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Multivariable Anti-Windup and Bunipless 'Iiansfer. A General Theory

P. J. Campoa M. Morari t C. N. Nett $

Abstract
A general theory is developed to addres the anti-windup/bumples
trander (AWBT) problem. Analysis results applicable to any linear
time invariant system subject to plant input limitations and substitu-
tions are presented. Quantitative performance objectives for AWET
compensation are outlined and several proposed AWBT methods are
evaluated in light of these objectives. A synthesis procedure which
highlights the performance trade-of for AWBT compensation de-
sign is outlined.

1 Introduction
Actuator saturation limits the input of all physical Vstems and in
many practical situation override or slector shemes are imple-
mented to use the available plant inputs to keep several outputs
within a specified range. This involves switching between any of sev-
eral linear controllers, each desgned to achieve different closedloop
characteristcs. Common practice is to deign the linear controller
(or controllers in the case of overrides) ignoring the effects of lmi-
tations and substitutions. Then "anti-windup" or "bumpless trans-
fer" (AWBT) compensation is added to the control system in order
to minimize the adverse effects of limitations and substitutions on
closed loop performance. The idea is that the control system perfor-
mance should "degrade gracefully" when the inevitable limitations
and substitutions occur. Given their practical importance, a wide
variety of problem specific AWBT techniques have been developed.
While many of theme schemes are succesful (at least in specific single-
input-single-output situations) they are largely intuitively based and
have little theoretical foundation.

In this paper we formalize these technique and advance a gen-
eral AWBT analysis and synthesis theory applicable to any linear
time invariant (LTI) system subject to plant input limitations and
substitutions. This theory is based on a minimum number of sim-
ple asumptions and provides a famework for the consideration of a
number of possible AWBT objectives.
A major void in the existing AWBT literature is a clea exposition

of the objectives (and associated engineering trade-offs) which lead
to "graceful performance degradation" in any reasonably general set-
ting. The absract framework we develop allows us to study most of
the proposed schemes in an effort to shed light on this isue.

2 Theoretical Framework
We consider the system shown in Figu 1, where P is an LTI in-
terconnection structure, K an LTI controller, and N a memoryles
nonlinearity which models the plant input limitation/substitution.
These limitations and substitutions cas the actual plant input, u',
to be different from the controller output, u. It is assumed that in
the absence of limitations or substitutions K stablizes P and pro-
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vides acceptable performance, ie., for N = I, the (weighted) clod
loop transer function firm exteral input, w, to cotrolled output,
e, is small in some sene (c.., H2,H¶ etc).
The interconnction structure of Fiure 1 provide a very gen-

eral framework for studying linear stms which incude feedback.
Indeed, any fedfComrd/feedback interconnection. of lnea system
dements can be brought into this form It is important to empha-
size that w repset all exogenous inputs (including commands,
disturbances, and senor noises), c includes a signals for which per-
formance specifications are provided (typically racking errors and
filtered actuator signals), and y repreent all sigals available to
the controller K (including enor outputs, c ds, and posibly
measurements of actuator positions).
The nonlearity N is included to acount for plant input lmit..

tions and substitutions and is asuml to be memoryln and conic
sector bounded. At this point we develop a number of generstal-
bility results based on conic sector approimations of N. In the next
section we will outline the development of theme appim ons for
a number of common limitation/substitution meanim.
The approach taken here orignated with the work of Zame in

the early 1980s (13]. The basic approah is to approximate the non-
linear system components with linea one and obtain norm bounds
on the error involved in this approximation. The linear sysm is
then studied subjet to nonlinear perturbations within the speified
norm bounds. If it can be shown that the linear sstem bas cer-
tain proPerties (c.g. stability) for all perturbations within the norm
bounds, then it i certain that the original nonlinea sym has thee
properties as well.
We will be cocerned with sipals -which remain finite for all finite

values of timet A mat cal chacterization of the set of such
functions is given by [4]
Definition 1 . is -the erteaded pac of vetor tvaed fncwim,
r(t), with the properly

1/2

ll(t)II_a Z'(t)z(t)dt <0 (1)

for all T > o.

The notion of a conic sector bounded nonlinearity is captured by

Definition 2 Gives N : £" -+ L2 and thc LTI operstors C and
R, N asaid to e inside Cone(C, R) if

I[N(z) - Cktjj7 IIRxlT (2)

for allT > 0 sad for all z E L2.
A conic sector provides an LTI approximation to the input-output

behavior of N. The cone center, C, provides an appraximate output,
Cr, for any input x. The cone radius, R, provides a measure of
the error inherent in this approimation. For example the SISO
saturation nonlinearity N: z(t) -+ st(z(t)) where

sat((t)) = { r(t) Ir(t)M 5 1
sign(z(t)) fr(t)I > I (3)

is insde Cone(', 4). The operator C; z(t) -. jz(t) is our linear
approximation to N, and R: z(t) -* jz(t) gives us a measure of the
error in this approximation (as much as 100% in this cae).

1706



Any representation of all nonlinearities in Cone(C, 1R) can be re-
placed by an quivalent representation in terms of all nonlinearities
in Cone(O, I). Specifically y = N(x) with N E Cone(C, R) if and
only if y = Cr + R(z) for some N E Cone(O, I). Thus the set of
all nonlinearities in Cone(C, R) can be replaced by the LTI blocks C
and R, and the set of all cone bounded nonlinearities in Cone(O, I).
This allows us to state all nonlinear stability results in terms of the
Cone(O, I) and thereby simplifies the notation.

Extracting the cone center and radius associated with N of Figure
1, we arrive at the feedback interconnection of Figure 2 where M is
an LTI operator with transfer function M(s) and A is a (possibly
nonlinear) block diagonal operator in the set A

A={_A A = diag(Ai. X An) Ai E Cone(O, I)} (4)

With these preliminaries we present the main stability result, a
version of the multiloop circle criterion (see for example [11]).

Theorem 1 The system in Figure 2 is stable for all A e if
1. M(a) is stable

2. infTEr IITMi1(s)T-1 1o <1

where

T _ {T I T =diagATi, Tn),TAT-' E A, VAEA} (5)

Since a simple parametrixation of the set T is not available, the
optimization problem implied in 2. is not tractable. We note however
that the set

T = {T I TE d T ECnx"} (6)
is characterized only by the structure of T. Specifically, T' con-
sists of all block diagonal constant matrices whose block structure
is compatible with A in the sense that for each diagonal block in
A the corresponding block in T' is diagonal, and for each full block
in A the corresponding block in T' is a scalar times identity. This
simplification motivates

CoroUary 1 The system in Figure * is stable for all A E A if

1. M(s) is stable

2. iDnfTEr; IITMuI(s)T-11'co < 1

This simplification is sigificant since a complete solution to 2. is
available from state space structured singular value theory [5]. In ad-
dition, this framework can be extended in a straightforward manner
to asss (nonlinear) robust stability with respect to uncertainties in
the linear plant model.

It should be noted that Theorem 1 provides only sufficient condi-
tions for nonlinear stability, unlike the necessary and sufficient con-
ditions provided by linear structured singular value theory. In addi-
tion, because these results guarantee stability for all nonlinearities in
the specified cone, the sufficient conditions may be very conservative
when tight conic sector bounds are not available.

3 Limitations and Substitutions as Cone
Bounded Nonlinear Operators

We model the effects of MIMO actuator saturations, u' = Nu, with
a diagonal operator defined by

N = diag(nl,..., n,,) (7)

where ns(u) = sat(ui).
A conic sector representation of this nonlinearity is provided by

C = II, R = 1I, and a diagonal nonlinear operatorA EA, where

Ai_{A J a=diag(6 ...,) 6scECone(0,1)} (8)

We note that the zero operator, u' = O(u) = 0 is contained in this
cone. This is required since in principle the elements of u could be ar-
bitrarily large while these of u' are bounded by +-. If from physical

'Here and throughout the paper we refer to L<< sability [4]. For L2. stable
system, inputs of bounded eane give rise to outputs of bounded ener.

arguments, the controller output can be assumed to be bounded (for
example, by bounding the magnitude of the exogenous inputs and
system initial conditions) then a tighter conic sector approximation
can be derived. An immediate consequence is that in order to guar-
antee global stability of the system of Figure I for all N E (4I, 4I)
we must have (when N = 0) P and K stable. More formally we have

Lemma 1 The system of Figure 1 is stable for all N E
Cone(41, 4I) only if

1. K stabilizes P.

2. P is stable.

3. K is stable.

Another common limitation/substitution mechanism arises from
the use of selectors to achieve multiple control objectives with the
available plant inputs (see e.g. [7] [81). In general the actual plant
input u', is choen from among the outputs of several parallel con-
trollers each providing different closed loop characteristics (corre-
sponding for example to different plant operating modes). In this

case K of Figure 1is ven byK= [ so thatu= [ and

at any time u'(t) = us(t) for some i=1, . . ., k, where k is the number
of parallel controllers. With no further assumptions on the switching
mechanism or signal u, we can obtain conic sector bounds for the case
k = 2. Specifically we have C = [4I. II,] , R = [21, - 'I,]
where n is the number of plant inputs. The obvious role of an AWBT
mechanism in this case is to insure that the controllers which are
'switched out", or off-line, are properly updated so that they are
ready to be "switched in" at any time.

Partitioning the exogenous input w a in =[w ] where r is an

externally supplied command, and d represents all other exogenous
disturbances and noises, and similarly the input to K as = [ r]
where y.. represents the measured plant outputs, and defining K
[I 0] we include the possibility of switching off all feedback control,
em i.e., u' = uk will correspond to manual operation with u' = r.
As in the case of saturations we state an obvious necessary condition
for stability when arbitrary substitutions can occur

Lemma 2 The system of Figure I witk K [ and N a selec-
_Kk J

ter such that V t 3 i E {1,. .., } such that u'(t) = us(t), is stable
only if K, stasbilizesP V i E{1,. ., k}.

This implies of course that P be stable in the case that a viahle
selector option is manual control.

4 A General AWBT Scheme
We now turn out attention to the development of a general AWBT
compensation scheme. We begin with Figure 1, introduce a minimal
realization for K as

K(s) = [-4C J (9)

and reiterate our assumption that K(s) provides acceptable nominal
performance (i.e., when N = I). We are interested in replacing this
implementation of K with one which exhibits graceful performance
degradation when limitations and substitutions occur. In order to
develop an alternate implerentation, we asume that s' can be rea-
sured or estimated. Estimation of u' requires a nonlinear model of
the limitation/substitution process, which may be simple to obtain
as in the case of a well defined actuator saturation, or nearly impos-
sible, as for selectors whose action depends upon events external to
the control system. The measured (or estimated) value of u' will be
denoted un,.
We now consider the generalized controller implementation of Fig-

ure 3. Here we have provided u, to the controller block and added
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an AWBT mechanism, A, which operates on information provided by
the controller, v, to generate an anti-windup action, z. The possbil-
ity of including non-trivial measurenment dynamics and measurement
noise associated with u,, is provided by the specification of P31 and
P32 of Figure 3. The cae that u' can be nmasured perfectly, i.e.,
Urn = u', corresponds to P31 = 0 (no noise) and P32 = I (no mea-
surement dynamics). In order to maitain complete generality, we
will provide the AWBT operator, A, with al information available
to the controller including its state, z, and al inputs. Partitioning
the AWBT action as z = jZ we allow it to act on the states of the

lZ2]
controller via z, and the output of the controller via z2. This gives
rise to the following realization

A B 0 I 0
C1000 1 x

K20 K22 00|0 where v = | (10)
[Z~~ ] = 0 0 1 00 lEi(0

O O O I O L Z2J
L0 0 0 0 I1

We define the AWBT operator A to be amisibk if it satifies the
following properties:

Al). A: v - z is linear and time invariant.

A2). u-ur0= fz=0 Vt.

The first condition simply requires that our AWBT compensation
can be realized as a linear system. While this may sem arbitrary,
mct prposed AWBT schemes satisfy this condition. Furthernre
if we are to consider nonlinear design problems, it makes little ses
to require the initial controler design, Kll, to be lnear. The scond
condition enforces the notion that we do not want the AWBT block,
A, to effect the nominal controller, K11, when there is no limitation or
substitution and our measurment of the plant input is not corrupted
by noise.

It is straightforward to determine that any admissible A must be a
memoryles linear transformation - equivalently a constant matrix
- which has a representation as

z [ v
A C -D I 0 -]v (11)

or, more simply
z [ A, (u, _ is) (12)

Combining the realization (10) and Equation (II) we arrive at Figure
4where e, Um-u. EveryA BTschemewhichsatesAl). and
A2). can be obtained by proper lection of A1 and A2 in Figure 4.
Incopating the AWBT block, A, into the controller we obtain

Figure 5 where explicit realizations for U and V are given by

=() [A-JC Hi ]

U =) [ A-HGC B-HAD]

(13)

(14)

with H1 = AI(I + A2)-1,H2 = (I + A2)-1. We require A2 $ -I
for well-posedness of the AWBT feedback loop, but A1 and A2 are
otherwise arbitrary constant matrices. With H2 = I selection of H1
can be interpreted as a "tracking mode" implementation as suggested
by Astram and Wittenmark [1].

Since the realization of K1l was assumed to be minimal, we can
arbitrarily assign the eigenvalues of A - H1C by proper selection of
HI. It should also be noted that in the case that A-1HC is stable,
U and V correspond to stable right coprime factors of K11. Indeed
it is easy to verify that Kil = V'1U. With the implementation of
Figure 5 we generate the V1 factor of Kl1 with feedback around
the nonlinearity N (via ur). Thus when u = u' = s,,,, Figure 5 is
equivalent to Figure 1.
The advantage of the implementation of Figure 5 is that we have

the degrees of freedom represented in HI and H2 with which to
improve the performance of the closed loop when limitations and
substitutions occur. The development of meaningful obJectives to
guide the selection of H1 and H2 is the subject of the next section.

5 Design Objectives for AWBT

5.1 Stabilization
Our primary concern must be that the system remain stable when
limitaions and substitutions occur. Although necesary and suf-

ficient condition for nonlinear stability are not available, we can

apply the sufficient conditions of Section 2 to obtain an AWBT com-

pensated system which is guaranteed to be stable. In general we
will be interested in selecting H1 and H2 to satisfy the conditions of
Corollary 1. Usually the the zero operator will be included in the
sector description of N. In this case we have the necessary condition
(Lemma 1) that HI must stabilie A - H1C.

5.2 State Positioning

Beyond stabilization we require that the AWBT compensated sys-
tem should avoid windup and excesive transients when limitatios
and substitutions occur. In geeral, windup results in the implemen
tation of Figur because the controller state are not correctly up-

dated when u' $0 u (i.e., for agiven controler input the controller
states, z, achieve values different than they would in the absence of a
limitation or substitution). This improper state update results in in-
correct controller outputs. In the case of limitations this often cause

the system to remain in saturation too long resulting in the output

overshoot characteristic of windup. In the case of substitutions, in-
correct controller states cause undesirable transients (bumps) when

the substitution is removed. It is immediately clear fiom this discus-
sion why controllers with fast dynamics (and in particular satic, or

proportional, controllers) do not exhibit windup problems.
There are two basic mechanisms by which the AWBT compen-

sated "stem (Figure 5) can minimize the sate positioning problem.
First, if the correct state update under limitation or substitution
is known, for example if K is an observer based compensator, this
update procedure can be applied whenever um, $ u.

If the "correct" update procedure is unknown, for example if K
is provided in transfer function form, the AWBT compensaed con-

troller, [U I - V] should be made (nealy) memorylea so that the
effects of incorrect states will be minimized. By nearly memorylem
we mean that the dynamics of [U I- V] should be fast relative to

the closed loop dynamics. This can be achieved by slecting HI so

that the pols ofA - HIC are far in the left half plane. This implies
that HI should be large.

5.3 Noise Sensitivty
Another concern in the AWBT design is that meaure_mt noise
associated with u% should not have a significant effect on nominal
(N = I) performance. (Since the implementation of Figure 1 does
not use ,, its performance is not affected by these measurement

noises). To clarify the effect of this measurement noise, n, we con-

sider a special case of Figure 5 with w = n, N = I, P11 = P21 = 0 (we
assume n does not affect c or y directly), and P31 = I. Evaluating
the transfer function from n to c we find

T.. = P12[l - UP2 - (I - V)P]-'(I - V)P31 (15)

In order to minimize the effect of measurement noise on the nominal
clod loop we require f(T.(jw)) to be small for frequencies at which
the noise n is significant. This objective requires that HI and H2
be chosen such that V t I in this range of freuencies. (This would
be the case for HI -- 0 and H2 -* I). Note that this objective is in
conflict with making the dynamics of [U I- V] fast.

5.4 Directional Sensitivi
A final objective, originally pointed out by Doyle ct al. [6), is that
the AWBT compensated system should provide robust performance
with respect to diagonal input uncertainty. For MIMO systems, a
saturation nonlinearity can cause the direction of the actual plant in-
put u', to be different from the controller output, Us. It is well known
that some systems can be very sensitive to diagonal perturbations
which change the direction of the plant input. We can evaluate ro-

bust performance of the AWBT compensated system by computing
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PD _ where w is the waling which provides

T,E| OTB ][ d2 2 ][ Ti-I|
T2 = t2I,

(16)
and M(s) is obtained by rearranging Figure 5 to that arrive at Figure
2.
As defined PD is an upper bound on 1jT,inLL,.1,,- of Figure 5 for

all N E Cone(C, R). If the saturation nonlinearity bounds include
the zero operator then we cannot expect worst cas nonlinear per-
formance to be any better than open loop performance (for which
ITe,wIIL,n-L. = IIP1110o).

It may be that no HI and H2 exist for which pD is acceptable. In
this case, a simple nonlnear modification to the AWBT compensated
system (in the spirit ofMAW of [6]) has been shown to improve per-
formance [2]. The controller output, u, is operated on by S defined
by

S(U) = { u lIuIk>l (17)

This additional block scales the controller output, without affect-
ing its direction, so that its largest element has magnitude one.
The saturation wil have no effect on S(u) since by construction
IIS(u)I1.. < 1. This effectively replaces the diagonal saturation op-
erator with a scaler times identity operator in the same cone.

Robust performance with respect to the scalar times identity per-
turbation can be evaluated with Ps * where f is such that

Ilk"', K MI M12 2T' 0 1 -
T, ECXU 111x

° T2 $[M21 fM^22 07[ ' 1107
T2 = t2In

(18)
In general ps S AD since the set over which 2, varies is smaller in
(16) than in (18) (i.e. 7' C Cnxn)

6 Proposed AWBT Schemes in the Gen-
eral Framework

6.1 Observer Based Compensator
We first consider observer based compensator (OBC) designs. The
controller states in these designs have a physical interpretation as
estimates of the states of the plant. This special structure makes
clear the design of an AWBT mechanism which insures that the
controller state assume their correct values (namely estimate of the
plant states) regardss of plant input limitations and substitutions.

If the controller has aces to the fui plant state, i.e., y = [p
then K will be a static state feedbackl. Since the controller is mem-
oryke it has no state to "windup" (or attain "incorrect values")
when limitations or substitutiom occur. If K is such that the condi-
tions of Corollary I are satisfied aad D is acceptable, then no AWBT
compensation is required. If pD is excesive but Asis acceptable then
the simple directionality compensation (17) is sufficient.

In the case that the full state is not available, an obrver is con-
structed to spply sate estimates which are used to provide feed-

back. Defining w= f] and ]= , we introduce a realization
of the interconnection structure P of Figure 1:

Ap B,p B2p B3P

P(s) = Cip blip D12P D13P
0 1 0 o°

LC3P D31P D32P 0 J

(19)

Implicit in this realization is the assumption that r is not corrupted
by noise and that P3 is strictly proper. The corresponding observer
based compensator is of the form:

(20)

where L the observer gain and F is the state feedback gain. The
observer error, eb, _ - i, can be shown to obey the relation
(when there is no model error)

i4b, = (Ap - LC3p)e + (B2P - LD32P)d + B3p(u' - u) (21)

The last term driving the estimator error results from plant input
lirnitations and substitutions. We see that limnitations and substitu-
tions result in an incorrect state update in the controller resulting in
a poor estimate of the true plant state. This windup effect is clearly
observed in practice and simulation for OBC controllers implemented
in this form.

If instead of using the controller output to drive the state esti-
mator, as is implicit in the realization (20), we use the measured
or estimated value of the plant input (as would be the case for an
extended Kalman filter implementation utilizing a nonlinear model
of N) we obtain a realization corresponding to Figure 5 of

[U(s) I-V(S)l = Ap - LC3p Bip - L1),,p L B3p (22)

This is equivalent to the general AWBT implementation of Figure 5
when HI _ B3,p and H2 _ I. To see this define

A = Ap -LC3p + B3pF
B = [Blp-LD31p L]
C= F
D = [0 0]

corresponding to the realization of K in (20), and substitute
A,B,C,D, and H, = Bap,H2 = I into equations (13) and (14)
to arrive at (22). With this implementation the observer error obeys

io41 = (Ap - LC,p)e + (B2- LD32p)d+ B3p(u'- un) (23)

If the measurement of the plant input is exact (u' = u",), the ob-
server error is not affected by limitations or substitutions. With this
implementation the observer state (and hence the controller states)
remain correct and we do not see state positioning problems when
limitations or substitutions occur.
The nonlinear stability, noise sesitivity, and directional sensitiv-

ity of this schene are determined solely be the initial observer and
state feedbacl designs. If these issues are not considered in the nom-
inal linear design, we have no guarantee that simply employing the
explicit observer implementation wil provide adequate performance
when imitations and substitutiom occur.

6.2 Hanus' Conditioned Controller
We next consider an AWBT technique proposed by [anus [9] appli-

cable whenw= [d ,Y = [r] and KI K2] = [ D D2
In Hanns' scheme a "realizable reference", rr, is used in the con-
troller state equation in place of r when u, # u. This 'realizable
reference" is the the reference signal that would make u,,, = u if
applied to the controller state and output equations in place of r.
As Hanus points out, such a back calculation is unnecesary since it
is equivalent to implementation of a "conditioned controller" which
has the ralization

A24-B D C |0 B2 -B0, D2 BD ] r

U I i 0i B,BDjH1,y
(24)

We note immnediately that stability for N = 0 implies that A -

BID7'C must be stable (Lemma 1) which in turn implies that

Kl=A=[ ] must be mnimum phae. This is generally not

restrictive for 2-degree-of-freedom (2 DOF) designs since making K,
non-minimum phase introduces non-minimum phase characteristics
in T,, which are not required for stabilization, and is therefore always
undesirable. It can, however, be restrictive for 1-degree-of-freedom
(or error feedback) controllers for which K, = -K2.
An additional limitation of this technique is the requirement that
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a left inverse of D1 must exist. This implies that D1 must have full
column rank which precludes application to control designs in which
KJ is strictly proper.
Erom the realization of the "conditioned controller" (24) we see

that this implementation corresponds to the choice, H1 = BID-'
H2 = I in the general AWBT formulation (Equations (13) and (14)).
Furthermore this choice makes the states of the controller uncontrol-
lable from r (and m as well in the 1 DOF case). This has the
advantage that slow modes in the controller are not driven by r (and
yin for 1 DOF controllers) and therefore do not windup. However,
if K1 $ -K2 and the conditioned controller contains slow poles
(eigenvalues of A - B1DT1C near the jw axis) we may expect to
see poor anti-windup performance. Furthermore if BDf1 is large
and A - B1Dj 1C is fast, we can expect that IIT..JIJk will be large
at high frequencies and that measurement noise associated with um
will negatively impact nominal performance.

6.3 Internal Model Control
The internal model control (IMC) structure [10] has been suggesd
as a way of implementing controllers in order to avoid AWBT prob-
lems for open loop stable system. Although IMC was not devel-
oped as an AWBT method, two equivalnt scheme, proposed in the
CHANCE project [3] and by Irving, have been introduced specifically
to achieve AWBT. In the IMC franework, the "classical controller'
(K of Figure 1) is given by

K=-(I-QO)-'Q (25)
where Q is the IMC controller and 0 is a model of the plant. Note
that stability of Q is necery and sufficient for K to stabilize 0.
Introducing relizatos of G and Q

CeQD C DG;
we compute a realzation for K using (25)

AQ BQCG BQ
K(s) = BGCQ A + BGDQCG BGDQR

L -CQ -DQCQ -Dg
The IMC implementation corresponds to Figure 5 with U = [Q -

Q], V = I-QG,e=r-,,,

W = [ r i and P(s)[V 1GUM L 0 0 i]

In terms of the realisations for 0 and Q we have

BQ Aq~ A0C
U(J) = [ |< 2-D°]V(s)= [ A B BG ]D<?-DQ Cq -DqCq I

With these realizations it can be verified $hat tIeMC structure

implemnentation of K corresponds to HI = [ j ,H2 = I in the

general AWBT formulation. We see from the realization of V(s) that
if the open loop plant has dynamics much slower than the cloed loop
dynamics, windup (in these sens of state positioning errors) will
occur. The distinguishing feature of IMC is that, for any stabilizing
K, M(s) of Figure 2 is stable and Mul(s) is identically zero. Thus
the conditions of Corollary 1 are satisfied trivially. In the absence of
plant model mismatch, implementation in the IMC structure yields
a stable closed loop for ans N.

For the IMC implementation we have (with N = I and no model
error)

T,_= -GQG (26)
If the plant rolls off sufficiently fast or the noise, n, is not sipifi-
cant inside the closed loop bandwidth, the effect of n on e should
be modest. There are no inherent properties of IMC which provide
robustness with respect to diagonal input uncertainty. Design guide-
lines for the initial linear controller design (Q or K) to provide good
robustness with respect to this uncertainty can be found in [12].

6.4 High Gain Conventional Anti-windup

The final AWBT technique we will examine is referred to as high
gain conventional anti-windup (CAW). High gain CAW is applicable
to one degree of fieedom error feedback structures. The AWBT
action is provided by feeding u,,- u back through a high gain, X,
to the controller input, c, as shown in Figure 6. Typically X = aI
with a > 1. Rearrangng Figure 6 to the standard AWBT diagram

[d [um ]
U = [I+KX]-K, and V = fI+KX]-l. In ternu of the realization
of K, (9), we have

A - BXII+ DX]-IC I B[I+ DXJD]-' "U(s) = [A xI+ X lcI1DX '] (27)

V(S) = [A -XI+DX]-IC IXI+DBX]-D1X ] (28)

This is equivalent to A1 = BX and A2 = DX in Fiure 4 (or H1 =
BX[I+DX-' , H2 = (I+DX]- ). Thus high gain CAW can be sen
to be a special e of the general AWBT compensation formulation.
Rather than acting on the controller states and outputs, the AWBT
action, z, acts on the controler input.
With X large and D invertible it is easy to see that the poles of

U and V approach the zeros of K (the eigenvalues of A - BX[I +
DX]'-C approach the eigenvalues of A - BEDC). Thuis for non-
minimum phase controllers this scheme will not resut in stable U
and V. If the zero operator is included in the conic sector description
of N this precludes satisfaction of the conditions of Corollary 1.

It is also clear that for X large and D non-zero, U m 0 and V X 0
so that from (15) we see that measurement noise asciated with t,,,
will not be attenuated unles &(P12P31(jw)) is small in the frequency
range where n is significant.
7 An Approach to Synthesis
Eah of the proposed AWBT schemes reviewed in Section 6 consid-
er only a subset of the AWBT objectis of Section S. The analysis
tools and quantitative performance objective presented suggest an

approach to the synthesis problem which recognizes all of thes ob-
jectves.
The basis for the design of H1 and H2 (and therefore an admis-

sible AWBT scheme) are:

1. M(s) must be stable.

2. infTET' ITMiI(s)Th1jI < 1.

3. ilfH,,P2AD

4. Re{JA(A-HC)1 < 0.

Objectives 1. and 2. corrspond to the conditions of CoroUary 1
(stabiization), 3. encompae the directionality and (by including
measurement noise, n, in w) noise sensitivity objectives, and 4. in-
sue that the poles of U and V are fast so that state Positioning
errors are mriinimized.
In the general case considering L.-3. simultaneously amounts to

a p-optimal (or H°°) static controlle design subject to a p or H'
constraint. Solution to such a problem are not at hand.
A topic of current resach is to examine hmiting cae lutions

and to use the analysis tests available for each objective to obtain
insight into the performance trade-oh involved in the selection of
H1 and H2. This insight should allow us to formulate simplified
performance objectives which are more amenable to the available
synthesis techniques, while preserving the esence of the original ob-
jectives. For example it seems feasible to select HI and H2 neglecting
the directionality issue and use a simple (if ad hoc) nonlinearity (20)
to deal with the directionality problem.
An additional area of interest is to obtain an understanding of the

impact of the initial design of K on achievable AWBT performance.
In certain situations we may need to modi (detune) the initial de-
sign in order to guarantee nonlinear stability and provide acceptable
AWBT performance.
8 Conclusions
We have developed a general theoretical framework for studying the
performance of control systems subject to plant input limitations and
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substitutions. This includes the development of analysis tools appli-
cable to a broad cla of limitation and substitution mechanisms.
Quantitative performance objectives, applicable in the general case,
which result in graceful performance degradation of the nominally
linear system are presented. These objectives and analysis tools lead
to the development of a general synthesis problem which is the sub-
ject of on-going research.
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Figure 2: The general analysis structure.

Figume 3: The AWBT structure.

Figure 4: The AWBT sucture simplifiecL
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Figur 5: The general AYVBT formuxlation.

Figue 1: The general interconnection strutue.
Figure 6: High Gain CAW.
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