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Abstmei--lhis paper  presents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa practical design perspective on multi- 

variable feedback control problem. It reviews the basic issue-feedback 

design in the face of uncertainties-and generalizes known single-input, 

singleoutput (SISO) statements and constraints of the design problem to 
multiinpat, multioutput ("0) cases. Two major "0  design a p  
proaches are  then evaluated  in the context of these results. 

I. INTRODUCTION 

HE last two decades have brought major  develop- 
Tments in  the mathematical theory of multivariable 
linear time invariant feedback  systems.  These include the 
celebrated state space concept for system description and 
the notions of mathematical optimization for controller 
synthesis [I], [2]. Various  time-domain-based analytical 
and computational tools  have been  made possible  by 
these  ideas. The developments also include certain gener- 
alizations of frequency-domain concepts which  offer anal- 
ysis and synthesis  tools  in the classical  single-input,  single- 
output (SISO) tradition [3], [4]. Unfortunately, however, 
the two decades have also brought a growing schism 
between practitioners of feedback control design and its 
theoreticians. The theory has increasingly concentrated on 
analytical issues and  has  placed little emphasis on issues 
which are important  and interesting from the perspective 
of design. 

This paper is an attempt to express  the latter perspec- 
tive and to examine the extent to which modem results 
are meaningful to it. The  paper begins  with a review of the 
fundamental practical issue  in feedback design-namely, 
how to achieve the benefits of feedback in the face of 
uncertainties.  Various  types of uncertainties which  arise in 
physical  systems are briefly described and so-called  "un- 
structured uncertainties" are singled out as generic errors 
which are associated  with all design  models. The  paper 
then shows  how  classical  SISO statements of the feedback 
design  problem  in the face of unstructured uncertainties 
can  be reliably  generalized to multiinput, multioutput 
(MIMO) systems, and it develops MIMO generalizations 
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of the  classical  Bode gain/phase constraints 151, [6] which 
limit ultimate performance of feedback in the face of such 
uncertainties. Several  proposed MIMO design procedures 
are examined  next  in the context of the fundamental 
feedback  design  issue.  These include the recent frequency 
domain inverse Nyquist  array (INA) and characteristic 
loci (CL) methods and the  well-known linear-quadratic 
Gaussian (LQG) procedure. The INA and CL methods 
are found to be effective, but only in special  cases,  while 
LQG methods, if used properly, have desirable general 
features. The latter are  fortunate  consequences of 
quadratic optimization, not explicitly  sought after or tested 
for by the  theoretical  developers of the procedure. Practi- 
tioners should find them valuable for design. 

11. FEEDBACK FUNDAMENTALS 

We  will deal  with  the standard feedback configuration 
illustrated in Fig. 1. It consists of the interconnected plant 
( G )  and controller ( K )  forced by commands ( r ) ,  mea- 
surement noise (v), and disturbances ( d ) .  The  dashed 
precompensator ( P )  is an optional element  used to achieve 
deliberate command shaping or to represent a nonunity 
feedback  system  in  equivalent  unity  feedback form. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll 
disturbances are assumed to be reflected to the  measured 
outputs ( y ) ,  all  signals are multivariable, in general, and 
both  nominal  mathematical models for G and K are finite 
dimensional  linear  time invariant (FDLTI) systems  with 
transfer function matrices G ( s )  and K ( s ) .  Then it is  well 
known that the configuration, if it is stable, has the 
following  major  properties: 

I )  Input-Output Behacior: 

~ = G K ( I + G K ) - ' ( ~ - ~ ) + ( I + G K ) - ' ~  (1) 

=(I+GK)-'(~-~)+GK(I+GK)-'~. (2) 

AH=, = ( I + G / K ) - ' A H , , .  (3) 

P 
e = r - y  

2) System Sensitiviw [7]: 

In (3), AHd and AHol denote  changes in the closed-loop 
system and changes  in a nominally equivalent open-loop 
system,  respectively,  caused by changes in the plant G ,  
i.e., G' = G + AG. 

Equations (1)-(3) summarize the fundamental benefits 
and design  objectives inherent in  feedback  loops.  Specifi- 
cally, (2) shows that the loop's errors in the presence of 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Standard feedback configuration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
commands  and disturbances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be  made “small”  by 
making the sensitivity operator, or inverse return dif- 
ference operator, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I +  GK)- ’ ,  ‘‘small,” and (3) shows that 
loop sensitivity  is  improved under these same conditions, 
provided G’ does not stray too  far  from G. 

For SISO systems, the appropriate notion of smallness 
for the sensitivity operator is  well-understood-namely, 
we require that the complex scalar [ 1 +g( j w ) k ( j w ) ] - ’  
have  small  magnitude, or conversely that 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+g(jw)k(jw) 
have  large magnitude, for all real frequencies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw where the 
commands, disturbances and/or plant changes, AG, are 
significant. In fact, the performance objectives of SISO 

feedback systems are commonly stipulated in terms of 
explicit  inequalities of the form 

ps(w)<Il+g(jw)k(jw)l vo<w,, (4)  

where ps( w )  is  a  (large)  positive function and wo specifies 
the active  frequency  range. 

This basic idea can  be readily extended to MIMO 
problems through the use of matrix norms. Selecting the 
spectral n o m  as  our measure of matrix size, for example, 
the corresponding feedback requirements become 

E [  ( I +  G ( j w ) K ( j o ) ) - ’ ]  small 

or conversely 

for the necessary range of frequencies. The symbols zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii and 
a_ in  these  expressions are defined as follows: 

where 1 1 . 1 1  is the usual Euclidean norm, A [ - ]  denotes 
eigenvalues, and [ . ]*  denotes conjugate transpose. The 
two (I ’s are called  maximum and minimum  singular  values 
of A (or  principal  gains [4]) ,  respectively, and can be 
calculated with available linear system  software [8] .  More 
discussion of singular  values and their properties can  be 
found in various  texts [9].  

Condition (5 )  on the return difference I +  GK can  be 
interpreted as merely  a restatement of the common intui- 
tion that large loop gains or “tight”  loops  yield  good 
performance. This  follows from the  inequalities 

g[GK]-l<g[I+GK]<a_[GK]+l (8) 

which  show that rgturn difference magnitudes approxi- 
mate the loop gains, a_[GK], whenever  these are large 
compared with  unity.  Evidently,  good multivariable 
feedback loop design  boils down to achieving  high loop 
gains in the necessary frequency range. 

Despite the simplicity of this last statement, it is clear 
from years of research and design  activity that feedback 
design  is not trivial. This is true  because  loop gains cannot 
be  made arbitrarily high  over arbitrarily large frequency 
ranges. Rather, they  must  satisfy certain performance 
tradeoffs and design limitations. A major performance 
tradeoff, for example, concerns  command and disturbance 
error reduction versus  sensor  noise error reduction [lo]. 
The conflict  between  these two objectives  is evident in (2). 

Large a_[GK(jw)] values  over  a large frequency range 
make errors due to r and d small. However,  they  also 
make errors due to q large because this noise is “passed 
through” over the same frequency range, i.e., 

Worse  still,  large loop gains can make the control activity 
(variable u in Fig.  1) quite unacceptable. This follows 
from - 

u = K [ I + G K ] - ’ ( r - q - d )  

=G-’( jCd)(r--q-d).  (10) 

Here we have  assumed G to be square and invertible for 
convenience. The resulting equation shows that com- 
mands, disturbances, and sensor noise are actually ampli- 
fied at u whenever the frequency  range sigmficantly  ex- 
ceeds the bandwidth of G ,  i.e., for w such  that E[G( jw) ]<  1 
we get 

One of the major contributions of modern  feedback the- 
ory is the development of systematic procedures for con- 
ducting the above  performance tradeoffs. We are refer- 
ring, of course, to the LQG theory [ 111 and to its modem 
Wiener-Hopf frequency  domain counterpart [ 121. Under 
reasonable assumptions on plant, disturbances, and per- 
formance criteria,  these procedures yield  efficient  design 
compromises. In fact, if the  tradeoff  between 
command/disturbance error reduction and sensor noise 
error reduction were the only constraint on feedback 
design, practitioners would have little to complain  about 
with  respect to the relevance of modern theory. The 
problem is that these performance trades are often over- 
shadowed by a  second limitation on high loop gains- 
namely, the requirement for tolerance to uncertainties. 
Although  a controller may be designed  using FDLTI 
models, the design  must be  implemented and operate with 
a red physical plant. The properties of physical  systems, 
in particular the ways in which  they deviate from finite- 
dimensional linear models, put strict limitations on the 
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frequency range over which the loop gains  may be large. 
In order to properly motivate these  restrictions, we digress 
in Section 111 to a  brief description of the types of system 
uncertainties most frequently encountered. The  manner in 
which  these uncertainties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be  accounted for in MIMO 
design then forms the basis for the rest of the paper. 

111. UNCERTAINTIES 

While no nominal design model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG ( s )  can  emulate a 
physical plant perfectly, it is clear that some  models do so 
with greater fidelity than others. Hence, no nominal model 
should  be considered  complete without some  assessment 
of its errors. We  will call these errors the  “model  uncer- 
tainties,” and whatever  mechanism is  used to express 
them zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be  called  a “representation of uncertainty.” 

Representations of uncertainty vary  primarily in terms 
of the amount of structure they contain. This  reflects both 
our knowledge of the physical  mechanisms whxh cause 
differences  between  model and plant and our ability to 
represent  these  mechanisms in a  way that facilitates con- 
venient manipulation. For example,  a  set membershp 
statement for the parameters of an otherwise known 
FDLTI model  is  a  highly structured representation of 
uncertainty. It  typically  arises from the use of linear 
incremental models at various operating points, e.g., 
aerodynamic coefficients in flight control vary  with  flight 
environment  and aircraft configurations, and equation 
coefficients in power plant control vary  with  aging,  slag 
buildup, coal  composition,  etc. In  each case, the amounts 
of variation and  any known relationships between param- 
eters can be  expressed  by confining the parameters to 
appropriately defined subsets of parameter space. A 
specific  example of such  a parameterization for the F-8C 
aircraft is  given in [ 131. Examples of less-structured  repre- 
sentations of uncertainty are direct set  membership state- 
ments for  the transfer function matrix of the  model. For 
instance, the statement 

G’( jw)=G( jw)+AG( jo )  

with 

5 [ A G ( j o ) ] < l , ( o )  Vw>O (12) 

where la( .) is a  positive scalar function, confines  the 
matrix G’ to a neighborhood of G with magnitude /=(a). 
The statement does not imply  a  mechanism or structure 
which  gives  rise to AG. The uncertainty may  be caused by 
parameter changes, as above, or by  neglected  dynamics, 
or by  a  host of other unspecified  effects. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn alternative 
statement for (12)  is  the  so-called  multiplicative form: 

G ‘ ( j w ) =  [ I + L ( j o ) ] G ( j o )  

with 

.[ ~ ( j w ) ]  </,(a) VO>O. (13) 

This statement confines G’ to a  normalized neighborhood 
of G. It is preferable over  (12)  because compensated 
transfer functions have the same uncertainty representa- 
tion as the  raw  model  (i.e., the bound (13) applies to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGK 
as well as  to G). Still other alternative set  membership 
statements are the inverse forms of (12) and (13) which 
confine (G’) -’ to direct or normalized neighborhoods 
about G-’. 

The  best  choice of uncertainty representation for a 
specific FDLTI model depends, of course, on the errors 
the model  makes. In practice, it is generally  possible to 
represent  some of these errors in  a  highly structured 
parameterized form. These are usually  the  low  frequency 
error components. There  are always remaining higher 
frequency errors, however,  which cannot  be covered this 
way.  These are caused by  such  effects as infinite- 
dimensional electromechanical resonances [ 161, [ 171, time 
delays,  diffusion  processes,  etc. Fortunately, the less- 
structured representations, (12) or (13), are well suited to 
represent this latter class of errors. Consequently, (12) and 
(13)  have  become  widely  used  “generic” uncertainty rep- 
resentations for FDLTI models. 

Motivated by  these observations, we  will focus 
throughout the rest of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis paper exclusively on the effects 
of uncertainties as represented by (13). For lack of a 
better name, we will refer to these uncertainties simply as 
“unstructured.” We will assume that G’ in (13)  remains  a 
strictly proper FDLTI system and  that G’ has the same 
number of unstable modes as G .  The unstable modes of 
G’ and G do not need to be identical, however, and hence 
L ( s )  may be an unstable operator. These restricted as- 
sumptions on G’ make  exposition  easy. More general 
perturbations (e.g.,  time  varying, infinite dmensional, 
nonlinear) can also  be  covered  by  the bounds in (13) 
provided  they are given appropriate “conic  sector” inter- 
pretations via  Parseval’s  theorem. Th is  connection is de- 
veloped in [14],  [15] and will not be  pursued  here. 

When  used to represent the various high frequency 
mechanisms  mentioned above, the bounding functions 
lm (w)  in (13) commonly  have the properties illustrated in 
Fig. 2. They are small ( e l )  at low  frequencies and in- 
crease to unity and above at higher  frequencies. The 
growth  with frequency inevitably occurs because phase 
uncertainties eventually  exceed -r- 180  degrees and magni- 
tude deviations  eventually  exceed the nominal transfer 
function magnitudes. Readers who are skeptical about this 
reality are encouraged to try a  few  experiments  with 
physical  devices. 

It should also be  noted that the representation of uncer- 
tainty in (13) can be  used to include perturbation effects 
that are in fact not  at all uncertain. A nonlinear element, 
for example, may be quite accurately modeled, but be- 
cause our design  techniques cannot deal with the nodin- 
earity  effectively, it is treated as a conic linearity [ 141, [ 151. 
As another example, we may deliberately choose to ignore 
various known dynamic characteristics in order to achieve 
a  simpler nominal design  model. 
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Fig. 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATypical behavior of multiplicative  perturbations. 

Another  important point is that the construction of 
I,(w) for multivariable  systems  is not trivial. The bound 
assumes  a  single  worst case uncertainty magnitude appli- 
cable to all channels. If substantially different levels of 
uncertainty exist in various channels, it may be necessary 
to scale the input- output variables and/or apply 
frequency-dependent transformations [15] in such a  way 
that I,,, becomes more uniformly  tight.  These scale factors 
and transformations are here assumed to be part of the 
nominal model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(s ) .  

Iv. FEEDBACK DESIGN IN THE FACE OF 

UNSTRUCTURED UNCERTAINTIES 

Once we specify  a  design  model, G(s) ,  and accept the 
existence of unstructured uncertainties in the form (13), 
the feedback design  problem  becomes one of finding a 
compensator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK(s )  such that 

1) the nominal feedback  system, G K [ I +   G K ]  -', is 
stable; 

2) the perturbed system, G'K [ I+   G 'K ]  - I ,  is stable for 
all possible G' allowed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(13);  and 

3) performance objectives are satisfied zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor all possible 
G' allowed by (13). 

All three of these  requirements can  be interpreted as 
frequency domain conditions on the nominal  loop transfer 
matrix, GK(s),  which the designer must attempt to satisfy. 

Stability  Conditions 

The frequency domain conditions for requirement 1) 
are, of course, well known. In SISO  cases,  they take the 

form of the standard  Nyquist criterion,' and in MIMO 
cases, they  involve its multivariable generalization [18]. 
Namely, we require that the encirclement count of the 
map  det[ I+ GK(s) ] ,  evaluated on the standard  Nyquist 
D-contour, be equal to the (negative) number of unstable 
open loop modes of GK. 

Similarly, for requirement 2) the number of encircle 
ments of the map det[I+ G'K(s)]  must equal the (nega- 
tive) number of unstable modes of G'K. Under our as- 
sumptions on G', however, this number is the same as that 
of GK. Hence, requirement 2) is satisfied if and only if the 
number of encirclements  of det[I+ G'K(s)] remains 
unchanged for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall G' allowed by (13). This is assured iff 
det [I+ G'K] remains  nonzero as G is warped continu; 
0 ~ 1 ~  t~ward  G', or equivalently, iff -. ,' ,~ ~ ~ ,!, .'-<I ~ - .. - '- 

O<g[ I+ [ I + ~ L ( i ) l G ( i ) K ( i ) l  (14) 

c=: .- - 
, .. . 

, ' L L &  . 

for all 0 Q E Q 1, all S on the D-contour, and all L(s)  
satisfying  (13). Since- G' vanishes on the infinite radius 
segment of the D-contour, and assuming, for simplicity, 
that the contour requires no indentations, along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj w -  
axis,2 (14)  reduces to the following equivalent conditions: 

O<E[ I + G ( j w ) K ( j w ) + ~ L ( j w ) G ( j w ) K ( j w ) ]  (15) 
I 

foral lO<E<l,O<w<m,andallL - - :  -:' - ' . '  
. ,  - .,' - , . ._ . 

. . ,  . .  

w O < g [  I + L G K ( I + G K ) - ' ]  

for all O < w < o o ,  and all L 

e Z[ G K ( I + G K ) - ' ]  < l/lm(w) 

for all O < w < c o .  
The last of these equations is the MIMO generalization 

of the familiar SISO requirement  that loop gains be small 
whenever the magnitude of unstructured uncertainties is 
large. In fact,  whenever I,(w)>>l, we get the following 
constraint on GK: 

for all w such that  I,(o)>>l. 
We  emphasize that these are not conservative  stability 

conditions. On the contrary, if the uncertainties are truly 
unstructured and (17)  is  violated, then there exists  a 
perturbation L(s )  within the set allowed  by  (13) for which 
the system is unstable. Hence, these  stability conditions 
impose hard limits on the permissible loop gains of practi- 
cal feedback  systems. 

Performance  Conditions 

Frequency  domain conditions for requirement 3)  have 
already been described in ( 5 )  in Section 11. The only 

'See any classical control text. 
ZIf indentations  are  required, (14) and (17) must hold  in  the  limit  for 

all F on the  indented  path as the  radius of indentation  is  taken to zero. 
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modification needed to account for unstructured uncer- 
tainties is to apply zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 )  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG’ instead of G, i.e., 

ps Q E[ I +   ( I +  L ) G K ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e= ps Q E[ I +  LGK( I +  G K ) - ’ ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa_[ I +  GK]  

for all w such that I,( w )  < 1 and a_[ GK(jw)]>> 1. 
This is the MIMO generalization of another familiar 

SISO design  rule-namely that performance objectives 
can be met  in the face of unstructured uncertainties if the 
nominal loop gains are made sufficiently  large to com- 
pensate for model variations. Note, however, that finite 
solutions exist  only in the frequency range where I,( 0) < 1. 

The stability and performance conditions derived above 
illustrate that  MIMO feedback design problems do not 
differ fundamentally from their SISO counterparts. In 
both cases, stability must be achieved nominally and 
assured for all perturbations by satisfying conditions (17) 
and (18). Performance may then be  optimized by satisfy- 
ing condition (19) as well as possible. What distinguishes 
MIMO from SISO design conditions are the functions 
used to express transfer function “size.” Singular values 
replace absolute values. The underlying concepts remain 
the same. 

We note that the singular value functions used in our 
statements of design conditions play a design  role  much 
like classical  Bode  plots. The O [ l +  G K ]  function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin ( 5 )  is 
the minimum return difference magnitude of the closed- 
loop system, a_[GK] in (8) and O[GK] in (18) are minimum 
and maximum loop gains, and O[GK( I+   GK)- ’ ]  in (17)  is 
the maximum closed-loop frequency response. These can 
all be plotted as ordinary frequency dependent functions 
in order to display and analyze the features of a multivari- 
able design.  Such plots will here be called a-plots. 

One of the a-plots which  is particularly significant with 
regard to design for uncertainties is obtained by inverting 
condition (17, i.e., 

for all 0 < w <  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco. 
The function on the right-hand side of this  expression  is 

an explicit  measure of the degree of stability (or stability 
robustness) of the feedback system. Stability is guaranteed 
for all perturbations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL ( s )  whose  maximum singular values 
fall below it. This can include gain or phase changes in 
individual output channels, simultaneous changes in 
several channels, and various other kinds of perturbations. 
In effect, a_[ I+(GK)- ’1  is a reliable multivariable gen- 
eralization of SISO stability margm concepts (e.g., 
frequency dependent gain and phase margins). Unlike the 
SISO  case,  however, it is important to note that a_[I+ 
( G K ) -  ‘ 1  measures tolerances for uncertainties at the plant 
outputs only. Tolerances for uncertainties at the input are 

Fig. 3. The  design  tradeoff for GK. 

generally not the same. They can be analyzed with equal 
ease,  however,  by  using the function a_[ I +  ( K G ) - ’ ]  in- 
stead of a_[Z+(GK)-’ ]  in (20). Tlus can be readily veri- 
fied by evaluating the encirclement count of the map 
det (I+ KG) under perturbations of the form G’ = G( I +  L )  
(i.e., uncertainties reflected to  the input). The mathemati- 
cal steps are directly analogous to (15)-(18)  above. 

Classical  designers will recognize, of course, that the 
difference between  these  two stability robustness measures 
is  simply that each uses a loop transfer function ap- 
propriate for the loop breaking point at which robustness 
is  being tested. 

V. TRANSFER FUNCTION LIMITATIONS 

The feedback design conditions derived above are pic- 
tured graphically in Fig. 3. The designer  must find a loop 
transfer function matrix, GK, for which the loop is nomi- 
nally stable and whose maximum and minimum singular 
values clear the high and low frequency “design 
boundaries” given by conditions (17) and (19). The high 
frequency boundary is mandatory, while the low frequency 
one is desirable for good performance. Both are in- 
fluenced by the uncertainty bound, f,,Jw). 

The a-plots of a representative loop transfer matrix are 
also sketched in the figure. As shown, the effective band- 
width of the loop cannot fall much beyond the frequency 
wl for  which f,,,(w,) = 1. As a result, the frequency range 
over  which performance objectives can be  met  is  explicitly 
constrained by the uncertainties. It is also evident from 
the sketch that the severity of this constraint depends on 
the rate at which a_[GK] and O[GK] are attenuated. The 
steeper these functions drop off, the wider the frequency 
range over  which condition (19) can be satisfied. Unfor- 
tunately, however, FDLTI transfer functions behave in 
such a way that steep attenuation comes  only at the 
expense of small ? [ I +  G K ]  values and small a_[Z+ 
( G K ) - ’ ]  values  when a_[GK] and O [ G K ] e l .  This means 
that while performance is good at lower frequencies and 
stability robustness is good at higher  frequencies, both are 
poor near crossover. The behavior of FDLTI transfer 
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For SISO cases, the conflict between attenuation rates 
and loop quality at crossover is again well understood. We 
know that  any rational, stable, proper, minimum  phase 
loop transfer function satisfies  fixed integral relations 
between its gain and phase  components. Hence, its phase 
angle near crossover (i.e., at values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw such  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI gk(jw)l 
"1) is determined uniquely by the gain plot in Fig.  3 (for 
,-=E= Igk I). Various  expressions for this angle were  de- 
rived  by  Bode  using contour integration around closed 
contours encompassing the right half plane [5, ch. 13,  141. 
One expression  is 

where v= ln(w/wc) ,  w(v)=wcexpv. Since the sign of 
sinh(v) is the same as the sign of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, it follows that $kc will 
be large if the gain Igk I attenuates slowly and small if it 
attenuates rapidly. In fact, +&: is  given  explicitly in terms 
of weighted  average attenuation rate by the following 
alternate form of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(21) (also from [5 ] ) :  

The behavior of $kc is significant because it defines the 
magnitudes of our two  SISO  design conditions (17) and 
(19) at crossover.  Specially, when Igk I = 1,  we have 

The quantity P + +&, is the phase margin of the feedback 
system.  Assuming  gk stable, this margin  must be positive 
for nominal stability and, according to (23), it must be 
reasonably large (-1 rad) for good return difference and 
stability robustness  properties. If ~ + + ~ k ,  is forced to be 
very  small  by rapid gain attenuation, the feedback system 
will amplify disturbances (I 1 +gkl<< 1) and exhibit little 
uncertainty tolerance at  and near w,. The conflict  between 
attenuation rate and loop quality near crossover is thus 
clearly  evident. 

It is also known that more general nonminimum phase 
and/or unstable loop transfer functions do not alleviate 
this  conflict. If the plant has right  half-plane  zeros, for 
example,  it  may be factored as 

where m(s)  is minimum phase andp(s) is an all-pass (i.e., 
Ip ( jw) l=  1 Vu.) The (negative) phase angle of p ( s )  re- 
duces total phase at crossover, i.e., 

and therefore aggravates the tradeoff problem. In fact, if 
I I is .too large, we will be forced to reduce the crossover 
frequency. Thus, RHP zeros  limit  loop  gain (and thus 
performance) in  a  way  similar to  the unstructured uncer- 
tainty. A measure of severity of this added limitation is 
11 -p ( jw) l ,  which can be used just like I,(o) to constrain 
a nominal minimum phase design. 

If g(s) has right half-plane poles,  the extra phase lead 
contributed by  these  poles compared with their mirror 
images in the  left half-plane is needed to provide encircle- 
ments for stability. Unstable plants thus also do  not offer 
any inherent advantage over stable plants in alleviating 
the crossover  conflict. 

Multivariable  Generalization 

The  above transfer limitations for SISO  systems  have 
multivariable generalizations;  with  some additional com- 
plications as would be expected. The major complication 
is that singular  values of rational transfer matrices,  viewed 
as functions of the complex variable s, are  not analytic 
and therefore cannot  be used for contour integration to 
derive relation such  as (21).  Eigenvalues of rational 
matrices, on the other hand,  have the necessary mathe- 
matical properties. Unfortunately, they do not in general 
relate directly to the quality of the feedback design. (More 
is  said about this in Section  VI.) Thus, we must combine 
the properties of eigenvalues and singular  values through 
the bounding relations 

. _ [ A ] < I A [ A ] I < a [ A ]  (26) 

which  holds for any eigenvalue, Ai, of the (square) matrix 
A .  The  approach will be to derive gain/phase relations as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in (21) for the eigenvalues of I+GK and I+ (GK)- '  and 
to use  these to  bound their minimum singular values. 
Since  good performance  and stability robustness requires 
singular  values of both of these matrices to  be sufficiently 
large near crossover,  the multivariable system's properties 
can then be  no better than the properties of their ei- 
genvalue bounds. 

Equations for the eigenvalues  themselves are straight- 
forward. There is a one-to-one correspondence between 
eigenvalues of GK and eigenvalues of I+ GK such  that 

Ai [  I +  GK] = 1 +Ai[ GK] . (27) 

Likewise for I+(GK)- ' ;  

Ai[ I + ( G K ) - ' ]  = 1 + - 1 
Ai[GK] * 

Thus, when JX,[GK]I = 1 for some A i  and w=wc,  we have 

IA i [ I+GK] l~ lA i [ I+ (GK)- ' ] I  
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Since this equation is  exactly analogous to (23) for the 
scalar case, and since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIAi  I bounds E, it follows that the 
loop will exhibit poor properties whenever the phase angle 
( T + is  small. 

In order to derive expressions for the angle Q X l c  itself, 
we require certain results from the theory of algebraic 
functions [20]-[26]. The key concepts needed from these 
references are  that  the eigenvalues A i  of a rational, proper 
transfer function matrix, viewed as a function of the 
complex variable s constitute one mathematical entity, 
X(s), called an algebraic function. Each eigenvalue Ai is a 
branch of this function  and is defined on one sheet of an 
extended Riemann surface domain. On its extended do- 
main an algebraic function can be treated as an ordinary 
meromorphic function whose poles and zeros are the 
system  poles and transmission zeros of the transfer func- 
tion matrix. It also has additional critical points, called 
branch points, which correspond to multiple eigenvalues. 
Contour integration is  valid on the Riemann surface do- 
main provided that contours are properly closed. 

In the contour integral leading to (21), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgk(s)  may 
therefore be replaced by the algebraic function, X(s), with 
contour taken on its Riemann domain. Carrying out this 
integral yields several partial sums: 

where each sum  is  over all branches of X(s) whose  sheets 
are connected by right half-plane branch points. Thus the 
eigenvalues { A i }  are restricted in a way  similar to scalar 
transfer functions but  in summation form.  The summa- 
tion, however, does not alter the fundamental tradeoff 
between attenuation  rate and loop quality at crossover. In 
fact, if we deliberately choose to maximize  the bound (29) 

by making w, and identical for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, then (30) imposes 
the same restrictions on multivariable loops as (21) impo- 
ses  on  SISO  loops. Hence, multivariable systems do not 
escape the fundamental transfer function limitations. 

As in the scalar case,  expression (30) is again valid for 
minimum phase systems  only. That is, GK can have no 
transmission zeros3 in the right half-plane. If this  is not 
true, the tradeoffs governed by (29) and (30) are aggra- 
vated because every  right half-plane transmission zero 
adds the same phase lag  as in (25) to one of the partial 
sums in (30). The matrix GK may also be factored, as in 
(24), to get 

G K ( s ) = M ( s ) P ( s )  (3 1) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM(s)  has no right half-plane zeros and P(s)  is an 
dl-pass matrix P’( - s ) ~ ( s )  = I. Analogous to the scalar 
case, O(I- P(s))  can be taken as a measure of the degree 

’For our purposes, transmission zeros [41] are values B such that 
det[G(s)K(S)]=O. Degenerate  systems  with det[GK]=O for all s are not 
of interest  because  they  cannot meet condition (19) in  Fig. 3. 

of multivariable nonminimum phaseness and used like 
Z,(w) to constrain a nominal minimum phase design. 

VI. MULTIVARIABLE DESIGN BY MODERN 
FREQUENCY DOMAIN METHODS 

So far, we have described the  FDLTI feedback design 
problem as a design  tradeoff  involving performance ob- 
jectives [condition (19)], stability requirements in the face 
of unstructured uncertainties [condition (17)], and certain 
performance limitations imposed by gain/phase relations 
which  must be satisfied by realizable loop transfer func- 
tions. This tradeoff  is  essentially the same for SISO and 
MIMO problems.  Design methods to carry it out, of 
course, are not. 

For scalar design problems, a large body of  well- 
developed  tools  exists (e.g., “classical control”) which 
permits designers to construct good transfer functions for 
Fig. 3 with  relatively little difficulty. Various attempts 
have been made to extend these methods to multivariable 
design  problems. Probably the most  successful of these 
are the inverse Nyquist array (INA) [3] and the character- 
istic loci (CL) methodologies [4]. Both are based on the 
idea of reducing the multivariable design problem to a 
sequence of scalar problems. This is done by constructing 
a set of scalar transfer functions which  may be manipu- 
lated more or less independently with classical  techniques. 
In the INA methodology, the scalar functions are the 
diagonal elements of a loop transfer function matrix which 
has been  pre- and post-compensated to be diagonally 
dominant. In the CL methodology, the functions are the 
eigenvalues  of the loop transfer matrix. 

Based on the  design  perspective  developed in  the previ- 
ous sections,  these multiple single-loop methods turn  out 
to be  reliable  design  tools only for special  types of plants. 
Their restrictions are associated with the fact that the 
selected  set of scalar design functions are not necessarily 
related to the system’s actual feedback properties. That is, 
the feedback system  may  be designed so that the scalar 
functions have  good feedback properties if interpreted as 
SISO  systems, but the resulting multivariable system  may 
still have  poor feedback properties. This possibility  is  easy 
to demonstrate for the CL method and, by implication, 
for the INA method with perfect diagonalization. For 
these  cases, we attempt to achieve stability robustness by 
satisfying 

Z,(w)<~Ai[l+(GK)-’]~=~l+l/Ai(GK)~ (32) 

for all i and 0 Q w <  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 and similarly, we attempt to 
achieve performance objectives  by making 

for all i and 0<0<00.  
As discussed  in Section V, however, the eigenvalues on 

the right-hand sides of these  expressions are only upper 
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Fig. 4. u-plots for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI +  G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ’. [ G from (34).] 

bounds for the true stability robustness and performance 
conditions (20) and (19). Hence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa_[I+(GK)-’] and/or 
g[Z+ GK] may actually be quite small  even  when (32) and 
(33) are satisfied. 

An Example 

These potential inadequacies in the INA and  CL meth- 
ods are readily illustrated with a simple  example  selected 
specifically to highlight the limitations. Consider 

G(s) = 
1 -47~+2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA56s 

(s+ l)(s+2) [ -42s 50s + 2 

This system  may be diagonalized exactly  by introducing 
constant compensation.  Let 

Then 

If the diagonal elements of this 6 are interpreted as 
independent SISO systems, as in the INA approach, we 
could readily conclude that no further compensation is 
necessary to achieve desirable feedback  properties. For 
example,  unity  feedback  yields  stability  margins at cross- 
over of ? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco dB in gain and greater than 90 degrees  in 
phase. Thus, an INA design could reasonably stop  at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis 
point with compensator K( s) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUU - =I. Since d e  diag- 
onal elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 are also the eigenvalues of G, we could 
also  be reasonably satisfied  with  this  design from the CL 
point of  view. 

Singular  value  analysis,  however, leads to  an entirely 
different conclusion. The u-plots for ( I +  G - ’ )  are shown 
in Fig. 4. These  clearly  display  a  serious  lack of robustness 
with  respect  to unstructured uncertainties. The smallest 
value of u is approximately 0.1 near w =2 rad/s. This 
means that multiplicative uncertainties as small as 1,(2)= 
0.1  (-10% gain changes, -6 deg phase changes)  could 
produce instability. An interpretation of this lack of stabil- 

Stable 

\‘ 
\ 

Fig. 5. Stability regions  for ( I +  [ 2 G.  [G from (34).] 

ity robustness is  given in Fig. 5. This figure  shows stability 
regions in “gain space’’ for the compensator K(s)= 
diag(1 + k,, 1 + k2). The figure reveals an unstable region 
in  close  proximity to the nominal design point. The INA 

and CL  methods are not reliable  design  tools because they 
fail to alert the designer to its presence. 

This example and the discussion  which precedes it 
should not  be  misunderstood as a  universal indictment of 
the INA and  CL methods. Rather, it represents a caution 
regarding their use. There are various types of systems for 
which the methods  prove  effective and reliable.  Condi- 
tions which  these  systems  satisfy can  be  deduced  from 
(32) and (33)-namely  they  must  have  tight  singular 
value/eigenvalue bounds. This includes naturally diago- 
~l systems, of course, and also the class of “normal” 
systems [28]. The limitations which arise when the  bounds 
are not tight  have also been  recognized  in [4]. 

We note in  passing that .the problem of reliability  is not 
unique  to the INA and  CL  methods. Various  examples 
can  be constructured to show that other design ap- 
proaches such as the  “single-loop-at-a-time” methods 
common in  engineering practice and tridiagonalization 
approaches suffer  similarly. 

VII. MULTIVARIABLE DESIGN VIA LQG 

A second major approach to multivariable feedback 
design  is the modern  LQG  procedure [ 1 11, [ 121. We have 
already introduced this method in connection with the 
tradeoff  between command/disturbance error reduction 
and sensor noise error reduction. The  method requires 
that we select stochastic models for sensor  noise,  com- 
mands  and disturbances and define a  weighted  mean 
square error criterion as the standard of goodness for the 
design. The rest  is automatic. We get an FDLTI com- 
pensator K ( s )  which  stabilizes the nominal model G(s) 
(under mild  assumptions) and optimizes the criterion of 
goodness. All too often, of course, the resulting loop 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. LQG feedback loop. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
transfer functions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGK or KG, are entirely unacceptable 
when examined against the design constraints of Fig. 4. 
We are then forced to iterate the design-adjust  weights 
in the performance criterion, change the stochastic dis- 
turbance  and noise  models, add dynamics, etc. There are 
so many parameters to manipulate that frustration sets  in 
quickly and the schism  between practitioners and theoreti- 
cians becomes  easier to understand. 

Fortunately, such design iterations of LQG controllers 
have become  easier to carry out  in the last few  years 
because the frequency domain properties of these con- 
trollers are better understood. Some of the key  new  results 
are summarized below and their significance with respect 
to Fig. 3 are discussed. For our purposes, LQG controllers 
are ordinary FDLTI compensators with a special internal 
structure. This structure is  shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 and is well 
known. It consists of a Kalman-Bucy filter (KBF) de- 
signed for a state space realization of the nominal model 
G(s), including all appended dynamics for disturbance 
processes, commands, integral action, etc. The model  is 

i = A x + B u + E ;   x E R ” ,   u E R m  (37) 

y = C x + q ;   y E R ‘  

and satisfies 
G ( s )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C @ ( s ) B  (38) 

d= C@(s)[ 

with 

(a(s)=(sZ, -A ) - ’  (39) 

The symbols 5 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq denote  the usual  white  noise 
processes. The filter’s  gains are denoted by K, and its state 
estimates by 1. The state estimates are multiplied  by 
full-state linear-quadratic regulator (LQR) gains, Kc,  to 
produce the control commands which  drive the plant and 
are also fed  back internally to the KBF. The usual  condi- 
tions for well-posedness of the LQG problem are as- 
sumed. 

In terms of previous discussions, the functions of inter- 
est in Fig. 6 are the loop transfer, return difference, and 
stability robustness functions 

G K ,  Z,+GK, z , + ( G K ) - ’ ,  

and also their counterparts 

KG, I, +KG, Z, +(KG)- ’ .  

As noted earlier, the first three functions measure perfor- 
mance and stability robustness with  respect  to uncertain- 
ties at the plant outputs (loop-breaking point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i )  in Fig. 6), 
and the second three measure performance and robust- 
ness  with  respect to uncertainties at the plant input (loop- 
breakmg point ( i i )  in Fig. 6). Both points are generally 
significant in design. 

Two other loop-breaking points, (i)’ and (ii)’, are also 
shown in the figure. These are internal to the compensator 
and therefore have little direct sigmficance.  However,  they 
have desirable loop transfer properties which can be  re- 
lated to the properties of points ( i )  and (i i). The proper- 
ties and connections are these. 

Fact I: The loop transfer function obtained by break- 
ing the LQG loop at point (i) ‘ is the KBF loop transfer 
function CQK,. 

Fact 2: The loop transfer function obtained by break- 
ing the LQG loop at point ( i )  is GK. It can be made to 
approach CQK, pointwise in s by designing the LQR in 
accordance with a “sensitivity  recovery” procedure due to 
Kwakenaak [29]. 

Fact 3: The loop transfer function obtained by break- 
ing the LQG loop at point ( i i ) ‘  is the LQR loop transfer 
function Kc(aB. 

Fact 4: The loop transfer function obtained by break- 
ing the LQG loop at point ( i i )  is KG. It can be made to 
approach KcQB pointwise in s by  designing the KBF in 
accordance with a ‘‘robustness  recovery” procedure due to 
Doyle and Stein [30]. 

Facts 1 and 3 can be readily verified by explicit evalua- 
tion of the transfer functions involved. Facts 2 and 4 take 
more elaboration and are taken up in a later section. They 
also require more assumptions. Specifically, G ( s )  must be 
minimum  phase  with m > r for  Fact 2, m Q r for Fact 4, 
and hence, G(s) must be square for both. Also, the names 
“sensitivity  recovery” and ‘‘robustness  recovery” are overly 
restrictive. “Full-state loop transfer recovery”  is perhaps a 
better name for both procedures, with the distinction that 
one applies to points (i), (i)‘ and the other to points ( i i ) ,  
(ii)’. 

The sigmficance of these four facts is that we can 
design LQG loop transfer functions on a full-state feed- 
back basis and then approximate them adequately with a 
recovery procedure. For point (i), the full state design 
must  be done with the KBF design equations (i.e., its 
Riccati equation) and recovery  with the LQR equations, 
while for point ( i i ) ,  full-state design  must  be done with 
the LQR equations and recovery  with the KBF. The 
mathematics of these  two options are,  in fact, dual. Hence, 
we will describe only one option [for point (ii)] in further 
detail. Results for the other are stated and used later in 
our example. 

Full-State Loop Transfer Design 

The intermediate full-state design step is  worthwhile 
because LQR and KBF loops have good classical proper- 
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ties  which  have been rediscovered  over the last few years 
[31]-[33]. The basic result for the LQR case  is that LQR 

loop transfer matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKc@(s)B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(40) 

satisfy the following return difference identity [32]; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ I ,+T(jo)l*R[I,+T(jw)l 

=R+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ H @ ( j w ) B ] * [   H @ ( j o ) B ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVO<w< 00 (41) 

where R = RT > 0 is the standard control weighting matrix, 
and HTH= Q > 0 is the corresponding state weighting 
matrix. Without loss of generality, H can  be of size 
( m x n )  [34]. Using the definitions (6) and (3, (41)  with 
R = P I  implies that 

ui[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, + T ( j w ) ]  =$[ I+ - (H@B)*H@B 
1 

P 1 

This implies  [35] that 

E[ Z,+T- ’ ( j o ) ]  > 1/2 vo<o<O0. (45) 

Hence, LQR loops are guaranteed  to  remain stable for all 
unstructured uncertainties (reflected to the input) which 
satisfy I,( o) < 0.5. Without further knowledge of the types 
of uncertainties present in the plant, this bound is the 
greatest  robustness guarantee which can be ascribed to the 
reg~lator.~ 

While  it  is reassuring to have  a guarantee at all, the 
Z, <0.5  bound is  clearly inadequate for the requirements 
of condition (20)  with  realistic lm(w)’s. In order to satisfy 
condition (20)  in LQR designs,  therefore, it becomes nee  
essary to directly manipulate the high-frequency  behavior 
of T(s). This behavior can be  derived from known 
asymptotic properties of the regulator as the scalar p tends 
to zero [29],  [47],  [48],  [34],  [36]. The result needed here is 
that  under minimum phase  assumptions  on H@B, the 
LQR gains Kc behave asymptotically as [29] 

=+ + $ A i [  (H@B)*H@B] fi K=+ WH 

where W is an  orthonormal matrix. The LQR loop trans- 
fer function, T(s),  evaluated at high frequencies, 

(42) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = j c / f i  withcconstant,isthengivenby6 

This expression  applies to all singular  values ai of T(s) T ( j c / G ) = *  K C ( j c Z - G A ) - ’ B  
and, hence,  specifically to a_ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. It governs the perfor- 
mance and stability robustness properties of LQR loops. + WHB/jc . (47) 

Performance  Properties (Condition 19) 

Whenever ?[TI>> 1, the following approximation of (42) 
shows  explicitly  how the parameters p and H influence 
T(s): 

ui[ T ( j u ) ] = u i [   H @ ( j o ) B ] / G .  (43) 

We can thus choose p and H explicitly  to  satisfy condition 
(19) and also to “balance” the multivariable loop such 
that a_[T] and G[T] are reasonably close t~gether .~  This 
second  objective is consistent with our assumption in 
Section I11 that the transfer function G(s) has been scaled 
and/or transformed such at Z,(o) applies more or less 
uniformly  in  all  directions. This is also the justification for 
considering control weighting matrices in the form R = p I  
only. Nonidentity R’s are subsumed in G as GR’’’. 

Robustness Properties [Conditions ( I  7) and (20)] 

It also  follows from (42) that the LQR return difference 
always  exceeds unity, i.e., 

achieve  zero  steady  state errors, for  example, o [ H O B ]  must  tend  to (x1 

41t may also be necessary to append  additional  dynamics. In order to 

as o+O. This may require  additional  integratio-i in the  plant. 

Since  crossovers  occur at ai[ TI = 1, this means  that the 
maximum  (asymptotic)  crossover frequency of the loop is 

o,,,,, = G [  H B ] / f i  . 
As shown  in Fig 3, this frequency  cannot fall much 
beyond q ,  where unstructured uncertainty magnitudes 
approach unity.  Hence, our choice of H and p to achieve 
the performance objectives  via  (43) are constrained by the 
stability robustness requirement via (48). 

Note also from (47) that the asymptotic loop transfer 
function in  the  vicinity of crossover is proportional to 1/o 
(- 1 slope on log-log  plots). This is a  relatively  slow 
attenuation rate which,  in  view of Section V, is the price 
the regulator pays for its excellent return difference prop 
erties. If / ; ‘ ( w )  attenuates faster than this rate, further 
reduction of oc may be required. It is also true, of course, 
that no physical  system can actually maintain a 1/o 
characteristic indefinitely [6]. This is not a concern here 
since T(s) is  a nominal (design) function only and will 

0 . 5 4  dB, which  is  identical to regulator‘s celebrated  guaranteed gain 
’The I ,  <0.5 bound turns out to  be  tight for  pure gain changes, i.e., 

margin [33]. The  bound is conservative if the uncertainties are known to 
be pure  phase  changes, i.e, 0 . 5 e m 3 0  deg, which is less  than  the known 
2 60 deg guarantee [33]. 

6% specific limiting process is appropriate  for  the so-called generic 
case [36] with full rank HB. More  general  versions of (55) with rank 
[ H B ]  < nr are  derived in [MI. 
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later be  approximated by one of the full-state loop trans- 
fer recovery  procedures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Full-State Loop Tramfer Recovey 

As described  earlier, the full-state loop transfer function 
designed  above for point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ii)' can  be recovered at point 
(ii) by  a  modified KBF design  procedure. The required 
assumptions are that r >  m and that COB is minimum 
phase. The  procedure then consists of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo steps. 

1) Append additional dummy columns to B and zero 
row to Kc to make COB and K,OB square ( r x r ) .  COB 
must remain minimum  phase. 

2) Design the KBF with  modified  noise  intensity 
matrices. 

E ( . $ . $ T ) = [ M o + q 2 B B T ] 6 ( t - ~ )  

E( qqT) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=N,6( t - T )  

where M,, No are the nominal noise  intensity  matrices 
obtained from stochastic models of the plant and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq is  a 
scalar parameter. Under these conditions, it is known that 
the filter  gains K, have the following asymptotic behavior 
as q+m [30]: 

1 - K, +B WNO- 1'2. 
4 

(49) 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFV is another orthonormal matrix, as in (46). When 
this K, is  used in the loop transfer expression for point 
(ii), we get  pointwise loop transfer recovery as q+m, i.e., 

K(s )G(s )=K , [  O-* +BK, +K,C]-'K,C@B (50) 

=Kc [  5 - & K f ( I r  +CSKf)-IC%] K,COB 

(5  1) 

=Kc5K,( z, + c%Kf ) -  lCOB (52) 

+Kc5B(c5B)-1C@B (53) 

=K,@B(I,+K,OB)- '  

[ COB(I r   +Kc@B)- ' ] - ICOB (54) 

= { K,@B( COB)- I }  COB (55) 

= K,rPB. (56) 

In this series of expressions, 5 was used to represent the 
matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( d n  - A  + BK,) - ', (49)  was  used to get from (52) 
to (53), and the identity 5 B  = @B(Z+ K,OB)- was used 
to get from there to (54). The final step  shows  explicitly 
that the asymptotic compensator K(s )  [the bracketed term 
in (55)] inverts the nominal plant (from  the  left) and 
substitutes the  desired LQR dynamics. The need  for 
minimum phase  is thus clear, and it is also  evident that 

as the target LQR dynamics satisfy  Fig. 3's constraints 
(i.e., as long as we do  not attempt inversion  in frequency 
ranges  where uncertainties do not permit  it).  Closer  in- 
spection of (50)-(56) further shows that there is no depen- 
dence on LQR or KBF optimality of the gains Kc or Kf .  
The  procedure requires  only that K, be  stabilizing and 
have the asymptotic characteristic (49). Thus, more gen- 
eral state feedback  laws can  be recovered (e.g., pole place- 
ment), and more  general  filters can  be used  for the process 
(e.g.,  observers).' 

A n  Example 

The behavior of LQG design iterations with full-state 
loop transfer recovery  is illustrated by the following ab- 
stracted longitudinal control design  example for a  CH-47 
tandem rotor helicopter. Our objective is to control two 
measured  outputs-vertical  velocity and pitch attitude- 
by manipulating collective and differential collective rotor 
thrust commands. A nominal model for the dynamics 
relating  these  variables at 40 knot airspeed  is  [45] 

-0.02 0.005 2.4 -32 
0.44 -1 .3  -30 ] x  
0.018 - 1.6 1.2 
0 1 0 

0.14  -0.12 

y = [ o  0 0 O 0 57.3 O ] x .  

Major unstructured uncertainties associated  with this 
model are due  to neglected rotor dynamics and unmod- 
eled rate limit  nonlinearities. These  are discussed at greater 
length in [46]. For our present purposes, it, suffices to note 
that they are uniform in both control channels and that 
I,( W )  > 1 for all w > 10 rad/s.  Hence, the controller band- 
width should be constrained as in Fig.  3 to a,,, < 10. 

Since our objective is to control two measured outputs 
at point (i), the design iterations utilize the duals of 
(40)-(56).  They begin with a full state KBF design  whose 
noise  intensity  matrices, E( S S T )  = rrT6( t - 7) and E(qqT) 
= p I 6 ( t  - T), are selected to meet performance objectives 
at low frequencies, i.e., 

E[ T ]  =E[ COl?]/f i >ps, (57) 

while  satisfying stability robustness constraints at high 
frequencies, 

w,,, =.[ c r ] / G  < 10 r/s. (58) 

'Still more  generally,  the modified KBF procedure will actually r e  
cover  full-state feedback loop transfer  functions  at  any point, ul,  in the 

the entire recovery procedure is  only appropriate as long system  for  which C@E*  is minimum phase [30]. 
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Fig. 7. Full-state loop transfer  recovery. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For the choice r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, (58) constrains p to be greater than 
or equal to unity.' The resulting KBF  loop transfer for 
p =  1 is  shown in Fig. 7. For  purposes of illustration, this 
function will be considered to have  the  desired  high gain 
properties for condition (19),  with  low  gains beyond w =  10 
for condition (20).9 It then remains to recover this func- 
tion  by  means of the full-state recovery procedure for 
point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i). This calls for LQR design  with Q=Q,  +q2CCT 
and R = R,. Letting Q,  =0, R ,  =I, the  resulting LQG 
transfer functions for several  values of 4 are also  shown  in 
Fig. 7. They clearly  display the pointwise  convergence 
properties of the procedure. 

VIII. CONCLUSION 

This paper has attempted  to present a practical design 
perspective on MIMO linear time invariant feedback con- 
trol problems. It has focused zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the fundamental issue- 
feedback in  the face of uncertainties. It has shown  how 

direCtiOIlS. 
*If Cr (or HB) is singular, (58) or (48) are still valid in the nonzero 

9The function should not be considered final, or course.  Better  bal- 

integrators  would be aesirable in  a serious design. 
ance between ii and u and greater gain at low  frequencies  via appended 
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classical  SISO approaches to this issue can  be reliably 
generalized to MIMO systems, and has defined the extent 
to which MIMO systems are subject to the same uncer- 
tainty constraints and transfer function gain/phase limita- 
tions as SISO  ones. Two categories of design procedures, 
were then examined  in the context of these  results. 

There are numerous other topics and many other pro- 
posed  design procedures which  were not addressed, of 
course. Modal control, [42]  eigenvalue-vector  assignments, 
[43] and the entire field of geometric methods [19] are 
prime  examples. These deal with internal structural prop 
erties of systems  which, though  important theoretically, 
cease to have central importance in the face of the input- 
output nature of unstructured incertainties. Hence, they 
were omitted. We also did not treat certain performance 
objectives  in MIMO systems  which are distinct from SISO 
systems.  These include perfect noninteraction and integ- 
rity. Noninteraction is again a structural property which 
loses  meaning in the face of unstructured uncertainties. [It 
is  achieved as well as possible  by condition (19).] Integr- 
ity, on the other hand,  cannot  be dismissed as lightly. It 
concerns the ability of MIMO systems to maintain stabil- 
ity  in the face of actuator and/or sensor failures. The 
singular  value  concepts described here are indeed useful 
for integrity  analysis. For example, a design has integrity 
with  respect to actuator failures whenever 

?[ I+(KG)-'] > 1 Vu. (59) 

This follows  because failures satisfy I,,, < 1. Moreover it 
can be  shown [37] that full-state control laws  designed  via 
Lyapunov equations, as opposed to Riccati equations, as 
in Section  VII,  satisfy  (59). It is also worth noting that 
integrity properties claimed for design methods such as 
INA and CL suffer  from the reliability  problem  discussed 
in  Section VI and, hence,  may not be valid in the system's 
natural (nondiagonal) coordinate system. 

The major limitations on what has been said in the 
paper  are associated  with the representation chosen in 
Section I11 for unstructured uncertainty. A single  magni- 
tude bound on matrix perturbations is a worst  case  repre- 
sentation which is often much too conservative (i.e., it 
may admit perturbations which are structurally known 
not to occur). The use of weighted norms in (8) and (9) or 
selective transformations applied to G (as in [39n can 
alleviate  this  conservatism somewhat, but seldom com- 
pletely. For this reason, the problem of representing more 
structured uncertainties in  simple  ways analogous  to (13) 
is  receiving  renewed  research attention [38]. 

A second major drawback is our implicit assumption 
that all loops zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(all directions) of the MIMO system should 
have equal bandwidth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a_ close to ii in Fig. 3). This 
assumption is consistent with a uniform uncertainty bound 
but will no longer be appropriate as we learn to represent 
more  complex uncertainty structures. Research along these 
lines is also  proceeding. 
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