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Abstract. We introduce a new class of contractive mappings:
the almost local contractions, starting from the almost contrac-
tions presented by V. Berinde in [V. Berinde, Approximating fixed
points of weak contractions using the Picard iteration Nonlinear
Analysis Forum 9 (2004) No.1, 43-53], and also from the concept
of local contraction presented by Filipe Martins da Rocha and
Vailakis in [V. Filipe Martins-da-Rocha, Y. Vailakis, Existence
and uniqueness of a fixed point for local contractions, Economet-
rica, vol.78, No.3 (May, 2010) 1127-1141]. First of all, we present
the notion of multivalued self almost contractions with many ex-
amples. The main results of this paper are given by the extension
to the case of multivalued self almost local contractions.
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1 Almost contractions, local contractions

Definition 1.1. Let (X, d) be a metric space. T : X → X is called almost
contraction or (δ, L)- contraction if there exist a constant δ ∈ (0, 1) and some
L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + L · d(y, Tx),∀x, y ∈ X (1.1)
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Remark 1.1. The term of almost contraction is equivalent to weak contrac-
tion, and it was first introduced by V. Berinde in [3].

Remark 1.2. Because of the simmetry of the distance, the almost contrac-
tion condition (1.1) includes the following dual one:

d(Tx, Ty) ≤ δ · d(x, y) + L · d(x, Ty),∀x, y ∈ X (1.2)

obtained from (1.1) by replacing d(Tx, Ty) by d(Ty, Tx) and d(x, y) by
d(y, x), and after that step, changing x with y, and viceversa. Obviously,
to prove the almost contractiveness of T , it is necessary to check both (1.1)
and (1.2).

Remark 1.3. A strict contraction satisfies (1.1), with δ = a and L = 0,
therefore is an almost contraction with a unique fixed point.

Other examples of almost contractions are given in [4], [5], [2], [3]. There
are many other examples of contractive conditions which implies the almost
contractiveness condition, see for example Taskovic [22], Rus [18].

We present an existence theorem 1.1, then an existence and uniqueness
theorem 1.2, as they are presented in [3]. Their main merit is that they
extend Banach’s contraction principle and Zamfirescu’s fixed point theorem
([24]). They also show us a method for approximating the fixed point, for
which both a priori and a posteriori error estimates are available.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X a weak
(almost) contraction. Then

1. Fix(T ) = {x∈X: Tx = x} 6= φ;

2. For any x0 ∈ X, the Picard iteration {xn}∞n=0 given by xn+1 = Txn
converges to some x∗ ∈ Fix(T );

3. The following estimates

d(xn, x
∗) ≤ δn

1− δ
d(x0, x1), n = 0, 1, 2... (1.3)

d(xn, x
∗) ≤ δ

1− δ
d(xn−1, xn), n = 1, 2... (1.4)

hold, where δ is the constant appearing in (1.1).

Theorem 1.2. Let (X, d) be a complete metric space and T : X → X be an
almost contraction for which there exist θ ∈ (0, 1) and some L1 ≥ 0 such that

d(Tx, Ty) ≤ θ · d(x, y) + L1 · d(x, Tx),∀x, y ∈ X (1.5)

Then
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1. T has a unique fixed point,i.e., Fix(T ) = {x∗};

2. For any x0 ∈ X, the Picard iteration {xn}∞n=0 converges to x∗;

3. The a priori and a posteriori error estimates

d(xn, x
∗) ≤ δn

1− δ
d(x0, x1), n = 0, 1, 2...

d(xn, x
∗) ≤ δ

1− δ
d(xn−1, xn), n = 1, 2...

hold.

4. The rate of convergence of the Picard iteration is given by

d(xn, x
∗) ≤ θ · d(xn−1, x

∗), n = 1, 2... (1.6)

Remark 1.4. (i) Weak contractions represent a generous concept, due to
various mappings satisfying the condition (1.1). Such examples of weak con-
traction were given by V. Berinde in [3], for example it was proved that:
- any Zamfirescu mapping from Theorem Z in [24] is an almost contraction;

- any quasi-contraction with 0 < h <
1

2
is an almost contraction;

- any Kannan mapping (in [10]) is the same kind of almost contraction
(ii) There are many other examples of contractive conditions which imply
the weak contractiveness condition, see for example Taskovic [22] , Rus [18]
for some of them.
(iii) Weak contractions need not have a unique fixed point, however, the weak
contractions possess other important properties, amongst which we mention
a) In the class of weak contractions a method for constructing the fixed points
- i.e. the Picard iteration - is always available;
b) Moreover, for this method of approximating the fixed points, both a priori
and a posteriori error estimates are available. These are very important from
a practical point of view, since they provide stopping criteria for the iterative
process;
c) Last, but not least, the weak contractive condition (1.1) and (1.2) may
easily be handled and checked in concrete applications.
(iv) The fixed point x∗ attained by the Picard iteration depends on the initial
guess x0 ∈ X. Therefore, the class of weak contractions provides a large class
of weakly Picard operators.

Recall, see Rus [18], [20] that an operator T : X → X is said to be a
weakly Picard operator if the sequence {T nx0}∞n=0 converges for all x0 ∈ X
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and the limits are fixed points of T .
(v) Condition (1.1) implies the so called Banach orbital condition

d(Tx, T 2x) ≤ a · d(x, Tx), ∀x ∈ X

studied by various authors in the context of fixed point theorems, see for
example Rus [17] and Taskovic [22].

The next theorem shows that an almost contraction is continuous at any
fixed point of it, according to [1].

Theorem 1.3. Let (X, d) be a complete metric space and T : X → X be an
almost contraction. Then T is continuous at p, for any p ∈ Fix(T ).

Definition 1.2. (see [21]) Let T be a mapping on a metric space (X, d).
Then T is called a generalized Berinde mapping if there exist a constant
r ∈ [0, 1) and a function b from X into [0,∞) such that

d(Tx, Ty) ≤ r · d(x, y) + b(y) · d(y, Tx),∀x, y ∈ X (1.7)

Definition 1.3. Let (X, d) be a metric space. Any mapping T : X → X is
called Ćirić-Reich-Rus contraction if it satisfies the condition:

d(Tx, Ty) ≤ α · d(x, y) + β · [d(x, Tx) + d(y, Ty)],∀x, y ∈ X, (1.8)

where α, β ∈ R+ and α + 2β < 1

Corollary 1.4. [15]. Let (X, d) be a metric space. Any Ćirić-Reich-Rus
contraction, i.e., any mapping T : X → X satisfying the condition (1.8),
represents an almost contraction.

Theorem 1.5. A mapping satisfying the contractive condition:
there exists 0 ≤ h < 1

2
such that

d(Tx, Ty) ≤ h·max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},∀x, y ∈ X
(1.9)

is a weak contraction.
An operator satisfying (1.9) with 0 < h < 1 is called quasi-contraction.

Theorem 1.6. Any mapping satisfying the condition: there exists 0 ≤ b <
1/2 such that

d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)],∀x, y ∈ X (1.10)

is a weak contraction.
A mapping satisfying (1.10) is called Kannan mapping.
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A kind of dual of Kannan mapping is due to Chatterjea [8]. The new

contractive condition is similar to (1.10): there exists 0 ≤ c <
1

2
such that

d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)], ∀x, y ∈ X, (1.11)

Theorem 1.7. Any mapping T satisfying the Chatterjea contractive condi-

tion, i.e.: there exists 0 ≤ c <
1

2
such that

d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)], ∀x, y ∈ X,

is a weak contraction.

Example 1.1. Let T : [0, 1] → [0, 1] be a mapping given by Tx = 2
3

for
x ∈ [0, 1), and T1 = 0. Then T has the following properties:
1) T satisfies (1.9) with h ∈ [2

3
, 1), i.e. T is quasi-contraction;

2) T satisfies (1.1), with δ ≥ 2
3

and L ≥ 0, i.e. T is also weak contraction;
3) T has a unique fixed point, x∗ = 2

3
.

4) T is not continuous.

The concept of local contraction was first introduced by Martins da Rocha
and Vailakis in [11] (2010), here they studied the existence and uniqueness
of fixed points for the local contractions.

Definition 1.4. Let F be a set and let D = (dj)j∈J a family of semidistances
defined on F . We let σ be the weak topology on F defined by the family D.
Let r be a function from J to J . An operator T : F → F is a local contraction
with respect (D, r) if, for every j, there exists βj ∈ [0, 1) such that

∀f, g ∈ F, dj(Tf, Tg) ≤ βjdr(j)(f, g)

2 Single valued self almost local contractions

We try to combine these two different type of contractive mappings: the
almost and local contractions, to study their fixed points. This new type of
mappings was first introduced in [23]

Definition 2.1. The mapping d(x, y) : X ×X → R+ is said to be
a pseudometric if:

1. d(x, y) = d(y, x)

2. d(x, y) ≤ d(x, z) + d(z, y)
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3. x = y implies d(x, y) = 0
(instead of x = y ⇔ d(x, y) = 0 in the metric case)

Definition 2.2. Let X be a set and let D = (dj)j∈J be a family of pseudo-
metrics defined on X. We let σ be the weak topology on X defined by the
family D.
A sequence (xn)n∈N∗ is said to be σ − Cauchy if it is dj-Cauchy, ∀j ∈ J .
The subset A of X is said to be sequentially σ-complete if every σ-Cauchy
sequence in X converges in X for the σ-topology.
The subset A ⊂ X is said to be σ-bounded if diamj(A) ≡ sup{dj(x, y) : x, y ∈ A}
is finite for every j ∈ J .

Definition 2.3. Let r be a function from J to J . An operator T : X → X
is called an almost local contraction (ALC) with respect to (D,r) if, for every
j, there exist the constants θ ∈ (0, 1) and L ≥ 0 such that

dj(Tx, Ty) ≤ θ · dj(x, y) + L · dr(j)(y, Tx), ∀x, y ∈ X (2.1)

Remark 2.1. The almost contractions represent a particular case of almost
local contractions, by taking (X, d) metric space instead of the pseudometrics
dj and dr(j) defined on X. Also, to obtain the almost contractions, we take
in (2.1) for r the identity function, so we have r(j) = j.

Definition 2.4. The space X is σ- Hausdorff if the following condition is
valid: for each pair x, y ∈ X, x 6= y, there exists j ∈ J such that d

j
(x, y) > 0.

If A is a nonempty subset of X, then for each z in X, we let
dj(z, A) ≡ inf{dj(z, y) : y ∈ A}.

Theorem 2.1 is an existence fixed point theorem for almost local contrac-
tions, as they appear in [23].

Theorem 2.1. Consider a function r : J → J and let T : X → X be
an almost local contraction with respect to (D,r). Consider a nonempty, σ-
bounded, sequentially σ- complete, and T - invariant subset A ⊂ X. If the
condition

∀j ∈ J, lim
n→∞

θn+1diamrn+1(j)(A) = 0 (2.2)

is satisfied, then the operator T admits a fixed point x∗ in A.

Proof. Let x0 ∈ X be arbitrary and {xn}∞n=0 be the Picard iteration defined
by

xn+1 = Txn, n ∈ N
Take x := xn−1, y := xn in (2.1) to obtain

dj(Txn−1, Txn) ≤ θ · dr(j)(xn−1, xn)
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which yields

dj(xn, xn+1) ≤ θ · dr(j)(xn−1, xn),∀j ∈ J (2.3)

Using (2.1), we obtain by induction with respect to n:

dj(xn, xn+1) ≤ θn · dr(j)(x0, x1), n = 0, 1, 2, · · · (2.4)

According to the triangle rule, by (2.4) we get:

dj(xn, xn+p) ≤ θn(1 + θ + · · ·+ θp−1)dr(j)(x0, x1) =

=
θn

1− θ
(1− θp) · dr(j)(x0, x1), n, p ∈ N, p 6= 0

These relations show us that the sequence (xn)n∈N is dj- Cauchy for each
j ∈ J . The subset A is assumed to be sequentially σ-complete, there exists
f ∗ in A such that (T nx)n∈N is σ- convergent to x∗. Besides, the sequence
(T nx)n∈N converges for the topology σ to x∗, which implies

∀j ∈ J, dj(Tx
∗, x∗) = lim

n→∞
dj(Tx

∗, T n+1x).

Recall that the operator T is an almost local contraction with respect to
(D,r). From that, we have

∀j ∈ J, dj(Tx
∗, x∗) ≤ βj lim

n→∞
dr(j)(x

∗, T nx).

The convergence for the σ- topology implies convergence for the pseudometric
dr(j), we obtain dj(Tx

∗, x∗) = 0 for every j ∈ J .
This way, we prove that Tf ∗ = f ∗, since σ is Hausdorff.
So, we prove the existence of the fixed point for almost local contractions.

Remark 2.2. For T verifies (2.1) with L = 0, and r : J → J the identity
function, we find the theorem of Vailakis [11] by taking θ = βj.

Further, for the case dj = d,∀j ∈ J , with d = metric on X, we obtain
the well known Banach contraction, with his unique fixed point.

Remark 2.3. In Theorems 2.1 and 2.3 the coefficient of contraction θ ∈
(0, 1) is constant, but local contractions have a coefficient of contraction
θj ∈ [0, 1) which depends on j ∈ J . Our first goal is to extend the local
almost contractions to the most general case of θj ∈ (0, 1).

One extends Definition 2.3 to the case of almost local contractions with
variable coefficient of contraction.
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Definition 2.5. Let r be a function from J to J . An operator T : X → X is
called almost local contraction with respect to (D, r) or (θj, Lj)- contraction,
if there exist a constant θj ∈ (0, 1) and some Lj ≥ 0 such that

dj(Tx, Ty) ≤ θj · dj(x, y) + Lj · dr(j)(y, Tx),∀x, y ∈ X (2.5)

Theorem 2.2. With the presumptions of Theorem 2.1, if we modify the
condition (2.2) by the following one:

∀j ∈ J, lim
n→∞

θjθr(j) · · · θrn(j)diamrn+1(j)(A) = 0, (2.6)

then the operator T admits a fixed point x∗ in A.

The next theorem represents an existence and uniqueness theorem for the
almost local contractions with constant coefficient of contraction.

Theorem 2.3. If to the conditions of Theorem 2.1, we add:
(U) for every fixed j ∈ J there exists:

lim
n→∞

(θ + L)ndiamrn(j)(z, A) = 0,∀x, y ∈ X (2.7)

then the fixed point x∗ of T is unique.

3 Continuity of almost local contractions

This section can be regarded as an extension of V. Berinde and M. Pacurar
([1]) analysis about the continuity of almost contractions in their fixed points.
The main results are given by Theorem 3.1, which give us the answer about
the continuity of local almost contractions in their fixed points.

Theorem 3.1. Let X be a set and D = (dj)j∈J be a family of pseudometrics
defined on X; let T : X → X be an almost local contraction satisfying
condition (2.2), so T admits a fixed point. Then T is continuous at f , for
any f ∈ Fix(T ).

Proof. The mapping T is an almost local contraction, i.e. there exist the
constants θ ∈ (0, 1) and some L ≥ 0

dj(Tx, Ty) ≤ θ · dj(x, y) + L · dr(j)(y, Tx),∀x, y ∈ X (3.1)

For any sequence {yn}∞n=0 in X converging to f , we take y := yn, x := f in
(3.1), and we get

dj(Tf, Tyn) ≤ θ · dj(f, yn) + L · dr(j)(yn, T f), n = 0, 1, 2, ... (3.2)



130 Monica Zakany An. U.V.T.

Using Tf = f , since f is a fixed point of T , we obtain:

dj(Tyn, T f) ≤ θ · dj(f, yn) + L · dr(j)(yn, f), n = 0, 1, 2, ... (3.3)

Now by letting n → ∞ in (3.3) we get Tyn → Tf , which shows that T is
continuous at f . The fixed point has been chosen arbitrarily, so the proof is
complete.

According to Definition 2.3, the almost local contractions are defined in
a subset A ⊂ X. In the case A = X, then an almost local contraction is
actually a usual almost contraction.

Example 3.1. Let X = [1, n]× [1, n] ⊂ R2, T : X → X,

T (x, y) =

{
(x
2
, y
2
) if (x, y) 6= (1, 0)

(0, 0) if (x, y) = (1, 0)

The diameter of the subset X = [1, n]× [1, n] ⊂ R2 is given by the diagonal
line of the square with (n− 1) side.
We shall use the pseudometric:

dj((x1, y1), (x2, y2)) = |x1 − x2| · ej,∀j ∈ Q. (3.4)

This is a pseudometric, but not a metric: take for example dj((1, 4), (1, 3)) =
|1− 1| · ej = 0, however (1, 4) 6= (1, 3)
In this case, the mapping T is contraction, which implies that is an almost
local contraction, with the unique fixed point x = 0, y = 0.
According to Theorem 3.1, T is continuous in (0, 0) ∈ Fix(T ), but is not
continuous in (1, 0) ∈ X.
Example 3.2. With the presumptions of Example 3.1 and the pseudometric
defined by (3.4) , we get another example for almost local contractions.
Considering T : X → X,

T (x, y) =

{
(x,−y) if (x, y) 6= (1, 1)
(0, 0) if (x, y) = (1, 1)

T is not a contraction because the contractive condition:

dj(Tx, Ty) ≤ θ · dj(x, y), (3.5)

is not valid ∀x, y ∈ X, and for any θ ∈ (0, 1). Indeed, (3.5) is equivalent
with:

| x1 − x2| · ej ≤ θ · |x1 − x2| · ej
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The last inequality leads us to 1 ≤ θ, which is obviously false, considering
θ ∈ (0, 1).
However, T becomes an almost local contraction if:

|x1 − x2| · ej ≤ θ · |x1 − x2| · ej + L · |x2 − x1| · e
j
2

which is equivalent to : e
j
2 ≤ θ · e j

2 + L

(1− θ) · e
j
2 ≤ L

For θ = 1/3 ∈ (0, 1) , L = 1 ≥ 0 and j < 0 , the last inequality becomes
true, i.e. T is an almost local contraction with many fixed points, namely
FixT = {(x, 0) : x ∈ R}.

In this case, we have:

∀j ∈ J, lim
n→∞

θn+1diamrn+1(j)(A) = lim
n→∞

(
1

3

)n+1

· (n− 1)2 = 0

This way, the existence of the fixed point is assured, according to condition
(2.1) from Theorem 2.1
Theorem 3.1 is again valid, because the continuity of T in (0, 0) ∈ Fix(T ),
but discontinuity in (1, 1), which is not a fixed point of T .

Example 3.3. Let X be the set of positive functions: X = {f |f : [0,∞)→
[0,∞)} and dj(f, g) = |f(0)− g(0)| · ej, ∀f, g ∈ X.

Indeed, dj is a pseudometric, but not a metric, take for example dj(x, x
2) =

0, but x 6= x2.
Considering the mapping Tf = |f |, ∀f ∈ X, and using condition (2.1)

for almost local contractions:

|f(0)− g(0)| · ej ≤ θ · |f(0)− g(0)| · ej + L · |g(0)− f(0)| · e
j
2

which is equivalent to: ej/2 ≤ θ · ej/2 + L
This inequality becames true if j < 0, θ = 1

3
∈ (0, 1), L = 3 > 0

However, T is also not a contraction, because the contractive condition (3.5)
leads us again to 1 ≤ θ. The mapping T has infinite number of fixed points:
FixT = {f ∈ X}, by taking:

|f(x)| = f(x),∀f ∈ X, x ∈ [0,∞)

4 Multivalued self almost local contractions

The term of multivalued contraction was first introduced by Nadler in [12].
The following are borrowed from Nadler [12]
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Definition 4.1. Let (X, d) be a metric space, we shall denote the family of
all nonempty bounded and closed subsets of X with CB(X).
For A,B ⊂ X, we consider
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}, the distance between A and B,
δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}, the diameter of A and B,
H(A,B) = max {sup{D(a,B) : a ∈ A}, sup{D(b, A) : b ∈ B}}, the Pompeiu-
Hausdorff metric on CB(X) induced by d.

We know that CB(X) form a metric space with the Pompeiu-Hausdorff
distance function H. It is also known,that if (X, d) is a complete metric space
then (CB(X),H) is a complete metric space, too (Rus [19]).

Let P(X) be the family of all nonempty subsets of X and let T : X →
P(X) be a multi-valued mapping. An element x ∈ X with x ∈ T (x) is called
a fixed point of T . We shall denote Fix(T ) the set of all fixed points of T ,
i.e.,

Fix(T ) = {x ∈ X : x ∈ T (x)}

Let f : X → X be a single-valued map and T : X → CB(X) be a multivalued
map .

1. A point x ∈ X is a fixed point of f (resp. T ) if x = fx (resp. x ∈ Tx).
The set of all fixed point of f (resp. T ) is denoted by F (f), (resp.
F (T )).

2. A point x ∈ X is a coincidence point of f and T if fx ∈ Tx.
The set of all coincidence points of f and T will be denoted by C(f, T )

3. A point x ∈ X is a common fixed point of f and T if x = fx ∈ Tx.
The set of all common fixed points of f and T is denoted by F (f, T )

The following lemma can be found in Rus [19]. It is useful for the next
theorem.

Lemma 4.1. Let (X, d) be a metric space, let A,B ⊂ X and q > 1. Then,
for every a ∈ A, there exists b ∈ B such that

d(a, b) ≤ qH(A,B) (4.1)

Definition 4.2. Let (X, d) be a metric space and T : X → P(X) be a multi-
valued operator. T is said to be a multi-valued weak contraction or a multi-
valued (θ, L)-weak contraction if there exist two constants θ ∈ (0, 1), L ≥ 0
such that

H(Tx, Ty) ≤ θ · d(x, y) + L ·D(y, Tx),∀x, y ∈ X (4.2)
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Remark 4.1. Because of the simmetry of the distance d and H, the almost
contraction condition (4.2) includes the following dual one:

H(Tx, Ty) ≤ θ · d(x, y) + L ·D(x, Ty), ∀x, y ∈ X (4.3)

Obviously, to prove the almost contractiveness of T , it is necessary to check
both (4.2) and (4.3).

Theorem 4.2. (Berinde V., Berinde M. [6]) Let (X, d) be a metric space
and T : X → P(X) be a (θ, L)-weak contraction. Then
(1) Fix(T ) 6= ∅
(2) for any x0 ∈ X, there exists an orbit {xn}∞n=0 of T at the point x0 that
converges to a fixed point u of T , for which the following estimates hold:

d(xn, u) ≤ hn

1− h
d(x0, x1), n = 0, 1, 2... (4.4)

d(xn, u) ≤ h

1− h
d(xn−1, xn), n = 1, 2... (4.5)

for a certain constant h < 1.

5 Main Results

We shall use the assumptions from the definition of almost local contractions
and we make the following notations:
Dj(A,B) = inf{dj(a, b) : a ∈ A, b ∈ B},
δj(A,B) = sup{dj(a, b) : a ∈ A, b ∈ B},
Hj(A,B) = max {sup{Dj(a,B) : a ∈ A}, sup{Dj(b, A) : b ∈ B}} ,
the Pompeiu-Hausdorff metric on CB(X) induced by dj.

Remark 5.1. From the definition of Dj, we have the following result: if
Dj(a,B) = 0, then a ∈ B.

Definition 5.1. Let r be a function from J to J . An operator T : X → P(X)
is called a multivalued almost local contraction (ALC) with respect to (D, r)
if, for every j ∈ J , there exist the constants θ ∈ (0, 1) and L ≥ 0 such that

Hj(Tx, Ty) ≤ θ · dj(x, y) + L ·Dr(j)(y, Tx),∀x, y ∈ X (5.1)

Lemma 5.1. Let X be a set and let D = (dj)j∈J be a family of pseudometrics
defined on X. We let σ be the weak topology on X defined by the family D.
Let A,B ⊂ X and q > 1.
Then, for every j ∈ J and a ∈ A, there exists b ∈ B such that

dj(a, b) ≤ qHj(A,B) (5.2)
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Proof. If Hj(A,B) = 0, then for every a ∈ A, we have:

Hj(A,B) ≥ Dj(a,B) ⇒ Dj(a,B) = 0

From that, we conclude: there exist b ∈ B such that dj(a, b) = 0.
The inequality (5.2) is valid, i.e., 0 ≤ 0.
If Hj(A,B) > 0, then let us denote

ε = (h−1 − 1)H(A,B) > 0 (5.3)

Using the definition of Hj(A,B) and Dj(a,B), we conclude that for any ε > 0
there exists b ∈ B such that

dj(a, b) ≤ qDj(a,B) + ε ≤ Hj(A,B) + ε (5.4)

Combining (5.3) and (5.4), we get (5.2).

Theorem 5.2. With the assumptions of Definition 5.1, let T : X → P(X)
be a multivalued ALC. Then we have:
(1) Fix(T ) 6= ∅
(2) for any x0 ∈ X, there exists an orbit {xn}∞n=0 of T at the point x0 that
converges to a fixed point u of T , for which the following estimates hold:

dj(xn, u) ≤ hn

1− h
dj(x0, x1), n = 0, 1, 2... (5.5)

dj(xn, u) ≤ h

1− h
dj(xn−1, xn), n = 1, 2... (5.6)

for a certain constant h < 1.

Proof. We consider q > 1, let x0 ∈ X and x1 ∈ Tx0. If Hj(Tx0, Tx1) = 0,
that means from the definition of Dj and Hj:

0 = Hj(Tx0, Tx1) ≥ Dj(x1, Tx1) (5.7)

and that is possible only if Dj(x1, Tx1) = 0, from here, we conclude x1 ∈ Tx1,
which leads us to the conclusion Fix(T ) 6= ∅.
Let Hj(Tx0, Tx1) 6= 0. According to Lemma 5.1, there exists x2 ∈ Tx1 such
that

dj(x1, x2) ≤ qHj(Tx0, Tx1) (5.8)

By (5.1) we have

dj(x1, x2) ≤ q[θ · dj(x0, x1) + L ·Dr(j)(x1, Tx0)] = qθ · dj(x0, x1).
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since x1 ∈ Tx0 , Dr(j)(x1, Tx0) = 0.
We take q > 1 such that

h = qθ < 1

and we obtain dj(x1, x2) < h · dj(x0, x1).
If Hj(Tx1, Tx2) = 0 then Dj(x2, Tx2) = 0, that means x2 ∈ Tx2 using
Remark 5.1.
Let Hj(Tx1, Tx2) 6= 0. Again, using Lemma 5.1, there exists x3 ∈ Tx2 such
that

dj(x2, x3) ≤ qh · dj(x1, x2) (5.9)

This way, we obtain an orbit {xn}∞n=0 of T at the point x0 satisfying

dj(xn, xn+1) ≤ h · dj(xn−1, xn), n = 1, 2, ... (5.10)

By (5.10), we inductively obtain

dj(xn, xn+1) ≤ hndj(x0, x1) (5.11)

and, respectively,

dj(xn+k, xn+k+1) ≤ hk+1dj(xn−1, xn), k ∈ N (5.12)

Using the inequality (5.11), we obtain

dj(xn, xn+p) ≤
hn(1− hp)

1− h
dj(x0, x1), n, p ∈ N (5.13)

Recall 0 < h < 1, conditions (5.12),(5.13) show us that the sequence (xn)n∈N
is dj-Cauchy for each j, which shows that {xn}∞n=0 is a Cauchy sequence.
That means {xn}∞n=0 is convergent with the limit u:

u = lim
n→∞

xn (5.14)

After simple computations, we get:

Dr(j)(u, Tu) ≤ Dr(j)(u, xn+1)+Dr(j)(xn+1, Tu) ≤ dr(j)(u, xn+1)+Hr(j)(Txn, Tu)

which by (5.1) yields

Dr(j)(u, Tu) ≤ dr(j)(u, xn+1) + θdr(j)(xn, u) + L ·Dr(j)(u, Txn) (5.15)

Letting n → ∞ and using the fact that xn+1 ∈ Txn implies by (5.14),
Dr(j)(u, Txn)→ 0, as n→∞. We get

Dr(j)(u, Tu) = 0
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Since Tu is closed, this implies u ∈ Tu.
We let p→∞ in (5.13) to obtain (5.5). Using (5.12), we get

d(xn, xn+p) ≤
h(1− hp)

1− h
d(xn−1, xn), p ∈ N, n ≥ 1 (5.16)

and letting p→∞ in (5.16), we obtain (5.6). The proof is complete.

The next theorem shows that any multivalued ALC is continuous at the
fixed point.

Theorem 5.3. With the assumptions of Definition 5.1, let T : X → P(X)
be a multivalued ALC, i.e., a mapping for which there exists the constants
θ ∈ (0, 1) and L ≥ 0 such that, for every j ∈ J , the next inequality is valid:

Hj(Tx, Ty) ≤ θ · dj(x, y) + L ·Dr(j)(y, Tx),∀x, y ∈ X (5.17)

Then Fix(T ) 6= ∅ and for any p ∈ Fix(T ), T is continuous at p.

Proof. The first part of the conclusion follows by Theorem 5.2.
Let {yn}∞n=0 be any sequence in X converging to the fixed point p. Then by
taking y := yn and x := p in the multivalued ALC condition (5.17), we get

dj(Tp, Tyn) ≤ δ · dj(p, yn) + L ·Dr(j)(yn, Tp), n = 0, 1, 2, ... (5.18)

Using the definition of Dr(j)(yn, Tp), we know that is the smallest distance
between yn and any element from Tp, take for example p ∈ Tp. Now, we
have the following inequalities:

Dr(j)(yn, Tp) ≤ Dj(yn, Tp) ≤ dj(yn, p)

By replacing Dr(j)(yn, Tp) from (5.18) with dj(yn, p), we get:

dj(Tyn, Tp) ≤ (δ + L) · dj(yn, p), n = 0, 1, 2, ... (5.19)

Now, by letting n→∞ in (5.19) we get Tyn → Tp as n→∞, that means:
T is continuous at p.
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[14] M. Păcurar and V. Berinde, Two new general classes of multi-valued weakly
Picard mappings, Amer. Math. Soc., 196, (1974), 161–176
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