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Abstract

The convergence properties of a very general class of adaptive recursive
algorithms for the identification of discrete-time linear signal models are
studied for the stochastic case using martingale convergence theorems. The
class of algorithms specializes to a number of known output error algorithms
(also called model reference adaptive schemes) and equation error schemes
including extended (and standard) least squares schemes, They also specialize
to novel adaptive Ka]man filters, adaptive predictors and adaptive regulator
algorithms. An algorithm is derived for identification of uniquely para-
metrized multivariabie linear systems.

A passivity condition (positive real condition in the time invariant model
case) emerges as the crucial condition ensuring convergence in the noise-free
cases. The passivity condition and persistently exciting conditions on the
noise and state estimates are then shown to guarantee almost sure convergence
results for the more general adaptive schemes.

Of significance is that, apart from [he stability assumptions inherent in the
passivity condition, there are no stability assumptions required as in an
alternative theory using convergence of ordinary differential equations.

1. Introduction

consider a signal model with states x~,,, a noise disturbance {v~} and unknown

parameters 6 driven by a known input sequence {rk}. The adaptive estimation

task is to determine from the (possibly vector) measurement sequence {Zkj, state

estimates .<1,and parameter estimates ok.

The task of simultaneously estimating parameters O and states xk to minimize

an index such as the conditional error variance is usually too formidable to attempt
176
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even for simple model structures, and so there is strong motivation to derive

sub-optimal schemes which work reasonably well. The following class of signal

models lends itself to a very reasonable sub-optimal scheme.

Consider the class of signal models such that the unknown parameters 0 can be

readily estimated perhaps in some optimal fashion, on the assumption that the

states are observable (known) and, likewise, state estimates (possibly optimal

in some sense) can be achieved given knowledge of the model parameters. Let us

denote such parameter and state estimates as 6klX where X denotes {Xo, Xl, . . . . x~},

and .tk10 respectively.

Now a frequently used and very reasonable sub-optimal estimation scheme for

simultaneous estimation of 0 and Xk is to implement the two estimation algorithms

just referred to but coupled as now described. In estimating 6, Xk is replaced by

an estimate of Xk from the state estimator, and in estimating .xfi, 0 is replaced by

an estimate of O from the parameter estimation. A suitable notation for these
A

estimates is $kl~ and .f~/;, or more simply 6Z and fk.

Many schemes for adaptive estimation in the engineering literature including

“equation-error” or “series-parallel” schemes and “output-error” or “parallel”

schemes have the general structure of the above sub-optimal arrangement. Examples

of such schemes are given in [1–10], with the extended least squares algorithm

[1, 7,8] and its sub-optimal stochastic approximation derivatives [2] being perhaps

the archetype of the “equation-error” methods, and the model reference adaptive

schemes of [5] and the related instrumental variable algorithms [9, 10] being

examples of the output error approach.

Analysis results for the various algorithms of [1-10] have been limited in [1-10]

to the noise-free case, :ind when noise is present, to answering questions of whether

or not bias exists in the estimates, It is clearly desirable to determine conditions in

the stochastic case for the almost sure convergence of .fk to ,fk/o as k+ m, and

also of @kto @as k+ m for the case of uniquely parameterized models. This is

particularly so in view of the fact that, for certain signal models, the adaptive

algorithms diverge. Perhaps the most important role for a convergence analysis

is to give some deeper explanation as to why the adaptive schemes designed using

“engineering intuition” in fact work so well in practice.

In this paper, we first introduce a broad class of signal models including uniquely

parametrized models for which suboptimal estimators as described above can be

implemented. The class of estimators can be specialized to either “equation

error” algorithms such as the extended least squares algorithm or to “parallel”

algorithms much like the model-reference adaptive schemes of [5]. Also they can

be viewed or re-organized as novel adaptive filters (for example, Kalman filters),

predictors, and regulators with attractive convergence properties. Next, convergence

analysis results are given via martingale convergence theorems for the stochastic

case. A key convergence condition is that a certain system readily derived from the
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signal model be strictly passive (or strictly positive real in the time-invariant model

case). For consistent parameter estimation in uniquely parameterized models, very

reasonable persistently exciting conditions are examined. These conditions are

usually satisfied for sufficiently rich excitation signals and adequately modelled
stochastic processes, and correspond to the persistently exciting conditions required

for the almost sure convergence of least squares estimation algorithms.

A number of aspects of this paper bear some relationship to earlier work in the

literature. For example, the continuous time signal models of [6] are specifically

designed to have outputs which are bilinear in the model states and unknown

parameters as in this paper. However, the signal models, estimators and con-

vergence theory in [6] are deterministic and make no connection to the more

realistic task of identification in a stochastic environment. In fact the algorithms

do not converge to yield the true parameter estimates in the stochastic case. The

model-reference adaptive algorithms of [5] are less general than those presented

here but they do have good convergence properties in the stochastic case. The

strong convergence results of [.5]are limited to the deterministic situation. However,

as one would expect, restrictions on the models required to achieve convergence in

the deterministic case (passivity restrictions) are also required in the stochastic

case here.

One pleasing result of this paper, and possibly unexpected, is that for convergence

in the stochastic case no additional restrictions of the deterministic part of the

signal model need be imposed. The only additional conditions required in the

stochastic case are those of the type familiar in stochastic least squares theory [15].

The Lyapunov function approach of [6] and the hyperstability approach of [5]

for the noise-free cases are built on here using martingale convergence theorems

for the stochastic case, This approach was first explored by the authors in a

conference paper [1 1] where somewhat weaker and less general results are reported

than in the present paper. An alternative approach to using martingale convergence
theorems is via ordinary differential equations [12], which is explored in [13, 14J.t

The advantage of the approach using martingales is that, given the very accessible

martingale convergence theorems, the derivations differ very little from the straight-

forward derivations of the deterministic theory. In contrast, the ordinary differential

equation approach is based on extensive and highly technical derivations. Of

perhaps more current interest however is the fact that the theory of this paper

does not require the asymptotic Stabi]ity ~~~umptiona in addition to the passivity

concMons of [12–1 4].

t Since the first draft of the present paper, uiz. [11] was presented as a conference paper,
[13] has been independently written, based on [12]. Both [14] and the present paper have
benefited from this earlier work. The authors wish to acknowledge benefit received from
discussions with L. Ljung in revising the present paper.
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In Section 2, for a broad class of signal models, associated adaptive estimators

are introduced which specialize to known and novel adaptive algorithms. In

Section 3, almost sure convergence analysis conditions are given for the stochastic

case and in Section 4 specializations and extensions of the results to cover extended

least squares, adaptive Kalman filtering, linear system identification and adaptive

predictors are briefly discussed, In Section 5, discussions of the results and more

specific comparisons with earlier work are presented.

2. Signal models and estimation algorithms

Here with the aim of carrying out a performance analysis we restrict attention

to adaptive estimation schemes where we can write down state estimation error

(-ik = Xk– 2J equations coupled to parameter error (~k = 8– @J equations.

In particular we consider the model state equations as

.~k+~= Fxk + GIYk + G2Vk +fk(vk, ‘k),

.zk = Yk+vk, Yk = e’(~k+Vk),

where 6’ is used here to denote a matrix with unknown elements. The matrices

F, G1 and Gz are possibly time varying but for convenience the subscript k is

deleted. The vector inputs Vk and outputs Zk are observable (known) while the

state Xk and the noise disturbance Vk are not. (The model is selected so that it can

specialize to an innovations model and thus the notation Vk which is frequently

used to denote an innovations sequence.) Manipulations simplify the model

equations as

xk+l = Fxk + Gvk +jk(uk, ‘k),

-?k = Yk+vk, Yk = d’(xk+Vk),

where

G = Gl – Gz and &vk, zk) = ~(vk, zk) + G1zk.

We introduce the assumption that with Fk denoting the a-algebra generated by

% V29....Vk, the noise term vk satisfies E[vk /&k_~] = () with ~[V~ Vk Iflk_~]<1.

This assumption is certainly satisfied when Vk is zero mean, independently distri-

buted, and bounded uniformly above in its covariance.

For the analysis to follow, it is only required that yk be a bilinear function of

the elements of 6 and [xi v~], but for simplicity of presentation, only the special

case j.’k= 6’(xk + vk) is considered.

The signal model described above is so chosen that its inverse is readily con-

structed. The state estimation equations assuming O is known are then simply the



180 J. B. Moore and G. Ledwich [5]

state equations of the inverse of the signal model as follows

lk+l/8 = F2~/0 + Gfi~/O+f~(Vk, z~),

We now consider the adaptive estimator in which d is replaced by some estimate

8), as

~k+l = F3~ + G;k +f~(vk, Zk),

:~ = z~—yk, jk == I@k+ UJ.

The state estimation error equations are now readily derived from a subtraction of

the above sets of equations.
/.

Using the notation .ik = Xk–?k, ~k = o– ~~,

xk = i~ + vk, then

..ik+l = (F– Cd’) ,fk– G(–qJ, q,<= – 0; +~. (2.))

Notice that in deriving (2. ]), the possibly nonlinear and unbounded function

.~(., .) cancels out, and (2.1) is a linear state error equation driven by qk = – fi #L..
The parameter estimator equation is taken to be

The parameter estimation error equations are (2.2) together with

REMARKS. 1. In the case Xk is known (that is,.fk= Xk, fk = ()),the equations

are the standard least squares parameter estimation equations. An alternative

expression for P~ is given from the matrix inversion lemma as

2. In practice square root versions of the algorithms (2.2) are used to avoid

numerical difficulties (P~ becoming O) as Pk becomes singular or approaches zero.

Also as Pk becomes closer to a singular matrix it is frequently intentionally made

more positive than it otherwise would be by the addition of:1 for some E> O to

allow the algorithm to track SIOVJIyvarying 0 and to avoid the possibility of

round-off error causing Pk to be non-positive definite at some k. The theory of

this paper will assume that E = O.

3. If in the above parameter estimator equation, the matrix Pk is replaced by the

scalar {tr [P;l]}-l then the recurrence relations for tr [P III are scalar and relatively

simple to implement. They are a stochastic approximation algorithm. Other
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readily implementable schemes set Pk = P a positive definite matrix or perhaps

P~ = P/(a-l + #~ P#J. Again, other schemes are more sophisticated adding

memory terms Consisting of #&~& for i = 1,2, ..., ~ in calculating ok [5].

Another possibility explored in [11] is to set ~k = /?~_l(ik + ok) rather than

.ik = ‘~(~k + uJ. Reference to these variations on

equations will be made in the body of the paper.

the parameter estimation

3. Convergence analysis

The estimation error equations (2. 1), (2.3) upon manipulations can be re-

organized as in Fig. 3.1, namely as a feedback system with input (– qk) and output

Pk and a feedback system with input (Pk + Vk) and output qk. There is added and

o

qk
—— ———— ___ _

J- I
I ‘k

.
‘k

I

1

0 FEED FORWARD
(STRICTLY PASSIVE)

i i

qk FEEDBAcK
(PASSIVE) ‘k

Fig. 3.1. Estimation error equations as two passive systems back to back.

~ First premultiply both sides of (2.3) by ak P,- 1PZ1, noting that (Z—Pk #k ~{.) = Pk l’;] aI1

from (2.2), then apply the definition p~ = j~ +J~( –q,). The remaining manipulations with
the definition qt = – dj $t are immediate.
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subtracted a feedthrough term J~qk which of course does not affect the equations

for ok and ?k but is designed to ensure that the feedback system is passive.
(Definitions follow.) An assumption that the feedforward system, given in terms of

[F, G, O,J], is strictly passive then allows us to study the convergence of pk,qk and
Zk, Ok to zero as k ~CCL

Let us now examine the passivity properties of the linear feedback system (3.2)

using the fact that a linear system with state equations Xk+l = A~ Xk+ B~ u~,

J’~ = ckx/c+ Dk urf inputs uk and outputs yk is known [5] to be passive if for some
sequence of positive definite matrices Qk and all ,Yk, Uk and k

xj+I (?Ic+lXk+I– x;,Qkxk–Y~ Uk – ~;j”k< 0.

Conditions for the passivity of (3.2) are given in the following lemma.

h?MMA 3.1. Consider the feedback system of Fig. 3.1 where Pk is calculated via the

[east squares recursion (2.2), then this system is passive with Jk < ~1.

PROOF. For the time-varying linear system (3.2) the left-hand side of (3.3) mildly

generalized to handle matrix states yields

8k = tr{~k(~k+~ ~k) ‘1 dk – /j_~(~k ~&~) ‘1 8&~} – 2(~k + “k)) qk

= – tr {(7jJ(ak Pk_J ‘1 – (ak+l ‘k)-’ +Z+k I%] ‘k–20: #k #’j‘k~k}

[

I (Jk– ?)
– ‘k(*i ‘k–1 #k) [(pk+ ‘k)’.qk]

(Jk – 1) (Jk– z)’ 1[Pk:vkl
Since the second term is non-positive, we have from manipulation of the first

term using (3,3) and the properties of the trace operation that

8k < –tr{#k[l – u;~l)P~l] ~k+ ~j ~~(Z–2J) & #k}. (3.1)

When Jk < ~ and LZk+l> ] then 8~ <0, and the feedback system is passive as claimed

in the lemma. This completes the proof of the lemma.

The feedforward system (3.1) has input (– qk), output pk and states Xk. With this

system strictly passive, the desired asymptotic stability of the noise-free estimation

error equations are immediate via the stability theorems of [17, see also 5]. Strict

passivity of this feedforward system implies that there exists a ok = ~j, >0 such

that for all k and some r # O

‘k= %+1 ~k+l ‘k+l–.% ~k ‘k+dcqk+dpk < ‘r2(%2k+qjqk).
(3.2)

For the stochastic case when “k# O, before giving the convergence results let us

list the assumptions which will be referred to but defer comments on these until

later.
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List

(i)

(ii)

(iii)

(iv)

(v)

(vi)
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of assumptions

The feedforward system of Fig. 3,1 in terms of the signal model parameters

{F, G, 19}is strictly passive with J~ = ~1.

The feedback system of Fig. 3.1 is passive with J = ~1 (guaranteed for the

parameter update algorithm of Lemma 3.1).

The noise conditions E[vk I#k_l] = O, E[vj, VkI%k-l]s 1 are satisfied.
Forsome/3>0,0<v<l,

lim ~ i-(y+~) flPi@t<M<m w.p. 1.
k+cei=O

Forsome/3>0,0<y<l,

lirn~(Y+/$)~ k+~ Pk = O W.p. 1,
k.co

~k #k ‘Mk.l for all k and SOIIIe ~> (). AISO

~~: ,~o (F+ Cd’)i = O, Iim supk~l 11[
k–1

~ (F+ G6’)i Gj <~
k+co j=o i=j+l

(satisfied in the time-invariant model case when j&aX (F+ GO’)I<1 which is

guaranteed by (i)).

THEOREM 3.1. Consider the adaptive estimation algorithms of Section 2 with

estimation error equations depicted in the feedback arrangement of Fig. 3.1. Then

with (i)-(iv) satisjied (except possibly for subsequences {kl, kt, . . .} with (ki+l —ki) -+CQ

aski~co), as k~m

(k – l)-fll’ Xk+O, (k– l)-~f’qk ~ O, (k– l)-~l’(jk –Yk) a O (3.3)

in mean square. With conditions (i)–(v) holding but relaxing the strict passivity in (i)

to simply passivity, then as k-+ co, almost surely

tlk+e (3.4)

and with (vi) also holding (3.3) holds almost surely.

PROOF. (Here given only for the case ~ = O.) consider Vk,O defined from

~k\@= ~~ ok ~~+ tr {(P&l- e) (%+1 Pk)-l (ok-l – 0)}, (3.5)

where ok, ak, pk are defined as earlier and are calculated without knowledge of

0. With this definition, addition of (3.1) and (3.2) yields for [i~–q~] # O.

AklO+ 8kl~ = vk+~l~– Vk\f7-vjqk10-%hOvk.
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Taking conditional expectations with respect to the u-algebra &K_l, noting that

Zk, ~k, Pk, $h_l and thus Vk!o belong to %A_l and thtit E[vL I%k-l] = O, then

manipulations show that

EIvk,llOl#_l] = vklO+EIAklO+ Sk10\.5L-1]+2(41;,Pk~J E[u;,v~.\%,. ,]. (3.6)

(The intermediate result E[qj,lfl v,, /Yk_l] = (#j(-Pk #k) E[vf, vl, 1,~,_l] is derived by

substituting ~,,.)Ofrom (2,3) into qjlu Vk == +;:191,1(1Vk and taking conditional ex-

pectations.)

Now with the passivity conditions Ak16<0, ~hjo<0 and the bound

E[lJ~vkl3k_J <1,

(3.6) yields the inequality

To study the convergence properties of V1,IO,let us under (iv) define for some scalar

O<y<l
~–~

Sk10= k-? Vh.0+2A4-2 ~ i-y~j Pi$i (3.8)
i=O

and observe using (3.7) that for k >0

< k-y(V~\~+2#~P~$~)+2hl–2 li–~~,~ P~l/1~
:=0

– Sk,o.—

Moreover, taking expectations yields that EISA.I ~lti]< EISklO] and thus

With finite initial conditions, then Sllfl < m and E[SAt)] < m. Thus since

for all k, SL,O is a positive super martingale (w.p.l.) on X. and converges almost

surely [16]. We conclude that

limsupk–y V~lo<co, w.p.l.
k-m

from which
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Condition (v) yields immediately (3.4) as required. The bound on +k of (vi) implies

q~ -+ O almost surely as k ~ m and applications of the Toeplitz Lemma to the

non-recursive expression for ~k readily obtained from Fig, 3.1 yields that ~k ~ O

almost surely as k a cc under the remaining conditions of (vi).

Taking expectations of both sides of (3.6), we have

or with y >0

Recursive application of this inequality fork = 1,2,..., n yields

Taking limits as n ~ m, we see that unless

lim ~ E[l Ak18/]k-Y<m, W.p.l.
Tl+mi=l

then the upper bound for (n+ l)-Y EIVn+llO] would be negative (at least with (iv)

satisfied) violating the non-negativity constraint on E[ Vk+ll@].

We conclude that with (i)-(iv), EIAkl@~ O as k a co (except possibly for sub-

sequences {k,, k,, . ..} where ki+l – kia cc as ki ~ co), and in turn from (3.2) that

(3.3) is satisfied as desired. Note that ~k – jk = 9’‘tk ‘qk.

REMARKS. 1. For the case when F, G, J, 19are constant the transfer function of

the feedforward system in Fig. 3.1 is W(z) = J– & [zZ– (F– G(3’)]-1. Now W’(z) is

strictly passive, equivalently strictly positive real if and only if (i) W’(z) is real for

real z, (ii) W(z) has no poles in Iz I>1, (iii) W(e@) + W(e–jti) >0 for all real CO.

2. For the case when lk = O for all k, as in standard least squares, then
Ak = 2p~ qk = – 2qkJk qk <0 and the passivity of W(z) is assured. The results

reduced to those given in [15b].

3. For the case Vk= O, E[ Vk+l10I&k_l] < VklO,and so ~k converges. It immediately

follows that Ak ~ O. Thus (3,3) holds almost surely under (i) and (ii) and with

the additional condition (v), then (3.4) holds almost surely.

4. The restriction ~ = O in the above proof can be relaxed. We simply apply

the theorem for the case j3 = O to a modified signal model where the output is

now z~ = (k – 1)–~/2 Zk and the results interpreted to yield the theorem for the

case ~ >0.

5. The above convergence results tell us that for some signal models (those

with an associated passivity condition satisfied) convergence can be achieved.

Studies elsewhere reported in [12, 13] give some evidence that the passivity
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condition is virtually a necessary condition for convergence. It appears that if the

passivity condition fails then the algorithm diverges or vacillates between appearing
to converge over a significant time period and then appearing to diverge for a short

time period.

6. The passivity condition is automatically satisfied when G = O, or when

G = Gz – GI is sufficiently small. To gain some insight into when G may be small,

recall that when Cl = O, Gz is the Kalman gain of the conditional estimator.

The Kalman gain is known to be small when the output measurement noise in the

usual state space signal model is large. We conclude that for signal models with

GI = O and for sufficiently high measurement noise, then the passivity condition is

satisfied. Also we could comment that in the high noise case, the persistently

exciting conditions are more likely to be satisfied.

7. Notwithstanding the above remarks, it should be noted that in general the

passivity condition does depend on O which is of course unknown, but if Obelongs

to a known compact set, then of course it can be checked (albeit tediously) over

this set.

8. For the output-error algorithm on which Gz = O, it may be that the passivity

condition is not satisfied for the parameter update algorithms studied in this paper,

but it will be satisfied for ones involving the memory terms #k-i Jk-i for

i= 1,2, . . ..Mas studied in [5].

9. The real power of the theory is that it does give us a tangible explanation as

to why extended least squares and related algorithms work so well most of the time

but for unusual models violating the passivity condition they fail. We see that when

an algorithm fails, it is probably not simply a matter of poor initial conditions.

The word “probably” is used here to cover cases when the signals may not be

sufficiently rich or the numerical calculations ill-conditioned in some way not

explored in the theory here, Future theoretical work on these algorithms could well

yield robustness and finite-time results.

10. Condition (iv) is not as simple as one would like, being hard to verify and

current research efforts are to replace the condition by one which simply requires

that Pm = O, at least to ensure that #k ~ m w,p.1, However, even in the standard

least squares case when Xk = O for all k, it is not yet shown that such a condition is

all that is needed to prove that Oks co.p.l.

Of course, condition (iv) is satisfied for arbitrary ~+ y >0 when +j P~ +~ a O

as l/k. Such a situation arises when ~~ is derived fro-in an asymptotically stable

signal model and is sufficiently rich in the sense that ~{[Pk]s O as 1/k for all i. Note,

however, that there is an implied restriction that ,k-ty+~) #’P~ $~ itself be bounded,

for otherwise as when ~k is gaussian there is a finite probability, perhaps negligibly

small, that the bound (iv) is exceeded. In other words, there is this hidden restriction

that the noise term k-f~+~) Pk v! be bounded. The condition (iv) is of course satisfied

for arbitrary /3+ y> 1 since from (2.2) we have that #L pk ~k ~ 1. A ‘ore precise
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explanation of the class of systems for which (iv) is satisfied is beyond the scope

of this paper.

11, The theory of [13] provides for almost sure convergence in (3.3) rather than

mean squares convergence here. Note, however, that in the unique parameterized

model case when (3.4) holds, then under (vi) there is also almost sure convergence

of in (3.3).

12. A theory along the lines given above for the case ~ = O can be worked out

for stochastic approximation versions, at the expense of a few additional compli-

cations not discussed here.

13. Observe that when /3+ y >1, then (iv) is satisfied since ~~ Pi +i <1 for all i

and (v) is satisfied when #k is derived from a system with all modes unstable

forcing P~ to approach zero exponentially [15]. Thus we can violate the stablity

restrictions of [13] requiring +k to be derived from an asymptotically stable system

and still achieve convergence. Results can be obtained for the mixed stable/

unstable mode case but these are not explored here because of space limitation.

Actually the results of[13] can also be weakened to avoid this stability restriction as

discussed in a later paper.

4. Useful specializations and generalizations

In this section, a number of useful signal models and adaptive estimation

algorithms, which are specializations of the more general case discussed so far,

are now described. Convergence conditions for these cases are particularly simple

ones. We assume throughout this Section that the least squares parameter update

scheme (2.2) is employed.

An output error algorithm

Consider the signal model

Yk = ‘alyk–l–a2yk_2 ...— Ukyk_n + vk + bl v&l+ . . . bm v&~,

zk = ~k + ~k (vk zero mean and white)

or

y~ = %’xk, Zk = Yk+vk,
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An output error algorithm or parallel algorithm for this model akin to those of

[3, 5] and others is simply

jk = rl?;ik, ok = /?k_l + Pkik(z~ – o~_l ~~), P;l = P;?l +ihi;,

where, of course, ij = [jk–l ... jk–n vk– ~...uk–J. This is clearly a specialization
of the scheme of Section 2, and the feedforward system of Fig. 3.1, which is

required to be passive, simplifies as

W(z) = lZ– 6’[zZ– (~– G@’)]-l G = /t-l(Z)– ;~,

where A(z) = 1+al Z–l +... an z–n, and

F=

0000

In_l o 0 0

10000

0 0 Im_l o

A novel adaptive Kalman filter

Consider the state space signal model

, G=

–1

o

0

0

Xk+l = ftXk+ &fk, Zk = Cxk + ~k (scalar),

‘Ll[ukwk’)=[::1 ‘[3=0
with states ~k, noise driving terms uk, Wh,known parameters [A, B, C] but unknown

noise covariance matrices [Q, R, S]. Then the conditional minimum variance

one-step-ahead predictor has the structure indicated in Fig. 4.1(a) where

~(z) = C(ZI– A)-l and the steady state Kalman gain K is unknown. An alternative

structure is given in Figure 4.1(b) since ~(z) K = K~(z) (a scalar transfer function).

It is clear from Fig. 4.1 that only the second structure of Fig. 4.1(b) is suitable

to be made adaptive along the lines taken in Section 2. Figure 4.2 depicts such an

adaptive scheme. Notice that we have not in the first instance worked with the state

space signal model above or the signal model of Section 2 for that matter.

For the scheme of Fig. 4.2, the convergence condition that the feedforward

system of Fig. 3,1 be passive simplifies to requiring that

W(z) = ~1– L9’[zl– (F– GO’)]-l G
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be passive where

F=A, G=– C’, $’= K’.

For the case of vector measurements no longer is J?’(z) K = K’ W’(Z). However,

the appropriate re-organization is possible as illustrated in the following example.
Let

STATES ESTIMATES

KALMANGAIN

Zk

(a)

Zk
i

k/k-l, K

(b)

Fig. 4.1. Alternative structures of the Kalman one-step-ahead predictor.

PAf?AMETER

Zk
‘k/k-l, i

+zl-El- ‘kk-li
Fig. 4.2. Adaptive one-step-ahead predictor.
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for scalar Wij(z) and Kij. Now W(z) K = 6; W(z) for

x’(z) ==

0 W21(Z)

)722(2) o

0 W22(Z)

O K,t

o K21

0 K22

Here (?P is partially specified and a further re-arrangement allows use of the

alternative output equation $k = ~’k ‘k for

where

I,k =

0’= [l?ll X12I?21&2],

‘k.

Here 17tj denotes the operation corresponding to ]Oij(z). Clearly, identification of

O gives directly the Kalman gain. (More precisely, a least squares index for the

vector measurement case weighted by the innovations covariance or a sampled

asymptotic approximation to this gives the Kalman gain.) The complete details

are readily worked out,

We believe the scheme described above is the first description of a Kalman

filter with an adaptive Kalman gain where precise on-line convergence results

are given.

Extended least squares

Consider the signal model
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with vk zero mean and white. These equations can be re-expressed as zk = e’xk + vk
where

O’=[–al .,. an; bl... bmiccm], cm],

Xi = [.zk_~ . . . zk_n : ~&~ ,.. V~_m ; V~_l . . . vn_J

The extended least squares estimator is

and the feed forward

theory simplifies as

Again this is a specialization of the scheme of Section 2

system of Fig. 3.1 required to be passive by the convergence

W(z) = 3Z– d’[zl– (F– GO’)]-l G = C-l(z) – ~1,
--. =-..,.’ -.

where C(z) = 1 + c1z–l +.,. co Z-P,

F=

000 000

In_looooo

000000

0 oIm_looo

000000

oooop_lo

, G=

o

0

0

0

I1

0

Novel self-tuning predictor

It is almost trivial to convert a one-step-ahead Kalman filter into an N-step-

ahead predictor since with Xk+l = Fxk + Gwk, ~k~nlk = F~ i?klk. However, if only

an estimate of F, viz. f, is available from an adaptive Kalman filter, then there

may be considerable errors in calculating an approximate prediction using ~y and

there is considerable computational effort involved. An alternative approach to

adaptive prediction is given in [19]. This we build upon here to obtain a novel

predictor so that the convergence analysis for self-tuning filters can be applied

directly. In this way good convergence properties are assured.

Consider the predictor of Fig. (4.3) re-organized as the feedback structure of

Fig. 4.3(b). The feedforward sub-system can be viewed as an arrangement as in

Fig. 4.4 with a known linear dynamical system W and an unknown parameter
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matrix 0’. Self-tuning versions of these can be constructed but there is at present

no convergence analysis. Consider the non-minimal re-organization of Fig. 4.5(a)

with a known block W consisting of an N-delay and the block ~ and the unknown

parameters 6’. This re-organization can now be made adaptive as indicated in

Fig. 4.5(b) and it can be seen that such an adaptive prediction is a specialization

of the adaptive schemes of Section 2 with augmentation to achieve the desired

sub-optimal N-step-ahead prediction estimate z~+,ylk. The augmentations do not

Zk * N-STEP AHEAD
PREDICTOR ‘k+ N/k

(a)

I
.—. ———

I

Zk 1- N-STEP AHEAD I

I
-

PREDICTOR I
I N-DELAY I I
I——— ——. __ I

(b)
Fig. 4.3. Predictor re-organized as a feedback structure.

KNOWN

z~

‘k+ N/k,8

Fig. 4.4. N-step-ahead predictor conditioned on t?,

affect the convergence analysis. The derivations of the passivity conditions in terms

of the parameter 8 and W is straightforward.

Multivariable linear system identification

The schemes previously described under the heading “An output error algorithm”

and “Extended least squares” are for scalar output system identification. A

natural question to ask is to what extent can the ideas be extended to cover the
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multivariable case. Of course, one can immediately replace all the scalar parameters

Ui, bi, c1 by matrices Ai, Bi, Ci, and d is then a matrix rather than a vector. The

catch is that the models are not uniquely parametrized. There may be situations

where it is important to work with a uniquely parameterized model so that ok has

8’ 1, - %+48

(a)

;s
‘+~/’

z’

(b)

Fig. 4.5. (a) Conditional optimal predictor. (b) Self-tuning version of optimal predictor.

some significance and the difficulties sometimes associated with non-unique

parameterization are avoided. (One such difficulty is that the matrix P~ perhaps

approaches a singular but non-zero matrix giving numerical problems,)

Consider the uniquely parameterized model for Zk an m-vector

where ai are scalar and C’i matrices. In [20], least squares ideas have been applied
G
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by re-organizing this equation in terms of an unknown parameter vector ~ as

0’ = [C1C2 ,.. c,,]= [C1C2...cm]’,

Note that here Yk is a bilinear function of O and Xk (and Zi). The feedforward

system required to be passive by the convergence theory in this case is

w’(z) = c-l(z) – +1,

where C(z) = 1+ Cl z–l + Czz–z +... CX,z–~.

The adaptive estimation algorithms for estimating O require inefficient manipu-

lation of the sparse matrix ~h.

Here we present a novel formulation of the problem to achieve novel faster

algorithms without the need to manipulate sparse matrices. First note the

reorganization

Mild variations of the extended least squares derivations lead to the “recursions”

Observe that truly recursive calculations~ can be obtained by substituting for ok

to yield

‘t We are indebted to a student, Mr. T. H. Dinh, for this observation and the remarks to
follow.
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Of course we require that the inverses exist. From our simulation experience
we do not see this as a significant limitation. As an example of the computational
eficiency of these algorithms, for a fourth-order system with four outputs, the

number of multiplications required in these faster algorithms is reduced by a factor
of 13. There is a greater reduction with higher order systems.

5. Conclusions and discussions

1. The signal model and adaptive estimation schemes considered in the paper

have been shown to specialize to a number of useful estimation schemes such as

novel adaptive Kalman filters, novel adaptive predictors and novel adaptive

parameter identifiers in uniquely parameterized multivariable signal models, as

well as to the more familiar ARMA parameter identifiers and extended least

squares identification schemes. They can also be mildly modified to treat the model

reference identification schemes [4, 5] and the algorithms using instrumental

variables [9, 10].

2. The convergence conditions for parameter identification in the stochastic

case consist of some reasonable restrictions on the noise, noise-free convergence

conditions, and additional conditions which are but mildly more restrictive than

simply requiring that the matrix P~ (a coefficient matrix in the parameter update

equations) approaches zero as k + co. such restrictions are also required in the

alternative ordinary differential equation (C)DE) approach of [14], but in addition

[14] includes stability restrictions. The ODE approach of [14] appeals to theorems

which are not so simple in derivation as the martingale convergence theorem

referred to in this paper,

The noise-free convergence condition, noted above, is that a system directly

related to the signal model be passive (or positive real). That such a condition is

required was first observed in [5]. There is also evidence that the condition is a

necessary one [13, 14].

3. Continuous-time versions of the results in this paper are readily worked out.

There is very little variation required in the technique. ]t appears that the ideas of

[12-14] can also be extended to the continuous time case.

4. The less general estimation schemes of the earlier paper [II] are for very

closely related parameter update algorithms. The noise-free convergence conditions

in [11] are not as clear as in this paper and the convergence analysis of [11],

although using the martingale convergence approach, yields weaker convergence

resuits than in the present paper.
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5. The adaptive schemes of this paper can be applied to yield adaptive controller

designs for both minimum variance regulators and optimal state feedback

regulators.
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