4NF but not in

Boyce-Codd normal form; we derive a contradiction. Since R* is not in Boyce-

Codd normal form, there is a nontrivial functional dependency X+Y which holds

for R*, and there is a column name A such that the functional dependency X+A

does not hold for R”. Let Yi be the set difference Y-X, that is, the set of mem-

bers of Y that are not in X. Since the functional dependency X-+Y holds for R*,

so does X+Y1. Since the functional dependency X+Yi holds for R*, and since

X and Y1 are disjoint (by construction of Yl), it follows from Proposition 1 that

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

268 l Ronald Fagin

the multivalued dependency X++Yi holds for R*. This multivalued dependency
is nontrivial since (1) Y1 # @ (or else the original functional dependency X-Y
would have been trivial) and (2) X and Y1 do not partition the column names of
R* (because A is not in either X or Y1). By the definition of 4NF, since the non-
trivial multivalued dependency Xd+Y1 holds for R*, so does the functional de-
pendency X+A. This is a contradiction. 0

We now show that every relation schema is decomposable into a 4NF family of
relation schemata. We say that a decomposition of a relation R into a family of
some of its projections is nonloss (or without loss of information) if R can be obtained
from these projections by taking joins. We say that a decomposition of a relation
schema R* is nonloss if for each instance R of R* the decomposition is nonloss.

THEOREM 3. If a relation schema R* is not in 4NF, then there is a nonloss de-
composition of R* into a 4NF ,family of relation schemata.

PROOF. Assume that our original relation schema R* is not in 4NF. Then, in
particular, it follows by definition of 4NF that there is a nontrivial multivalued
dependency X++Y which holds for R*. Let Z be the set of column names of R*
that are not in X l-l Y. By Theorem 2, the decomposition of R*(X,Y,Z) into
Rl*(X,Y) and Rz*(X,Z) is nonloss (note that Y and Z are each nonempty since
the multivalued dependency X++Y is nontrivial). If the relation schemata RI*
and Rz* are each in 4NF, then we are through. If not, and, say, R1* is not in 4NF,
then in particular there is a nontrivial multivalued dependency which holds for
RI* (in Section 11, we discuss issues associated with multivalued dependencies
holding for projections). We decompose RI* just as we decomposed R* above.
The process must terminate since each time we decompose a relation schema we
obtain two new relation schemata, each of which has a smaller number of column
names than the number of column names in the relation schema we just decom-
posed. 0

Note that putting a relation schema into 4NF does not necessarily decompose
it “as far as possible.” For example, assume that a relation schema R*(A,B,C,D)
has no dependencies other than the functional dependencies A+B, A-C, and
A-+D (and consequences of these). That is, the only dependencies in R* are those
that are the result of A being the key, Then R* is in 4NF, although it is possible
to decompose R* without loss of information into its projections Rl*(A,B),
R2*(A,C), and R3*(A,D). The point is that this decomposition is not necessary
since it does not seem to ‘Lbuy” anything.

4. AN EXAMPLE

In this section we present an example of the 4NF normalization process. We have a
university database, with attributes CLASS, SECTION, STUDENT, MAJOR,
EXAM, YEAR, INSTRUCTOR, RANK, SALARY, TEXT, DAY, and ROOM.
Intuitively a given CLASS (such as German 101) is divided into SECTIONs
(such as Section 2)) each of which has one INSTRUCTOR (such as Schwarzkopf)
and various STUDENTS (such as Kelly). Each CLASS has a set of TEXTS (such
as Feuer’s Introductory German), which are used by all SECTIONS of the CLASS.
Each SECTION of a CLASS has various meeting DAYS (such as Wednesday),

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

A New Normal Form for Relational Databases 269

and on a given DAY, it meets in one ROOM (such as 353 Evans). Each STUDENT
has one MAJOR (such as Math), and one YEAR (such as Sophomore). A STU-

DENT in a given CLASS and SECTION has several EXAM scores (such as 93
percent). Each INSTRUCTOR has one RANK (such as Associate Professor)
and one SALARY (such as $20K).

We begin the normalization process by forming a single relation schema

R*(CLASS,SECTION,STUDENT,MAJOR,EXAM,YEAR,

INSTRUCTOR,RANK,SALARY,TEXT,DAY,ROOM) (4.1)

with all of these attributes as column names. What are the dependencies which
are part of the definition of this schema?

We have the following functional dependencies (note that for simplicity we do

not distinguish between a singleton set [A) and its only member A; e.g. we write
INSTRUCTOR for (INSTRUCTOR)) :

{ CLASSSECTION) -+INSTRUCTOR, (4.2)
(CLASS,SECTION,DAY} -+ROOM, (4.3)
STUDENT-+(MAJOR,YEAR) , (4.4)
INSTRUCTOR+{ RANKSALARY}. (4.5)

What are the multivalued dependencies. > First of all, we consider those multi-
valued dependencies with { CLASSSECTION) as the left-hand side. Using the

generalized notation at the end of Section 2, we have

{ CLASSSECTION] -t-t{ STUDENT,MAJOR,EXAM,YEAR] 1
{INSTRUCTOR,RANK,SALARY] 1 TEXT 1 (DAY,ROOM) .

That is, we have

(4.6)

{ CLASSSECTION} ++(STUDENT,MAJOR,EXAM,YEAR}, (4.7)
{ CLASSSECTION} -t-1{ INSTRUCTOR,RANK,SALARY) , (4.3)
{ CLASSSECTION) -+-+TEXT, (4.9)
(CLASS,SECTION} ++{ DAY,ROOM} . (4.10)

Since we assume in this example that all sections of a given class use the same

textbooks, our relation schema R* obeys the multivalued dependency

CLASS-+-+TEXT, (4.11)

which is even stronger than (4.9). (It is simple to verify that if X-thy, then
X U V-+-+Y, whenever V is disjoint from Y. It follows that (4.11) implies (4.9)).

Finally, we have

{ CLASS, SECTIONSTUDENT} ++EXAM. (4.12)

We now begin the 4NF normalization process. On the basis of the multivalued

dependency (4.7), we decompose R* (as given by (4.1)) into

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

270 9 Ronold Fogin

R,*(CLASS,SECTION,STUDENT,MAJOR,EXAM,YEAR) and
Rz*(CLASS,SECTION,INSTRUCTOR,RANK,SALARY,

TEXT,DAY,ROOM).
(4.13)

In Section 11 we prove that if a multivalued dependency X++Y holds for a
relation, then it also holds for every projection that contains at least all of the
column names X U Y (in fact, we prove a slightly stronger result). Hence, since

the multivalued dependency (4.12) holds for R*, it also holds for its projection
RI*. Therefore R1* can be decomposed into

R;1(CLASS,SECTION,STUDENT,EXAM) and
R:z(CLASS,SECTION,STUDENT,MAJOR,YEAR).

Although R:l is now in 4NF, Rfz is not since STUDENT+(MAJOR,YEAR)

(functional dependency (4.4)), whereas it is not the case that STUDENT+CLASS
or STUDENT+SECTION. Using (4.4)) we decompose Ryz into two 4NF schemata

Rk(STUDENT,MAJOR,YEAR) and
R:zz(CLASS,SECTION,STUDENT).

We now decompose Rz* in (4.13). By (4.8), it is possible to decompose Rz* into

Rk (CLASS,SECTION,INSTRUCTOR,RANK,SALARY) and
R:z (CLASS,SECTION,TEXT,DAY,ROOM) .

Using functional dependency (4.5), we decompose R21 into

Rk(INSTRUCTOR,RANK,SALARY) and

R;lz(CLASS,SECTION,INSTRUCTOR) .

Using multivalued dependency (4.11), we decompose R& into

R:zr(CLASSTEXT) and
R&CLASS,SECTION,DAY,ROOM).

We are now left with a 4NF family. It is possible to remove the relation schema
R:zz(CLASS,SECTION,STUDENT) f rom the family since it is a projection of

R;l(CLASS,SECTION,STUDENT,EXAM), which is already in the family

(hence RF22 is redundant.) As our resulting 4NF family, we are left with

Rfi (CLASS,SECTION,STUDENT,EXAM),
R;z1(STUDENT,MAJOR,YEAR),
R:11(INSTRUCTOR,RANK,SALARY),

R:lz(CLASS,SECTION,INSTRUCTOR),
R;zl(CLASSTEXT),

R&z{ CLASS,SECTION,DAY,ROOM).

We note that our final result could have been different if we had decomposed

differently. An interesting (and potentially important) research problem is to
determine, given a set of functional dependencies and multivalued dependencies,

ACM Transactions on Ihtabase Systems, Vol. 2. No. 3, September 1977.

A New Normol Form for Relational Databases 271

how to form an “optimal” 4NF family (part of the problem is to define “optimal”).
There are several heuristics that might be employed. For example, Zaniolo [13]
suggests that if on a given step there is a choice of applying two multivalued de-

pendencies X-+-+Y and W++Y, where X is a subset of W, then X++Y should
be applied rather than W-++Y. The reason is that the former multivalued de-
pendency is stronger than (i.e. implies) the latter, as noted earlier in this section.

As another example of a heuristic; assume that X++Y and Y-++Z each hold
for R*(X,Y,Z). It might be preferable to decompose R* on the basis of the multi-

valued dependency Y-t-Z to obtain Rl*(X,Y) and R2*(Y,Z) rather than to
decompose on the basis of the multivalued dependency X++Y, which gives
R:*(X,Y) and RL*(X,Z). Rissanen [ll] gives theoretical reasons that justify this
choice. (Rissanen works in the context of functional, rather than multivalued,

dependencies; however, his arguments carry over to the multivalued case). In-
tuitively the dependency of Z on X is “deduced” (by transitivity), and so the

schema R6*(X,Z) is “derived,” not “primitive.”
By initially forming a single large relation schema (as in (4.1))) a 4NF normali-

zation algorithm has at least as many options as if it begins with many small re-

lation schemata which are then decomposed further. That is, there are at least as

many possible final results in the former case. Hence an algorithm has more of a
chance to optimize.

If there is a human in the normalization loop, then the problem of determining
all functional and multivalued dependencies that hold in a given situation seems
less formidable because the human can “notice” a previously neglected dependency
at a late stage of the 4NF normalization process, and then can either apply it at
that, stage or incorporate it in the list of “known” dependencies and start over.

5. OTHER WAYS TO VIEW MULTIVALUED DEPENDENCIES

Multivalued dependencies are a more complex concept than are functional de-
pendencies. Therefore it is helpful to look at them in more than one way in order

to understand them better.
The proof of Theorem 1 gives us a “constructive” characterization of multi-

valued dependencies. This characterization (Proposition 3 below) says that if
certain tuples are present in a relation that satisfies a certain multivalued de-

pendency, then certain other tuples must also appear.
PROPOSITION 3. X+-+Y holds for R(X,Y,Z) i$ whenever (x,y,z) and (x,y’,z’)

are tuples of R, then so are (x,y’,z) and (x,y,z’) .
As a demonstration of Proposition 3, consider again our example T(EM-

PLOYEE,CHILD,SALARY,YEAR) in Table II. Since EMPLOYEE-+-+CHILD

holds for T, and since (Gauss, Gwendolyn, $4OK, 1975) and (Gauss, Greta, $50K,
1976) are tuples of T, it follows that (Gauss, Greta, $40K, 1975) and (Gauss,
Gwendolyn,$50K,1976) are also tuples of T.

Just as functional dependencies are constraints as to which tuples may appear
in a relation, so too are multivalued dependencies by Proposition 3. Thus multi-

valued dependencies, like functional dependencies, are “integrity constraints”
on the “form” of the relation.

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

-. -

272 l Ronald Fagin

Another helpful viewpoint is that the multivalued dependency X*+Y holds
for R(X,Y,Z) iff Y and Z are “orthogonal” or “independent” sets of column names.
In T(EMPLOYEE,CHILD,SAL ’ RY,YEAR), the fact that EMPLOYEE+-,
CHILD holds would be interpreted as saying that CHILD and {SALARY,YEAR)
are orthogonal. This orthogonality holds in the sense that the set of tuples of T
with, say, Gauss as the EMPLOYEE entry is the set of four tuples

(Gauss} X (Gwendolyn,Greta} X 1($4OK,1975), ($5OK,1976)].

Yet another viewpoint is that a multivalued dependency X++Y (and its
“complement” X++Z) imply “independent relationships” in R*(X,Y ,Z) .
That is, the intuitive meaning of a multivalued dependency X+-Y holding for a
relation schema R*(X,Y,Z) is that we really have two “independent relation
schemata” %*(X,Y) and R,*(X,Z) .

6. A SPECIAL MULTIVALUED DEPENDENCY

We briefly consider the interesting special case @++Y of multivalued dependencies
(where the left-hand side is the empty set).

It follows from our definition that the multivalued dependency @++Y holds
for the relation schema R*(Y,Z) precisely if R* is the Cartesian product of its
projections RI*(Y) and Rz*(Z). (In the definition of multivalued dependencies
in Section 2, we make the natural convention that if X = ~3 then Y,, =
{ y : (y,z) E R] .) Further, the natural definition of the (degenerate) functional
dependency @+A (where A is a column name) is that there is exactly one value
that appears in the A column. Under these conventions, one special case of our
4NF requirements is that if a relation schema R*(Y,Z) is the Cartesian product
of its projections RI*(Y) and Rz*(Z), then R* is not in 4NF and must be decom-
posed to obtain 4NF. Actually there is one (strange) case in which R*(Y,Z) is in
4NF in spite of R*(Y,Z) being the Cartesian product of R1*(Y) and Rz*(Z) :
namely if the functional dependencies @+A hold for every column name A (in
other words, each instance R of the relation schema R* contains no more than one
tuple!).

Although every binary relation schema (that is, every relation schema with
exactly two column names) is in Boyce-Codd normal form (as the reader can easily
verify), it is not quite true that every binary relation schema is in 4NF. The only
exception that can occur is if a binary relation schema R*(A,B) is the Cartesian
product of RI*(A) and R2*(B). The reason that this is the only possible exception
is that the only possible nontrivial multivalued dependency for R*(A,B) is @++A
(or equivalently a-+-B).

7. TRANSITIVITY

Assume that X-Y and Y-++Z. Is it necessarily true that X+-+Z? The answer
is no since X and Z need not be disjoint, and so the multivalued dependency X++Z
might not even make sense. However, if X, Y, and Z are pairwise disjoint (so that
all of the multivalued dependencies X--Y, Y-+-Z, and X++Z make sense),

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

A New Normal Form for Relatiod Databases l 273

then transitivity holds; that is, if X++Y and Y-+-+Z hold for R(X,Y,Z,W),
then so does X+-Z. Note that we need not assume that X, Y, and Z by them-
selves partition the column names.

THEOREM 4 (Transitivity). If X, Y, and Z are pairwise disjoint (but do not

necessarily partition the column names of relatiole R), and if both X++Y and Y++Z
hold for R, then X4-Z hoUs for R.

PROOF. We make use of the characterization of multivalued dependencies in
Proposition 3 (Section 5). Assume that X, Y, Z, W partition the column names.
We assume that the multivalued dependencies X++Y and Y-t-Z hold for re-

lation R and show that the multivalued dependency X++Z holds for R. To show
that X-Z holds for R, we must show (by Proposition 3) that if

(1) (x,Y,z,w) and
(2) (X>Y’>Z’Y’)

are tuples of R, then also

(3) (x,Y,z’,w) and
(4) b,Y’,W’)

are tuples of R.

Assume that R contains tuples (1) and (2) above (that is, the tuples (x,y,z,w)
and (x,y’,z’,w’)). Since X-t+Y holds for R, it follows from Proposition 3 that in
addition to tuples (1) and (2)) relation R contains the tuples

(5) (x,Y’,z,w) and

(6) (X,Y,Z’,W’).

Since R contains tuples (1) and (6), and since Y--++Z holds for R, it follows from
Proposition 3 that R contains (x,y,z’,w), that is, tuple (3) above, and also

(X,Y,V’).
Since R contains tuples (2) and (5) and since Y+-+Z holds for R, once again

we use Proposition 3 to find that R contains (x,y’,z,w’), that is, tuple (4) above,

and also (x,y’,z’,w). We have shown that R contains (among others) tuples (3)
and (4) above, as desired. q

The fact that multivalued dependencies are transitive is one argument in favor
of using an arrow notation (as we have done), rather than talking only in terms of

nonloss decompositions.
It would be nice to remove the requirement that the left- and right-hand sides

of a multivalued dependency be disjoint. Unfortunately, under the natural modi-
fication of our definition, transitivity fails. We discuss this phenomenon in Section 8.

8. THE DISJOINTNESS OF THE LEFT- AND RIGHT-HAND SIDES

Throughout this paper we have required that the left- and right-hand sides of a

multivalued dependency be disjoint. How should we modify our definition to elimi-
nate this restriction?

Let R be a relation, and let X and Y be (not necessarily disjoint) subsets of the
column names of R. Let Z be the set of column names of R that are not in X U Y.

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

274 . RoQald Fagin

Based on Theorem 1, it seems that the most natural modification of our definition
is that X+--+Y holds for R iff R is the join of its projections RI(X,Y) and Rz(X,Z).

Equivalently, the “modified” multivalued dependency X--+-Y (where X and Y

need not be disjoint) holds for R iff the (usual) multivalued dependency XV+-+

holds for R, where V is the set difference Y - X. Note that the modified and the
corresponding usual multivalued dependencies say the same thing if the left- and
right-hand sides of the modified multivalued dependency are disjoint.

By using this modified definition (and thus allowing a more general “multi-
valued dependency”), it is possible to exhibit [2] a complete axiomatization of

multivalued dependencies in which none of the axioms are very complex.
One might hope that under this modified definition, transitivity would always

hold : that is, that if the (modified) multivalued dependencies X+-Y and Y++Z
hold for a relation R (which has as its column names the union of X, Y, and Z,
and perhaps more), then X++Z would hold for R. Unfortunately, this is not

always the case. For example, consider the 5-column relation Q(A,B,C,D,E) in
Table IV (where b # b’, etc.) The multivalued dependency A-++[B,C] (or as
we write it, A-+-+BC) holds for Q, as does the modified multivalued dependency

BC++CD (for the modified multivalued dependency BC+-CD to hold, we
mean by definition that the usual multivalued dependency BC+D holds). Since

the modified multivalued dependencies A++BC and BC++CD hold far Q, we

would expect by transitivity that the modified multivalued dependency A+-+CD

would hold for Q; however, it does not. Thus, under this modified definition, gen-
eral transitivity fails.

In [2], it is shown that if the modified multivalued dependencies X++Y and

Y+-+Z hold for a relation R, then although the modified multivalued dependency
X-+--+Z need not hold, it is always the case that the modified multivalued de-
pendency X++Z - Y does hold.

Table IV

A I3 C D E

a b c d e

a b’ c’ d’ e’

a b c d’ e’

a b’ c’ d e

a b C d e’

a b c d’ e

a b’ c’ d’ e

a b’ C’ d e’

9. A PARTITIONING RESULT

In this section we show that it is possible to summarize a set of multivalued de-
pendencies that all have the same left-hand side X by a single generalized multi-

valued dependency X++Y,] . . .] Yk (as defined in Section 2).

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

A New Normal Form for Relational Databases 275

By using Proposition 3, it is straightforward to show the following two properties
of multivalued dependencies (Propositions 4 and 5). In Proposition 5, by the set
difference Y1 - Yz, we mean the set of members of Y1 that are not in YZ.

PROPOSITION 4. If X-+-+Y1 and X+--+Y2, then X+--+Y1 U Y2.
We note that the converse to Proposition 4 fails (although the analogous result

holds for funclional dependencies). For example, although EMPLOYEE-++
{ SALARY,YEAR] holds for T(EMPLOYEE,CHILD,SALARY,YEAR) in Table
II, neither EMPLOYEE+-+SALARY nor EMPLOYEE-t-tYEAR holds. We

now demonstrate that EMPLOYEE ++YEAR fails for T. If it held, then
YEAR,,,,, (where e is an employee, c is a child, and s is a salary) would depend only

on e. However, YEARpytha~.oras,Peter.~15~ # YEARPythagoras,Peter,$ZOK.

PROPOSITION 5. If X++Y1 and X++Y2, then X++Y, n Y2, X++Y1 - Yz,
and X++Yz - Y1. That is, if X++U U V1 and X++U U VZ, where U, VI, Vz
are disjoint, then X++U, X-+-+VI, and X-+V2.

We now discuss the claim in the first paragraph of this section. Recall from

Section 2 that when we say that X-++Y1 1 . . . 1 Yk holds for R(X,Yl, . . . ,Yk),

we mean that X++YI holds for each of the sets Yi. As before, the sets

X,Yl, * * . ,Yk partition the column names of R. By Proposition 4, it follows from
X--Y1 1 * * * 1 Yk that X++V holds for each union V of a subset of { Y1, . . . ,Yk) .
For example, A++BC I D I E implies that each of the following eight multivalued

dependencies holds (as before, we write BC for (B,C}, etc.): A++@, A-++BC,
A-+--+D, A-+--+E, A++BCD, A+-+BCE, A+++DE, A--+-+BCDE. From Prop-

ositions 4 and 5, it follows that a collection X++W1, . . . ,X-++W, of multi-
valued dependencies (all with the same left-hand side X) hold for a relation R
iff the single generalized multivalued dependency X+-Y, I + 9 . I Yk holds for R,
where (Yl, . . . ,YJ is the smallest set (k minimal) such that

(a> X,Yl, . . . ,Yk partition the set of column names of R.
(b) Each W, is a union of a subset of (Y1, . . . ,Yk) .

For example, if the column names are A,B, . . . ,F, then the three multivalued
dependencies A++BC, A-+-&D, A++EF are equivalent to the single general-
ized multivalued dependency A-t+B I C 1 D I EF. That is, the three multivalued

dependencies A+tBC, A+-GD, and A++EF hold for R(A,B,C,D,E,F) iff
the single generalized multivalued dependency A++B (C (D 1 EF does.

10. INTERACTIONS BETWEEN FUNCTIONAL AND MULTIVALUED DEPENDENCIES

Functional dependencies and multivalued dependencies interact in complicated
ways. For example, if a relation R has column names A, B, C, and perhaps others,
and if the multivalued dependency A-++B and the functional dependency C-tB

hold for R, then the functional dependency A+B necessarily holds for R. A com-
plete characterization of the interplay between functional and multivalued de-
pendencies appears in [a].

11. EMBEDDED MULTIVALUED DEPENDENCIES

Multivalued dependencies “project down” in the following manner.

ACM Transactions on Database Systems, Vol. 2, No. 3. September 1977.

276 . Ronald Fagin

THEOREM 5. Assume that the multivalued dependency X-++Y holds for relati~

R(X,Y,Z). Let R’(X,Y’,Z’) be a projection of R, where Y’ s Y and Z’ & Z. Thus

R’ has (among others) all of the columns X. Then the multivalued dependency X-++Y’
holds for R’.

PROOF. By Theorem 1, we know that R(X,Y,Z) is the join of its projections

Rl(X,Y) and R2(X,Z). It is easy to see that the projection R’(X,Y’,Z’) is then

the join of its projections Ri(X,Y’) and Rz’(X,Z’). By Theorem 1 again, the
multivalued dependency X++Y’ holds for R’. 0

For example, since EMPLOYEE *-+(SALARY,YEAR} holds for T(EM-
PLOYEE,CHILD,SALARY,YEAR) in Table II, it follows from Theorem 5 that
EMPLOYEE-++YEAR holds for the projection T1(EMPLOYEE,CHILD,
YEAR).

We have the following important special case of Theorem 5.

COROLLARY 1. Assume that the multivalued dependency X-++Y holds for rela-
latiun R(X,Y,Z). Let R’(X,Y,Z’) be a projection of R which has (among others)
all of the columns X and Y. Then the multivalued dependency X+-tY holds for re-

lation R’ also.
For example, since EMPLOYEE -+-CHILD holds for T (EMPLOYEE,

CHILD,SALARY,YEAR), it also holds for the projection Tl(EMPLOYEE,
CHILD,YEAR).

We see from the example that follows Theorem 5 that multivalued dependencies
are sensitive to their context in a sense in which functional dependencies are not.

Thus EMPLOYEE-++YEAR holds for T,(EMPLOYEE,CHILD,YEAR), but

as we saw in Section 9, it does not hold for T(EMPLOYEE,CHILD,SALARY,

YEAR). Note that this problem of context never arises for functional depen-
dencies since, for example, if R’(A,B,C) is the projection of a relation R(A,B,C,D),
then the functional dependency A+B holds for R if and only if it holds for R’.

This context problem makes it technically convenient to define “embedded
multivalued dependencies.” If X++Y (or equivalently, X-+-+Y (Z) holds for
the projection R,(X,Y,Z) of R(X,Y,Z,W), then we say that the embedded multi-
valued dependency x -++Y (Z holds for the bigger relation R(X,Y,Z,W). In the

case we discussed, the embedded multivalued dependency EMPLOYEE-++
YEAR 1 CHILD holds for T(EMPLOYEE,CHILD,SALARY,YEAR). In this

case the embedded multivalued dependency is simply a “projection” of an ordi-
nary multivalued dependency (via Theorem 5). Unfortunately Theorem 5 does

not have the natural converse; that is, there can be embedded multivalued de-
pendencies that are not the “projections” of ordinary multivalued dependencies.
Such examples seem to occur infrequently in practice. When they do occur, one can
simply include embedded multivalued dependencies along with ordinary multi-

valued dependencies and functional dependencies as integrity constraints for a
relation s :hema.

As an example of a relation with an embedded multivalued dependency that is

not the projection of an ordinary multivalued dependency, consider the relation

N(A,B,C,D) in Table V (where a # a’, etc.). The embedded multivalued de-

pendency A++B 1 C holds for N(A,B,C,D) (in other words, the multivalued de-

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

A New Normal Form for Relational Databases l 277

Table V

A B C D

a

a
a
a
a’

b
b’
b’
b
b’

c
c’
c
c’
c

d
d
d’
d’
d

pendency A-+-+B holds for the projection NI(A,B,C)). However, neither A-t-tBD

nor any other nontrivial multivalued dependency holds for N(A,B,C,D).

12. SUMMARY

We have introduced “multivalued dependencies,” which we believe significantly
extend the understanding of the logical design of relational databases. Multivalued

dependencies, which are a generalization of the well-known functional dependencies,
provide a necessary and sufficient condition for a relation schema to be decom-

posable into a family of relation schemata without loss of information. Multivalued

dependencies lead to a new 4NF, which is strictly stronger than Boyce-Codd
normal form.

ACKNOWLEDGMENTS

The author had many enjoyable and helpful conversations with John Howard,

Jean-Marie Cadiou, and Steve Zilles about this research. The author is grateful for
a careful reading of various versions of this paper by them and by Bill Kent, Jorma
Rissanen, and John Smith. The readability of this paper was enhanced by many

comments from Phil Bernstein, who courageously read every draft. Howard sug-
gested the generalized notation X++YI 1 . . . 1 Yk and Bernstein, Cadiou, and
Howard suggested alternate ways to view multivalued dependencies (Section 5).
Special thanks go to Ted Codd for his warm enthusiasm in encouraging the author

to pursue these ideas.

REFERENCES

1. ARMSTRONG, W.W. Dependency structures of database relationships. Information Process-
ing 74, North-Holland Pub. Co., Amsterdam, 1974, pp. 580-583.

2. BEERI, C., FAGIN, R., AND HOWARD, J.H. A complete axiomatization for functional and
multivalued dependencies in database relations. Proc. ACM SIGMOD Conf.,
D.C.P. Smith, Ed., Toronto, Canada, August 1977, pp. 47-61.

3. BERNSTEIN, P.A. Synthesizing third normal form relations from functional dependencies.
ACM Trans. Database Syst. 1, 4 (Dec. 1976), 277-298.

4. BERNSTEIN, P.A., SWENSON, J.R., AND TSWHRITZIS, D.C. A unified approach to functional
dependencies and relations. Proc. ACM SIGMOD Conf., W.F. King, Ed., San Jose, Calif.,
May 1975, pp. 237-245.

5. CADIOU, J.-M. On semantic issues in the relational model of data. Proc. Int. Symp. on

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

278 l Ronald Fagin

Math. Foundations of Comptr. Sci., Gdadsk, Poland, Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, Sept. 1975.

6. CODD, E.F. Further normalization of the data base relational model. In Courant Computer

Science Symposium 6: Data Base Systems, Prentice-Hall, Englewood Cliffs, N.J., May 1971,
pp. 65-98.

7. CODD, E.F. Recent investigations in relational data base systems. Information Process-
ing 74, North-Holland Pub. Co., Amsterdam, 1974, pp. 1017-1021.

8. DELOBEL, C., AND CASEY, R.G. Decomposition of a data base and the theory of Boolean
switching functions. IBM J. Res. and Develop. lY, 5 (Sept. 1973), 374-386.

9. DELOBEL, C., AND LEONARD, M. The decomposition process in a relational model. Proc.
Int. Workshop on Data Structure Models for Information Systems, Presses U. de Namur,
Namur, Belgium, May 1974, pp. 57-80.

10. FAGIN, R. Functional dependencies in a relational database and propositional logic.
IBM J. Res. and Develop. 21, 6 (Nov. 1977).

11. RISSANEN, J.J. Independent components of relations. Res. Rep. RJ1899, IBM Res. Lab.,
San Jose, Calif., Jan. 1977.

12. SCHMID, H.A., AN? SWENSON, J.R. On the semantics of the relational data model. Proc.
ACM SIGMOD Conf., W.F. King, Ed., San Jose, Calif., May 1975, pp. 211-223.

13. ZANIOLO, C. Analysis and design of relational schemata for database systems. Ph.D.
Diss., Tech. Rep. UCLA-ENG-7669, U. of California, Los Angeles, Calif., July 1976.

Received July 1976; revised December 1976

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

