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Multivariable Anti-Windup and Bumpless Transfer: A General Theory

P. J. Campo *

Abstract

A general theory is developed to address the anti-windup/bumpless
transfer (AWBT) problem. Analysis results applicable to any linear
time invariant system subject to plant input limitations and substitu-
tions are presented. Quantitative performance objectives for AWBT
compensation are outlined and several proposed AWBT methods are
evaluated in light of these objectives. A synthesis procedure which
highlights the performance trade-offs for AWBT compensation de-
sign is outlined.

1 Introduction

Actuator saturation limits the input of all physical systems and in
many practical situations override or selector schemes are imple-
mented to use the available plant inputs to keep several outputs
within a specified range. This involves switching between any of sev-
eral linear controllers, each designed to achieve different closed-loop
characteristics. Commeon practice is to design the linear controlier
(or controllers in the case of overrides) ignoring the effects of limi-
tations and substitutions. Then “anti-windup” or “bumpless trans-
fer” (AWBT) compensation is added to the control system in order
to minimize the adverse effects of limitations and substitutions on
closed loop performance. The idea is that the control system perfor-
mance should “degrade gracefully” when the inevitable limitations
and substitutions occur. Given their practical importance, a wide
variety of problem specific AWBT techniques have been developed.
While many of these schemes are successful (at least in specific single-
input-single-output situations) they are largely intuitively based and
have little theoretical foundation.

In this paper we formalize these techniques and advance a gen-
eral AWBT analysis and synthesis theory applicable to any linear
time invariant (LTI) system subject to plant input limitations and
substitutions. This theory is based on a minimum number of sim-
ple assumptions and provides a framework for the consideration of a
number of possible AWBT objectives.

A major void in the existing AWBT literature is a clear exposition
of the objectives (and associated engineering trade-offs) which lead
to “graceful performance degradation” in any reasonably general set-
ting. The abstract framework we develop allows us to study most of
the proposed schemnes in an effort to shed light on this issue.

2 Theoretical Framework

We consider the system shown in Figure 1, where P is an LTI in-
terconnection structure, KX an LTI controller, and N a memoryless
nonlinearity which models the plant input limitation/substitution.
These limitations and substitutions cause the actual plant input, u’,
to be different from the controller output, u. It is assumed that in
the absence of limitations or substitutions K stabilizes P and pro-
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vides acceptable performance, i.c., for N = I, the (weighted) closed
loop transfer function from external input, w, to controlled cutput,
e, is small in some sense (e.g., H2, H™, etc).

The interconnection structure of Figure 1 provides a very gen-
eral framework for studying linear systems which include feedback.
Indeed, any feedforward/feedback interconnection of linear system
elements can be brought into this form. It is important to empha-
size that w represents all exogenous inputs (including commands,
disturbances, and sensor noises), ¢ includes all signals for which per-
formance specifications are provided (typically tracking errors and
filtered actustor signals), and y represents all signals available to
the controller K (including sensor outputs, commands, and possibly
measurements of actuator positions).

The nonlinearity N is included to account for plant input limita-
tions and substitutions and is assumed to be memoryless and conic
sector bounded. At this point we develop a number of general sta-
bility results based on conic sector approximations of N. In the next
section we will outline the development of these approximations for
a number of common limitation/subetitution mechanisms.

The approach taken here originated with the work of Zames in
the early 1960s [13]. The basic approach is to approximate the non-
linear system components with linear ones and obtain norm bounds
on the error involved in this approximation. The linear system is
then studied subject to nonlinear perturbations within the specified
norm bounds. If it can be shown that the linear system has cer-
tain properties (e.g. stability) for all perturbations within the norm
bounds, then it is certain that the original nonlinear system has these

properties as well.

‘We will be concerned with signals which remain finite for all finite
values of time. A mathematical characterization of the set of such
functions is given by [4]

Definition 1 Ly, is the eztended space of vecior valued functions,
z(t), with the property

r 1/2
=@z = [ /o ='(t)=(t)a] <o 1)

foraliT > 0.

The notion of a conic sector bounded nonlinearity is captured by

Definition 2 Gives N : Ly, — Lj, and the LTI operstors C and
R, N is said 10 be inside Cone(C, R) if

IIN(z) - Cziir < [|Rzlir
Jor allT > 0 and for all z € L,,.

A conic sector provides an LTI approximation to the input-output
behavior of N. The cone center, C, provides an approximate output,
Cz, for any input . The cone radius, R, provides a measure of
the error inherent in this approximation. For example the SISO
saturation nonlinearity N : z(t) — sat(z(t)) where

z(t 1
etz ) = { igni) S 1 @

is inside Cone(},1). The operator C : z(t) — %2(t)is our linear
a.ppronma.hon to N, and R: z(t) — $z(t) gives us a measure of the
error in this approximation (as much as 100% in this case).

&)



Any representation of all nonlinearities in Cone(C, R) can be re-
placed by an equivalent representation in terms of all nonlinearities
in Cone(0,I). Specifically y = N(z) with N € Cone(C, R) if and
only if y = Cz + RN(z) for some N € Cone(0,I). Thus the set of
all nonlinearities in Cone(C, R) can be replaced by the LTI blocks C'
and R, and the set of all cone bounded nonlinearities in Cone(0, I).
This allows us to state all nonlinear stability results in terms of the
Cone(0,I) and thereby simplifies the notation.

Extracting the cone center and radius associated with N of Figure
1, we arrive at the feedback interconnection of Figure 2 where M is
an LTI operator with transfer function M(s) and A is a (possibly
nonlinear) block diagonal operator in the set A

A ={A]| A=diag(Ar,...,8,) A; € Cone(0,1)} (4)

With these preliminaries we present the main stability result, a
version of the multiloop circle criterion (see for example [11]).

Theorem 1 The system in Figure 2 is stable* for all A € A if
1. M(s) is stable

2 infrer ”TM]](I)T'IHGQ <1
where

T ={T|T = diag(Ty,...,T»), TAT"' € A, VA€ A} (5
Since a simple parametrization of the set 7 is not available, the
optimization problem implied in 2. is not tractable. We note however

that the set
T'={T|TeTadTeC™"} (6)

is characterized only by the structure of T. Specifically, 7’ con-
sists of all block diagonal constant matrices whose block structure
is compatible with A in the sense that for each diagonal block in
A the corresponding block in 7" is diagonal, and for each full block
in A the corresponding block in 77 is a scalar times identity. This
simplification motivates

Corollary 1 The system in Figure 2 is stable for all A € A if
1. M(s) is stable
2, inf‘refl “TMU(J)T-IHm <1

This simplification is significant since a complete solution to 2. is
available from state space structured singular value theory (5]. In ad-
dition, this framework can be extended in a straightforward manner
to assess (nonlinear) robust stability with respect to uncertainties in
the linear plant model.

It should be noted that Theorem 1 provides only sufficient condi-
tions for nonlinear stability, unlike the necessary and sufficient con-
ditions provided by linear structured singular value theory. In addi-
tion, because these results guarantee stability for all nonlinearities in
the specified cone, the sufficient conditions may be very conservative
when tight conic sector bounds are not available.

3 Limitations and Substitutions as Cone
Bounded Nonlinear Operators

We mode] the effects of MIMO actuator saturations, u' = Nu, with
a diagonal operator defined by

N = diag(ny,...,na) ™

where n;(u) = sat(y;).
A conic sector representation of this nonlinearity is provided by
C =1I,R =11, and a diagonal nonlinear operator A € A, where

(®)

We note that the zero operator, ¥’ = 0(u) = 0 is contained in this
cone. This is required since in principle the elements of u could be ar-
bitrarily large while those of «' are bounded by +1. If from physical

1Here and throughout the paper we refer to Ly, stability {4). For La. stable
systems, inputs of bounded energy give rise to outputs of bounded energy.

A={A]A=diag(6;,...8,) & € Cone(0,1)}
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arguments, the controller cutput can be assumed to be bounded (for
example, by bounding the magnitude of the exogenous inputs and
system initial conditions) then a tighter conic sector approximation
can be derived. An immediate consequence is that in order to guar-
antee global stability of the system of Figure 1 for all N € (}31,31)
we must have (when N = 0) P and K stable. More formally we have

Lemma 1 The system of Figure 1 is stable for all N €
Cone(}1,11) only if

1. K stabilizes P.

8. P is stable.

3. K is stable.

Another common limitation/substitution mechanism arises from
the use of selectors to achieve multiple control objectives with the
available plant inputs (see e.g. {7] [8]). In general the actual plant
input ', is chosen from among the outputs of several parallel con-
trollers each providing different closed loop characteristics (corre-
sponding for example to different plant operating modes). In this

K; U

case K of Figure 1 is given by K = so that u = and
K Ur

at any time u'(2) = u;(t) for some i = 1, ..., k, where k is the number

of parallel controllers. With no further assumptions on the switching
mechanism or signal u, we can obtain conic sector bounds for the case
k = 2. Specifically we have C = [%I,. %I,.] ,R= [%I,. - %I,‘]
where n is the number of plant inputs. The obvious role of an AWBT
mechanism in this case is to insure that the controllers which are
“switched out”, or off-line, are properly updated so that they are
ready to be “switched in” at any time.

Partitioning the exogenous input w as w = [;] where r is an

r

externally supplied command, and d represents all other exogenous
disturbances and noises, and similarly the input to K as y = [g

where y,, represents the measured plant outputs, and defining K; =
{I 0] we include the possibility of switching off all feedback control,
em i.e., ' = ux will correspond to manual operation with o' = r.
As in the case of saturations we state an obvious necessary condition
for stability when arbitrary substitutions can occur

K
Lemma 2 The system of Figure 1 with K = I: :
Ky
tor such that V t 3 i € {1,...,k} such that w'(t) = w;(t), is stable
only if K; stabilizes PV i€ {1,..., k).

and N a selec-

This implies of course that P be stable in the case that a viable
selector option is manual control.

4 A General AWBT Scheme

We now turn out attention to the development of a general AWBT
compensation scheme. We begin with Figure 1, introduce a minimal

realization for K as
ko = [55] ®)

and reiterate our assumption that K(s) provides acceptable nominal
performance (i.c., when N = I). We are interested in replacing this
implementation of K with one which exhibits graceful performance
degradation when limitations and substitutions occur. In order to
develop an alternate implementation, we assume that u’ can be mea-
sured or estimated. Estimation of u’ requires a nonlinear model of
the limitation/substitution process, which may be simple to obtain
as in the case of a well defined actuator saturation, or nearly impos-
sible, as for selectors whose action depends upon events external to
the control system. The measured (or estimated) value of u’ will be
denoted u,,.

We now consider the generalized controller implementation of Fig-
ure 3. Here we have provided up, to the controller block and added



an AWBT mechanism, A, which operates on information provided by
the controller, v, to generate an anti-windup action, z. The poesibil-
ity of including non-trivial measurement dynamics and measurement
noise associated with u,, is provided by the specification of Ps; and
P33 of Figure 3. The case that u/ can be measured perfectly, i.c.,
um = o, corresponds to P3; = 0 (no noise) and Ps2 = I (no mea-
surement dynamics). In order to maintain complete generality, we
will provide the AWBT operator, A, with all information available
to the controller including its state, z, and all inputs. Partitioning

the AWBT actionas z = :; we allow it to act on the states of the
controller via z; and the output of the controller via 2;. This gives
rise to the following realization

z
Ku K"]: where v= u!,’,. (10)
Kz Kn 2

22

We define the AWBT operator A to be admissible if it satisfies the
following properties:

Al). A:v — z is linear and time invariant.
A2). u—up=0=>2=0 V1.

The first condition simply requires that our AWBT compensation
can be realized as a linear system. While this may seem arbitrary,
most proposed AWBT schemes satisfy this condition. Furthermore
if we are to consider nonlinear design problems, it makes little sense
to require the initial controller design, K1, to be linear. The second
condition enforces the notion that we do not want the AWBT block,
A, to effect the nominal controller, K1, when there is no limitationor
substitution and our measurement of the plant input is not corrupted
by noise.

It is straightforward to determine that any admissible A must be a
memoryless linear transformation — equivalently a constant matrix
— which has a representation as

z=Au=H;][—c D10 -Ilv ()

or, more simply
= [ 2; ](um—u) (12)

Combining the realization (10) and Equation (11) we arrive at Figure
4 where e, = u,, —u. Every AWBT scheme which satisfies A1). and
A2). can be obtained by proper selection of A; and A, in Figure 4.
Incorporating the AWBT block, A, into the controller we obtain
Figure 5 where explicit realizations for U and V are given by

V(s) = :A;{:’C‘C Z;] (13)
U@) = .A;fcic Bl}fg”] (14)

with Hy = Ai(I + Az)~Y, Hz = (I + A2)~'. We require A; # -1
for well-posedness of the AWBT feedback loop, but A; and Az are
otherwise arbitrary constant matrices. With H; = I selection of H;
can be interpreted as a “tracking mode” implementation as suggested
by Astrdm and Wittenmark [1}.

Since the realization of K;; was assumed to be minimal, we can
arbitrarily assign the eigenvalues of A — H,C by proper selection of
H;. It should also be noted that in the case that A — H,C is stable,
U and V correspond to stable right coprime factors of K1;. Indeed
it is easy to verify that K13 = V~'U. With the implementation of
Figure 5 we generate the V! factor of K;; with feedback around
the nonlinearity N (via um). Thus when u = v’ = u,,, Figure 5 is
equivalent to Figure 1.

The advantage of the implementation of Figure 5 is that we have
the degrees of freedom represented in H; and Ha with which to
improve the performance of the closed loop when limitations and
substitutions occur. The development of meaningful objectives to
guide the selection of H; and H3 is the subject of the next section.
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5 Design Objectives for AWBT
5.1 Stabilization

Our primary concern must be that the system remain stable when
limitations and substitutions occur. Although necessary and suf-
ficient conditions for nonlinear stability are not available, we can
apply the sufficient conditions of Section 2 to obtain an AWBT com-
pensated system which is guaranteed to be stable. In general we
will be interested in selecting H; and Hj to satisfy the conditions of
Corollary 1. Usually the the zero operator will be included in the
sector description of N. In this case we have the necessary condition
(Lemma 1) that H; must stabilize A — H;C.

5.2 State Positioning

Beyond stabilisation we require that the AWBT compensated sys-
tem should avoid windup and excessive transients when limitations
and substitutions occur. In general, windup results in the implemen-
tation of Figure 1 because the controller states are not correctly up-
dated when u’ # u (i.e., for a given controller input y, the controller
states, z, achieve values different than they would in the abeence of a
limitation or substitution). This improper state update results in in-
correct controller outputs. In the case of limitations this often causes
the system to remain in saturation too long resulting in the output
overshoot characteristic of windup. In the case of substitutions, in-
correct controller states cause undesirable transients (bumps) when
the substitution is removed. It is immediately clear from this discus-
sion why controllers with fast dynamics (and in particular static, or
proportional, controllers) do not exhibit windup problems.

There are two basic mechanisms by which the AWBT compen-
sated system (Figure 5) can minimize the state positioning problem.
First, if the correct state update under limitation or substitution
is known, for example if K is an observer based compensator, this
update procedure can be applied whenever um # u.

If the “correct” update procedure is unknown, for example if K
is provided in transfer function form, the AWBT compensated con-
trolter, [U I — V] should be made (nearly) memoryless so that the
effects of incorrect states will be minimized. By nearly memoryless
we mean that the dynamics of [U I — V] should be fast relative to
the closed loop dynamics. This can be achieved by selecting H; so
that the poles of A — H,C are far in the left half plane. This implies
that H, should be large.

5.3 Noise Sensitivity

Another concern in the AWBT design is that measurement noise
associated with u,, should not have a significant effect on nominal
(N = I) performance. (Since the implementation of Figure 1 does
not use u,, its performance is not affected by these measurement
noises). To clarify the effect of this measurement noise, n, we con-
sider a special case of Figure 5 withw =n, N = I, Pj; = P3; = 0(we
assume n does not affect ¢ or y directly), and P3; = I. Evaluating
the transfer function from n to ¢ we find

Ten = Pia[l ~UPsa ~ (I = V)Psa]~Y(I - V) Py, (15)
In order to minimize the effect of measurement noise on the nominal
closed loop we require #(7,,(jw)) to be small for frequencies at which
the noise n is significant. This objective requires that H, and H;
be chosen such that V ~ I in this range of frequencies. (This would
be the case for H) — 0 and H; — I). Note that this objective is in
conflict with making the dynamics of [U I — V) fast.

5.4 Directional Sensitivity

A final objective, originally pointed out by Doyle et al. [6}, is that
the AWBT compensated system should provide robust performance
with respect to diagonal input uncertainty. For MIMO systems, a
saturation nonlinearity can cause the direction of the actual plant in-
put v, to be different from the controller output, u. It is well known
that some systems can be very sensitive to diagonal perturbations
which change the direction of the plant input. We can evaluate ro-
bust performance of the AWBT compensated system by computing




T 0
0N

My,
BM2

M2

Bp = i‘ where ﬂ is the scallng which prohdes
] =1
BMa T;l -

w2 5 21 1§

Ty =tal,
and M(s) is obtained by rearranging Figure 5 to that arrive at Figure
2.

As defined pp is an upper bound on ||[Tew|jz,,-z,. of Figure 5 for
all N € Cone(C, R). If the saturation nonlinearity bounds include
the zero operator then we cannot expect worst case nonlinear per-
formance to be any better than open loop performance (for which
Tewaeza. = [1Pis]fo).

It may be that no H; and H; exist for which up is acceptable. In
this case, a simple nonlinear modification to the AWBT compensated
gystem (in the spirit of MAW of [6]) has been shown to improve per-
formance {2]. The controller output, u, is operated on by S defined
by

v ulle <1

Stw) = { e e >1 (1)

This additional block scales the controller output, without affect-

ing its direction, so that its largest element has magnitude one.

The saturation will have no effect on S(u) since by construction

lIS(u)llc < 1. This effectively replaces the diagonal saturation op-
erator with a scalar times identity operator in the same cone.

Robust performance with respect to the scalar times identity per-
turbation can be evaluated with us = i where 8 is such that

Il 1% =

(18)
In general us < pp since the set over which T; varies is smaller in
(16) than in (18) (i.e. T’ C C™*7),

My,
BMy,

My

0T BMy;

inf [ Ty ©
T, € Cn%n
Ty =tal,

6 Proposed AWBT Schemes in the Gen-
eral Framework

6.1 Observer Based Compensator

We first consider observer based compensator (OBC) designs. The
controller states in these designs have a physical interpretation as
estimates of the states of the plant. This special structure makes
clear the design of an AWBT mechanismm which insures that the
controller states assume their correct values (namely estimates of the
plant states) regardless of plant input limitations and substitutions.

If the controller has access to the full plant state, i.c.,y = | =F |,

then K will be a static state feedback. Since the controller is mem-
oryless it has no states to “windup” (or attain “incorrect values”)
when limitations or substitutions occur. If K is such that the condi-
tions of Corollary 1 are satisfied and jp is acceptable, then no AWBT
compensation is required. If 4p is excessive but ug is acceptable then
the simple directionality compensation (17) is sufficient.

In the case that the full state is not available, an observer is con-
structed to supply state estimates which are used to provide feed-

back. Defining w = [;] and y = ’:'], we introduce a realization
of the interconnection structure P of Figure 1:

Ap | Bir  Bip  Bsp
C, D D

P(e) = (1)? lIIP sz DB” (19)
Csp |Dnip Dszp 0

Implicit in this realization is the assumption that r is not corrupted
by noise and that Pa3 is strictly proper. The corresponding observer
based compensator is of the form:

_ [LAp—LCsp + BspF | Bip -~ LDyp L]
K(‘)‘[ F o

(20)
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where L the observer gain and F is the state feedback gain. ’I.‘he
observer error, €., = z — £, can be shown to obey the relation
(when there is no model error)

(21)

The last term driving the estimator error results from plant input
limitations and ‘substitutions. We see that limitations and substitu-
tions result in an incorrect state update in the controller resulting in
a poor estimate of the true plant state. This windup effect is clearly
observed in practice and simulation for OBC controllers implemented
in this form.

If instead of using the controller output to drive the state esti-
mator, as is implicit in the realization (20), we use the measured
or estimated value of the plant input (as would be the case for an
extended Kalman filter implementation utilizing a nonlinear model
of N) we obtain a realization corresponding to Figure 5 of

R e e e

This is equivalent to the general AWBT implementation of Figure 5
when H, = Bsp and Hy = I. To see this define

éobs = (Ap — LCsp)e + (Bap — LD3gp)d + Bap(u' — u)

(22)

A = Ap-LCsp+BspF
B = [Bip—LDyp L]
C = F

D = [0 0]

corresponding to the realization of K in (20), and substitute
A,B,C,D, and H, = Bsp,Hs = I into equations (13) and (14)
to arrive at (22). With this implementation the observer error obeys
éots = (Ap ~ LCsp)e + (Bzp — LD3yzp)d + Bap(v' — um)  (23)
If the measurement of the plant input is exact (4 = um,), the ob-
server error is not affected by limitations or substitutions. With this
implementation the observer states (and hence the controller states)
remain cotrect and we do not see state positioning problems when
limitations or substitutions occur.

The nonlinear stability, noise sensitivity, and directional sensitiv-
ity of this scheme are determined solely be the initial observer and
state feedback designs. If these issues are not considered in the nom-
inal linear design, we have no guarantee that simply employing the
explicit observer implementation will provide adequate performance
when limitations and substitutions occur.

6.2 Hanus’ Conditioned Controller

We next consider an AWBT technique proposed by Hanus [9] appli-
cable when w = [;] W= [y:,] and [Ky K] = [ g g‘l [B;: ]
In Hanus' scheme a “realizable reference”, r*, is used in the con-
troller state equation in place of r when u,, # u. This “realizable
reference” is the the reference signal that would make un, = u if
applied to the controller state and output equations in place of r.
As Hanus points out, such a back calculation is unnecessary since it
is equivalent to implementation of a “conditioned controller” which
has the realization

we A—B(,JD;‘C[ 6 B,-BD;'D; BD;! ] ,,:,
l L o |
(24)
We note immediately that stability for N = 0 implies that 4 —
B; DT'C must be stable (Lemma 1) which in turn implies that
K= [ Al B
c{D
restrictive for 2-degree-of-freedom (2 DOF) designs since making K,
non-minimum phase introduces non-minimum phase characteristics
in T, which are not required for stabilization, and is therefore always
undesirable. It can, however, be restrictive for 1-degree-of-freedom
(or error feedback) controllers for which K; = — K.
An additional limitation of this technique is the requirement that

must be minimum phase. This is generally not



a left inverse of D, must exist. This implies that D; must have full
column rank which precludes application to control designs in which
K, is strictly proper.

From the realization of the “conditioned controller” (24) we see
that this implementation corresponds to the choice, H, = B, Dy 1
Hj = I in the general AWBT formulation (Equations (13) and (14)).
Furthermore this choice makes the states of the controller uncontrol-
lable from r (and ym as well in the 1 DOF case). This has the
advantage that slow modes in the controller are not driven by r (and
ym for 1 DOF controllers) and therefore do not windup. However,
if Ky # —K3 and the conditioned controller contains slow poles
{eigenvalues of A — B D;!C near the jw axis) we may expect to
see poor anti-windup performance. Furthermore if BD] is large
and A - B;D{‘C is fast, we can expect that ||T.n|lec will be large
at high frequencies and that measurement noise associated with u,,
will negatively impact nominal performance.

6.3 Internal Model Control

The internal model control (IMC) structure [10] has been suggested
as a way of implementing controllers in order to avoid AWBT prob-
lerns for open loop stable systems. Although IMC was not devel-
oped as an AWBT method, two equivalent schemes, proposeed in the
CHANCE project [3] and by Irving, have been introduced specifically
to achieve AWBT. In the IMC framework, the “classical controller”
(K of Figure 1) is given by

K=-(1-QG)'Q (25)

where @ is the IMC controller and G is a model of the plant. Note
that stability of Q is necessary and sufficient for X to stabilize G.
Introducing realisations of G and Q

= [Eaay] o=t

we compute a realization for K using (25)

BgCq Bq ]
K(s)=| BeCq Ag+ BgDqCg | BeDq
—Cq¢  -DeCq | -Dq |

The IMC implementation corresponds to Figure 5 with U = @ -
Q]:V=I-QG»¢='—Vm,

, I -I -G
I 0 0
w=[;], v=[vm],md PE=]4 1 ¢
tm 0 o0 1
In terms of the realisations for G and Q we have
B B Aq BqeCe | O
U(s) = [ — ] V(s) = 0 Ag Bg
CalDe -Dq ~Cq —DeCal I
With these realizations it can be verified that IMC structure
implementation of K corresponds to H, = ;G ,H3 = I in the

general AWBT formulation. We see from the realization of V(s) that
if the open loop plant has dynamics much slower than the closed loop
dynamics, windup (in these sense of state positioning errors) will
occur. The distinguishing feature of IMC is that, for any stabilizing
K, M(s) of Figure 2 is stable and M);(s) is identically zero. Thus
the conditions of Corollary 1 are satisfied trivially. In the absence of
plant model mismatch, implementation in the IMC structure yields
a stable closed loop for any N.

For the IMC implementation we have (with N = I and no model
error)

Ten = -GQG (26)

If the plant rolls off sufficiently fast or the noise, n, is not signifi-
cant inside the closed loop bandwidth, the effect of n on e should
be modest. There are no inherent properties of IMC which provide
robustness with respect to diagonal input uncertainty. Design guide-
lines for the initial linear controller design (@ or K) to provide good
robustness with respect to this uncertainty can be found in [12].

6.4 High Gain Conventional Anti-windup
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The final AWBT technique we will examine is referred to as high
gain conventional anti-windup (CAW). High gain CAW is applicable
to one degree of freedom error feedback structures. The AWBT
action is provided by feeding u, — u back through a high gain, X,
to the controller input, e, as shown in Figure 6. Typically X = af
with @ > 1. Rearranging Figure 6 to the standard AWBT diagram
of Figure 5 provides, w = ; L= "™ | ez r— g,

U=[I+KX])"'K,and V = [T+ KX]~1. In terms of the realization
of K, (9), we have

_ [LA=BX|I +DX]-'C | Bl + DX]"!

v = [ T+DXI'C ['1[+"7]ﬂl_u. —D] @7
_ [LA=BX|I + DX]"'C | BX|I + DX]"!

V) = [ Ir+ DXI-'C Tvoxr | &)

This is equivalent to A; = BX and A; = DX in Figure 4 (or H; =
BX[I+DX]"*,H, = [I+DX]™*). Thus high gain CAW can be seen
to be a special case of the general AWBT compensation formulation.
Rather than acting on the controller states and outputs, the AWBT
action, z, acts on the controller input.

With X large and D invertible it is easy to see that the poles of
U and V approach the zeros of K (the eigenvalues of A — BX[I +
DX]~'C approach the eigenvalues of A — BD-1C). Thus for non-
minimum phase controllers this scheme will not result in stable U
and V. If the sero operator is included in the conic sector description
of N this precludes satisfaction of the conditions of Corollary 1.

1t is also clear that for X large and D non-zero, U s0and V = 0
g0 that from (15) we see that measurement noise associated with u,,
will not be attenuated unless &(Pi3P3y(jw)) is small in the frequency
range where n is significant.

7 An Approach to Synthesis

Each of the proposed AWBT schemes reviewed in Section 6 consid-
ers only a subset of the AWBT objectives of Section 5. The analysis
tools and quantitative performance objectives presented suggest an
approach to the synthesis problem which recognizes all of these ob-

The basis for the design of H; and H; (and therefore any admis-
sible AWBT scheme) are:

1. M(s) must be stable.

2. infrer: IT My ()T o < 1.
3. infy, .z, #p

4. Re{\(A - HiC)} <0.

Objectives 1. and 2. correspond to the conditions of Corollary 1
(stabilization), 3. encompasses the directionality and (by including
measurement noise, 1, in W) noise sensitivity objectives, and 4. in-
sures that the poles of U and V are fast so that state positioning
errors are minimized.

In the general case considering 1.—3. simultaneously amounts to
a p-optimal (or H*) static controller design subject to a u or H*®
constraint. Solutions to such a problem are not at hand.

A topic of current research is to examine limiting case solutions
and to use the analysis tests available for each objective to obtain
insight into the performance trade-offs involved in the selection of
H, and H,. This insight should allow us to formulate simplified
performance objectives which are more amenable to the available
synthesis techniques, while preserving the essence of the original ob-
jectives. For example it seems feasible to select H; and H3 neglecting
the directionality issue and use a simple (if ad hoc) nonlinearity (20)
to deal with the directionality problem.

An additional area of interest is to obtain an understanding of the
impact of the initial design of K on achievable AWBT performance.
In certain situations we may need to modify (detune) the initial de-
sign in order to guarantee nonlinear stability and provide acceptable
AWBT performance.

8 Conclusions

We have developed a general theoretical framework for studying the
performance of control systems subject to plant input limitations and



substitutions. This includes the development of analysis tools appli-
cable to a broad class of limitation and substitution mechanisms.
Quantitative performance objectives, applicable in the general case,
which result in graceful performance degradation of the nominally
linear system are presented. These objectives and analysis tools lead
to the development of a general synthesis problem which is the sub-
ject of on-going research.
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