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Abstract— In this paper, a blind identification method is em-
ployed to model multivariable disturbances with fixed direction.
The multivariable disturbance model is used to design non-
diagonal weighting filters for H∞ control. It is demonstrated
that in this way, intuitive shaping of the directions of closed loop
transfer functions is facilitated, maximally exploiting design
freedom that has no analogue for scalar systems.

I. INTRODUCTION

Attenuation of disturbances is a key issue in control

design. In multivariable systems, quite often, some physical

causes (sources) generate disturbances on more controlled

variables. The ratio in which these sources are dispersed over

the controlled variables is the direction of the disturbance.

In many applications, the fixed physical architecture of the

plant means that the direction of these disturbances is fixed.

The question then arises how directions of disturbances can

be identified and how they can be used in multivariable

control design.

In most cases, physical sources cannot be measured

directly, only an unknown mixture of sources can be

observed as disturbances entering at a certain point in the

feedback loop. Identification of both the sources and the

mixture, from a batch of observations boils down to a

blind identification problem. A wide variety of methods has

recently been developed to solve this problem in information

theory, image processing and telecommunications, see [4]

for a survey. Recently, it was demonstrated how these

techniques can be used for diagnostics in industrial

processes, [12]. As it is possible to recover the spatial

structure of disturbance models, the question arises how this

structure can be used in modeling multivariable disturbances.

For scalar systems, there exists an extensive line of

research were specific properties of disturbances are

identified and utilized to make meaningful control design

tradeoffs, see, e.g., [1], [9]. Directions of disturbances,

and their alignment to closed loop transfer functions

play an important role in the achievable performance of

multivariable systems, as was recognized in [7]. Hence,

it is sensible to take directions of disturbances in account

when shaping closed loop sensitivity functions, [6, p. 85].

In [5] an extensive study was undertaken on fundamental

limitations for multivariable systems. It was shown that

taking directions of disturbances into account facilitates use

of design freedom that is unique for multivariable systems.

In this work, we propose a method to model fixed direction

disturbances using techniques from blind identification. It

is shown how these models lead straightforwardly to the

choice of non-diagonal weighting filters for H∞ control

design. Hence, one is able to shape directions of closed loop

transfer functions in a transparent way, exploiting design

freedom mentioned above.

The paper is organized as follows. The next section

shows how blind identification techniques can be used to

model fixed direction disturbances. Section III discusses

how these disturbance models can be used to design

weighting filters. The theory is illustrated by means of a

simulation example of a two dimensional manipulator in

Section IV. The last section closes with conclusions and

recommendations for future research.

II. FIXED DIRECTION DISTURBANCES

In this paper, we focus on the case depicted in Fig. 1.

Herein, a controller K is to be designed for the plant G that

suffers from disturbances d at its outputs. The disturbances

d can be measured, both Gd and s are unknown. Often,

G d
s

d- GK

Fig. 1. Block diagram of controller architecture. The disturbance d enters
the loop at the output of the plant G. A controller K is to be designed.

the location of a disturbance source is fixed so that the

relation between the sources s and the disturbances d can

be considered to be a constant transfer function, at least in

the frequency region of interest. It is then justified to model

disturbances as a constant mixture of physical sources,

d(t) = Gds(t). (1)

The columns of the matrix Gd hold the directions of the

disturbances. We assume that the sources s(t) are mutu-

ally statistical independent. Sources are mutually statistical
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independent when their joint probability density function

factorizes into the product of their marginal densities,

ps1,s2,...,sn
(s1, s2, ..., sn) =

n
∏

i=1

psi
. (2)

This implies that knowing the value of one source, does

not provide any information about the other sources.

Hence by finding independent sources, one identifies the

disturbances with minimum mutual information. Sources

that are independent are also uncorrelated, but in general

not vice versa. It is assumed that the disturbance sources are

time colored, Rs(τ) = E{s(t)s(t + τ)H} 6= 0, τ ≥ 0. As

the disturbance sources originate from physical phenomena,

each having dynamic behavior, this assumption is justified.

Note that as the sources are independent, Rs(τ) is diagonal.

The objective is to recover the independent sources

s(t) from a batch of observations d(t), t = {0, ..., N}
without a-priory knowledge of Gd and s(t). This blind

identification problem cam be solved using the Second

Order Blind Identification (SOBI) method of [2]. Herein,

the sources and the mixture can be retrieved, up to some

indeterminacies in scaling and permutation. Later in this

paper, it is shown that these indeterminacies are irrelevant

for control design. For notational clarity we assume that

the sources have zero mean. The SOBI method consists of

two steps, namely 1) whitening and 2) joint diagonalization.

These will be briefly discussed below.

A. Whitening

With this step, uncorrelated components z(t) are recov-

ered from the observed disturbances. The sources are then

determined up to a unitary matrix U , so that

d(t) = Wz(t) = WUs(t) (3)

The covariance matrix of d(t) at τ = 0 equals

Rd(0) = WRz(0)WT = WURs(0)UT WT . (4)

Without loss of generality, we may assume that Rs(0) = I

so that

Rd(0) = WWT , (5)

where W is to be found. We use the singular value decom-

position of the covariance of d(t), Rd(0) = UdΣdV
H
d , [10].

As Rd(0) is symmetric, we have Vd = Ud. So that,

W = UdΣ
1

2

d . (6)

The directions of the disturbance are contained in the

columns of Ud. The worst case disturbance has the same

direction as the first column of Ud. By selecting only a

few columns of Ud, one can reduce the number of modeled

sources (less sources than channels) or eliminate noise with a

specific structure [10]. In that case, W is non-square. We still

did not determine the sources uniquely as Rz(0) is invariant

for any unitary matrix U . Hence, we have recovered the

sources up to this unknown unitary matrix,

z(t) = Us(t). (7)

B. Joint diagonalization

The matrix U can be determined within some indeter-

minacies by using the fact that the sources are statistically

independent. The covariance of z(t) at τ 6= 0 equals

Rz(τ) = URs(τ)UT , (8)

where Rz(τ) is normal, symmetric and non-diagonal,

U is unitary and Rs(τ) is diagonal. Finding U for

a set of τk = {τ1, ..., τNk
} is a unitary simultaneous

diagonalization problem, [3], which can be solved within

two indeterminacies; namely sign and permutation of the

columns of U . We express these indeterminacies with

the matrix P which equals the product of a permutation

matrix and a phase matrix. The solution MP = U ,

with unknown P , is the approximated eigenstructure of

Rz(τk) for τk = {τ1, ..., τNk
}. This boils down to solving

a minimization problem, e.g., using an extended Jacobi

algorithm [3].

Combining the whitening and the joint diagonalization step,

we find the following solution to the blind identification

problem

d(t) = WMPs(t) = Ĝdŝ(t) (9)

where Ĝd = WM . It is clear that P implies arbitrary

ordering and arbitrary sign of the recovered sources. Note

that the indeterminacies have no influence on the spectra.

Hence, the spectra of the estimated sources equal the spectra

of the true sources. In the whitening step, it was assumed that

Rs(0) = I , which implies that all scalings of the sources are

contained in Ĝd. Alternatively, one may choose to scale the

columns of Ĝd to unity. This is just a matter of convention.

III. LOOPSHAPING FOR FIXED DIRECTION

DISTURBANCES

The objective is to find a stabilizing controller that min-

imizes the effects of the disturbances on the performance

criteria. Fundamental limitations in achieving this, can be

studied considering closed loop sensitivity functions. For

linear time invariant multivariable systems, it was shown [5],

that for a system with stable open loop transfer function

L(s) = G(s)K(s), the following integral constraint holds,

∑

i

∫

∞

0

lnσi(So(jω))dω = 0 (10)

where σi(So) is the ith principal gain of the output sensitivity

matrix, So(jω) = (I+L(jω))−1. Each ith principal gain has

a principal subspace Di. Due to this integral constraint, both

frequency wise (waterbed effect) and spatial (between princi-

pal gains) tradeoffs of a multivariable sensitivity function are

to be made. The spatial tradeoffs are typical for multivariable

systems and imply that decreasing the sensitivity function in

direction Di increases the sensitivity function in orthogonal

subspaces Dj , j 6= i. Furthermore, algebraic tradeoffs hold

as So + To = I , where To = L(I + L)−1 is the output

complementary sensitivity. In a real design case, all three

design tradeoffs are to be handled simultaneously. Here,
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we focus on the rejection of output disturbances effecting

the servo error. Therefore, we focus on minimizing the

output sensitivity function in the frequency range and in the

directions of interest. For illustration purposes, we weight

all other closed loop functions uniformly, that is, we apply

the same weight in all directions. We use loopshaping within

the H∞ framework, see, e.g., [8]. The control problem is to

find a stabilizing controller K so that, together with other

objectives,

‖SoV ‖∞ (11)

is minimized. Herein, V is a rational, stable, non-minimum

phase, frequency dependent weighting filter that represents

the frequencies and directions of the output disturbances. We

consider three approaches to redesign V . Namely, designs

with 1) disturbance direction fixed, sources unknown, Vd,

2) disturbance direction not fixed, hence worst case design,

Vwc, 3) disturbance direction fixed and sources blindly

identified, Vŝ.

1) Disturbance direction fixed, sources unknown: Herein

we assume that the direction of the disturbances is fixed,

but the sources are not explicitly identified. We model

directly the image of the disturbance model, hence structural

information of the disturbance sources is not used. The

disturbances at each plant output are modeled as if they

have no mutual information. This is common practice in

many decentralized control problems where controllers are

independently designed for each output of a plant. A diagonal

weighting filter is then chosen so that V = Vd,

Vd(jω) = diag{Vd,i(jω)} (12)

where Vd,i(jω) is designed to satisfy

|Vdi
(jω)| ≥ |

√

Φdi
(jω)|, (13)

where Φdi
(jω) is the power spectrum of the output

disturbance on each ith output of the plant.

2) Disturbance direction not fixed, hence worst case:

When the direction is not fixed, a weighting filter must be

designed to model a worst case disturbance in all directions.

The worst case disturbance is the disturbance that results

from the first whitened component (the first principal com-

ponent, [4]). Using (6), we have that d(t) = Wz(t), so that

the worst case disturbance equals;

dwc(t) = w̃1z1(t) (14)

where w̃1 is the first column of W . We normalize the

columns of w̃1 to unity and move all scaling to the signal

zwc(t) = ‖w̃1‖2z1(t), w̃wc = w̃1‖w̃1‖
−1

2
. So that without

loss of generality;

dwc(t) = w̃wczwc(t) (15)

As it is not assumed that the disturbances have fixed direc-

tion, this weight is to be applied uniformly, that is, in all

directions. The total weighting filter becomes V = Vwc,

Vwc(jω) = Vz,wc(jω) I, (16)

where Vz,wc(jω) is a scalar weighting filter so that

|Vz,wc(jω)| ≥ |
√

Φzwc
(jω)| (17)

is satisfied. Where Φzwc
(jω) is the power spectrum of

zwc(t).

3) Disturbance direction fixed, blindly identified: Using

the blind identification procedure from Section II, the inde-

pendent components ŝ(t) and the constant matrix Ĝd are

recovered, so that the disturbance direction is fixed and

known. We normalize the columns of Ĝd to unity. Hence,

we define a diagonal scaling matrix Λ = diag{λi}, where

λi = ‖ĝd,i‖
−1

2
is the inverse of the norm of the ith column

of Ĝd. Now, Ĝd = G̃dΛ and

d(t) = G̃ds̃(t) (18)

where s̃(t) = Λŝ(t). Only G̃d contains the directions of each

independent component whereas all magnitude information

is held by s̃(t). We define the total weighting filter V = Vŝ,

which is designed as

Vŝ(jω) = G̃dVs̃(jω), (19)

where Vs̃(jω) is diagonal (Vŝ(jω) is non diagonal) with on

each ith diagonal element a weighting filter for the power

spectrum of the ith (scaled) independent component.

|Vs̃i
(jω)| ≥ |

√

Φs̃i
(jω)|. (20)

The indeterminacies of the blind identification solution only

imply the exchange of gain, sign and permutation between

ŝ(t) and the columns of Ĝd, hence these have no nett effect

on Vŝ(jω).

IV. SIMULATION EXAMPLE

In this section, the design of weighting filters for distur-

bances is illustrated on a model of a two degrees of freedom

manipulator. The plant is diagonal, so that the plant can

be controlled independently in each direction. We choose a

diagonal plant for clarity, the theory is certainly not limited

to this,

G(s) =

[

k1

s2 0

0 k2

s2

]

. (21)

Here, k1 = k2 = 0.25× 10−3, which results in a magnitude

of 0dB at 10Hz for each controlled axis. The plant dynamics

are uncertain at frequencies above 100[Hz]. The output

disturbances are shown in Fig.2. After identification of the

sources, various control designs are illustrated.

A. Blind identification

Using the observed output disturbances, the whitening

procedure is performed to find the uncorrelated components

z(t), d(t) = Wz(t). This results in the following whitening

matrix;

W =

[

−4.21 −0.35
−3.57 0.41

]

. (22)
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The uncorrelated components are shown in Fig. 2. It is clear

that these uncorrelated components do not allow straightfor-

ward physical interpretation. Using joint diagonalization, the

independent components ŝ(t) are recovered

ŝ(t) = Ĝ−1

d d(t) = (WM)−1d(t) (23)

where Ĝd is determined as

Ĝd =

[

−3.01 −2.97
−3.01 −1.97

]

. (24)

For this example, the true (but unknown) matrix was

Gd =

[

3 3
3 2

]

(25)

so that the P in this example resulted in a change of sign of

the recovered mixing matrix (and the same change of sign

in the recovered sources). The independent components are

shown in Fig. 2. Clearly, a step sequence and a combination
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Fig. 2. Left column: output disturbances d(t), Center column: uncorrelated
components z(t), Right column: independent components ŝ(t)

of harmonics can be distinguished. In a practical situation,

one may interpret this as sources from physical phenomena

(other machines in a factory, pumps, etc.).

B. Control design

With the identified sources, several controller designs

are initiated. As the plant has uncertain dynamics above

100Hz, roll-off is desired. This requirement is expressed by

weighting the control sensitivity KSo with Wks. Also, we

have a low frequency objective, expressed by a weight Ws

on the output sensitivity. These two objectives are stacked in

a standard H∞ mixed sensitivity problem, see, e.g., [8]. Now

a stabilizing controller K is to be found which minimizes
∥

∥

∥

∥

WsSoV

WksKSoV

∥

∥

∥

∥

∞

. (26)

The weighting filters Ws,Wks are chosen diagonal, with

elements whose frequency response is shown in Fig. 3.

These weighting filters are the same for all examples.

The initial design is V = I . Choosing a particular V , the

relevant frequencies and directions of the disturbances can

be taken into account. Alternative choices of V are studied,

each using a different disturbance model. All designs are

10
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4

−30
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d
B

 

 

W
s

W
ks

Fig. 3. Frequency response (magnitude only) of the elements of the
weighting filters (diagonal) for the sensitivity function Ws (dashed) and
the control sensitivity function Wks (solid).

targeted to achieve the same closed loop bandwidth with

the same robustness margins.

Firstly, a design is discussed with a weighting filter

that bounds the power spectra of d(t), V = Vd. Secondly, a

weighting filter that bounds the worst case disturbance in all

directions is presented, V = Vwc. Herein, it is assumed that

the disturbance direction is not fixed. Finally, the design

with a weighting filter is shown that uses the structure of the

blindly identified independent components ŝ(t), V = Vŝ. In

all three designs, the power spectra are bounded above with

second order weighting filters. Hence, each weight filter

V is of fourth order. Furthermore, each weighting filter V

is designed to be equal to I at frequencies close to the

bandwidth so that the margins and bandwidth of all designs

are comparable. This is done just for illustration purposes

and is no limitation in the theory presented here.

1) Design Vd(jω): The power spectra of d(t) are

calculated. Each spectrum contains contributions of both

disturbance sources. A second order weighting filter is

designed to bound each spectrum from above, Fig. 4.

2) Design Vwc(jω): The power spectrum of the worst

case disturbance (the first principal component) is calculated.

The worst case disturbance contains contributions of both

sources. A second order weighting filter is used to bound

the power spectrum from above, Fig. 5. This weighting is

applied in all directions.

3) Design Vŝ(jω): The power spectra of s̃(t) (ŝ(t) scaled

with Λ) are calculated. As the sources are independent, the

spectra are distinct. A second order low pass weighting filter

bounds the power spectrum of each source from above,

Fig. 6. The total weighting filter must be equal to the

identity matrix at frequencies around the bandwidth, hence,

we choose;

Vŝ(jω) = G̃dVs̃(jω) − I. (27)
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Herein, Vs̃ is diagonal and Vŝ is non-diagonal.

In all three cases the weighting filters have limited

order, hence conservatism is introduced in bounding the

power spectra. This conservatism increases significantly

when the power spectra contain contributions of more

sources, as in the case of Vd, Vwc. In the design of Vŝ,

the spectra are more distinct. Hence, one may reduce

conservatism. In addition, the choice of the weighting filters

can be related to each independent physical cause. The bode

magnitude plot of all three weighting filters is depicted in

Fig. 7. It is clear that both Vwc and Vd are diagonal, Vŝ is

non-diagonal.

The principal gains of each weighting filter are depicted in

Fig. 8. Both Vd and Vwc have high gains in all principal

directions. Hence, weights are applied in directions that

are not reached by the disturbances. The weighting filter

Vŝ weights only in the relevant directions and at the same

time, reduces weight in orthogonal directions. As a result,

the design with Vŝ allows the sensitivity to increase in

directions orthogonal to the disturbance directions, Fig. 9.
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independent components.
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In this case, the nett effect of the weight Vŝ is equal to the

initial weight V = I .

C. Multivariable design freedom

In order to illustrate the use of multivariable design

freedom, the integral constraint in (10) is studied. The

singular values of the output sensitivities are calculated

over a linear frequency grid f = [0.01 1e3][hz] with

1× 104 points. Then, the surface is calculated between each

principal gain and 0dB for the intervals where the principal

gains are below and above 0dB respectively, see Table I.

Here, Oσi<1 denotes the surface between σi(So), and 0dB

when σi(So) is below 0dB, Oσi>1 denotes above. The total

surface between σi(So) and 0dB when σi(So) is above

0dB, is denoted as Osumσi
. Both the design with Vwc and

Vd show a significant increase of the sensitivity function

above 0dB, were the design with Vŝ has almost the same

costs at high frequencies as the initial design with V = I .

Hence, the design with Vŝ, which attenuates disturbances

in one direction, does not entail costs by means of the

waterbed effect.
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In the design with Vŝ, the weighting of the sensitivity

function in the direction of the disturbances is compensated

for by reducing weight on the sensitivity function in

directions orthogonal to the disturbances, Fig. 9. Hence, the

sum of the surface between the principal gains and 0dB of

Vŝ is close to zero and there is no nett effect on the integral

constraints. Therefore, sensitivity is traded off spatially

instead of frequency wise, so that the well known waterbed

effect, [1] is avoided. Hence, it is demonstrated that by

taking into account the directions of the disturbances, design

freedom can be exploited that has no scalar analogue.

V. CONCLUSION

In this work, we employed a method to identify

independent sources and their directions from observations

of output disturbances. It was shown that using this

knowledge, transparent design of weighting filters is

facilitated. The spectra of independent sources are distinct,

leading to less conservative choice of weighting filters and

TABLE I

CUMULATIVE SUM OF THE SURFACES BELOW ln σi(So)

Oσ1<1 Oσ2<1 Oσ1>1 Oσ2>1 Osumσi>1

V = I -212 -212 210 210 421

V = Vd -232 -251 243 236 479

V = Vwc -271 -271 268 268 536

V = Vŝ -181 -246 214 210 425

potentially lower order controllers. Also, as the independent

sources are strongly related to the true physical phenomena,

physical interpretation of the disturbances is facilitated. As

the structure of the sources can be taken into account, only

relevant directions are weighted and conservatism reduces

significantly. This allows the sensitivity function to increase

in directions where disturbances do not occur. Therefore,

performance can be traded off both spatially and frequency

wise. Hence, multivariable design freedom can be exploited

that has no scalar analogue.

The method proposed in this work can straightforwardly

be extended to handle exogenous signals other than output

disturbances. Furthermore, control design can be carried

out for each source at a time, so that complexity of a

multivariable control system can be gradually increased.

We focussed on disturbances whose direction does not

change with frequency. More general blind identification

techniques, as in [11], are currently investigated in order to

increase the application area.
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