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Abstract

Industrial robots are today essential components in the manufacturing industry where they
are used to save costs, increase productivity and quality, and eliminate dangerous and
laborious work. High demands on accuracy and speed of the robot motion require that
the mathematical models, used in the motion control system, are accurate. The models
are used to describe the complicated nonlinear relation between the robot motion and the
motors that cause the motion. Accurate dynamic robot models are needed in many areas,
such as mechanical design, performance simulation, control, diagnosis, and supervision.

A trend in industrial robots is toward lightweight robot structures, where the weight is
reduced but with a preserved payload capacity. This is motivated by cost reduction as
well as safety issues, but results in a weaker (more compliant) mechanical structure with
enhanced elastic effects. For high performance, it is therefore necessary to have models
describing these elastic effects.

This thesis deals with identification of dynamic robot models, which means that measure-
ments from the robot motion are used to estimate unknown parameters in the models. The
measured signals are angular position and torque of the motors. Identifying robot mod-
els is a challenging task since an industrial robot is a multivariable, nonlinear, unstable,
and resonant system. In this thesis, the unknown parameters (typically spring-damper
pairs) in a physically parameterized nonlinear dynamic model are identified, mainly in
the frequency domain, using estimates of the nonparametric frequency response function
(FRF) in different robot configurations/positions. Each nonparametric FRF then describe
the local behavior around an operating point. The nonlinear parametric robot model is
linearized in the same operating points and the optimal parameters are obtained by min-
imizing the discrepancy between the nonparametric FRFs and the parametric FRFs (the
FRFs of the linearized parametric robot model).

Methods for estimating the nonparametric FRF from experimental data are analyzed with
respect to bias, variance, and nonlinearities. In order to accurately estimate the nonpara-
metric FRF, the experiments must be carefully designed. To minimize the uncertainty
in the estimated parameters, the selection of optimal robot configurations/positions for
the experiments is also part of the design. Different parameter estimators are compared
in the thesis and experimental results show the usefulness of the proposed identification
procedure. The identified nonlinear robot model gives a good global description of the
dynamics in the frequency range of interest.

The research work is also implemented and made easily available in a software tool for
accurate estimation of nonparametric FRFs as well as parametric robot models.
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Sammanfattning

Industrirobotar är idag en väsentlig del i tillverkningsindustrin där de bland annat används
för att minska kostnader, öka produktivitet och kvalitet och ersätta människor i farliga
eller slitsamma uppgifter. Höga krav på noggrannhet och snabbhet hos robotens rörelser
innebär också höga krav på de matematiska modeller som ligger till grund för robotens
styrsystem. Modellerna används där för att beskriva det komplicerade sambandet mel-
lan robotarmens rörelser och de motorer som orsakar rörelsen. Tillförlitliga modeller är
också nödvändiga för exempelvis mekanisk design, simulering av prestanda, diagnos och
övervakning.

En trend idag är att bygga lättviktsrobotar, vilket innebär att robotens vikt minskas men
att den fortfarande kan hantera en lika tung last. Orsaken till detta är främst att minska
kostnaden, men också säkerhetsaspekter spelar in. En lättare robotarm ger dock en vekare
struktur där elastiska effekter inte längre kan försummas i modellen om man kräver hög
prestanda. De elastiska effekterna beskrivs i den matematiska modellen med hjälp av
fjädrar och dämpare.

Denna avhandling handlar om hur dessa matematiska modeller kan tas fram genom sys-
temidentifiering, vilket är ett viktigt verktyg där mätningar från robotens rörelser används
för att bestämma okända parametrar i modellen. Det som mäts är position och moment
hos robotens alla motorer. Identifiering av industrirobotar är ett utmanande problem bland
annat eftersom robotens beteende varierar beroende på armens position. Den metod som
föreslås i avhandlingen innebär att man först identifierar lokala modeller i ett antal posi-
tioner. Var och en av dessa beskriver robotens beteende kring en viss arbetspunkt. Sedan
anpassas parametrarna i en global modell, som är giltig för alla positioner, så att den så
väl som möjligt beskriver det lokala beteendet i de olika positionerna.

I avhandlingen analyseras olika metoder för att ta fram lokala modeller. För att få bra
resultat krävs att experimenten är omsorgsfullt utformade. För att minska osäkerheten i
den globala modellens identifierade parametrar ingår också valet av optimala positioner
för experimenten. Olika metoder för att identifiera parametrarna jämförs i avhandlingen
och experimentella resultat visar användbarheten av den föreslagna metoden. Den identi-
fierade robotmodellen ger en bra global beskrivning av robotens beteende.

Resultatet av forskningen har även gjorts tillgängligt i ett datorverktyg för att noggrant
kunna ta fram lokala modeller och identifiera parametrar i dynamiska robotmodeller.
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1
Introduction

This thesis deals with identification of unknown parameters in dynamic models of indus-
trial robots. This involves experiment design, nonparametric frequency-domain identi-
fication, and identification of unknown parameters in physically parameterized models
(often called gray-box models).

This first chapter gives a brief background to the project in Section 1.1, followed by
a short introduction to industrial robots in Section 1.2. The problem is stated in Sec-
tion 1.3 and the outline of the thesis is provided in Section 1.4. Finally, a summary of the
contributions is given in Section 1.5.

1.1 Background

This project has been carried out within the VINNOVA Center of Excellence ISIS (Infor-
mation Systems for Industrial Control and Supervision) at Linköping University. Within
the center that started 1996, research is performed in different areas, focusing on prob-
lems that are important for the industry. One of the companies that joined as a partner is
ABB Robotics. Having them as a partner in research is both challenging and rewarding.
The real world is often too complicated to be properly described by mathematical mod-
els. Moreover, obtaining general results for such complicated systems is a real struggle.
On the other hand, the result that do come out of the project is relevant for an important
application and it is possible to see its immediate use. That is great fun!

Another good thing with this setup is that all experiments have been carried out in
the research lab of ABB Robotics, Västerås, Sweden, using their hardware as well as
expertise. Spending time there has proved to be a good way of transfer knowledge from
the research community to the company as well as vice versa.

The project has also resulted in a software tool, written by the author of this thesis, to
enable experiment design, preprocessing of experimental data, and accurate estimation of
both nonparametric and parametric models. With the software tool, most of the research
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2 1 Introduction

work in this thesis is implemented and made easily available. The code has been devel-
oped over a period of more than three years, with an effective time of production of about
3–5 months.

1.2 Industrial robots

A standard industrial robot (see Figure 1.1) consists of a mechanical arm with a number
of links connected by joints (also called axes), where each joint is actuated by an (electric)
motor via a transmission. The movements are controlled by a computer system. Usually
the robot has six joints, giving six degrees-of-freedom and the ability to control both the
Cartesian position of the tool and its orientation in the workspace. Each combination of
the six joints is called a robot configuration, or simply robot position.

The number of sensors used for control is usually kept at the minimum level of only
measuring the motor angular positions, even though the control objective is that the tool
follows the programmed path. The relationship between the motors and the tool is de-
scribed using kinematic and dynamic models. For the design of an advanced robot con-
troller, accurate robot models are therefore crucial to obtain high performance, accuracy,
and disturbance rejection.

The development rate of new industrial robots is also high, with several kinds of robots
to tune each year. For top performance, there could also be a need to tune each individ-
ual robot, as well as re-tune robots at the customer site due to wear or other changing
conditions. This means that there is an increasing need for good procedures to estimate
accurate robot models. Good models are also needed for supervision, diagnosis, mechan-
ical design, performance simulation, and so on. Model based diagnosis of robots is, for
example, important in order to increase reliability and reduce maintenance time.

Historically, the dynamic models used for control are either entirely rigid (An et al.,
1988), or only flexible joint models are considered, i.e., elastic gear transmission and rigid
links (Albu-Schäffer and Hirzinger, 2000; Spong, 1987). The trend in industrial robots
is toward lightweight robot structures with a reduced mass but with preserved payload
capabilities. This is motivated by cost reduction as well as safety issues, but results in
lower mechanical resonance frequencies inside the controller bandwidth. The sources of
elasticity in such a manipulator are, e.g., gearboxes, bearings, elastic foundations, elastic
payloads, as well as bending and torsion of the links. In Öhr et al. (2006) it is shown that
there are cases when these other sources of flexibilities can be of the same order as the
gearbox flexibilities for a modern industrial robot. Accurate dynamic models that also
describe these elastic effects are therefore needed in order to obtain high performance.

The industrial robot poses a challenging modeling problem due to both the system
complexity and the required model accuracy. The dynamics of the six joints is strongly
coupled (moving one motor will cause motion also in the other joints), giving a truly mul-
tivariable system. The dynamics is nonlinear, both with respect to the rigid body dynamics
and other things such as non-ideal motors and sensors, and a transmission with friction,
backlash, hysteresis, and nonlinear stiffness. The system is resonant due to elastic effects
and, in addition, experimental data must usually be collected while the robot controller is
operating in closed loop since the open-loop system is unstable.

Two main routes to obtain models are physical modeling and system identification.
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Figure 1.1: The ABB IRB6600 robot. Left: equipped with a spot-welding gun.

Right: illustration with the six axes.

For the modeling route, basic physical laws and other well-established relationships are
used to come up with a model. System identification, on the other hand, uses experimental
data to adjust parameters in a selected model structure. In this thesis, a combination of
these two routes is used where unknown parameters in a physically parameterized model
are estimated from experimental data, often called gray-box identification.

1.3 Problem Statement

The main problem considered in this thesis is about identification of unknown parame-
ters in a nonlinear dynamic model of an industrial robot, here represented by a nonlinear
state-space model

ẋ(t) = f(x(t), u(t), θ), (1.1a)

y(t) = h(x(t), u(t), θ), (1.1b)

with state vector x(t), input vector u(t), output vector y(t), parameter vector θ, and non-
linear functions f(·) and h(·) that describe the dynamics. The model must be global,
i.e., valid throughout the whole workspace (all robot configurations/positions), as well
as elastic, which here means that resonances due to elastic effects are captured by the
model. The elastic effects are modeled through a lumped parameter approach (Khalil and
Gautier, 2000) where each rigid body is connected by spring-damper pairs. The model
is of gray-box type and the rigid body parameters of the model are usually assumed to
be known from a CAD model or prior rigid body identification. The main objective is
identification of elasticity parameters (spring-damper pairs) but other parameters can be
added, such as the location in the robot structure of the spring-damper pairs and a few



4 1 Introduction

unknown rigid body parameters. It is also possible to include nonlinear descriptions of
selected quantities (e.g., the gearbox stiffness) and identify those by a linearization for
each operating point. An additional constraint in this thesis is that no extra sensors are
used for the identification. This means that only measurements of motor angular positions
and motor torques (actually the reference signals to the torque controllers) will be used
as output y and input u, respectively. This constraint is used both to limit the complexity
and to see how much that can be achieved using only the standard sensors.

The real challenge for system identification methods is that the industrial robot is
multivariable, nonlinear, unstable, and resonant at the same time. Usually, in the literature,
at least one of the first three topics is left out. Identification of such a complex system is
therefore a huge task, both in finding suitable model structures and efficient identification
methods.

One solution could be to apply a nonlinear prediction error method (Ljung, 1999,
pp. 146–147), where measured input-output data are fed to the model and the predicted
output from the model is compared with the measured output. This is treated in Paper F
for axis one of the industrial robot, which means a stable scalar system (axis one is not
affected by gravity). Extending these results to a multivariable and unstable system would
involve, for example: finding a stable predictor, numerical problems, and handling large
data sets. The last two problems stem from the fact that the system is resonant and nu-
merically stiff, as well as large in dimension both with respect to the number of states
and parameters. Moreover, the choice of model structure (parameters) and handling local
minima in the optimization are also parts of the problem. Apart from all these problems,
such a solution would really tackle our main problem.

Due to the complexity of the industrial robot, it is common practice to estimate ap-
proximate models for various purposes. By, for example, using a low-frequency exci-
tation, elastic effects have a minor influence and a nonlinear model of the rigid body
dynamics can be estimated using least squares techniques. This is a much studied prob-
lem in the literature, see, e.g., Kozlowski (1998) for an overview. Taking elastic effects
into account makes the identification problem much harder. The main reason is that only
a subset of the state variables now are measured such that linear regression cannot be
used. One option could be to add sensors during the data collection to measure all states,
even though accurate measurements of all states are not at all easy to obtain (if even pos-
sible) and such sensors are probably very expensive (for example laser trackers). The
data collection will also be more involved with additional signals to measure, mounting
of sensors, and so on, which will make such a solution harder to use as a simple way of
tuning numerous robots, as well as re-tuning robots at the customer site.

It is common to study the local dynamic behavior around certain operating points
(x0, u0) and there estimate parametric or nonparametric linear models (see, e.g., Albu-
Schäffer and Hirzinger, 2001; Behi and Tesar, 1991; Johansson et al., 2000; Öhr et al.,
2006). One application area for these linear models is control design, where a global
(feedback) controller is achieved through gain scheduling. The linear models can also be
used for the tuning of elastic parameters in a global nonlinear robot model, which is the

adopted solution in this thesis:

• The local behavior is considered by estimating the nonparametric frequency re-
sponse function (FRF), Ĝ(i)(ωk), with frequencies ωk, k = 1, . . . , Nf , of the



1.4 Outline 5

system in a number of operating points, (x
(i)
0 , u

(i)
0 ), i = 1, . . . , Q.

• Next, the nonlinear parametric robot model (1.1) is linearized in each of these op-
erating points, resulting in Q parametric FRFs, G(i)(ωk, θ), i = 1, . . . , Q.

• Finally, the optimal parameter vector θ̂ is obtained by minimizing the discrepancy
between the parametric FRF, G(i)(ωk, θ), and the estimated nonparametric FRF,
Ĝ(i)(ωk), for all the Nf frequencies and Q operating points.

Using an FRF-based procedure allows for data compression, unstable systems are
handled without problems, it is easy to validate the model such that all important reso-
nances are captured, and model requirements in the frequency domain are easily handled.
The proposed procedure also has some possible problems. The choice of model structure
(parameters) and handling local minima in the optimization are problems here as well. In
addition come some difficulties with biased nonparametric FRF estimates due to closed-
loop data and nonlinearities. There are also cases when even a small perturbation around
an operating point can give large variations due to the nonlinearities, which makes a linear
approximation inaccurate. Various aspects of this procedure are treated in Papers A–E.
For details on the parametric FRFs, see also Section 4.4.4.

1.4 Outline

Part I contains an overview of robotics and system identification theory related to the
results presented in the thesis. Parts of the material has previously been published in
Wernholt (2004). Part II consists of a collection of papers.

1.4.1 Outline of Part I

The application studied in this thesis is the industrial robot. Chapter 2 gives an introduc-
tion to the robotics area, including modeling and control. Chapter 3 presents some system
identification methods and model structures that are relevant for this thesis. A survey on
system identification in robotics can be found in Chapter 4. Finally, Chapter 5 provides a
conclusion and some ideas for future research.

1.4.2 Outline of Part II

This part consists of a collection of edited papers, introduced below. A summary of each
paper is given, together with a short paragraph describing the background to the paper
and the contribution of the present author.

Paper A: Frequency-Domain Gray-Box Identification of Industrial Robots

Wernholt, E. and Moberg, S. (2007b). Frequency-domain gray-box identifi-
cation of industrial robots. Technical Report LiTH-ISY-R-2826, Department
of Electrical Engineering, Linköping University, SE-581 83 Linköping, Swe-
den. Submitted to the 17th IFAC World Congress, Seoul, Korea.
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Summary: This paper describes the proposed identification procedure, where unknown
parameters (mainly spring-damper pairs) in a physically parameterized nonlinear dynamic
model are identified in the frequency domain, using estimates of the nonparametric FRF
in different robot configurations. Different parameter estimators are compared and experi-
mental results show the usefulness of the proposed identification procedure. The weighted
logarithmic least squares estimator achieves the best result and the identified model gives
a good global description of the dynamics in the frequency range of interest.

Background and contribution: The basic idea of using the nonparametric FRF for the
estimation of the parametric robot model is described in Öhr et al. (2006), where the au-
thor of this thesis mainly contributed with experiment design and the nonparametric FRF
estimation. The author of this thesis has continued to analyze various aspects of the iden-
tification procedure such as the nonparametric FRF estimation, the selection of optimal
experiment positions, and the choice of parameter estimator. Some of these results are
presented in this paper. Stig Moberg has done much of the initial work on the identifica-
tion procedure (see Öhr et al., 2006). In this paper, he has served as a discussion partner,
performed most of the experiments, and helped out with the experimental evaluation.

Paper B: Analysis of Methods for Multivariable Frequency Response Function

Estimation in Closed Loop

Wernholt, E. and Gunnarsson, S. (2007a). Analysis of methods for multivari-
able frequency response function estimation in closed loop. In 46th IEEE

Conference on Decision and Control, New Orleans, Louisiana. Accepted for
publication.

Summary: Different methods for estimating the nonparametric multivariable FRF are
proposed in the literature. In this paper, some of these methods are analyzed, both in
open loop and closed loop. Expressions for the bias and covariance are derived and the
usefulness of these expressions is illustrated in simulations of an industrial robot where
the different estimators are compared.

Background and contribution: Studying the properties of nonparametric FRF estima-
tors, applied to closed-loop data from industrial robots, has played an important role
throughout this thesis project. An early version of the paper is also published in Wernholt
and Gunnarsson (2004). Professor Svante Gunnarsson mainly assisted in discussions as
thesis advisor.

Paper C: Experimental Comparison of Methods for Multivariable Frequency

Response Function Estimation

Wernholt, E. and Moberg, S. (2007a). Experimental comparison of methods
for multivariable frequency response function estimation. Technical Report
LiTH-ISY-R-2827, Department of Electrical Engineering, Linköping Uni-
versity, SE-581 83 Linköping, Sweden. Submitted to the 17th IFAC World

Congress, Seoul, Korea.
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Summary: Five different nonparametric estimation methods for the multivariable FRF
are experimentally evaluated using closed-loop data from an industrial robot. Three clas-
sical estimators (H1, joint input-output, arithmetic mean) and two estimators based on
nonlinear averaging techniques (harmonic mean, geometric/logarithmic mean) are con-
sidered. The estimators based on nonlinear averaging give the best results, followed by
the arithmetic mean estimator, which gives a slightly larger bias. The joint input-output
estimator, which is asymptotically unbiased in theory, turns out to give large bias errors
for low frequencies. Finally, the H1 estimator gives the largest bias for all frequencies.

Background and contribution: After writing Paper B, the immediate question was how
the different estimators would turn out in practice. Stig Moberg mainly assisted by col-
lecting all experimental data.

Paper D: Estimation of Nonlinear Effects in Frequency-Domain Identification of

Industrial Robots

Wernholt, E. and Gunnarsson, S. (2007b). Estimation of nonlinear effects in
frequency-domain identification of industrial robots. Accepted for publica-

tion in IEEE Transactions on Instrumentation and Measurement.

Summary: This paper deals with how the nonparametric FRF estimate is affected by non-
linearities in the system. A method for detection and estimation of nonlinear distortions
in nonparametric FRF estimates is applied to experimental data from the industrial robot.
The results show that nonlinear distortions are indeed present and cause larger variability
in the nonparametric FRF than the measurement noise contributions.

Background and contribution: After a seminar by Professor Johan Schoukens in March
2005, we got interested in studying how nonlinearities affect the estimated nonparametric
FRF of industrial robots. This resulted in the conference paper Wernholt and Gunnarsson
(2006a), which is extended in Paper D. Professor Svante Gunnarsson mainly assisted in
discussions as thesis advisor.

Paper E: Experiment Design for Identification of Nonlinear Gray-Box Models

with Application to Industrial Robots

Wernholt, E. and Löfberg, J. (2007). Experiment design for identification of
nonlinear gray-box models with application to industrial robots. In 46th IEEE

Conference on Decision and Control, New Orleans, Louisiana. Accepted for
publication.

Summary: The adopted solution in the thesis is based on nonparametric FRF estimates
in a number of robot configurations/positions. The selection of these positions in an op-
timal way is treated in this paper. From the derived Fisher information matrix, a convex
optimization problem is posed. By considering the dual problem, the experiment design
is efficiently solved with linear complexity in the number of candidate positions, com-
pared to cubic complexity for the primal problem. In the numerical illustration, using an
industrial robot, the parameter covariance is reduced by a factor of six by using the 15
optimal positions compared to using the optimal single position in all experiments.
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Background and contribution: The optimal selection of robot configurations/positions
for the experiments has been an open question for a long time during the project. During
the second half of 2006, the question was finally formulated as a convex optimization
problem by introducing the candidate positions and studying the Fisher information ma-
trix. Dr. Johan Löfberg assisted in how to solve the convex optimization problem using
YALMIP (Löfberg, 2004). He also came up with the idea of considering the dual problem.

Paper F: Nonlinear Gray-Box Identification of a Flexible Manipulator

Wernholt, E. and Gunnarsson, S. (2007c). Nonlinear gray-box identification
of a flexible manipulator. Submitted to Control Engineering Practice.

Summary: A three-step procedure for time-domain nonlinear gray-box identification of
an industrial manipulator containing flexibilities is studied. The aim of the first two steps
is to obtain good initial values for the third prediction error minimization step. In the
first step, rigid body dynamics and friction are identified using a separable least-squares
method. In the second step, initial values for flexibilities are obtained using an inverse
eigenvalue method. Finally, in the last step, the remaining parameters of a nonlinear gray-
box model are identified directly in the time domain using prediction error minimization.
The identification procedure is exemplified using experimental data from axis one of an
industrial robot. The estimated physical parameters have realistic numerical values and
give a model with good correspondence to FRF measurements.

Background and contribution: This work started as a small project in 2004 together
with David Törnqvist in a graduate course on system identification held by Professor
Lennart Ljung. The author of this thesis continued the work by collecting experimental
data, extending the model structure, and introducing the first two steps in the procedure.
Early versions of the paper are also presented in Wernholt and Gunnarsson (2005, 2006b).
Professor Svante Gunnarsson has mainly assisted in discussions as thesis advisor.

Related Publications

Publications of related interest, but not included in the thesis:

Öhr, J., Moberg, S., Wernholt, E., Hanssen, S., Pettersson, J., Persson, S., and
Sander-Tavallaey, S. (2006). Identification of flexibility parameters of 6-axis
industrial manipulator models. In Proc. ISMA2006 International Conference

on Noise and Vibration Engineering, pages 3305–3314, Leuven, Belgium.

Gunnar, J., Wernholt, E., Hovland, G., and Brogårdh, T. (2006). Nonlin-
ear grey-box identification of linear actuators containing hysteresis. In Proc.

2006 IEEE International Conference on Robotics and Automation, pages
1818–1823, Orlando, Florida.

Wernholt, E. (2004). On Multivariable and Nonlinear Identification of Indus-

trial Robots. Licentiate thesis no. 1131, Linköping Studies in Science and
Technology, SE-581 83 Linköping, Sweden.
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1.5 Contributions

The main contributions of the thesis are:

• The refinement, analysis, and experimental comparison of the identification pro-
cedure in Paper A, first introduced in Öhr et al. (2006), for the identification of
unknown parameters in nonlinear gray-box models using frequency-domain data.

• The analysis of asymptotic properties for the weighted nonlinear least squares esti-
mator and the weighted logarithmic least squares estimator in Paper A.

• The analysis of multivariable nonparametric FRF estimators in Paper B. Bias and
variance expressions are derived, both for open-loop and closed-loop data.

• The experimental comparison of different multivariable nonparametric FRF esti-
mators in Paper C.

• Insight into the choices of excitation signals and averaging techniques when using
nonparametric FRF estimators for closed-loop identification of an industrial robot.

• The experimental results in Paper D where it is shown that errors in the nonpara-
metric FRF estimate due to nonlinearities are larger than the measurement noise
contributions. Therefore the orthogonal random phase multisine signal is recom-
mended together with averaging over experiments with different realizations of the
random phases.

• The results in Paper E on experiment design for nonlinear gray-box models, where
the selection of optimal robot configurations/positions for experiments is solved as
a convex optimization problem.

• The proposed three-step identification procedure in Paper F for combined identi-
fication of rigid body dynamics, friction, and flexibilities using continuous-time
nonlinear gray-box identification.
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2
Robotics

In this chapter, some important properties of industrial robots will be examined. First an
introduction to robotics is given in Section 2.1. Modeling of industrial robots is described
in Section 2.2 and finally some aspects of the robot control problem are presented in
Section 2.3.

2.1 Introduction

The word robot was first introduced by the Czech playwright Karel Capek in his 1920
play Rossum’s Universal Robots, the word robota being the Czech word for work. The
term has been applied to a great variety of devices, such as humanoids (trying to mimic
humans), domestic robots like robot vacuum cleaners and robot lawn movers, underwater
vessels, military missiles, autonomous land rowers, etc. Almost anything that operates
with some degree of autonomy, usually under computer control, has at some point been
called a robot. This thesis deals with industrial robots (see Figure 1.1 for an example),
which consist of a mechanical arm with a number of joints, where each joint is actuated
by an (electric) motor via a transmission. The movements are controlled by a computer
system. This type of robot is often called robot manipulator or just manipulator. A
widely accepted definition of a robot according to the Robot Institute of America (Spong
and Vidyasagar, 1989) is:

A robot is a re-programmable multi-functional manipulator designed to move
materials, parts, tools or specialized devices through variable programmed
motions for the performance of a variety of tasks.

2.1.1 Manipulator Structures

The mechanical structure of a robot manipulator consists of a sequence of rigid bodies
(links) connected by revolute or prismatic joints, also called axes, where each joint is

13
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Figure 2.1: The ABB IRB6600 robot with its six revolute joints. Axes 1-3 position

the end effector (not shown in this figure) and axes 4-6 constitute the wrist.

actuated by an electric motor combined with a gearbox1. Prismatic joints give relative
translational motion between links, whereas the revolute joints give relative rotational
motion between the links. The manipulator is characterized by an arm that ensures mo-
bility, a wrist that confers dexterity, and an end effector (e.g., the spot-welding gun in
Figure 1.1) that performs the required task. Usually the robot has six joints, giving six
degrees-of-freedom (DOF) and the ability to control both the position of the end effector
and its orientation in the workspace. See Figure 2.1 for an example. The portion of the
environment that can be reached by the robot’s end effector is called the robot workspace.
Its shape and volume depend both on the manipulator structure and mechanical joint lim-
its.

Many different manipulator structures exist, where the main differences are due to the
two different types of joints and how these are combined. Some classifying manipulator
structures can be found in Sciavicco and Siciliano (2000) and are also depicted in Fig-
ure 2.2. One can also distinguish between manipulators with an open or closed kinematic
chain, which refers to how the links are connected. In this chapter, we will only consider
manipulators with an open kinematic chain, also called serial type manipulators. In par-
ticular, we will restrict our treatment to the anthropomorphic manipulator, see Figures 2.1
and 2.2f, which is the most commonly used manipulator. This type of robot only uses
revolute joints and is also called elbow-type robot due to its similarities with a human
arm. See Figure 2.3 for an example of a robot with a closed kinematic chain. That type
of robot is also called parallel kinematic machine (PKM).

The area in which a robot works is called a robot cell or work cell. For many applica-
tions it is common to use multiple robots in a work cell, like for the spot-welding line in

1The first robot generations also used hydraulic actuators. Pneumatic actuators are sometimes used in special
applications, e.g., milking robots.
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(a) Cartesian (b) Gantry

(c) Cylindrical (d) Spherical

(e) SCARA (f) Anthropomorphic

Figure 2.2: Some classifying manipulator structures according to Sciavicco and

Siciliano (2000). Photos courtesy of Prof. B. Siciliano.
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Figure 2.4. A dedicated device, called positioner, is often used to handle the work object.
The positioner controls the work object and all the other devices are coordinated to move
relative to the work object when it moves. The axes of the positioner are often referred to
as external axes and are usually controlled by the robot controller.

2.1.2 Facts and Figures

The purpose of this section is to get a flavor of what industrial robots are used for, how
the market is changing, and how that might affect the need for new technologies. The
facts are mainly based on IFR (2006), Westerlund (2000), and Brogårdh (2007), as well
as personal communication at ABB Robotics.

Industrial robots are essential components for the realization of automated manufac-
turing systems. The main reasons for investments in industrial robots are:

• to save costs,

• to increase productivity,

• to raise quality,

• to remain competitive in a global market, and

• to eliminate dangerous and laborious work.

Industrial robots are nowadays used in a wide range of applications, like spot welding (see
Figure 2.4), arc welding, assembly, material handling, gluing and dispensing, painting,
material cutting (e.g., using laser, plasma, and water jet), material removal (e.g., polishing,
stub grinding, and deburring), and many more. Demands on productivity and cost cut in
different types of industries further increase the use of robots and they are rapidly applied
to new areas. One example is the food industry (see Figure 2.3) which is a growing
market. According to IFR (2006), the world-wide installations in 2005 were distributed
as:

• motor vehicles (25 %),

• automotive parts (24 %),

• electrical industries (24 %),

• chemical industries (12 %),

• metal products (5 %),

• machinery (5 %),

• food products (2 %),

• communication (2 %), and

• precision and optical products (1 %).
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Figure 2.3: Picking sausages with the ABB IRB340 FlexPicker.

Figure 2.4: A spot-welding line using ABB IRB6400 robots.
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The largest differences in Europe, compared to the whole world, are that the electrical
industry only has 3 %, metal and food are twice as large (10 % and 4 %), and rubber
and plastic (13 %) is a large market. In general, robot systems in industries other than
automotive and electrical are more established in Europe than in other regions.

The density of industrial robots is, on average, about 1 robot per 10 workers in the
motor vehicle industry, and 1 robot per 100 workers in the manufacturing industry, with
large variations between different countries.

Since industrial robots started to be introduced in industry in the 1960s, more than
1 600 000 units have been installed (by the end of 2005). With an estimated average
length of service life of 12 years, this gives a stock of about 923 000 operational industrial
robots, approximately distributed as: 1/3 in Europe, 1/3 in Japan, less than 1/6 in the
US, and more than 1/6 in the rest of the world.

In 2005, the world market peaked with about 126 700 new industrial robots installed.
Out of these, 76 000 were supplied to Asian countries, with 50 500 in Japan only. The in-
stalled robots were distributed as: 59 % articulated (anthropomorphic), 20 % linear/Cart-
esian/gantry, 12 % cylindrical, and 8 % SCARA.

2.1.3 Historical Background

Industrial robots have become an essential component in the manufacturing industry of
today. Still, in a historical perspective the industrial robot is a fairly new invention and a
historical background could therefore be interesting. The historical background is by no
means complete. To reduce the scope, the manufacturer ABB and the European market
will be in focus, with some comments on other manufacturers and markets. The facts are
mainly based on Westerlund (2000).

Technically, one could say that the industrial robot originates from hydraulic assembly
machines that arrived in the 1950s and from the NC (numerically controlled) machines.
The first industrial robot, a Unimate robot from the company Unimation, was installed in
1961 to serve a die casting machine in General Motor’s factory in Trenton, New Jersey.
The big breakthrough came in 1964 when General Motors ordered 66 Unimate robots. In
1969, Unimation installed its first large spot-welding line with 26 robots, used for spot-
welding car bodies at General Motors.

In the 1970s, more and more companies started using robots. In 1973, there was a
total of about 3 000 robots in operation around the world, of which a third were produced
by Unimation. At that time, 71 companies worldwide manufactured industrial robots.
Technically, the robots mainly used hydraulic actuators and usually combined revolute
and prismatic joints.

The industries in Japan were very quick to apply the new technology of industrial
robots, which meant that they could increase productivity and take new market shares.
Pretty soon they developed their own robots and in 1980, 19 000 industrial robots were
manufactured in Japan by approximately 150 different manufacturers, such as Kawasaki,
Yaskawa, Mitsubishi Heavy Industries, Kobe Steel, and Fanuc. Between 1980 and 1988,
the number of robots in operation worldwide increased tenfold and 1988, the figure was
256 000. Of these, 175 000, or 68 %, had been installed in Japan.

Europe, apart from Scandinavia, awoke quite late to industrial robots. One reason is
that there was no shortage of labor there. The first industrial robot was installed in 1967
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when Svenska Metallverken in Upplands Väsby, Sweden, bought a Unimate robot, but the
big breakthrough in Europe came during the latter part of the 1970s. During the 1980s,
the automotive industry in Europe and America discovered that the Japanese investment
in robotized spot welding produced a more consistent quality and, therefore, welding
became a prioritized area. At the end of the 1980s, there was also a rapid growth in the
field of assembly.

By the end of the 1980s, most manufacturers with an annual production volume be-
low 1 000 robots had to start looking for a partner. Usually large companies bought up
small, specialized companies. During the last decade of the twentieth century, the largest
companies on the European market were ABB, Fanuc, Yaskawa/Motoman, KUKA, Co-
mau, and Renault Automation/ACMA. ABB was more than twice as big as its closest
rival on the European market. Today, the three largest world-wide robot manufacturers
are Yaskawa/Motoman, Fanuc, and ABB. The European companies KUKA, Comau, and
Reis are also large on the European market.

In the mid 1980s, a big shift in technology took place among the robot manufacturers
when AC motors replaced the DC motors. AC motors offered better cooling, which meant
that the performance could be increased. Continuous improvements in the robot control
system also took place. To give a flavor of the technical development within the robotics
area over the last 30 years, some milestones for the robot manufacturer ABB Robotics
(ABB, 2007) are given:

Some Milestones for ABB Robotics

1974: Deliver its first industrial robot, called IRB6, with a lifting capacity of 6 kg. This is
the world’s first microcomputer controlled electrical industrial robot and DC motors are
used in combination with harmonic drive planetary gears.

1979: World’s first electrical robot for spot welding (IRB60).

1983: New control system, called S2, which introduces the concepts of TCP (tool center point)
and the joy stick.

1986: S3, the third generation of controllers, as well as IRB2000, a 10 kg robot which is the
first robot using AC motors, and has backlash-free gearboxes, a large working range,
and great accuracy.

1986-1994: Expands through acquisition of, e.g., Trallfa, Cincinatti Milacron, Graco, and
ACMA.

1991: IRB6000, a large 200 kg robot, is introduced. This first modular robot (e.g., possible
to change the wrist) becomes the fastest and most accurate spot-welding robot on the
market.

1994: S4, the fourth generation of the control system. The main contributions are the new
programming language, RAPIDTM, and a model-based motion control system with full
dynamic models, which greatly improves the robot performance with respect to accu-
racy and cycle time.

1998: Launch of the IRB340 robot, see Figure 2.3, the world’s fastest pick and place robot.

2002: ABB becomes the first company in the world to sell 100 000 robots.

2004: IRC5, ABB’s latest controller with many new features. One powerful innovation is the
MultiMoveTM, allowing fully synchronized control of up to four robots using the same
controller. The IRC5 controller and its ABB robot family can be seen in Figure 2.5.
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Figure 2.5: ABB robot family with the IRC5 controller.

One might wonder what the future holds for the industrial robot? According to West-
erlund (2000), industrial robots are today employed in roughly 20 different fields, with
around 900 potential fields of use in the future. It could be that a “robot revolution” lies
ahead of us. However, entering these new fields will be a great challenge for robot man-
ufacturers. Among several things, the robot must, to a greater extent, be able to perceive
what is going on in the environment and then additional sensors will be needed. The robot
must also be user friendly and the software much easier to program. Probably a lighter
mechanical structure will be needed and, above all, the price must be reduced. See also
Brogårdh (2007) for some scenarios on future robot control development.

2.2 Modeling

The robot system consists of a mechanical arm, actuators, sensors, and a robot controller.
The robot motion control problem is treated in Section 2.3, but the remaining parts of the
robot system will now be briefly described and modeled, starting with the actuators and
sensors. Next, the modeling of the mechanical arm will be carried out at different levels
of complexity, starting with rigid body kinematics and dynamics, then adding flexibili-
ties to better mimic the behavior of a real robot. These different modeling levels have
corresponding system identification levels, see Chapter 4.

The material in this section is mainly based on Sciavicco and Siciliano (2000), and
Spong and Vidyasagar (1989).

2.2.1 Actuators and Sensors

Two basic component types in the robot system are actuators and sensors. It is, of course,
outside the scope of this thesis to give an overview of all different actuators and sensors
used in various types of robot systems, including a description of their pros and cons.
Here, the focus will be on the actuators and sensors used for the particular industrial
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robots used in the experiments, i.e., robots in the ABB IRB6600 series. See, for example,
Sciavicco and Siciliano (2000, pp. 295-320) for a more detailed overview.

Actuators

To enable movements of the robot arm, each joint is actuated by a motor through a trans-
mission gearbox. Each joint also has a brake that is used for emergency stops and when
the robot is turned off. The robot actuating system has some power supply and a power
amplifier for each motor.

The power amplifier (or power/torque controller) has the task of modulating the power
flow (provided by the power supply) according to a control signal and transmit this power
to the motor in terms of suitable force and flow quantities. For electric motors, it is
common to use transistor amplifiers which are suitably switched by using pulse-width
modulation techniques.

The joint motion typically demands low speeds with high torques. A motor usually
provides the opposite, i.e., high speeds with low torques. To overcome this, a transmission

(gearbox) is used. Various types are used depending on the robot structure, desired perfor-
mance, etc. Today compact gearboxes/speed reducers, e.g., harmonic drives and different
types of planetary gears (RV, Cyclo), are popular due to their low backlash, compact size,
and large gear ratio (often between 50–450). The robots used in the experiments are
equipped with RV gears. Neglecting inertia and power loss, a gearbox has the following
relations between the high speed (hs) and low speed (ls) sides

qls = rgqhs , τls =
1

rg
τhs ,

where qls and qhs are the angular positions, τls and τhs are the torques, and rg is the
(inverse) gear ratio (rg ≪ 1). Using a gearbox will reduce the nonlinear coupling terms
in the dynamic model but at the same time introduce gearbox flexibilities, backlash and
friction. In some rare cases the motor is directly connected to the joint, without the use of
any transmission, which is called direct drive. Using direct drive will make the coupling
effects significant and in addition the control of the motors will be more difficult. Direct
drive has not made any impact in robotics due to cost, the size of the motors (as well as the
brakes), and a more difficult control problem. In addition, more accurate and expensive
sensors will be needed to measure the joint angular position, compared to measuring the
motor angular position before the gearbox (resolution increased by the gear ratio).

As was mentioned in Section 2.1.1, the motors are exclusively electric, even though
the first robot generations used hydraulic actuators. Pneumatic actuators are sometimes
used in special applications, e.g., milking robots. Here, only electric motors will be con-
sidered and, in particular, AC permanent magnet motors since these are used as actuators
for the industrial robots used in the experiments. AC permanent magnet motors are ex-
tremely fast, compact, and robust. A drawback, however, is that the generated torque
changes periodically with the rotor position. The resulting torque ripple is, according
to Holtz and Springob (1996), “caused by distortion of the stator flux linkage distribu-
tion, variable magnetic reluctance at the stator slots, and secondary phenomena” (e.g., the
power amplifier). The ripple caused by the variable magnetic reluctance is proportional
to the current, which usually can be approximated by the commanded torque, τc, from the
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Table 2.1: Numerical values for the disturbances in (2.1) and (2.2). Values partly

from identification carried out by Uddeholt (1998).

n an (Nm) φa,n (rad)
3 0.06 1.45

36 0.11 0.9
72 0.08 0.2

n bn (-) φb,n (rad)
18 0.04 0

n cn (mrad) φc,n (rad)
2 0.40 -1.84

10 0.20 0.81
12 0.22 2.94
48 0.18 2.94

robot controller (neglecting the fast power controller). Since the torque ripple is periodic
in the motor angular position qm, it can be modeled as a sum of sinusoids like

vτ (t) =
∑

n∈Na

an sin(nqm(t) + φa,n) + τc(t)
∑

n∈Nb

bn sin(nqm(t) + φb,n), (2.1)

where the number of components in Na and Nb depend on the specific motor type and the
level of approximation (Gutt et al., 1996). The applied torque τ can therefore be seen as a
sum of the commanded torque τc and a disturbance term vτ . For an example of numerical
values, see Table 2.1.

Sensors

Using sensors is of crucial importance to achieve high-performance robotic systems.
There are various types of sensors available, often divided into sensors that measure the
internal state of the robot (proprioceptive sensors) and sensors that provide knowledge
about the surrounding environment (heteroceptive sensors). Examples of proprioceptive
sensors are encoders and resolvers for joint position measurements and tachometers for
joint velocity measurements. Heteroceptive sensors include, for example, force sensors
for end effector force measurements and vision sensors for object image measurements
when the manipulator interacts with the environment.

Due to cost and reliability requirements, sensors are only used to measure motor an-
gular position in a standard robot today. In some special applications, vision systems and
force sensors are also used (see e.g., Olsson, 2007). Due to the transmission and other
sources of flexibilities, advanced dynamic models are then used to accurately estimate the
movements of the robot arm.

If the motor angular position is measured by a resolver, the position values are nor-
mally obtained by using Tracking Resolver-to-Digital Converters (Hanselman, 1990).
The position error, due to non-ideal resolver characteristics, can be described as a sum
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of sinusoids like (Hanselman, 1990)

vqm
(t) =

∑

n∈Nc

cn sin(nqm(t) + φc,n). (2.2)

For an example of numerical values, see Table 2.1.

Remark 2.1. Due to the gearbox, each joint will have two angular positions, qm (motor)
and qa (arm), which are related by the gear ratio as well as elastic effects. For simplicity,
the kinematics and rigid body dynamics, described next, will be expressed in qa. The
gearbox dynamics should be added afterwards.

2.2.2 Kinematics

Kinematics of a robot refers to the geometric relationship between the joint variables and
the end effector position and orientation in task space. The motion of the end effector in
task space is usually defined in Cartesian coordinates with respect to a reference frame.

To be able to describe the robot kinematics in a convenient way, various coordinate
systems are needed. Therefore a coordinate frame is attached to each link, to the base
(base frame or reference frame), and to the end effector (end effector frame or tool frame).

Joint coordinates are given by the vector qa = (qa1, qa2, . . . , qan)T , where n is the
number of joints. A realization of the vector qa is called a configuration of the robot.

The position of the tool frame, the tool center point (TCP), can be expressed by a vec-
tor x ∈ R

3. The orientation of the tool frame with respect to the base frame is represented
by a rotation matrix,R ∈ R

3×3, with the propertiesRTR = I , detR = +1. Even though
the matrix R has 9 elements, it is possible to parameterize it by a parameter vector γ of
lower dimension. Many representations occur in the literature, like the Euler angles and
roll-pitch-yaw angles (using 3 parameters), and axis/angle and unit quaternions (using 4
parameters). Using only three parameters will give singularities for certain orientations,
which would be cumbersome. For details on different representations, see, for example,
Spong and Vidyasagar (1989) and Funda et al. (1990).

Position Kinematics

The forward kinematic problem is to determine the mapping

X =

[
x(qa)
γ(qa)

]
= fkin(qa), (2.3)

from joint space to task space, whereX also is called the robot location. The computation
of this function is quite straightforward for a serial link robot and can be done iteratively
from the base frame to the first link, then on to the second, and so on until the tool frame
is reached. In each step, the relation is determined by geometric properties of the links
and a single joint variable.

The inverse kinematic problem is to determine the inverse of the mapping, i.e., given
a position and rotation of the tool frame calculate the corresponding robot joint config-
uration. This is in general a much harder problem since it is not always possible to find
a closed-form solution and there may exist multiple or even infinitely many solutions.
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Many of these problems can, however, be avoided by a careful design of the manipulator
structure.

For a parallel kinematic machine (PKM), it is the other way around, i.e., the inverse
problem is fairly easy and the forward kinematic problem is really hard to solve (Khalil
and Dombre, 2002).

Velocity Kinematics

The velocity kinematics gives the relationship between the joint velocities and the corre-
sponding end effector linear and angular velocities. Similar to (2.3) the velocity kinemat-
ics can be written as

V =

[
v
ω

]
= J(qa)q̇a, (2.4)

where J(qa) = ∂fkin

∂qa
(qa) ∈ R

6×n is the manipulator Jacobian, and V represents the
linear and angular velocities of the tool frame relative to the base frame. Equation (2.4)
is obtained from (2.3) by differentiation with respect to time, see Spong and Vidyasagar
(1989) for details.

The Jacobian is an important quantity in the analysis and control of robot motion.
Since it is a function of the configuration qa, those configurations for which it looses rank
are of special interest. They are called singularities and can be interpreted as points in
the workspace where a serial type robot looses one or more degrees of freedom. When
planning the robot motion, singular points should be avoided. The Jacobian also describes
the transformation from tool contact forces to corresponding joint torques.

2.2.3 Rigid Body Dynamics

A dynamic robot model describes the time evolution of the robot joints as a function of
applied torques and forces. The main focus of this thesis is identification of unknown
parameters in this type of model, and therefore the structure of dynamic robot models is
of interest.

There are two common methods to obtain the dynamic model. The first is based on
the Euler-Lagrange formulation and is systematic and conceptually simple. The second
method is based on the Newton-Euler formulation and allows obtaining the model in a
recursive form. See, for example, Spong and Vidyasagar (1989) for details. The resulting
equations describing the rigid body dynamics are given by

Ma(qa)q̈a + ca(qa, q̇a) + ga(qa) + τfa(q̇a) = τa, (2.5)

where Ma(qa) is the inertia matrix, ca(qa, q̇a) is referred to as the velocity dependent
term, containing the centrifugal and Coriolis effects, ga(qa) is the gravitational term,
τfa(q̇a) is the friction torque, and τa is the vector of applied torques.

The dynamics of (2.5) have a number of important properties that are helpful in the
analysis and design of the control system (Sciavicco and Siciliano, 2000; Spong and
Vidyasagar, 1989). Of particular interest here is the linearity with respect to the dynamic

parameters (neglecting τfa ), which are sometimes called the standard inertial parameters.
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Each link gives ten inertial parameters: body mass, mass location, and the inertia matrix
(only six elements due to symmetry). It is common to use a friction model

τfa(q̇a) = Fv q̇a + Fc sign(q̇a), (2.6)

which gives two additional parameters for each link, but still an expression that is linear
in the parameters. The robot dynamic model (2.5) can then be rewritten as

Hrb(qa, q̇a, q̈a)θrb = τa, (2.7)

or as the energy difference model

∆hrb(qa, q̇a)θrb = ∆Hrb = Hrb(tb) −Hrb(ta) =

tb∫

ta

τT
a q̇adt, (2.8)

where θrb ∈ R
12n is the parameter vector and n is the number of links (Kozlowski, 1998).

Hrb is the total energy of the system. Equations (2.7) and (2.8) are extensively used for
identification of rigid body dynamics, see Section 4.3 for further details.

2.2.4 Flexible Body Dynamics

Traditionally, the dynamic models used for control are either entirely rigid (An et al.,
1988), or only flexible joint models are considered, i.e., elastic gear transmission and
rigid links (Albu-Schäffer and Hirzinger, 2000; Spong, 1987). This is usually sufficient
(depends on the required performance) for a traditional robot structure.

A trend in robotics nowadays is to build lightweight robots, where the weight is re-
duced but with preserved payload capabilities. The load-to-mass ratio usually depends on
the size of the robot, where, e.g., the large ABB IRB6600 robot can handle 225 kg and
weights about 1 750 kg, whereas their smallest robot IRB140 can handle 5 kg and weights
98 kg. The new ABB IRB6620 spot-welding robot illustrates this trend since it handles
150 kg but only weights 900 kg. There are also examples of extreme lightweight robots,
such as the 7 DOF DLR robot in Albu-Schäffer and Hirzinger (2001), which handles 7 kg
and weights 18 kg. This includes actuators as well as many additional sensors.

Lightweight robots are used today in a variety of applications, ranging from space
robotics to less known tasks like exploration of hazardous environments or nuclear waste
retrieval. Service robotics and health care are two other areas of application. A lightweight
robot, such as the 7 DOF DLR robot, will of course not have the same performance as
a traditional industrial robot regarding, for example, workspace, position accuracy, ac-
celeration, and stiffness. All these properties are crucial for most industrial applications.
There are however many reasons for building lightweight robots, such as cost reduction,
reduced power consumption, and safety issues (reduced mass of moving parts). A lighter
mechanical structure will be cheaper since less metal is needed, and smaller actuators can
be used. Due to these reasons, it is also interesting to reduce the weight of industrial
robots. However, a lighter robot, will result in a weaker (more compliant) mechanical
structure and enhance the elastic effects of the materials. In addition to joint flexibilities,
also elastic effects in the link structure then become important.

The flexible joint models and the elastic models will now be briefly described.
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Figure 2.6: The two-mass flexible joint model of the robot arm.

Flexible Joint Models

Considering only one joint, a flexible joint model results in a two-mass flexible model

according to Figure 2.6, where Jm and Ja are the moments of inertia of the motor and
arm respectively, rg is the (inverse) gear ratio (typically rg ≪ 1), kg and dg are the spring
stiffness and damping (modeling the flexibility), τfm(q̇m) is the motor friction, and τ is
the motor torque. The equations describing the dynamics are

Jmq̈m + τfm(q̇m) + rgτg =τ, (2.9a)

Jaq̈a =τg, (2.9b)

kg(rgqm − qa) + dg(rg q̇m − q̇a) =τg, (2.9c)

The two-mass flexible model can be generalized to multivariable systems. A commonly
adopted approximation then is to model the motors as simple rotating inertias, ignoring
that the motors actually are moving due to the movements of the arm. This simplified
model is obtained under the assumption that the kinetic energy of each rotor is mainly due
to its own rotation, as discussed in Spong (1987). Gyroscopic forces between each rotor
and the other links are then neglected. Such an approximation introduces minor errors
for a traditional industrial robot which is fairly rigid. However, for lightweight robots
where the masses of a flexible link and of its actuator could be comparable, neglecting or
oversimplifying the dynamic effects of the motors could yield severe errors (Bascetta and
Rocco, 2002).

For the generalized two-mass flexible model, the multivariable rigid body dynamics
(2.5) is combined with a motor and a spring-damper pair for each joint, giving the dynamic
equations

Mmq̈m + τfm(q̇m) + rgτg =τ, (2.10a)

Ma(qa)q̈a + ca(qa, q̇a) + ga(qa) =τg, (2.10b)

kg(rgqm − qa) + dg(rg q̇m − q̇a) =τg, (2.10c)

where τ now is the vector of applied motor torques, qa is the vector of arm joint variables,
and qm is the vector of motor joint variables. Diagonal matrices describing the joint
dynamics are defined as

Mm = diag {Jm1, . . . , Jmn} , dg = diag {dg1, . . . , dgn} ,
kg = diag {kg1, . . . , kgn} , rg = diag {rg1, . . . , rgn} ,
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and τfm(q̇m) =
[
τfm1 (q̇m1) · · · τfmn(q̇mn)

]T
. See also Spong (1987) for a derivation

of the dynamic equations.

Remark 2.2. The arm friction τfa(q̇a) in (2.5) is located to the motor side and incorpo-
rated in (2.10) as τfm(q̇m) = rgτfa(rg q̇m).

Elastic Models

An elastic link structure is actually described by partial differential equations, character-
ized by an infinite number of degrees of freedom. Obviously, dealing directly with infinite
dimensional models is impractical both for estimation, simulation, and control design pur-
poses. Hence it is necessary to introduce methods to describe the elasticity with a finite
number of parameters. Three different approaches are generally used: assumed modes,
finite elements and lumped parameters. See Theodore and Ghosal (1995) for a compari-
son of the first two approaches and Khalil and Gautier (2000) for an example of the last
approach. Assumed modes are also treated in Bascetta and Rocco (2002), which, in ad-
dition, gives a good overview of the three different approaches. In this thesis, the lumped
parameters approach will be used, as will be described next.

Extended Flexible Joint Models

Consider now the case where each elastic link is divided into a number of rigid bodies,
connected by spring-damper pairs. The flexible joint model (2.10) is then extended as

Mmq̈m + τfm(q̇m) + rgτg =τ, (2.11a)

Mae(qa, qe)

[
q̈a
q̈e

]
+ cae(qa, qe, q̇a, q̇e) + gae(qa, qe) =

[
τg
τe

]
, (2.11b)

kg(rgqm − qa) + dg(rg q̇m − q̇a) =τg, (2.11c)

−keqe − deq̇e =τe, (2.11d)

where the additional variables qe describe the angular motion between the rigid bodies
due to elastic effects, ke and de are defined similarly as kg and dg , and (2.11b) describes
the dynamics of the arm, including elastic effects (with obvious changes in notation com-
pared to (2.10b)). This model can easily be transformed to a nonlinear state-space model
(cf. (1.1)) by using the fact that Mm and Mae(qa, qe) always are invertible (Spong and
Vidyasagar, 1989). Introducing a state vector x and an input vector u as

x =





qm
qa
qe
q̇m
q̇a
q̇e




, u = τ, (2.12)
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gives

ẋ = f(x, u, θ) =





q̇m
q̇a
q̇e

M−1
m (u− τfm(q̇m) − rgτg)

M−1
ae (qa, qe)

[[
τg
τe

]
− cae(qa, qe, q̇a, q̇e) − gae(qa, qe)

]




, (2.13a)

y = h(x, u, θ) = q̇m, (2.13b)

where θ is a vector of unknown parameters in the model, usually the diagonal entries in
kg , dg , ke, and de. The measurement equation (2.13b) depends on what is considered as
measurement signals, but usually y = q̇m is used in the thesis.

This model, referred to as the extended flexible joint model, is described in Moberg
and Hanssen (2007) and used in Paper A and Paper E. See also Section 4.4.4 for some
notes on how (2.13) is linearized and used in the proposed identification procedure.

2.3 Control

The robot motion control problem is the problem of determining the time history of inputs
to the actuators required to cause the end effector to execute a commanded motion. In
general, the motion control problem is divided into three stages,

• motion planning,

• trajectory generation, and

• trajectory tracking.

See also Figure 2.7. Each stage will now be briefly described.

2.3.1 Motion Planning

Motion planning on the highest level involves finding a path in the operational space,
which denotes the locus of Cartesian points or some other representation, that the end
effector has to follow in the execution of the assigned motion. This involves meeting
requirements from the process (e.g., gluing, dispensing, or arc welding) both on position
accuracy and coordinated motion with the process (e.g., to make sure that the size of the
bead remains constant during the planned motion).

In industrial applications this part is either done by using a teach pendant (see Fig-
ure 2.8) or by using a system separate from the robot control system, for example a
CAD/CAM tool.

2.3.2 Trajectory Generation

The goal of the trajectory generation stage is to generate reference inputs to the control
system which ensures that the manipulator executes the planned trajectories.
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Figure 2.7: Block diagram showing the components in the robot control problem.

Figure 2.8: An example of a teach pendant: The ABB IRC5 FlexPendant.
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Given the path representation in Cartesian space from the motion planning stage, this
path first has to be transformed into a path representation in joint space. This is in general
not possible to do analytically. Instead the path must be transformed using the inverse

kinematic model of the robot manipulator at discrete points. These points are then inter-
polated, for example by using splines as in Nyström and Norrlöf (2003).

The generated path is a pure geometric description of the motion. A trajectory, on
the other hand, is a path on which a time law is specified. Trajectory generation therefore
deals with the problem of generating a trajectory with position, speed, acceleration, and
jerk (derivative of acceleration) as functions of time. The trajectories must be feasible,
i.e., the manipulator must be able to follow the generated trajectories. The actual robot
dynamics and kinematics must be taken into account as well as various constraints on
motor torques, speeds, accelerations, structural forces, and so on. The goal often is to
find optimal paths where the maximum speed and acceleration are used, given demands
from the process on accuracy and other process constraints. Therefore, the trajectory
generation problem is important for the performance of the robot.

2.3.3 Trajectory Tracking

The trajectory tracking problem can be defined as the problem of controlling the robot
joints according to the trajectory calculated by the trajectory generator.

There are many control techniques and methodologies that can be applied to the con-
trol of manipulators. The control method and its implementation can have significant
impact on the performance of the manipulator and consequently on the range of possible
applications. The mechanical design of the manipulator will also influence the type of
controller needed. For example, the nonlinear coupling effects between different joints
varies greatly between a Cartesian robot and an elbow-type robot. If a gearbox is used or
not will also greatly affect the control problem, as was mentioned in Section 2.2.1. Using
a gearbox will reduce the nonlinear coupling effects but at the same time introduce flex-
ibilities, backlash and friction. Using a direct-drive robot, on the other hand, will make
the coupling effects significant and in addition the control of the motors will be more
difficult. Here, we will consider geared elbow-type robots. It is outside the scope of this
thesis to give an overview of all available control methods. For more details on different
aspects of robot control, there are numerous references, such as Spong and Vidyasagar
(1989), Craig (1989), Sciavicco and Siciliano (2000), and Spong et al. (1993). However,
to get a feeling for the problem, some words will be said about a commonly used control
technique.

A standard procedure in robotics today is to measure only the motor angular position
(to increase performance, additional sensors are sometimes added). Due to the gearbox
flexibilities, there will be some dynamics between the motor angular position, qm, and
the arm angular position, qa. Therefore, the generated joint trajectory, qrefa , must be
transformed to a corresponding motor trajectory, qrefm , using a flexible dynamic model. A
common architecture for the robot controller is shown in Figure 2.9, using both feedback
and feedforward controllers. X is the end-effector Cartesian location which should follow
the path created by the motion planner.

Since the trajectory is known beforehand, it can be used in a feedforward controller.
The generated trajectories are feasible so the feedforward controller should ideally give
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Figure 2.9: Block diagram showing the controller and a robot with gearbox flexibil-

ities. The dashed block corresponds to the Controller block in Figure 2.7.

zero tracking error on the motor side, e(t) = qrefm (t) − qm(t). Due to model errors
and disturbances, there will still be a non-zero tracking error and this is handled by the
feedback controller. A common choice for the feedforward controller is to use computed

torque (Spong and Vidyasagar, 1989) which in principle means the inverse of the robot
dynamics. For a rigid robot described by (2.5), the feedforward controller would output

τffw = Ma(qrefa )q̈refa + ca(qrefa , q̇refa ) + ga(qrefa ) + τfa(q̇refa ), (2.14)

where qrefa is the reference trajectory. This is a complicated expression that must be
evaluated at a high sampling rate and is therefore often approximated by removing slowly
varying parts. These are instead handled by the feedback controller. Adding flexibilities
further complicates the feedforward controller.

For the feedback controller, the simplest control strategy is called independent joint

control and means that each joint axis is controlled as a SISO system. Coupling effects
are then treated as disturbances and what is left to control is a multi-mass flexible SISO
system (for simplicity, the two-mass flexible system (2.9) is used as illustration). A fairly
simple PID controller will usually give satisfactory behavior. Since the feedforward con-
troller is expected to give the main performance, the feedback controller is mainly tuned
for disturbance rejection. The controller must be robust to model errors as well as uncer-
tainties in the robot load and variations in the workspace. The arm inertia (Ja in (2.9))
will, for example, vary as a function of the configuration, qa. To improve the performance
of the feedback controller, sometimes a gain scheduling technique is used with the vary-
ing arm inertia, Ja, as one of the scheduling variables. A second step would be to include
some coupling effects of major influence. For example, axes two and three are for some
configurations strongly coupled.

In some applications the disturbances come from the process, such as contact forces
during e.g., stub grinding, deburring, and drilling. The feedback controller can then be
used to modify the stiffness of the robot. This is e.g., treated in Olsson et al. (2007)
where a force sensor is added to measure the contact forces and used in an additional
feedback loop. See also Olsson (2007) for additional details and Brogårdh (2007) for
other examples of using force sensors.
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3
System Identification

System identification deals with the problem of estimating mathematical models of dy-
namic systems using measurement data. Section 3.1 gives a brief review of some basic
properties of linear time-invariant dynamic systems. This is described in many textbooks
(see, e.g., Ljung, 1999; Rugh, 1996) and can be skipped by readers already familiar with
the subject. The system identification procedure is described in Section 3.2 and details on
model structures and how to compute the estimates are given in Sections 3.3 and 3.4, re-
spectively. Identification in closed loop puts additional requirements on the identification
methods, which is briefly discussed in Section 3.5. The quality of the estimated models is
usually measured by the statistical concepts bias and variance, which is dealt with in Sec-
tion 3.6. Finally, the chapter is ended by some notes on experiment design in Section 3.7
and nonparametric FRF estimation of nonlinear systems in Section 3.8.

3.1 Preliminaries

Consider a continuous-time system with a scalar input u(t) and a scalar output y(t). The
system is said to be time-invariant if its response to a certain input signal does not depend
on absolute time. It is said to be linear if its output response to a linear combination of
inputs is the same linear combination of the output responses of the individual inputs. In
addition, it is said to be causal if the output at a certain time only depends on the input up
to that time. In the following, only causal systems will be treated.

The output of a linear time-invariant (LTI) system can be completely described by its
impulse response g(τ) as

y(t) =

∞∫

0

g(τ)u(t− τ)dτ. (3.1)

33
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Introducing the Laplace transform

G(s) = L(g) =

∞∫

0

g(t)e−stdt, (3.2)

U(s) = L(u), Y (s) = L(y), (3.3)

allows us to write (3.1) as
Y (s) = G(s)U(s). (3.4)

Replacing s with the differential operator p, pu(t) = d
dtu(t), gives the transfer operator

G(p). (With abuse of notation, G(p) will sometimes be called transfer function as well.)
This makes it possible to rewrite (3.1) as

y(t) = G(p)u(t). (3.5)

We will exclusively work with observations of inputs and outputs in discrete time.
We thus assume that y(t) and u(t) are observed at the sampling instants tk = kTs, k =
0, 1, . . . ,∞ where the interval Ts will be called the sampling period. Often in computer
controlled applications, the input signal u(t) is kept constant between the sampling in-
stants like

u(t) = uk, kTs ≤ t < (k + 1)Ts, (3.6)

which is called zero-order hold. Inserting (3.6) in (3.1) gives a relation between y and u
at the sampling instants

y(kTs) =

∞∑

l=0

gTs
(l)uk−l, (3.7)

where gTs
(l) is the discrete-time pulse response defined as

gTs
(l) =

lTs∫

(l−1)Ts

g(τ)dτ, l ≥ 1, (3.8)

and gTs
(l) = 0, l ≤ 0. For discrete-time signals, we use the z-transform

GTs
(z) = Z(gTs

) =
∞∑

k=0

gTs
(k)z−k, (3.9)

UTs
(z) = Z(u) =

∞∑

k=0

u(kTs)z
−k, YTs

(z) = Z(y). (3.10)

Replacing z with the shift operator q, qu(t) = u(t+Ts), gives the corresponding discrete-
time transfer operator.

Evaluation of the transfer function at the point z = ejωTs (s = jω for continuous
time) will describe the system response to a sinusoidal input u(t) = cos(ωt),

y(t) = |GTs
(ejωTs)| cos(ωt+ argGTs

(ejωTs)). (3.11)
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The complex-valued function

GTs
(ejωTs), −π/Ts ≤ ω ≤ π/Ts, (3.12)

is therefore called the frequency response function (FRF) or just the frequency function.
It is common to graphically display this function as log |GTs

(ejωTs)| and argGTs
(ejωTs)

plotted against logω (for 0 < ω ≤ π/Ts) in a Bode plot. For continuous-time descrip-
tions, the frequency function G(jω) is defined for −∞ < ω <∞.

One might wonder how the continuous-time and discrete-time frequency functions are
related. In Åström and Wittenmark (1984, Chap. 4) it is shown that

GTs
(ejωTs) =

1

Ts

∞∑

k=−∞

Gzoh(j(ω + k
2π

Ts
)), (3.13)

with

Gzoh(s) =
1 − e−sTs

s
G(s), (3.14)

the new continuous-time transfer function where the sampling effects due to (3.6) are
added. If the sampling is fast enough, such that the G(jω), |ω| > π/Ts, is small, then
(3.13) can be approximated as

GTs
(ejωTs) ≈ 1 − e−jωTs

jωTs
G(jω), (3.15)

which shows that GTs
(ejωTs) and G(jω) agree quite well when ω ≪ π/Ts. It is also

possible to show that

|G(jω) −GTs
(ejωTs)| ≤ ω · Ts ·

∞∫

0

|g(τ)|dτ, (3.16)

where g(τ) is the continuous-time impulse response (see, for example, Ljung and Glad,
1994, p. 75). A rule of thumb is that the agreement between the frequency response
functions is good enough for frequencies below one tenth of the sampling frequency (ω <
2π/(10Ts)).

Consider now the Fourier transform, defined as

Y (jω) =

∞∫

0

y(t)e−jωtdt, (3.17)

for a continuous-time signal y(t) and

YTs
(ejωTs) =

∞∑

k=0

y(kTs)e
−jωTsk, (3.18)

for a discrete-time signal y(kTs), k = 0, 1, . . . ,∞. These transforms are related as

YTs
(ejωTs) =

1

Ts

∞∑

k=−∞

Y (j(ω + k
2π

Ts
)). (3.19)
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If the bandwidth of the continuous-time signal is larger than half the sampling frequency,
higher frequencies will be shifted in and appear as lower frequencies. This error is called
alias error and can be avoided by using an anti-alias filter before sampling the signal. If
the bandwidth is less than half the sampling frequency, no information will be lost and
the continuous-time and discrete-time Fourier transforms will coincide for −π/Ts ≤ ω ≤
π/Ts.

Of course, in a real situation, only a limited number of data points y(kTs), k =
1, 2, . . . , N , are collected. It is then common to consider the Discrete Fourier Transform
(DFT), defined as

Y (ωk) =
1√
N

N∑

n=1

y(nTs)e
−jωkTsn, (3.20)

with the DFT frequencies

ωk = k
2π

NTs
, k = 1, 2, . . . , N. (3.21)

Depending on the properties of the original infinite-length signal, the DFT (3.20) may
differ from the discrete-time Fourier Transform (3.18). Assuming a periodic signal and
measuring an integer number of periods, (3.20) and (3.18) will coincide for the DFT
frequencies (3.21). In most other cases, there will be leakage errors due to the limited time
window. These errors can be reduced by using a windowed signal (typically giving less
attention to samples in the beginning and the end of the data record). See, for example,
Ljung (1999) and Pintelon and Schoukens (2001) for suggestions on suitable windows.

In the sequel, Ts in GTs
(q) is usually left out for easier notation.

3.2 The System Identification Procedure

Consider the setting in Figure 3.1, where u is the plant input and y is the measured plant
output, corrupted by measurement noise v. Assume now that we, for some reason, want
to model this system. The model could be used both as a means for achieving deeper
knowledge about the system and as a design tool, for example as a basis for simulations
or for controller design. One common use of models is prediction, where we want to
predict future output values. This is, for example, used in weather forecasts.

Two main routes to obtain these models are physical modeling and system identifi-

cation. Modeling involves using basic physical laws and other well-established relation-
ships. On the other hand, system identification uses experimental data to find a suitable
model. In this chapter the focus, obviously, will be on the latter route.

Plant Σ
u y

v

Figure 3.1: Plant subject to system identification.
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The system identification procedure involves finding a model that describes the input-
output data sufficiently well, according to some criterion. The search for this model will
be carried out among a set of candidate models. System identification therefore includes
several steps, like:

1. Design the experiments.

2. Collect experimental data from the system.

3. Select a set of models or the model structure to represent the system.

4. Determine the “best” model in the set, guided by the data.

5. Validate the model.

In each step, there are numerous options which inevitably cannot be described in detail
here. Still, some particular options for steps 1, 3, and 4 with relevance to our studied
problem will be pointed out in the following sections. For a detailed treatment, the reader
is referred to, for example, Ljung (1999), Söderström and Stoica (1989), and Pintelon and
Schoukens (2001).

3.3 Model Structures

As mentioned previously, the identification procedure involves a search for the best model
among a set of candidate models, called the model set. The selection of this model set
is the most important and, at the same time, the most difficult choice in the identification
procedure. Physical insight and a priori knowledge about the system are often of great
assistance. The model set is just a collection of models. In order to facilitate the numer-
ical search, the model set can be parameterized by a parameter vector θ belonging to a
parameter setDM. This parameterization of the model set is called a model structure and
is denoted by M.

Some options to consider in the selection of a suitable model structure are:

• linear versus nonlinear models,

• parametric versus nonparametric models,

• black-box versus gray-box models,

• discrete-time versus continuous-time models, and

• linear-in-the-parameters versus nonlinear-in-the-parameters.

Most of these options can be combined, giving a wide range of possible model structures
to choose from. For each choice, there are a number of identification methods for the
computation of the parameter estimate. The model structure selection will also greatly
affect how hard the problem of computing the parameter estimate will be. Each of these
options will now be briefly explained.

Consider once more the setting in Figure 3.1 and the aim to find a model describing
the collected input-output data. The first choice to make is if to use a linear or nonlinear
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model. Almost every real-life system is nonlinear, including the industrial robot that is
studied in this thesis. The theory of nonlinear systems is very involved and nonlinear
systems are therefore often approximated by linear models. This is done under the as-
sumption that the behavior can be sufficiently well approximated by a linear model in the
operating region. Whether this is a valid assumption or not depends on the application.
For a detailed discussion on linear models of nonlinear systems, see Enqvist (2005) and
Pintelon and Schoukens (2001).

The second choice is between a parametric or nonparametric model. A nonparametric
model can, for example, be the impulse response (time domain) or the frequency response
function (frequency domain) at a large number of points. The only assumption made then
is that the input-output relation can be described by a linear model. For a parametric
model, on the other hand, some additional knowledge and/or assumptions are used to
reduce the model’s degrees-of-freedom by parameterizing it by a limited number of pa-
rameters. One example could be a transfer function model, parameterized by its poles and
zeros. For a parametric model, the physical insight will typically be larger and it can be
seen as a concentration of information. This concentration will also reduce the variance in
the estimated model, see Section 3.6. Usually a nonparametric model is simpler to create
since less knowledge about the system is needed.

Assume now that the system in Figure 3.1 can be modeled by a parametric linear
time-invariant model like

y(t) = G(p, θ)u(t) +H(p, θ)e(t), (3.22)

in the continuous-time case and

y(t) = G(q, θ)u(t) +H(q, θ)e(t), (3.23)

in the discrete-time case. Note that (3.23) only is valid at the sampling instants t =
kTs, k = 0, 1, . . . ,∞. The plant transfer function, G(·, θ), describes the input-output
relation and the term H(·, θ)e(t), where e(t) is zero mean white noise, is used to describe
the measurement noise v(t). G(·, θ) and H(·, θ) are parameterized by the parameter
vector θ ∈ DM. The model structure M can then be written more formally as

M : DM ∋ θ → M(θ) = {G(·, θ),H(·, θ)}, (3.24)

which means the mapping from the parameter vector θ, belonging to the parameter set
DM, to a particular model M(θ). For details on model sets and model structures, see
Ljung (1999, pp. 107–108).

Sometimes the model structure M is obtained after careful modeling, with some un-
known parts or parameters left to estimate. This type of model structure is called gray

box. Similarly, a model structure whose parameters do not reflect physical considerations
in the system is called black box.

The transfer functions G(·, θ) and H(·, θ) can be parameterized in many different
ways, e.g., as rational functions where the parameter vector θ contains the coefficients in
the numerator and denominator polynomials. In this thesis, we will mainly work with
state-space models

ẋ(t) = A(θ)x(t) +B(θ)u(t) +K(θ)e(t), (3.25a)

y(t) = C(θ)x(t) +D(θ)u(t) + e(t), (3.25b)
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or

x(t+ Ts) = A(θ)x(t) +B(θ)u(t) +K(θ)e(t), (3.26a)

y(t) = C(θ)x(t) +D(θ)u(t) + e(t), (3.26b)

where here for simplicity the innovations form is considered (Ljung, 1999, p. 99). In this
description, x(t) is the state vector andA(θ),B(θ),K(θ), C(θ), andD(θ) are matrices of
suitable dimensions. A nice property of state-space models is that they work equally well
for multivariable systems as for scalar systems. The state-space models (3.25) and (3.26)
are just choices of parameterization of the linear systems (3.22) and (3.23), respectively.
Consider now the continuous-time case. Using the differential operator, (3.25) can be
rewritten as

y(t) = G(p, θ)u(t) +H(p, θ)e(t), (3.27a)

G(p, θ) = C(θ)(pI −A(θ))−1B(θ) +D(θ), (3.27b)

H(p, θ) = C(θ)(pI −A(θ))−1K(θ) + I, (3.27c)

showing the relationship to the model (3.22). The discrete-time case is obtained by replac-
ing p by q in the expressions. For a nonlinear system, the dynamics of a finite-dimensional
system can be modeled using a nonlinear state-space model like

ẋ(t) = f(t, x(t), u(t), w(t), θ), (3.28a)

y(t) = h(t, x(t), u(t), v(t), θ), (3.28b)

in the continuous-time case, with obvious modifications for a discrete-time nonlinear
state-space model. Here, f and h are nonlinear functions and w(t) and v(t) are inde-
pendent random variables. Nonlinear state-space models will be used in various parts of
the thesis, see, e.g., Paper A, Paper E, and Paper F.

3.4 Calculating the Estimate

Suppose now that a model structure has been selected, according to the previous sec-
tion. Depending on the choice of model structure, a number of different methods exist.
It is common to distinguish between parametric and nonparametric methods and also be-
tween time-domain and frequency-domain methods. Here, we will briefly discuss para-
metric time-domain methods, parametric frequency-domain methods, and nonparametric
frequency-domain methods, which all are used in various parts of the thesis. For nonpara-
metric time-domain methods like transient-response analysis and correlation analysis, see,
e.g., Ljung (1999) and the references therein.

3.4.1 Parametric Time-Domain Methods

With time-domain methods for system identification, we here mean methods that com-
pute an estimate of the unknown parameter vector θ using measurements of the input and
output for a number of time instants, ZN = {u(1), y(1), . . . , u(N), y(N)}. (For sim-
plicity, we here assume sampling period Ts = 1.) Several methods are available in the
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literature but to limit the discussion, only the prediction error method (Ljung, 1999) will
be considered. The idea behind the prediction error method is to find the parameters that
will minimize the prediction errors,

ε(t, θ) = y(t) − ŷ(t|θ), t = 1, 2, . . . , N, (3.29)

where ŷ(t|θ) is the model’s prediction of y(t) given Zt−1. For the discrete-time case
(3.23), the standard predictor is given by

ŷ(t|θ) = H−1(q, θ)G(q, θ)u(t) + (1 −H−1(q, θ))y(t). (3.30)

For the continuous-time case (3.22), a predictor can be calculated by, for example, first
sampling the model. For the discrete-time state-space model (3.26), the predictor ŷ(t|θ)
is given by

x̂(t+ 1, θ) =A(θ)x̂(t, θ) +B(θ)u(t)+

+K(θ) [y(t) − C(θ)x̂(t, θ) −D(θ)u(t)] , (3.31a)

ŷ(t|θ) =C(θ)x̂(t, θ) +D(θ)u(t). (3.31b)

For the minimization of the prediction errors (3.29), one could choose different norms.
A common choice is the quadratic criterion, which gives the estimator

θ̂N = arg min
θ∈DM

VN (θ), (3.32a)

VN (θ) =
1

N

N∑

t=1

1

2
ε2(t, θ), (3.32b)

with ε2(t, θ) from (3.29). Other norms than ε2 might be useful, for example to be robust
against outliers (Ljung, 1999). The criterion is usually minimized by a numerical search
method, for example the Gauss-Newton method (Ljung, 1999, Chap. 10).

A problem with many model structures is that the criterion VN (θ) is a non-convex
function with (possibly) many local minima. Good starting values for the numerical
search are then needed in order to avoid getting trapped in a local minimum. In some
special cases, there exist an analytical solution. If the predictor is linear in the parameters,
it can be written as a linear regression,

ŷ(t, θ) = ϕT (t)θ, (3.33)

where ϕ(t) contains the measurement data. The minimizing parameter vector to (3.32)
then is the solution to a standard least-squares problem

θ̂N = arg min
θ
VN (θ) =

[
1

N

N∑

t=1

ϕ(t)ϕT (t)

]−1

1

N

N∑

t=1

ϕ(t)y(t). (3.34)

For state-space models, there is also the possibility to use subspace methods (Van Over-
schee and DeMoor, 1996), which basically estimate the matrices of the state-space model
by solving a sequence of least-squares problems.
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For a general nonlinear system as in (3.28), it is often very hard to determine a predic-
tor on formal probabilistic grounds. In most cases there is no explicit form available for
the optimal solution. This implies that a predictor must be constructed either by ad hoc

approaches, or by some approximation of the optimal solution, e.g., by using sequential
Monte Carlo techniques (Doucet et al., 2001). One simple way of deriving an ad hoc

predictor is to disregard the process noise w(t), which gives

ẋ(t) = f(t, x(t), u(t), 0, θ), (3.35a)

ŷ(t|θ) = h(t, x(t), u(t), 0, θ). (3.35b)

This predictor is actually a simulation of the noise-free model, using the measured input.
However, this only works if the model is stable since a stable predictor always is required.
This type of predictor is used in Paper F.

3.4.2 Nonparametric Frequency-Domain Methods

Nonparametric frequency-domain identification methods means that the plant frequency
response function (FRF) is estimated without using a certain model set described by a
number of parameters.

Nonparametric estimates of the FRF give valuable information about the dynamics
of a system. They are often used as an intermediate step in a parametric identification
process to assess the quality of the measurements and visualize the complexity of the
modeling problem. In a second step, a parametric model can be estimated by one of the
following options:

1. Treat the estimated FRF as a measurement and minimize the discrepancy between
the model and the estimated FRF. This is done in, e.g., experimental modal analysis
(Verboven, 2002) and is also the adopted solution in this thesis, see Paper A.

2. Use the measured time-domain or frequency-domain data, as is described in Sec-
tions 3.4.1 and 3.4.3.

Most nonparametric estimation methods consider only scalar systems, like the ETFE de-
scribed below. In this thesis, we will also consider multivariable FRF estimation methods.

The Empirical Transfer Function Estimate (ETFE)

Using the DFT of the input and output, U(ωk) and Y (ωk), the empirical transfer function

estimate (ETFE) is defined as

Ĝ(ejωkTs) =
Y (ωk)

U(ωk)
. (3.36)

It is possible to show that the variance of this estimate does not approach zero as the
number of data tends to infinity, unless the data is periodic (Ljung, 1999). Therefore, the
estimate is often smoothed using a weighting function αk(ω) as

Ĝsmooth(ejωTs) =

∑
k αk(ω)Ĝ(ejωkTs)∑

k αk(ω)
. (3.37)
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The smoothing will reduce the variance but introduce a bias (see Section 3.6 for bias and
variance expressions). The width of the smoothing, i.e., the variance/bias trade-off, is
determined by the user. The ETFE is also closely related to spectral estimation.

The Multivariable Frequency Response Function Estimate

For multivariable systems, nonparametric estimation methods are not that common. The
identification method that will be described here can be seen as a generalization of the
ETFE to multivariable systems. Consider a measurement setup

y(t) = G(q)u(t) + v(t), (3.38)

with input u(t) ∈ R
nu , output y(t) ∈ R

ny , measurement noise v(t) ∈ R
ny , and G(q) the

ny ×nu multivariable discrete-time transfer operator. The input is assumed to be periodic
and an integer number of periods of the steady-state response are collected. The following
linear mapping then holds exactly in the noise-free case

Y (ωk) = G(ejωkTs)U(ωk), (3.39)

where Y (ωk) and U(ωk) are the DFTs of the input and output signals and G(ejωkTs) ∈
C

ny×nu is the FRF. To be able to extract G(ejωkTs) from data, at least nu different ex-
periments are needed1. The data vectors from ne ≥ nu different experiments will be
collected into matrices (bold-face in the sequel) where each column corresponds to one
experiment. The input-output relation can then be written as

Y(ωk) = G(ejωkTs)U(ωk), (3.40)

where U(ωk) ∈ C
nu×ne and Y(ωk) ∈ C

ny×ne . If U(ωk) has rank nu, an estimate
of G(ejωkTs) can be formed by, e.g., using the H1 estimator (Guillaume et al., 1996;
Pintelon and Schoukens, 2001; Verboven, 2002)

ĜH1(ejωkTs) = Y(ωk)UH(ωk)[U(ωk)UH(ωk)]−1, (3.41)

where (·)H denotes complex conjugate transpose.
When the measurements are corrupted by noise, (3.40) changes to

Y(ωk) = G(ejωkTs)U(ωk) + V(ωk). (3.42)

The H1 estimator (3.41) can still be used, but the estimate will contain errors due to
the noise. Assume now that ne is a multiple of nu such that the DFT matrices can be
partitioned into M blocks of size nu × nu as

U(ωk) =
[
U

[1](ωk) . . . U
[M ](ωk)

]
, (3.43)

1There are some methods proposed in the literature that only use one experiment (Ljung, 2003; Smolders
and Swevers, 2006). There is nothing magical about them, the same amount of steady-state data is needed in
order to get the same signal-to-noise ratio and frequency resolution. The main improvement is that the total
measurement time can be slightly reduced since only one transient part is needed, compared to a transient part
in each of the experiments in our setup.
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and similarly for Y(ωk). Another useful estimator then is the arithmetic mean (ARI)

estimator (Guillaume, 1998; Pintelon and Schoukens, 2001)

ĜARI =
1

M

M∑

m=1

Ĝ[m], (3.44)

where
Ĝ[m] = Y

[m][U[m]]−1. (3.45)

In case of measurement noise on the input, or closed-loop data, this estimator gives less
bias than the H1 estimator (Pintelon and Schoukens, 2001). A number of different non-
parametric multivariable FRF estimation methods are described and analyzed in Paper B
and Paper C. See also Section 3.8 for some notes on FRF estimation of nonlinear systems.

3.4.3 Parametric Frequency-Domain Methods

A parametric frequency-domain identification method estimates the unknown parameters
θ from frequency-domain data ZN which, in most cases, are obtained by a DFT from the
raw time-domain data like

ZN = {U(ω1), Y (ω1), . . . , U(ωN ), Y (ωN )}. (3.46)

The data set could also be obtained directly from the system using a measurement device
providing frequency-domain data.

If we assume that the system can be described by (3.22) or (3.23), we have the fol-
lowing (approximate) relations

Y (ωk) = G(jωk, θ)U(ωk) +H(jωk, θ)E(ωk), (3.47)

in continuous time and

Y (ωk) = G(ejωkTs , θ)U(ωk) +H(ejωkTs , θ)E(ωk), (3.48)

in discrete time. For non-periodic signals, the relations are only approximate since a
transient term then should be added as well. For (3.47) to hold, we have also assumed
that the bandwidth of the original continuous-time signals is less than half the sampling
frequency such that the continuous-time and discrete-time Fourier transforms, (3.17) and
(3.18), coincide.

A common criterion for the parameter estimate is the (weighted) least squares crite-
rion

VN (θ, ZN ) =
N∑

k=1

|Y (ωk) −G(jωk, θ)U(ωk)|2Wk, (3.49)

for continuous time and

VN (θ, ZN ) =
N∑

k=1

∣∣Y (ωk) −G(ejωkTs , θ)U(ωk)
∣∣2Wk, (3.50)
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for discrete time, where the weight functions Wk can be selected using the noise model
H(·, θ). If the noise model depends on θ, an additional term should be added as well
(Ljung, 1999; Pintelon and Schoukens, 2001). The parameters enter nonlinearly in this
criterion and the minimization therefore requires a numerical search procedure (problems
with local minima). The criterion can be made quadratic in θ by parameterizing the model
G(·, θ) as a rational function and multiply Y (ωk) − G(·, θ)U(ωk) by the denominator.
The estimated parameters will then, in general, be biased. For details, see Pintelon and
Schoukens (2001, Chap. 7.8).

For systems with a large dynamic range, which is the case for the highly resonant
industrial robot we are studying, the (weighted) logarithmic least squares criterion (Pin-
telon and Schoukens, 2001, pp. 206–207) has been suggested as an alternative to (3.50).
VN (θ, ZN ) is then given by

VN (θ, ZN ) =
N∑

k=1

∣∣∣log Ĝ(ejωkTs) − logG(ejωkTs , θ)
∣∣∣
2

Wk, (3.51)

where Ĝ(ejωkTs) is the ETFE (3.36) and logG = log |G| + j argG. This criterion
has improved numerical stability as well as robustness with respect to outliers. From a
theoretical point of view, this will give inconsistent estimates (limN→∞ θ̂N 6= θ0), but
for systems with a fairly good signal-to-noise ratio, this is of minor practical importance.
This type of criterion is used in Paper A.

3.4.4 Time-Domain versus Frequency-Domain Methods

According to Ljung (2004), most people in the automatic control community basically
work with data in the time domain and primarily estimate parametric time-domain mod-
els. In some other communities (e.g., “instrumentation and measurement”), frequency-
domain data, periodic inputs, and so on, are commonly used to obtain both parametric
models and refined nonparametric FRF estimates. In Schoukens et al. (2004), the authors
explain that the frequency-domain approach got a bad reputation in the control commu-
nity due to leakage errors when transforming data from time domain to frequency domain.
Even noiseless data (using a random input signal) resulted in large errors in nonparametric
FRF estimates.

Quite recently, the true duality between time- and frequency-domain methods have
become clear (Ljung, 2004). First, one can note that there is a one-to-one relationship
between time-domain and frequency-domain data, so no information is lost by taking the
DFT of the time-domain data. The only difference is that some information is more easily
accessible in one domain than in the other. It is also possible to reformulate a (linear)
identification problem from time domain to frequency domain, and vice versa, so in that
sense, they are equivalent (see, for example, Ljung, 1999). The key thing in order to get
equivalent descriptions is to properly handle the transients in both domains (Schoukens
et al., 2004). However, the complexity of the identification methods will vary depending
on the selected domain and there can also be some numerical differences.

For time-domain methods, discrete-time models are the natural choice. For frequency-
domain methods, on the other hand, the choice of models is more general. This is due to
the fact that the differential or difference equations are replaced by algebraic equations in
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the related frequency variable, and then there are no major differences in the calculation
of the model estimates.

For identification of a nonlinear model, time-domain methods are usually the preferred
choice (Ljung, 1999), even though interesting insights can be obtained also by considering
frequency-domain methods (Bai, 2003a,b; Crama and Schoukens, 2001). A drawback
with frequency-domain methods is that even a fairly simple nonlinear time-domain model
becomes a complicated model in the frequency domain due to the mixing of frequencies
(Y (ωk) depends on, in principle, all U(ωl), l = 1, . . . , N ). By using particular input
signals in the experiments, e.g., a single sinusoid as in Bai (2003a,b), the mixing can be
avoided and the output Fourier coefficients contain information such that the nonlinearity
can be estimated.

For a more detailed discussion on similarities and differences using time-domain or
frequency-domain identification methods, see for example Pintelon and Schoukens (2001,
pp. 368–373), Ljung (1999, pp. 227–233), and the included references in this section.

3.5 Closed-Loop Identification

It is sometimes necessary to perform identification experiments under the presence of
feedback, i.e., in closed loop. The reason may be an unstable plant, or that the plant has to
be controlled for production, economic, or safety reasons. Consider a closed-loop system

y(t) = G0(q)u(t) + v(t), (3.52)

u(t) = r(t) − Fy(q)y(t), (3.53)

where Fy(q) denotes the controller and G0(q) is the true system. In this setting, typically
the reference signal r(t) is considered as the excitation signal. Depending on whether
r(t) is known or not, different identification methods can be used.

A problem with closed-loop data is that the data set typically contains less information
about the open-loop system. A more serious problem is that many of the identification
methods that work well in open loop, will give erroneous results when applied directly to
closed-loop data. The reason is that there will be a nonzero correlation between the input
u(t) and the noise v(t) in the measured output y(t). This is, for example, the case for the
nonparametric methods mentioned in Section 3.4.2, even though there are methods that
can handle closed-loop data, see Paper B. Prediction error methods work fine as long as
the true system can be described by the model and the data is informative enough.

A common classification of closed-loop identification methods is:

Direct methods: Standard identification methods are directly applied to the measured
input-output data without any assumptions on how the data was generated.

Indirect methods: The controller is assumed to be known and the idea is to first estimate
the closed-loop system from the reference signal to the output signal. Using the
known controller, the open-loop system can then be calculated.

Joint input-output methods: The controller and the open-loop system are estimated by
considering the input and output jointly as outputs from an augmented system,
driven by the reference signal. The controller must then be parameterized as well.
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A drawback with the last two approaches is that the controller must be linear in order to
use linear models for the estimation of the closed-loop system and the augmented system,
respectively.

As previously mentioned, the direct approach gives problems for many identification
methods, with prediction error methods as one exception. The estimates will typically
get biased and the bias depends on the properties of the feedback as well as the signal-to-
noise ratio. Bias and variance expressions will be given in Section 3.6 both for open-loop
and closed-loop data. The indirect and joint input-output approaches convert the closed-
loop problem to an open-loop problem, where the reference signal plays the role of an
input. Since the reference signal is uncorrelated with the output noise, these approaches
can be used together with all the open-loop methods. This is also used in some of the
nonparametric methods treated in Paper B.

For a detailed treatment of the subject, the interested reader is referred to, for example,
Ljung (1999), Forssell (1999), and Forssell and Ljung (1999).

3.6 Bias and Variance

The model quality is often measured by the statistical concepts bias and variance. The
model bias, E(Ĝ) − G0, is the (average) difference between the true system and the
estimated model, while the variance, E(|Ĝ − E(Ĝ)|2), is a measure of how much the
estimate will vary between different measurements. The bias term is mostly affected by
the model set. Small bias is obtained for large, flexible model sets, and/or for model sets
that are well-adapted to the given system.

Consider a true system given by

S : y(t) = G0(q)u(t) + v(t) = G0(q)u(t) +H0(q)e(t), (3.54)

where u(t), for an open-loop system, is considered the excitation signal. For a closed-loop
system, the input is selected like

u(t) = r(t) − Fy(q)y(t), (3.55)

where Fy(q) is the controller and r(t) is the reference signal. Note that setting Fy = 0
gives us the open-loop case where u(t) = r(t). The input spectrum Φu(ω) can be written
as

Φu(ω) = |S0(e
jωTs)|2Φr(ω)︸ ︷︷ ︸

Φr
u(ω)

+ |Fy(ejωTs)|2|S0(e
jωTs)|2Φv(ω)

︸ ︷︷ ︸
Φe

u(ω)

, (3.56)

where Φv(ω) is the noise spectrum, Φr(ω) is the spectrum of the reference signal and
S0(q) = (1 + Fy(q)G0(q))

−1 is the sensitivity function. Φr
u(ω) is the part of the input

spectrum originating from the reference signal and Φe
u(ω) is the part originating from the

output noise (due to output feedback). For open-loop data, Φe
u(ω) = 0.

It is outside the scope of this chapter to present bias and variance expressions for
all methods presented in Section 3.4. However, to get a feeling for the problem, one
prediction error method and the nonparametric ETFE will be considered.
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3.6.1 Parametric Methods

Assume now that we want to identify a model of (3.54) using a prediction error method
with the model structure

M : y(t) = G(q, θ)u(t) +H(q, θ)e(t). (3.57)

True System in the Model Set (S ∈ M)

If we assume that the true system is in the model set (S ∈ M), i.e., there exists a parameter
θ0 such that G0(q) = G(q, θ0) and H0(q) = H(q, θ0). Then it is possible to show that
the estimate θ̂N from (3.32) has the following asymptotic (N → ∞) properties (Ljung,
1999, Chap. 9)

√
N(θ̂N − θ0) → N (0, Pθ), (3.58a)

Pθ = λ0

[
E(ψ(t, θ0)ψ

T (t, θ0))
]−1

, (3.58b)

ψ(t, θ) =
∂ŷ(t|θ)
∂θ

, (3.58c)

λ0 = E(e2(t)). (3.58d)

Here N denotes the Normal distribution. This means that when the true system is in the
model set, θ̂N will converge to the true parameter θ0 and the covariance of the estimation
error decays as 1/N . These properties hold both for open-loop and closed-loop data.

True System Not in the Model Set (S /∈ M)

In case the true system cannot be described by the model set (S /∈ M), the estimated
model obviously will deviate from the true system. The properties of the resulting models
have been extensively studied in the system identification community. One example is the
model bias when using a fixed noise model, H(q, θ) = H∗(q). The limiting model G∗

(N → ∞) is then given by (Ljung, 1999, Eq. (13.53))

G∗ = arg min
G

π/Ts∫

−π/Ts

∣∣G0(e
jωTs) +B(ejωTs) −G(ejωTs , θ)

∣∣2 Φu(ω)

|H∗(ejωTs)|2 dω,

|B(ejωTs)|2 =
λ0

Φu(ω)
· Φe

u(ω)

Φu(ω)
· |H0(e

jωTs) −H∗(e
jωTs)|2,

where λ0 = E(e2(t)) is the noise variance. The bias term B will then be small in fre-
quency ranges where either (or all) of the following holds:

• the noise model is good (H0 −H∗ is small),

• the feedback contribution to the input spectrum (Φe
u/Φu) is small, and

• the signal-to-noise ratio is good (λ0/Φu is small).
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Note that the model bias, G∗ − G0, can be larger than B. The expression only says that
the best G∗ that can be achieved is G∗ = G0 +B, given that the model G(q, θ) is flexible
enough to describe G0 +B.

The variance of the estimated transfer function ĜN can, e.g., be obtained from asymp-
totic black-box theory (orders of both G and H tend to infinity, as well as N ) like

Cov(ĜN ) =
n

N

Φv(ω)

Φr
u(ω)

, (3.59)

(see Ljung, 1999, Eq. (13.55)). The noise-to-signal ratio determines how well the transfer
function is estimated. The variance is also increased if more parameters n are used, which
highlights the trade-off between bias and variance (the bias is typically reduced if more
parameters are used). Note that it is only the part of the input spectrum originating from
the reference signal that will reduce the variance.

Prediction error methods will give consistent estimates, even for closed-loop data,
given that the true system can be described in the model set and that the data is informative
enough. In particular, it is important to have a flexible noise model to reduce bias effects.

3.6.2 Nonparametric Methods

As an example of a nonparametric method, we will consider the ETFE. For open-loop
data, we have (Ljung, 1999)

E(ĜN (ejωTs)) = G0(e
jωTs) +

ρ1(N)

UN (ω)
, (3.60)

Cov(ĜN (ejωTs)) =
1

|UN (ω)|2 (Φv(ω) + ρ2(N)), (3.61)

where |ρ1| ≤ C1/
√
N and |ρ2| ≤ C2/N for some constantsC1 andC2. (The dependence

of the number of samples is here explicitly shown by adding the index N in the DFTs and
the ETFE.) The properties of the ETFE highly depend on whether the data is periodic or
not. If the data is periodic, C1 = 0 and |UN (ω)|2 increases like const ·N for the excited
frequencies. This gives an unbiased ETFE and the variance decays like 1/N . If the data
is non-periodic, the ETFE will be asymptotically unbiased and the variance will be equal
to the noise-to-signal ratio. In that case, the ETFE is a very crude estimate. This is the
reason why only periodic excitation signals are used in this thesis.

Remark 3.1. For a nonparametric method, the number of “parameters” usually equals the
number of data points (magnitude and phase of N/2 frequencies), i.e., n = N . By noting
that Φu(ω) = |UN (ω)|2, (3.59) and (3.61) coincide (asymptotically, ρ2(N) disappears).
Using periodic data, with NP samples in each period, can be seen as a reduction of the
number of “parameters” to n = NP . The asymptotic covariance is then proportional to
n/N = 1/P , where P is the number of periods that is used.

Nonparametric estimation methods usually work under the assumption that the input
u(t) is uncorrelated with the output noise v(t). This is no longer true for closed-loop data
and therefore the estimates usually are biased. The estimates using ETFE tend to (Ljung,
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1999, p. 191)

Ĝ(ejωTs) =
G0(e

jωTs)Φr(ω) − Fy(e−jωTs)Φv(ω)

Φr(ω) + |Fy(ejωTs)|2Φv(ω)
, (3.62)

as the number of data goes to infinity and where Φr and Φv denote the spectrum of r(t)
and v(t). If there is no noise in the system, the estimate will tend to the true system. For
systems with a large signal-to-noise ratio, the bias can also be negligible. If, on the other
hand, the noise dominates over the reference signal, the estimate will tend to the inverse
of the controller.

Bias and variance for the multivariable FRF estimation methods are studied in Pa-
per B. See also Paper C and Paper D for experimental results.

3.7 Experiment Design

Most of the results in this thesis are based on experimental data. The choice of input sig-
nals has a substantial influence on the observed data, and therefore also on the estimated
models. This choice will determine the operating point of the system and which parts and
modes of the system that will be excited.

Experiment design has been treated in the literature for almost half a century in both
statistics and engineering areas, where some basic references are Fedorov (1972) and
Goodwin and Payne (1977). A recent survey can also be found in Gevers (2005). The ex-
periment design problem aims at finding the optimal experiment conditions, χ, contained
in some set χ, that minimize a criterion related to the expected outcome of the experiment
under certain constraints. The experimental conditions in χ can be described in terms of
available signals to measure and manipulate, the sampling period, amplitudes, frequen-
cies, and so on. Constraints are often related to the total measurement time and the power
or amplitude of the excitation signals and/or some other variables. The expected outcome
can, e.g., be to minimize the uncertainty in the estimated parameters or the estimated FRF
in a certain frequency interval.

There are two different aspects often associated with the choice of excitation signal;
the second-order properties, like its spectrum Φ(ω), and the “shape” of the signal. For a
linear system, asymptotically only the spectrum will have effect. For a limited number of
data, and especially for a nonlinear system, the signal shape will have influence as well.

The selection of spectrum and excitation signal will be treated in Sections 3.7.1 and
3.7.2, respectively. Section 3.7.3 gives some comments on experiment design for nonlin-
ear gray-box models, which is also treated in Paper E. Finally, Section 3.7.4 deals with
transients.

3.7.1 Selection of Power Spectrum

When selecting an excitation signal, the first thing to make sure is that the estimated model
will be acceptable in terms of bias. When the bias may be significant it is wise to let the
experiment resemble the situation under which the model is going to be used. Once this
is achieved, the signal spectrum can be further optimized with respect to variance.
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A problem when talking about optimal excitation signals (with respect to bias and
variance in the estimates) is that this often is in conflict with another important property,
namely validation power. For an nth order SISO system (numerator and denominator
polynomials of order n), the optimal signal might be a sum of n sinusoids, but this signal
will not be able to reveal if the true system is of a higher order. The signal should therefore
be rich enough to be able to validate (and invalidate) the estimated models.

Nonparametric Frequency-Domain Methods

In a nonparametric FRF estimate, there is (asymptotically) no relation between the esti-
mates at different frequencies and the excitation can then be designed to achieve a prede-
fined accuracy in the frequency band of interest (for example maximizing the absolute or
relative accuracy). From (3.61) we get that the spectrum

Φu(ω) = const · Φv(ω), (3.63)

will give about the same absolute accuracy for all frequencies in the estimate. To instead
get the same relative accuracy,

Φu(ω) = const · Φv(ω)

|G0(ejωTs)|2 , (3.64)

could be used. This corresponds to an output spectrum approximately proportional to the
noise spectrum.

Parametric Methods

For the parametric case, loosely speaking, an optimal power spectrum is such that the
available power is used at the frequencies where it contributes most to the knowledge
of the system. Using the prediction error method (3.32) gives the asymptotic covariance
matrix (3.58b), which shows that interesting parameters must have a clear effect on the
output predictions. For the open-loop case, we also have the expression for the average

information matrix per sample M̄(Φu) (Ljung, 1999, pp. 416–417)

M̄(Φu) =

π∫

−π

M̃(ω)Φu(ω)dω +Me, (3.65)

M̃(ω) =
λ0G

′

θ(e
jωTs , θ0)[G

′

θ(e
jωTs , θ0)]

T

2πκ0Φv(ω)
,

Here G
′

θ is the gradient of G with respect to the parameters, κ0 depends on the selected
norm in the criterion, andMe is a term independent of Φu. The information matrix should
be large in order to get a small covariance matrix. To achieve this, the input power should
be spent at frequencies where M̃(ω) is large, i.e., where the Bode plot is sensitive to
parameter variations (G

′

θ large). Often a sufficient guidance on where to spend the input
power is found by varying the parameters in the model and checking how the Bode plot
changes.
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The classical approach for optimal experiment design is to minimize some scalar
measure of the (asymptotic) covariance matrix Pθ(χ, θ0) in (3.58b) with constraints on
the input and/or the output power. Some commonly used measures are A-optimality
TrPθ(χ, θ0), D-optimality detPθ(χ, θ0), E-optimality λmax (Pθ(χ, θ0)), and L-optimal-
ity Tr (WPθ(χ, θ0)).

An inherent problem in most experiment design problems is that the covariance matrix
depends on the true system parameters θ0. These parameters are, at least partly, unknown
or uncertain, otherwise there would be no need for an experiment. This has been handled
in different ways in the literature. One could either assume a good prior estimate of θ0
and hope for the best, or use some robust experiment design methods. Various strategies
have been suggested, including sequential design (iterate between parameter estimation
and experiment design), Bayesian design (minimize the expected value over the prior pa-
rameter distribution) and min-max design (minimize the worst case when the parameters
are contained in a given set). For references, see Goodwin et al. (2006).

In addition to the problem of knowing θ0, experiment design problems are, in their
original form, often intractable due to non-convex and infinite-dimensional constraints,
as well as the problem of finding a signal realization which has the desired spectral prop-
erties. However, due to great advances in the optimization community, there exist today
many useful methods to reformulate the experiment design problems into tractable con-
vex optimization problems. Here, Jansson and Hjalmarsson (2005) is a good example,
where a framework for this reformulation is presented, based on linear parameterizations
of the signal spectrum. Constraints on these spectra can be included, as well as quality
constraints and robustness constraints as long as they can be rewritten as convex functions
of the inverse (asymptotic) covariance matrix.

3.7.2 Selection of Excitation Signal

Given an (optimal) input spectrum Φu(ω) and limitations on the input amplitude and
other constraints, we must now select a particular excitation signal that fulfills all the
requirements.

One way of achieving a certain spectrum could be to use a stepped sine excitation,
consisting of a series of single sine measurements at the specified frequencies. Advanced
digital signal processing algorithms, especially the Fast Fourier Transform (FFT), have
lead to the use of more complex input signals. Instead of exciting the system frequency
by frequency, broadband spectrum signals are generated. This gives considerable reduc-
tion of measurement time. Many different kinds of signals exist, e.g., (filtered) random
noise, pseudo-random binary sequence (PRBS), swept sine (chirp), and sum of sinusoids
(multisine) (see Pintelon and Schoukens, 2001, for details).

In this thesis, we will exclusively use periodic signals (with NP samples in each
period) and, in particular, the random phase multisine signal, which can be written as

ums(t) =

Nf∑

k=1

Ak cos(ωkt+ φk), (3.66)

with amplitudes Ak, frequencies ωk chosen from the grid { 2πl
NP Ts

, l = 1, . . . , NP /2− 1}
(assuming NP even), and random phases φk uniformly distributed on the interval [0, 2π).
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The signal is preferably calculated using FFT. A simple MATLAB implementation is given
below, together with an example.

Code 3.1 ( MATLAB code for multisine signal (3.66))

function u = multisine(N,Np,k,Ak)

% Error check

k = k(:); Ak = Ak(:); % column vectors

if length(Ak) == 1, % allow scalar amplitude

Ak = Ak*ones(size(k));

end

if length(k)~=length(Ak),

error(’Ak should be scalar or have same size as k’);

end

if rem(Np,2), error(’Np should be even’); end

if any(~ismember(k,1:Np/2-1)),

error(’k should be in set 1:Np/2-1’);

end

% One period

U = zeros(Np,1);

U(1+k) = Np*Ak.*exp(2*pi*i*rand(size(Ak)));

u = real(ifft(U));

% Make periodic

u = kron(ones(ceil(N/Np),1),u);

u = u(end-N+1:end);

end

Example 3.1: Odd random phase multisine signal

Assume that we want to generate 3 periods of a multisine signal with sampling pe-
riod Ts = 0.1 s and NP = 100 samples in each period. This gives us a period of
T0 = NPTs = 10 s and therefore a frequency resolution of 1/T0 = 0.1 Hz. The available
frequency grid (in Hz) is {0.1, 0.2, . . . , 4.9}. In this example, we select the odd frequen-
cies in the interval [0.1 1] Hz and use Ak = A = 1 for those frequencies. The MATLAB

code for this is given below.

Ts = 0.1; Np = 100; N = 3*Np; T0 = Ts*Np;

do_odd = 1; % all (0), odd (1)

fr = [0.1 1]; % frequency interval in Hz

% available frequencies:

k = (1:(1+do_odd):Np/2-1)’; f = k/T0;

% select frequencies:

k = k(find(fr(1)<=f & f<=fr(2))); f = k/T0;

Ak = ones(size(k)); % amplitude distribution

u = multisine(N,Np,k,Ak); % create multisine

% plot amplitudes:

U = abs(fft(u(1:Np))*2/Np);
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ka = (1:Np/2-1)’; fa = ka/T0;

figure;

stem(fa,U(1+ka),’o’); hold on; stem(f,U(1+k),’*’);

xlabel(’Frequency (Hz)’); ylabel(’Magnitude’);

% plot signal:

figure;

plot(Ts*(0:N-1)’,u);

xlabel(’Time (s)’); ylabel(’Signal’);

Executing this code gives the result shown in Figure 3.2.
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Figure 3.2: Multisine signal for Example 3.1.

The multisine signal is very flexible since the user can specify exactly which frequen-
cies to use (from the available frequency grid due to a period signal). Given a desired
power spectrum Φu(ω), the amplitudes are set as Ak = 2

√
Φu(ωk)/NP . The random

phases can also be optimized in order to minimize the crest factor, i.e., the ratio of the
peak value and the root mean square value (see Pintelon and Schoukens, 2001). For a
nonlinear system, this should however be done with some care since crest factor min-
imization gives an almost binary amplitude distribution of the signal ums(t). Random
phase multisine signals lead to a Normal behavior which is a better general assumption
about the situation under which the model is going to be used. (Recall the first paragraph
in Section 3.7.1.) This is also illustrated in the following example.

Example 3.2: Crest factor optimization

Consider a multisine signal ums(t) withNP = 104 samples andAk = A for allNP /2−1
possible frequencies. This gives (for one particular realization of the phases) a crest factor
of 4.02. The phases are then optimized by using 10 000 iterations of the algorithm in
Van der Ouderaa et al. (1988), giving a crest factor of 1.12. The resulting amplitude
distributions can be seen in Figure 3.3.
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Figure 3.3: Amplitude distribution of original multisine signal ums (thick line)

and crest factor optimized signal (thin line). The amplitudes are scaled such that

maxt |ums(t)| = 1 for both signals.

Periodic signals have certain advantages which can be used to avoid leakage in the
DFT, to improve the signal-to-noise ratio by averaging over periods, and to estimate the
noise level by comparing the output between different periods. An example of this is given
in Paper D, where the random phase multisine signal is used to estimate the uncertainty
in nonparametric FRF estimates, both due to measurement noise and nonlinearities.

For multivariable nonparametric FRF estimation, the orthogonal random phase mul-

tisine signal is suggested in Dobrowiecki and Schoukens (2007), given certain amplitude
constraints for the input signal. The blocks in (3.43) are then given by

U
[m](ωk) = U

[m]
diag(ωk)T, m = 1, . . . ,M, (3.67)

with
U

[m]
diag(ωk) = diag

{
U

[m]
l (ωk)

}nu

l=1
,

a diagonal matrix where each U [m]
l (ωk) is a scalar random phase multisine signal, and T

an orthogonal matrix

Til = e
2πj
nu

(i−1)(l−1).

The measurement procedure is thus to generate nu random phase multisine signals that are
used in the first experiment in a block and then shift them orthogonally in the following
nu − 1 experiments according to U

[m]
diagT. This procedure is then repeated for each of

the M blocks. The orthogonal multisine signal guarantees that each U
[m] is invertible,

compared to the random fluctuations that occur when using a separate random phase
multisine in each element of U

[m] (see Dobrowiecki and Schoukens, 2007, for examples).
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3.7.3 Nonlinear Gray-Box Models

Consider the nonlinear gray-box model (3.28) and assume some parameter estimator, e.g.,
(3.32) with predictor (3.35). The general problem of designing the optimal excitation
signal that minimizes the parameter covariance matrix, given constraints on the excitation
signal as well as some states, is a nonlinear optimal control problem which is extremely
hard to solve.

In Paper E, a different approach is used where we assume that the excitation is a small
perturbation around a certain operating point (x0, u0), called position in the paper. The
perturbation is assumed to be small enough to justify linearizion of the nonlinear system
(3.28) and the use of linear theory. For a nonlinear system, the information about the
unknown parameters will vary depending on the selected position. Therefore, given a
limited total measurement time, one should perform experiments in the position(s) that
contribute the most to the information about the unknown parameters. From a set of can-
didate positions, the selection of the optimal position(s) is solved as a convex optimization
problem. For details, see Paper E.

3.7.4 Dealing with Transients

When applying an input signal to a system, the system response will contain transient
effects as well as the steady-state response. For parametric methods, usually transient
effects are handled by estimating the initial conditions of the system using additional
parameters (Ljung, 1999; Pintelon and Schoukens, 2001).

The nonparametric methods mentioned in Section 3.4.2, assume that (3.39) holds in
order to avoid errors. This will hold as long as the difference between the initial and final
conditions of the system is zero (Pintelon and Schoukens, 2001, Sec. 5.3.2.2). This is,
for example, the case with periodic excitation in steady state (no difference between the
output signal from one period to the next). The same is true for burst excitation if the
whole system response is collected.

The waiting time to reach steady state mainly depends on the damping of the system.
In a real situation, it is enough to wait until the transient effects are less than other sources
of errors, such as measurement noise. See Schoukens et al. (2000) for estimates of the
required waiting time based on the dominating time constant of the system.

3.8 Nonparametric FRF Estimation of Nonlinear

Systems

The nonparametric FRF estimation in Section 3.4.2 inherently gives a linear nonparamet-
ric model. For a nonlinear system, we are looking for a linear approximation of the input-
output behavior. The properties of such approximations have been extensively studied in,
e.g., Schoukens et al. (1998), Schoukens et al. (2005), and Dobrowiecki and Schoukens
(2007).
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3.8.1 Analysis Using Volterra Series

For the analysis of the estimated FRFs, the random phase multisine signal (3.66) is rewrit-
ten by using cosx = 1

2 (ejx + e−jx) as

u(t) =

Nf∑

k=−Nf

k 6=0

Uke
j(ωkt+φk), (3.68)

where Uk = U−k = Ak/2 and φk = −φ−k. This allows us to use both positive and
negative frequencies. For the analysis Volterra series are used to model the nonlinear
systems. In the frequency domain, a SISO Volterra series for periodic inputs can be
described as (Schoukens et al., 1998)

Y (ωk) =
∞∑

α=1





Nf∑

k1=−Nf

k1 6=0

· · ·
Nf∑

kα−1=−Nf

kα−1 6=0

Gα(ωk1
, . . . , ωkα

)
α∏

i=1

U(ωki
)



 , (3.69)

with ωkα
= ωk −∑α−1

i=1 ωki
and Gα(ωk1

, . . . , ωkα
) the symmetrized frequency-domain

Volterra kernel of order α.

Remark 3.2. In this section, as well as in most of the included papers, we will use a
simplified notation Ĝ(ωk) for the FRF Ĝ(jωk) or Ĝ(ejωkTs).

The properties of the nonparametric FRF estimate

Ĝ(ωk) = Y (ωk)/U(ωk), (3.70)

with Y (ωk) from (3.69) are extensively studied in, e.g., Schoukens et al. (1998) and
Schoukens et al. (2005). The fundamental observation is that using a random phase mul-
tisine (3.68) as input signal in an open-loop setting, with Nf sufficiently large, the FRF
estimate (3.70) can be written as

Ĝ(ωk) = GR(ωk) +GS(ωk) +NG(ωk), (3.71)

with GR the best linear approximation to the nonlinear system2, GS a zero mean stochas-
tic nonlinear contribution, and NG the measurement noise contribution. For different re-
alizations of the random phases in (3.68), the stochastic nonlinear contribution, GS , acts
as circular complex noise. Therefore GS cannot be distinguished from the measurement
noise. Still, for a given realization, GS is a deterministic component that will look the
same for different periods. The best linear approximation, GR, depends (asymptotically)
only on the input spectrum and odd nonlinearities (odd α in (3.69)).

3.8.2 Excitation Signals

For a linear system, GS = 0 and it is sufficient to use only one realization of the random
phase multisine and average over multiple periods to reduce NG. For a nonlinear system,

2For the class of Normal input signals (e.g., random phase multisine) with a given power spectrum.
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averaging over periods will not reduce GS . It is then important to use several realizations
of the random phase multisine signal, which will enable a reduction of both GS and NG.
By comparing FRF estimates from different periods and realizations, it also possible to
detect and quantify the level of nonlinear distortions in the system. Such procedures are
described in Schoukens et al. (2005) and are also used in Paper D for the estimation of
nonlinear effects in FRF estimation of industrial robots.

It is usually recommended to use so-called odd random phase multisines, i.e., to only
excite the odd harmonics (from the grid { 2π

NP Ts
(2k+ 1), k = 0, 1, . . . , NP /4− 1}). The

motivation is that in that case, only odd nonlinearities contribute to the variance of GS (at
the odd frequencies). Exciting all harmonics increases the variance of GS also at the odd
frequencies due to even nonlinearities and a combination of odd and even frequencies.

To understand this, consider once more (3.69). To obtain a contribution to the output
at frequency ωk from a nonlinearity of degree α, the sum of α frequency components∑α

i=1 ωki
should equal ωk (both positive and negative frequencies are allowed). These

contributions can be divided into bias and variance, where expectation is with respect to
the phases φk for different realizations of the signal. If E(

∑α
i=1 φki

) = φk (which is only
true if φk is included in the sum and the remaining phases come in pairs (φl,−φl)), then
the nonlinearity gives a bias contribution, otherwise a variance contribution. This is why
only odd nonlinearities give a contribution to the bias.

Using an odd random phase multisine as excitation, then even nonlinearities will
only show up at even frequencies and odd nonlinearities at odd frequencies (study ωk =∑α

i=1 ωki
with only odd ωki

). This is an important insight since the bias term only de-
pends on the odd nonlinearities and the input spectrum.

If even frequencies are added, the variance will increase since there are additional
combinations of frequency components that sum up to ωk. Considering the odd frequen-
cies, even nonlinearities now also contribute to the variance through a combination of odd
and even frequencies (e.g., 2 + 2 + 2 + 1 = 7 for α = 4). Using a full random phase
multisine signal will therefore force the user to average out (over different realizations)
the effect of even nonlinearities in order to obtain the best linear approximation.

The only drawback from using only the odd frequencies is the frequency resolution,
but the SNR is on the other hand increased. The frequency resolution can also be changed
by simply increasing the period T0 = NPTs of the multisine signal.

For additional properties, as well as a more detailed treatment of linear approxima-
tions of nonlinear systems, see the included references in this section as well as, e.g.,
Enqvist (2005).

3.8.3 Example: Nonlinear Two-Mass Model

The chapter is ended by an example where we study the effects of nonlinear spring stiff-
ness and Coulomb friction for nonparametric FRF estimation of a two-mass system.

Example 3.3: Nonlinear two-mass model

Consider the two-mass model in Figure 2.6. Here, a nonlinear spring stiffness and Coulomb
friction will be added to study how the estimated FRF is affected by these nonlinearities.
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With the states x1 = qm − qa, x2 = q̇m, and x3 = q̇a, the dynamics is given by

ẋ1 = x2 − x3,

ẋ2 =
1

Jm
(u− τf (x2) − τs(x1) − d(x2 − x3)) ,

ẋ3 =
1

Ja
(τs(x1) + d(x2 − x3)) ,

with a continuous friction model (see (5) in Paper F)

τf (x2) = Fc tanh(βx2),

and a piece-wise linear spring stiffness

τs(x1) =

{
k1x1, |x1| ≤ b,

sign(x1)(k2(|x1| − b) + k1b), |x1| > b.

The motor acceleration ẋ2 is considered as output. Since the purpose of the example
is to study nonlinear effects on the FRF estimate, no measurement noise is used in the
simulations. Numerical values for the model parameters are: Jm = 0.008, Ja = 0.02,
d = 0.05, Fc = 1, β = 7, k1 = 10, k2 = 40, and b = 0.4.

As excitation u(t), an odd random phase multisine signal (3.66) is used with period
T0 = NPTs = 10 s and Ak = A for all odd frequencies in the interval 1–40 Hz. Two
cases of amplitudes A are used, such that umax = maxt |u(t)| is either 5 or 20. The
amplitudes are chosen such that only the linear region of the spring is used for umax = 5,
which enables us to see the effect of nonlinear spring stiffness. To study the effects of
Coulomb friction, the simulations are also carried out with either Fc = 0 or Fc = 1.

100 experiments are performed with a new realization of the random phases in each
experiment. The resulting FRF estimates can be seen in Figures 3.4 and 3.5. By compar-
ing the FRF estimates for the two amplitudes in Figures 3.4, it is evident that the nonlinear
spring introduces nonlinear distortions in the estimate for umax = 20. By averaging over
100 experiments, these distortions are reduced, revealing the linear approximation (right
column in Figure 3.4), which (almost) corresponds to a linear two-mass system with an
increased spring stiffness.

The effects of Coulomb friction are studied in Figure 3.5. The nonlinear distortions
can be seen also here. It is evident that the Coulomb friction affects the FRF both at
low and high frequencies. The resonance in the system has disappeared in the linear
approximation!

Remark 3.3. In the closed-loop experiments in this thesis, the effects of Coulomb friction
are reduced by avoiding zero velocity as much as possible. For details, see Paper C,
Paper D, and Paper F.
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Figure 3.4: Nonparametric FRF estimates in Example 3.3 with Fc = 0. Thick line:

umax = 5, thin line: umax = 20. Left: 1 experiment, right: 100 experiments.
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Figure 3.5: Nonparametric FRF estimates in Example 3.3 with umax = 5. Thick

line: Fc = 0, thin line: Fc = 1. Left: 1 experiment, right: 100 experiments.



4
System Identification in Robotics

There are many available system identification methods and the techniques of system
identification have a wide application area. Therefore, one might ask the question: Why

dedicate a chapter for the topic of system identification in robotics? The answer is that the
robot application is associated with many challenging problems for system identification
methods. The system is multivariable, nonlinear, unstable, and oscillatory. Having all
these topics in the same problem is really challenging so usually, in the literature, at least
one of the first three topics is left out. Moreover, the robot dynamics can be modeled quite
accurately using known mechanical relations, as was pointed out in Chapter 2. These
dynamic equations have particular features that can be exploited by the identification
methods.

Since identification in robotics is a much studied problem, the purpose of this chapter
is to give an overview of some earlier results related to the identification of kinematics,
rigid body dynamics, flexibilities, and nonlinearities. In particular, Section 4.4.4 gives
some details on the extended flexible joint model that is used throughout the thesis. The
chapter is ended by a short description of EXPDES, a software tool written by the author
of this thesis for experiment design, nonparametric multivariable FRF estimation, and
identification of unknown parameters in nonlinear gray-box models.

4.1 Introduction

System identification in robotics can be divided into at least three different levels or appli-
cation areas (see, for example, Albu-Schäffer and Hirzinger, 2001). These levels involve
the estimation of the

• kinematic description (including elastostatic effects),

• dynamic model, often divided into

61
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– rigid body dynamics, and

– flexible body dynamics, and

• joint model.

Flexible body dynamics here refers to elastic effects in the robot structure, for example
in the links. The joint model involves motor inertia, gearbox elasticity and damping,
backlash, motor characteristics, and friction parameters. In addition to these three levels,
one can also consider the estimation of load dynamics (Kozlowski, 1998, Chap. 6) and
adaptive control (Ortega and Spong, 1989) as parts of the system identification problem.
Other important areas left out in this chapter are the identification of sensor and actuator
disturbances (Jahns and Soong, 1996), identification of thermal models for motors, gears,
and their surroundings (Ambrose and Ambrose, 1995; Brogårdh et al., 2006; Graeser and
Klingel, 2002), and identification of mechanical stress in arm- and component structures
for fatigue analysis (Brogårdh et al., 2001; Wang and Zhao, 2002).

Nominal parameter values for the kinematics and rigid body dynamics can often be
obtained from CAD models on the basis of the geometries and materials of the robot arm
and components. These values are often not accurate enough, due to simplifications in the
modeling and complex dynamic effects, such as joint friction and balancing equipment
forces, that cannot be sufficiently modeled. To obtain high accuracy, these parameters
must be tuned by the use of experimental data. Some parts of the joint model, like the
motor characteristics, can be measured before assembly whereas things like friction de-
pend on how links, bearings, etc. are put together, and therefore must be estimated after
assembly. Identification is also important for the verification of the rigid body model.

In a majority of the literature on robot identification (see, for example, Kozlowski
(1998) and the references in this chapter), a rigid body model is assumed and flexibilities,
if any, are assumed to be located at the joint level. This can partly be explained by a previ-
ous use of fairly rigid arm structures and bearing systems. The assumption has also been
previously verified, for example by using modal analysis (Behi and Tesar, 1991). With
the increasing use of new mechanical structures (bend-over-backwards capability, non-
symmetric structure, lightweight robots) and new applications in industry where higher
performance is demanded with respect to position accuracy and speed, elastic effects be-
come even more evident and must be dealt with. Therefore, finding procedures for the
identification of flexibilities is important.

In Section 4.2, the identification of kinematics will be briefly described. Section 4.3
gives an overview of rigid body identification. Finally, identification of (joint) flexibilities
and nonlinearities are covered in Section 4.4.

4.2 Kinematics

The kinematic parameters describe the geometric relation between joint variables and the
end effector location (position and orientation). These parameters also define the inverse
kinematics (see Section 2.2.2), which is used during the path planning (see Section 2.3.1)
to transform a Cartesian path to a corresponding path in joint space. The quality of this
mapping will determine the robot’s accuracy and it is therefore crucial to have a correct
kinematic description.
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Small errors in the kinematic model can be partly compensated for by modifying the
Cartesian path when doing the motion planning in the robot cell. However, this might
be a tedious job. Moreover, in order to fulfill increasing requirements on off-line pro-
gramming, where the whole motion planning is carried out in software, methods for iden-
tification and compensation of kinematic errors must be continuously refined. Today, a
volumetric accuracy of ±0.5 mm can be obtained, even for a big robot (Brogårdh, 2007).
Note that the repeatability of a standard industrial robot is much better (e.g., ±0.1 mm for
an ABB IRB6400 robot that handles 200 kg). The repeatability also sets a limit for the
accuracy that can be achieved by identification and compensation of kinematic errors.

Identification of the kinematic parameters is also called kinematic calibration or robot

calibration and many different techniques exist. For a survey, see, e.g., Hollerbach (1989).
However, the general idea is to consider the forward kinematics (2.3) of the robot and per-
form a first order Taylor series expansion of the location X with respect to the kinematic
parameters θ like

∆X =
∂fkin
∂θ

(qm, θnom)∆θ, (4.1)

where ∆X = X − fkin(qm, θnom) is the deviation in end effector location from the
predicted location and ∆θ = θ− θnom is the corresponding parameter deviation from the
nominal value θnom . This system of equations can be solved in a least-squares sense for
∆θ by considering a number of locations (see corresponding solution below in (4.4) and
(4.6)). In addition to the robot link parameters, θ should include additional parameters
describing, for example, elastostatic effects (deflection due to gravity) and the mounting
of the robot base and the end effector.

Remark 4.1. In the kinematic description (4.1), the motor angular position qm is used,
compared to qa in (2.3), to highlight that the kinematic description also should include
the gearbox. This is important since only qm is measured in a standard industrial robot,
not the angular position qa after the gearbox.

To be able to calculate the deviation ∆X , measurements of the end effector loca-
tion X are needed. These measurements can be either relative or absolute. Examples
of relative measurements could be to approach the same point from different directions
or measuring an object with known geometry (but unknown absolute position). Zhong
et al. (1996) suggest the use of a trigger probe as end effector to touch constraint planes
in the workspace (the location of the planes are not necessarily known exactly). Using
relative measurements, many of the kinematic error parameters ∆θ can be estimated. For
absolute measurements, two main routes can be seen. The first one uses some mechanical
apparatus that allows constraining the end effector at given locations with a priori known
precision. The second route uses direct measurement systems of the end effector location
in the Cartesian space, for example a laser tracking system. This is the kind of system
used in Abderrahim and Whittaker (2000), where the Denavit-Hartenberg parameters1 are
estimated by combining measurements of the end effector caused by movements of each
joint, one at a time. See also Khalil and Besnard (2002) for a treatment of elastostatic
effects due to both joint and link flexibilities.

1The Denavit-Hartenberg parameters are sometimes used to describe the kinematics using 4 parameters for
each link, see, e.g., Sciavicco and Siciliano (2000) for details.
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To obtain accurate estimates of the kinematic parameters, it is important to excite the
system as much as possible, which involves measurements for a large number of robot
configurations throughout the workspace. To verify the updated kinematic model, a new
set of measurements is used (in configurations that were not used for the estimation).

4.3 Rigid Body Dynamics

The identification of rigid body dynamics is based either on the robot dynamic model
(2.7), also called the differential model 2

Hrb(qa, q̇a, q̈a)θrb = τa, (4.2)

or the energy (difference) model (2.8), also called the integral model

∆hrb(qa, q̇a)θrb = ∆Hrb = Hrb(tb) −Hrb(ta) =

tb∫

ta

τT
a q̇adt, (4.3)

where θrb ∈ R
12n is the parameter vector and n is the number of links (assuming 10

inertial parameters and 2 friction parameters for each link). The two models are both
linear in the parameters, which are the same in the two models. The integral model (4.3)
consists of only one equation, compared to the n equations in the differential model (4.2).
The differential model is, in that respect, richer in information than the integral model. An
advantage with the integral model is that the joint acceleration q̈a is not needed. For easier
treatment, only the differential model will be considered from now on. See, for example,
Gautier and Khalil (1988) and Kozlowski (1998) for treatments of both the differential
and integral models.

4.3.1 Measurements

Traditionally, flexibilities are ignored during the identification of rigid body dynamics,
which is motivated by the use of low-frequency trajectories that do not excite flexibilities.
That allows us to use the measured motor joint variables, qm, as estimates of the arm joint
variables, qa, by a simple scaling of the gearbox ratio, qa = rgqm. Both motor angular
position and velocity can be measured, but it is common to only measure the angular
position. If the robot dynamic model (4.2) is used, joint acceleration (and velocity) must
be reconstructed. Since the identification is done off-line, the reconstruction is typically
done using non-causal filters (no phase shift) and central difference algorithms.

The joint torques τa can, in rare cases of torque sensors at the joints, be measured
directly. Otherwise they can, for example, be estimated from τ as τa = 1

rg
(τ − Jmq̈m)

(assuming the motor inertia Jm to be known). The motor torque τ is in turn either esti-
mated from current measurements (in the case of electric actuators) or obtained from the
torque references generated by the speed/position controller.

2The names differential model and integral model are according to Kozlowski (1998).
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4.3.2 Base Parameters

A problem with the model representation (4.2) is that θrb is not identifiable, i.e., there
are infinitely many parameter values that give the same dynamic model. For a particular
robot, a number of the parameters are zero or linearly dependent. To find the minimum
number of parameters, called base parameters, that characterize the dynamic model, dif-
ferent approaches can be found in the literature. The most basic distinction is if the
problem is solved using a numerical or analytical method. Consider now N samples of
data, ZN = {qa(ti), q̇a(ti), q̈a(ti), τa(ti), i = 1, 2, . . . , N}, which are related according
to (4.2) as 



Hrb(qa(t1), q̇a(t1), q̈a(t1))
Hrb(qa(t2), q̇a(t2), q̈a(t2))

...
Hrb(qa(tN ), q̇a(tN ), q̈a(tN ))





︸ ︷︷ ︸
Φ

θrb =





τa(t1)
τa(t2)

...
τa(tN )





︸ ︷︷ ︸
Y

. (4.4)

Numerical methods to obtain the base parameters are mainly based on QR or SVD fac-
torizations of the regressor matrix Φ. The set ZN should then be sufficiently rich so that
all parameters are excited. One option is to insert random numbers for qa(ti), q̇a(ti),
and q̈a(ti). See, for example, Gautier (1990) and Sheu and Walker (1989) for details
and Pfeiffer and Hölzl (1995) for an example. Many analytical methods have also been
proposed, based on symbolical manipulations of the model equations. For closed form
solutions, see for example, Mayeda et al. (1990) and Gautier and Khalil (1990).

4.3.3 Estimators

The robot dynamic model (4.2) is replaced by a minimal parameter-linear description

Hb(qa, q̇a, q̈a)θb = τa, (4.5)

where the base parameters θb are nonlinear functions of θ. Measurements from a large
number of time instants are needed to avoid an ill-conditioned regressor matrix Φb (sim-
ilar to (4.4)). To obtain the measurements, the robot is moved along a trajectory and
joint motion and torque are measured. Finally the base parameters can be estimated, for
example, by a weighted least squares (WLS) method like

θ̂b = arg min
θb

1

2
(Y − Φbθb)

TW (Y − Φbθb) = (ΦT
b WΦb)

−1ΦT
b WY. (4.6)

Many different weighting matrices W occur in the literature, see Gautier and Poignet
(2001) and Swevers et al. (1997) for examples. Other estimation methods are, for exam-
ple, treated in Gautier and Poignet (2001), which contains a comparison between WLS
and the extended Kalman filter. In Gautier et al. (1994), total least squares estimation is
used, and Presse and Gautier (1993) use Bayesian estimation techniques.

4.3.4 Experiment Design

To make the parameter estimation problem (4.6) well conditioned, the excitation trajec-
tory is often generated using an optimization scheme to obtain maximum excitation of all
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base parameters. This involves nonlinear optimization with motion constraints on joint
positions, velocities, and accelerations. Different optimization criteria exist, for example
to minimize the condition number of Φb (Gautier and Khalil, 1991; Pfeiffer and Hölzl,
1995) or − log det(ΦT

b WΦb) (Swevers et al., 1997). Often a scaled version of the matrix
Φb is used in the criterion to obtain parameter estimates with approximately the same rel-
ative accuracy. The matrix is scaled like Φ̄b = Φb diag

{
θ̄b

}
where θ̄b contains a priori

known parameter values.
For the optimization, the excitation trajectory must be parameterized, which can be

done in many different ways. The most general one is perhaps Armstrong (1989), where
the optimization variables are a sequence of joint accelerations. Gautier and Khalil (1991)
use a sequence of joint positions and velocities as variables. Afterward, a continuous tra-
jectory is obtained by interpolating a 5th order polynomial between these points, assuming
zero initial and final acceleration. A problem is to be sure that the resulting trajectory ful-
fills all constraints and there is also no guarantee of optimality. In Swevers et al. (1997),
the trajectory is parameterized as a finite Fourier series and the optimization variables are
the coefficients in this series. Pfeiffer and Hölzl (1995) instead optimize the trajectory
such that the trajectory always follows the steepest descent of the optimization criterion
(time is discretized).

Grotjahn et al. (2001) suggest that the base parameters are divided into three groups;
gravitational parameters θg , diagonal parameters θMd

, and off-diagonal parameters θMod
.

The parameter groups are identified one at a time by simple trajectories with trapezoidal
velocity profile and a weighted least-squares method. The method has been successfully
applied to the 6 DOF industrial robot manutec-r15.

A different approach is taken in Chenut et al. (2000) where additional sensors are
used to improve the parameter estimates. They present a parameter estimation scheme
where they combine measurements of the joint motion and joint torque with torque/force
measurements of the base platform. The method is illustrated in simulations and yields
improved parameter estimates.

A recent contribution is given in Swevers et al. (2007) where they consider both iden-
tification of rigid body dynamics and payload identification. Experiments are carried out
using a KUKA KR 15 robot with a payload capacity of 15 kg. A key feature of their
method is the use of a periodic excitation, already introduced in Swevers et al. (1997).

4.4 Flexibilities and Nonlinearities

As was mentioned in Section 2.2.4, there are various sources of flexibility in an industrial
robot, such as elastic deformation of bearings and gears and deflection of the links under
load. For many robots, the joint flexibility is dominant. A coupled two-mass model (2.10)
is then often sufficient to model the dynamics. As was pointed out in Section 2.2.4, a trend
is to build more compliant robot arms which also introduce significant flexibilities in the
links and their connections. Therefore higher order models are sometimes needed in order
to get a sufficiently accurate description of the system.

Identification of flexibilities is more complex than the identification of rigid body
dynamics. The main reason is that only a subset of the state variables now are measured
and one can therefore not use linear regression. This could of course be solved by adding
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sensors (Albu-Schäffer and Hirzinger, 2001; Pfeiffer and Hölzl, 1995). A problem is that
such a solution is expensive and the experiments quite involved with additional signals to
measure, mounting of sensors, and so on, which will make such a solution harder to use as
a simple way of tuning numerous robots, as well as re-tuning robots at the customer site.
Also, as was mentioned in the problem statement in Section 1.3, this thesis investigates
how much that can be achieved by using only the standard sensors.

Nonlinearities here refer to friction, backlash, nonlinear stiffness, and so on. Identifi-
cation of friction and backlash will be treated in Section 4.4.1, followed by identification
of the flexible joint model in Section 4.4.2. Identification using additional sensors will be
briefly covered in Section 4.4.3. Finally, Section 4.4.4 gives some details on identification
of the extended flexible joint model.

4.4.1 Identification of Friction and Backlash

In addition to flexibilities, nonlinear effects like friction and backlash have to be taken
into account during the identification of the joint model. These effects will significantly
influence the identification of the dynamics if not properly handled. Backlash in a gear-
box can be seen as a piecewise-linear spring, as in Example 3.3, where the stiffness is low
(zero in theory) for low torques. In a nonparametric FRF estimate, backlash will there-
fore show up as a reduced stiffness. The effects of Coulomb friction were also shown in
Example 3.3, where the resonances almost disappeared and the magnitude for low fre-
quencies was reduced. Moreover, nonlinearities can have major effects on the control
performance, for example when the joint rotation changes direction, and accurate models
describing these phenomena are therefore of importance.

The research on modeling and control of friction has come quite far, see for example
the survey article Armstrong-Hélouvry et al. (1994). However, a problem is to be able to
identify all unknown parameters in these complex friction models. Hence, the traditional
model with the three components; viscous, Coulomb and static friction, is still often used.
This model describes the stationary velocity-force relation fairly well, whereas important
dynamic effects are completely missed. For control purposes and analysis of stick-slip,
limit-cycles, etc., a better friction model is often needed. A fairly simple dynamic model
for friction that captures most of the friction behavior is presented in Canudas de Wit et al.
(1995) and is often called the LuGre model. This includes the Striebeck effect, hysteresis,
spring-like characteristics for stiction, and varying break-away force.

Still, most of the friction models considered in the literature on identification in
robotics are fairly simple. One reason might be that the model is sufficient during the
identification of the rigid body dynamics, even though there are already some results on
biased estimates due to a too simple friction model (Grotjahn et al., 2001). Another rea-
son might be lack of measurements or that many friction problems are solved by better
hardware (for example, lubricants). From now on, when talking about friction, we mean
more than just viscous friction, which gives minor difficulties during identification and
can be described by a linear model.

Backlash in mechanical systems is, for example, described in the survey article Nordin
and Gutman (2002), where they use the definition: “the play between adjacent movable
parts (as in a series of gears)”. The width of the backlash is the most essential param-
eter. Controlled systems with backlash often exhibit steady-state errors or, even worse,



68 4 System Identification in Robotics

limit cycles whereby the system oscillates. The transmission of industrial robots is often
designed to minimize backlash. The reason is that since only the motor position is mea-
sured, the transmission must be predictable such that the end effector can be accurately
positioned. Reducing the backlash often gives a more complicated mechanical design of
the transmission and increased friction.

For the identification of nonlinearities such as friction and backlash, a number of
references could be given. One interesting method is presented in Chen et al. (2002) which
is based on open-loop experiments with binary input signals. By using the difference of
the input-output signals from two experiments with different magnitudes, the friction can
be ignored while doing the identification of the linear system. In a second step, the friction
is estimated using the dc level of the linear system and a constant input. Isaksson et al.
(2003) consider gray-box identification of a two-mass model with backlash, where black-
box modeling is used to find initial parameter values, and Hovland et al. (2002) estimate
backlash and spring stiffness using an extended Kalman filter (EKF). Identification of
backlash and friction are also dealt with in Angerer et al. (2004) and Kara and Eker
(2004). In this thesis, Paper F considers identification of a nonlinear gray-box model
that includes friction and nonlinear spring stiffness.

4.4.2 Identification of Flexible Joint Models

There is a vast amount of literature available concerning the identification of joint param-
eters, strongly differing in both the model’s level of detail and identification methods. The
identification is done in time domain or frequency domain, based on physical or unstruc-
tured models, using linear or nonlinear optimization techniques. There are also major
differences in how the nonlinearities are handled. Some estimate friction separately in a
first step, and then in a second step estimate the joint dynamics. In this second step, they
either compensate for the estimated friction, or use special excitation that will give minor
frictional contribution. Using this route, linear identification methods can be applied. The
other route is to use a nonlinear model structure describing the joint dynamics as well as
friction and other nonlinearities.

In Pham et al. (2001) the estimation of physical parameters in a two-mass flexible
model is treated through a least-squares technique similar to the one used in the esti-
mation of rigid body dynamics. The linear-in-parameters formulation with only motor
measurements is obtained through a nonlinear transformation and certain approximations
that are justified by using a special trajectory that do not excite certain parameters. The
identification experiments are carried out by moving one axis at a time.

In Östring et al. (2003), a method is applied where a gray-box model describing both
inertial parameters and flexibilities can be identified directly in the time domain. This
is done by utilizing a user-defined model structure in the MATLAB System Identifica-
tion Toolbox and experimental data from closed-loop experiments for axis 1 of an ABB
IRB1400 robot. Both black-box models and physically parameterized models are identi-
fied. Östring et al. suggest that a three-mass model is sufficient to describe the dynamics.
See also Nissing and Polzer (2000), where the identification of a physically parameter-
ized two-mass model in state-space form is treated. The three unknown physical parame-
ters are estimated by using an iterative Gauss-Newton method and the experimental data
comes from a 1 DOF hydraulic flexible arm.
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In Berglund and Hovland (2000), a general method is described for the identification
of masses, springs and dampers. The identification is based on an estimated nonpara-
metric FRF in combination with the solution of an inverse eigenvalue problem. This
procedure is used in Paper F to obtain initial estimates for the nonlinear prediction error
method. See also Hovland et al. (2001) for an extension of Berglund and Hovland (2000)
to systems containing coupled inertia terms, which is the case for multivariable systems.
Another frequency-domain method is used in Khorrami et al. (1995), where recursive es-
timation of a two-mass model (for each joint) is treated. The parameters are estimated in
the frequency domain using the ETFE or a time-varying version of the ETFE. The model
is used for input pre-shaping (for example a notch filter for the reference signal).

In Johansson et al. (2000) they apply and evaluate different subspace identification
methods (N4SID and MOESP) for identification of axes 1 and 4 of an ABB IRB2000
robot. They suggest the use of the MOESP algorithm for the identification of a black-box
state-space model combined with a friction model.

Black-box identification is also treated in Ferretti et al. (1994b), where a 6 DOF indus-
trial robot is considered. A third-order black-box transfer function is estimated for each
joint. The excitation signal, applied as velocity reference for the controller, is a constant
(to avoid effects of static friction) plus white noise. To eliminate, or at least minimize, the
dynamic coupling among the links, different configurations are used for the identification
of each joint dynamics. This is done by using a CAD model and symbolic manipulations
of the robot dynamic equations. They also compute a physically parameterized expression
of the transfer functions obtained from symbolic manipulations of the dynamic equations.
They outline that a comparison of the estimated and physically parameterized transfer
functions yields a system of nonlinear equations which could be solved for the physi-
cal parameters. No physical parameters are presented, but a similar procedure is used in
Isaksson et al. (2003) for the estimation of initial values.

Discussion

One thing that most of the mentioned papers have in common is that they consider the
robot joints one by one and estimate a SISO model for each joint. Coupling effects are
then ignored. This thesis instead presents an identification procedure where the robot is
treated as a MIMO system. This is an important contribution since coupling effects in a
modern industrial robot cannot be ignored. Moreover, elastic effects in the bearings and
the arm structure, which are handled by our MIMO approach, will also have a negative
effect on a SISO procedure. Both since the additional elasticity will affect the estimated
joint model, and since a joint model hardly can capture such complicated effects. Finally,
our procedure immediately results in a global nonlinear dynamic model. This is hardly
the case when estimating SISO models for each joint.

4.4.3 Identification Using Additional Sensors

As was previously mentioned, there are solutions where additional sensors are used for
the identification. In Pfeiffer and Hölzl (1995), the joint parameters (stiffness, damping,
and motor inertia) are estimated by fixation of the links. Between each link and link fix-
ation a force sensor is applied. A slightly different procedure is used in Ferretti et al.
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(1994a), where joint stiffness is estimated by constraining the robot end effector and us-
ing a force sensor to measure the constraint forces. Another method, requiring additional
sensors, is experimental modal analysis. It is a widespread method in the mechanical engi-
neering society used to determine a structure’s dynamic characteristics; namely, resonant
frequencies, damping values, and the associated pattern of structural deformation called
mode shapes. Parametric identification of industrial robots using experimental modal
analysis is, for example, treated in Behi and Tesar (1991). Using accelerometers in 11
points and an impact hammer, transfer functions are estimated and modal parameters and
mode shapes are obtained by curve fitting the system transfer functions. The oscillation
of the system is produced by the deformations of the shoulder and elbow joints (joints
2 and 3) about their axes of rotation and the deflection of the base plate relative to the
foundation (giving two DOF). Therefore, four spring-damper pairs are used and springs,
dampers and masses are then derived from the estimated modal matrix. See also Avitabile
(2001) and Verboven (2002) for a good introduction to modal analysis.

4.4.4 Identification of Extended Flexible Joint Models

The identification of general elastic robot models depend on the selected modeling ap-
proach. If , e.g., a modal description is used, the parameters are usually identified using
experimental modal analysis, as was described in the previous section.

The adopted modeling approach in this thesis is explained in Section 2.2.4, resulting
in the extended flexible joint model (2.13), repeated below as (4.7) for convenience.

ẋ = f(x, u, θ) =





q̇m
q̇a
q̇e

M−1
m (u− τfm(q̇m) − rgτg)

M−1
ae (qa, qe)

[[
τg
τe

]
− cae(qa, qe, q̇a, q̇e) − gae(qa, qe)

]




, (4.7a)

y = h(x, u, θ) = q̇m, (4.7b)

with

τg = kg(rgqm − qa) + dg(rg q̇m − q̇a), (4.7c)

τe = −keqe − deq̇e, (4.7d)

x =
[
qT
m qT

a qT
e q̇T

m q̇T
a q̇T

e

]T
. (4.7e)

Linearizing the Extended Flexible Joint Model

An important part of the identification procedure presented in the thesis is the linearization
of the nonlinear state-space model (4.7) in a stationary point (x0, u0), which is defined as
the solution to

0 = f(x0, u0, θ), (4.8a)

y0 = h(x0, u0, θ). (4.8b)
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For a given robot configuration q(i)m , we have qm0 = q
(i)
m and (4.8a) immediately gives

that
q̇m0 = q̇a0 = q̇e0 = 0.

The remaining parts of x0 (qa0 and qe0) and u0 are obtained by solving
[
τg0

τe0

]
= gae(qa0, qe0), τg0 = kg(rgqm0 − qa0),

τe0 = −keqe0, u0 = τfm(0) + rgτg0,

where the velocity-dependent term cae(·) in (4.7a) vanishes for zero velocity.
The linearized dynamics in a neighborhood of (x0, u0) is obtained from a first-order

Taylor series expansion

∆ẋ = A(θ)∆x+B(θ)∆u, (4.9a)

∆y = C(θ)∆x+D(θ)∆u, (4.9b)

where ∆x = x − x0, ∆u = u − u0, ∆y = y − y0, and the matrices A(θ), B(θ), C(θ),
and D(θ) are given by

A(θ) =
∂f

∂x
(x0, u0, θ), B(θ) =

∂f

∂u
(x0, u0, θ),

C(θ) =
∂h

∂x
(x0, u0, θ), D(θ) =

∂h

∂u
(x0, u0, θ).

Note that the stationary point and the linearized dynamics depend on the parameter vector
θ. Therefore, given experiments in a robot configuration q(i)m , the corresponding stationary
point should actually be denoted (x

(i)
0 (θ), u

(i)
0 (θ)).

FRF of Extended Flexible Joint Model

The FRF G(i)(ω, θ) of the parametric robot model (4.7) in a robot configuration q(i)m is
obtained by the following steps:

1. Calculate the stationary point (x
(i)
0 (θ), u

(i)
0 (θ)) by solving (4.8).

2. Linearize the nonlinear system (4.7) according to (4.9).

3. Obtain the continuous-time transfer function as (cf. (3.27b))

G(i)
c (s, θ) = C(i)(θ)(sI −A(i)(θ))−1B(i)(θ) +D(i)(θ).

4. Convert the continuous-time FRF G(i)
c (jω, θ) to discrete time

G
(i)
Ts

(ejωTs , θ) =
1 − e−jωTs

jωTs
G(i)

c (jω, θ),

by assuming zero-order hold and using the approximation (3.15). The para-
metric FRF G(i)(ω, θ) is a short notation for G(i)

Ts
(ejωTs , θ).
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The parametric FRF G(i)(ω, θ) is used together with the estimated nonparametric
FRF Ĝ(i)(ωk) to identify the unknown parameter vector θ by minimizing the discrepancy
between G(i)(ω, θ) and Ĝ(i)(ωk) for a number of robot configurations and frequencies.
For details, see Paper A.

4.5 EXPDES—An Identification Toolbox for Industrial

Robots

The software tool EXPDES stands for Experiment Design and is a MATLAB toolbox writ-
ten by the author of this thesis. It is used for:

• Creating offline-generated trajectories of multisine type for the robot controller.

• Importing and preprocessing experimental data.

• Estimating nonparametric FRFs from experimental data.

• Plotting the FRF together with its uncertainty.

• Estimating parametric robot models.

With the software tool, most of the research work in this thesis is implemented and made
easily available to facilitate accurate estimation of nonparametric FRFs as well as para-
metric models.

The main GUI window for experiment design can be seen in Figure 4.1. The exper-
imental data can be seen in Figure 4.2. The user selects the periodic part of the experi-
mental data by clicking in the figure.

Most of the code is written in an object-oriented fashion, similarly as the MATLAB

System Identification Toolbox. An example can be seen below.

Code 4.1 ( MATLAB code using EXPDES for nonlinear gray-box identification)

% Load FRF data:

frf1 = frfdata(’frf_data1.mat’);

% Set weights for identification:

frf1 = setweight(frf1);

% Load initial nonlinear gray-box model:

m0 = elast(’rob_rigid.m’,’rob_load.m’,’rob_elast.m’);

% Set which parameters to estimate

% (some parameters can be locked):

m0 = setpar(m0,1:26,’Locked’,0);

% Select interval for random perturbation:

v = getpar(m0,[1:26],’Value’);

m0 = setpar(m0,[1:26],’Min’,v*0.1,’Max’,v*10);

% Estimate 100 models with randomly perturbed

% initial parameters:

copt = Inf;



4.5 EXPDES —An Identification Toolbox for Industrial Robots 73

Figure 4.1: EXPDES GUI main window.

Figure 4.2: EXPDES GUI window for selection of periodic data.
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for ii=1:100

mi_init{ii} = randpar(m0);

mi{ii} = est(frf1,mi_init{ii});

ci(ii) = cost(frf1,mi{ii});

if ci(ii) < copt

copt = ci(ii);

mopt = mi{ii};

end

end

% Compare nonparametric FRF and linearized model

% for experiment nr 8:

compare(getexp(frf1,8),mopt);

This code is used in Paper A to assess the sensitivity to the initial parameters when esti-
mating parameters in a nonlinear dynamic gray-box model. The estimated nonparametric
FRFs in a number of positions are imported to the object frf1 of type frfdata. Simi-
larly, the object type elast is an example of a nonlinear gray-box model structure that is
used. These objects have a number of methods defined to facilitate easy modification of
weights, criterion, initial parameters, and so on. The last line, using compare, generates
a figure, similarly to Figure 8 in Paper A, where the nonparametric FRF frf1 with its
uncertainty is plotted together with the FRF of the (linearized) parametric model mopt.



5
Concluding Remarks

This first part of the thesis has served as an introduction to the robotics area and system
identification methods with relevance to our studied problem have been presented. The
aim has been to show how the papers in Part II relate to each other and to the existing
methods. In Section 5.1 the conclusions are given. A number of areas are still subject to
future research. Some ideas are discussed in Section 5.2. See also the included papers for
details.

5.1 Conclusion

The work presented in this thesis has dealt with dynamic model identification of industrial
robots. More specifically, the models are physically parameterized nonlinear dynamic
models that also capture resonances due to various elastic effects in, e.g., gearboxes, bear-
ings, foundations, and the robot links. The elastic effects are modeled through a lumped
parameter approach where each rigid body is connected by spring-damper pairs.

Paper A describes the adopted solution, where the unknown parameters (mainly the
spring-damper pairs) are identified in the frequency domain, using estimates of the non-
parametric frequency response function (FRF) in different robot configurations/positions.
Different parameter estimators are compared and experimental results show the useful-
ness of the proposed identification procedure. The weighted logarithmic least squares
estimator achieves the best result and the identified model gives a good global description
of the dynamics in the frequency range of interest.

Different methods for estimating the nonparametric multivariable FRF are proposed
in the literature. In Paper B, some classical estimators (H1, arithmetic mean, joint input-
output, and errors-in-variables) are theoretically analyzed, both in open loop and closed
loop, and expressions for the bias and covariance are derived. In Paper C, the classical
estimators as well as two estimators based on nonlinear averaging techniques (logarithmic
mean, harmonic mean) are compared in an experimental study. The conclusion is that
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the estimators based on nonlinear averaging give the best results for the industrial robot.
Paper D next deals with how the nonparametric FRF estimate is affected by nonlinearities
in the system. The results show that nonlinear distortions are indeed present and cause
larger variability in the FRF than the measurement noise contributions. To improve the
nonparametric FRF estimate, one should therefore use the available measurement time to
average estimates from several experiments with the orthogonal random phase multisine.
The importance of reducing the effects of static friction is also stressed.

As was mentioned earlier, the adopted solution is based on nonparametric FRF es-
timates in a number of positions. The selection of these positions in an optimal way is
treated in Paper E. A convex optimization problem is posed, which is efficiently solved
by considering the dual problem. In the numerical illustration, the 15 optimal positions
reduce the parameter uncertainty by a factor of six, compared to using the optimal single
position in all experiments.

The main approach in the thesis is to identify the robot model in the frequency domain,
which has been explained in Papers A–E. In addition is time-domain nonlinear gray-box
identification treated in Paper F, where experimental results are given for a stable scalar
system (axis one of the robot). Extending the results of Paper F to a multivariable and
unstable system is left as future research.

The research work is also implemented and made easily available in a software tool
for accurate estimation of nonparametric FRFs as well as parametric robot models.

5.2 Future Research

For the nonparametric FRF estimation, different ways of reducing the effects of friction
would be interesting to study. The selection of frequencies, as well as the amplitude spec-
trum can be further improved. This is important both to reduce bias in the nonparametric
FRF estimate and to improve the estimated parametric robot model.

For the parametric estimators in Paper A, the selection of weights can certainly be
improved by combining the user choices and the estimated FRF uncertainty.

The model structure in Paper A, where all elastic effects in the arm structure are
lumped into a few spring-damper pairs, can of course be modified and refined, both re-
garding the location of these spring-damper pairs, as well as how many that are needed
in order to properly model the system. Identifiability of these added parameters, can also
be discussed. Maybe additional sensors are needed, e.g., accelerometers attached to the
structure, as is the case in experimental modal analysis (Behi and Tesar, 1991). Additional
sensors is therefore a topic that deserves more attention, for example to investigate how
much that can be gained by using a simple 3D-accelerometer attached to the end effector.

In case the identification procedure is used for the tuning of individual robots, or at the
customer site, the measurement time and excitation amplitudes become an issue. Param-
eter accuracy and problems with local minima, versus measurement time and excitation
energy are then also interesting problems to study.

Using a frequency-domain method for identification of a nonlinear system has some
problems, as was pointed out both in Section 1.3 and in Paper A. Therefore, it would be
interesting to apply a time-domain prediction error method, as in Paper F, for the model
used in Paper A. One big problem to tackle then is that the model is unstable, which
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requires some changes to ensure a stable predictor. There can also be numerical prob-
lems since the dimension of the problem is larger, both in terms of states and parameters
(compared to the scalar system considered in Paper F).

A thorough simulation study would also probably yield many interesting results, both
for the nonparametric FRF estimation and for the parametric identification. The simu-
lation setup should then include a realistic nonlinear robot model where friction as well
as other nonlinear effects in actuators and sensors are added, such as torque ripple (Gutt
et al., 1996) and resolver ripple (Hanselman, 1990).

Finally, to conclude this thesis: Identification of industrial robots is a challenging task.
Using a general purpose method by pressing a button will almost surely fail. The problem
instead requires a combination of tailored identification methods, experiment design, and
a skilled user, using all available knowledge about the robot system.
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Abstract

This paper considers identification of unknown parameters in elastic dynamic
models of industrial robots. Identifying such models is a challenging task
since an industrial robot is a multivariable, nonlinear, resonant, and unsta-
ble system. Unknown parameters (mainly spring-damper pairs) in a physi-
cally parameterized nonlinear dynamic model are identified in the frequency
domain, using estimates of the nonparametric frequency response function
(FRF) in different robot configurations/positions. The nonlinear paramet-
ric robot model is linearized in the same positions and the optimal parame-
ters are obtained by minimizing the discrepancy between the nonparametric
FRFs and the parametric FRFs (the FRFs of the linearized parametric robot
model). In order to accurately estimate the nonparametric FRFs, the exper-
iments must be carefully designed. The selection of optimal robot config-
urations for the experiments is also part of the design. Different parameter
estimators are compared and experimental results show the usefulness of the
proposed identification procedure. The weighted logarithmic least squares
estimator achieves the best result and the identified model gives a good global
description of the dynamics in the frequency range of interest.

Keywords: System identification, multivariable systems, nonlinear systems,
closed-loop identification, frequency response methods, industrial robots

1 Introduction

Accurate dynamic models of industrial robots are needed for mechanical design, perfor-
mance simulation, control, supervision, diagnosis, and so on. The industrial robot poses a
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Figure 1: The ABB manipulator IRB6600.

challenging modeling problem both due to the system complexity and the required model
accuracy. Usually a robot has six joints (also called axes), see Figure 1, with coupled dy-
namics, giving a truly multivariable system. The dynamics is nonlinear, both with respect
to the rigid body dynamics and other things such as non-ideal motors and sensors, and a
transmission with friction, backlash, hysteresis, and nonlinear stiffness. The system is res-
onant due to elastic effects and, in addition, experimental data must usually be collected
while the robot controller is operating in closed loop since the system is unstable.

Historically, the dynamic models used for control are either entirely rigid (An et al.,
1988), or only flexible joint models are considered, i.e., elastic gear transmission and rigid
links (Albu-Schäffer and Hirzinger, 2000; Spong, 1987). The trend in industrial robots
is toward lightweight robot structures with a reduced mass but with preserved payload
capabilities. This is motivated by cost reduction as well as safety issues, but results in
lower mechanical resonance frequencies inside the controller bandwidth. The sources of
elasticity in such a manipulator are, e.g., gearboxes, bearings, elastic foundations, elastic
payloads, as well as bending and torsion of the links. In Öhr et al. (2006) it is shown that
there are cases when these other sources of flexibilities can be of the same order as the
gearbox flexibilities for a modern industrial robot. Accurate dynamic models that also
describe these elastic effects are therefore needed in order to obtain high performance.
These models are, however, very difficult to use for robot control, where, e.g., feedforward
control involves solving a DAE, but could in the future improve the performance (Moberg
and Hanssen, 2007).

2 Problem Description

The main problem considered in this paper is about identification of unknown parameters
in a nonlinear dynamic model of an industrial robot. The model must be global, i.e., valid
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throughout the whole workspace (all robot configurations/positions), as well as elastic,
which here means that resonances due to elastic effects are captured by the model. The
elastic effects are modeled through a lumped parameter approach (Khalil and Gautier,
2000) where each rigid body is connected by spring-damper pairs (see also Section 3).
The model is of gray-box type (a physically parameterized model) and the rigid body
parameters of the model are usually assumed to be known from a CAD model or prior
rigid body identification. The main objective is identification of elasticity parameters
(spring-damper pairs) but other parameters can be added, such as the location in the robot
structure of the spring-damper pairs and a few unknown rigid body parameters. It is also
possible to include nonlinear descriptions of selected quantities (e.g., the gearbox stiff-
ness) and identify those by a linearization for each position (the terms robot configuration

and position are used interchangeably in this paper).
The real challenge for system identification methods is that the industrial robot is

multivariable, nonlinear, unstable, and resonant at the same time. Usually, in the literature,
at least one of the first three topics is left out. Identification of such a complex system is
therefore a huge task, both in finding suitable model structures and efficient identification
methods.

One solution could be to apply a nonlinear prediction error method (Ljung, 1999,
pp. 146–147), where measured input-output data are fed to the model and the predicted
output from the model is compared with the measured output. This has been treated in
Wernholt and Gunnarsson (2006b) for axis one of the industrial robot, which means a
stable scalar system (axis one is not affected by gravity). Extending these results to a
multivariable and unstable system would involve, for example: finding a stable predictor,
numerical problems, and handling large data sets. The last two problems stem from the
fact that the system is resonant and numerically stiff, as well as large in dimension both
with respect to the number of states and parameters. In addition comes also the choice of
model structure (parameters) and handling local minima in the optimization. Apart from
all these problems, such a solution would really tackle our main problem.

Due to the complexity of the industrial robot, it is common practice to estimate ap-
proximate models for various purposes. By, for example, using a low-frequency exci-
tation, elastic effects have a minor influence and a nonlinear model of the rigid body
dynamics can be estimated using least squares techniques. This is a much studied prob-
lem in the literature, see, e.g., Kozlowski (1998) for an overview. Taking elastic effects
into account makes the identification problem much harder. The main reason is that only a
subset of the state variables now are measured such that linear regression cannot be used.
One option could be to add sensors during the data collection to measure all states, even
though accurate measurements of all states are not at all easy to obtain (if even possible)
and such sensors are probably very expensive (for example laser trackers).

It is common to study the local dynamic behavior around certain operating points
(also called positions in the paper) and there estimate parametric or nonparametric linear
models (see, e.g., Albu-Schäffer and Hirzinger, 2001; Behi and Tesar, 1991; Johansson
et al., 2000; Öhr et al., 2006). One application area for these linear models is control
design, where a global (feedback) controller is achieved through gain scheduling. The
linear models can also be used for the tuning of elastic parameters in a global nonlinear
robot model, which is the adopted solution in this paper:

• The local behavior is considered by estimating the nonparametric frequency re-



96 Paper A Frequency-Domain Gray-Box Identification of Industrial Robots

sponse function (FRF) of the system in a number of positions.

• Next, the nonlinear parametric robot model is linearized in each of these positions.

• Finally, the parameters are optimized such that the parametric FRFs (the FRFs of
the linearized parametric robot model) match the estimated nonparametric FRFs.

This identification procedure, first suggested in Öhr et al. (2006), will here be de-
scribed in more detail. Various aspects of the procedure are also treated in Wernholt and
Gunnarsson (2006a), Wernholt and Löfberg (2007), Wernholt and Gunnarsson (2007) and
Wernholt and Moberg (2007). Using an FRF-based procedure allows for data compres-
sion, unstable systems are handled without problems, it is easy to validate the model
such that all important resonances are captured, and model requirements in the frequency
domain are also easily handled.

The proposed procedure also has some possible problems. The choice of model struc-
ture (parameters) and handling local minima in the optimization are problems here as
well. In addition comes some difficulties with biased nonparametric FRF estimates due to
closed-loop data and nonlinearities. There are also cases when even a small perturbation
around a working point can give large variations due to the nonlinearities, which makes
a linear approximation inaccurate, e.g., passing through Coulomb friction, backlash, or
different parts of a nonlinear stiffness. This can be partly handled by the choice of ex-
citation (e.g., avoid zero velocity to reduce Coulomb friction). Using multiple positions
is good for the parameter accuracy as well as for identifiability issues. It will, however,
make it harder to use a linear approximation of certain quantities. Consider, for example,
the problem of nonlinear stiffness, where a linear approximation will vary between dif-
ferent positions due to gravity and the amplitude of the excitation. It is then impossible to
find a linear stiffness that perfectly matches the resonances for all positions. Still, if the
nonlinearity can be parameterized and properly linearized in the different positions, those
parameters could possibly be identified as well.

The procedure will now be described, starting with the robot model in Section 3,
carrying on by describing the nonparametric FRF estimation and the parameter estimation
in Sections 4 and 5, respectively. Experimental results are shown in Section 6, and finally
some conclusions are drawn in Section 7.

3 Robot Model

The robot model described in this section comes from Moberg and Hanssen (2007). A
general serial link industrial robot, as in Figure 1, is then modeled by a kinematic chain of
rigid bodies, where each rigid body is connected to the preceding body by three torsional
spring-damper pairs, giving three degrees-of-freedom (DOF) to each rigid body. At most
one of these DOFs can be actuated, corresponding to a connection of the two rigid bodies
by a motor and a gearbox. In this representation, a robot link (always actuated) can consist
of one or more rigid bodies. The model equations, described in Moberg and Hanssen
(2007), can be written as a nonlinear gray-box model

ẋ(t) = f(x(t), u(t), θ), (1a)

y(t) = h(x(t), u(t), θ), (1b)
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with state vector x(t), input vector u(t), output vector y(t), and nonlinear functions f(·)
and h(·) that describe the dynamics. The rigid body parameters are assumed to be known
and θ is a vector of unknown parameters for (mainly) springs and dampers. See the
previous section for examples of other unknown parameters to include.

4 FRF Estimation

As a first step toward the parameter identification, estimates of the nonparametric FRF in
a number of positions are needed. These are obtained by performing experiments where
the robot is moved into a position and a speed reference signal is fed to the robot con-
troller. The resulting motor torques (actually the torque reference to the torque controller)
and angular positions are sampled and stored. The measured angular positions are then
filtered and differentiated to obtain estimates of the motor angular speeds, which are here
considered as the output signals.

The open-loop system to be identified is unstable, which makes it necessary to collect
data while the robot controller is running in closed loop. Consider therefore the setup in
Figure 2, where the controller takes as input the difference between the reference signal r
and the measured and sampled output y, and u is the input. The disturbance, v, contains
various sources of noise and disturbances. An experimental control system is used, which
enables the use of off-line computed reference signals for each motor controller.

ControllerΣ
+

Robot
u

Σ

−

r y

v

Figure 2: Closed-loop measurement setup.

To avoid leakage effects in the discrete Fourier transform (DFT), which is used by the
estimation method, the excitation signal, r, is assumed to be periodic, withNP samples in
each period, and an integer number of periods of the steady-state response are collected.
The nonparametric FRF estimate Ĝ(ωk) ∈ C

n×n (assuming n inputs and outputs) is
calculated from a block of n experiments like (Pintelon and Schoukens, 2001, p. 61)

Ĝ(ωk) = Y(ωk)U−1(ωk), (2)

where the n columns of Y(ωk) and U(ωk) contain the DFT of the sampled data from
the n experiments. See also, e.g., Wernholt and Gunnarsson (2007) and Wernholt and
Moberg (2007) for other FRF estimators for multivariable systems.

As excitation, an orthogonal random phase multisine signal (Dobrowiecki and Schou-
kens, 2007) is used, which here gives

R(ωk) = Rdiag(ωk)T,

where Rdiag(ωk) is a diagonal matrix

Rdiag(ωk) = diag {R1(ωk), . . . , Rn(ωk)} ,
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and T is an orthogonal matrix

Til = e
2πj
n

(i−1)(l−1),

with TT
H = nI . Each Rl(ωk) is the DFT of a random phase multisine signal, which in

the time domain can be written as

r(t) =

Nf∑

k=1

Ak cos(ωkt+ φk), (3)

with amplitudesAk, frequencies ωk chosen from the grid {ωk = 2πk
NP Ts

, k = 1, . . . ,
Np

2 −
1} (NP even) with Ts the sampling period, and random phases φk uniformly distributed
on the interval [0, 2π). Using the orthogonal multisine signal in closed loop corresponds
to an optimal experiment design given output amplitude constraints.

The selection of frequencies as well as the amplitude spectrum will affect the parame-
ter estimation in the next step. Using too many frequencies will give a low signal-to-noise
ratio, which increases both the bias and the variance in the nonparametric FRF estimate.
The amplitude spectrum should also reflect the sensitivity for the unknown parameters
(cf. Ψ

(i)
0 (k) in (5)), at least such that the unknown parameters influence the parametric

FRF for the selected frequencies.
The nonparametric FRF estimate can be improved by averaging over multiple blocks

and/or periods. The covariance matrix can then also be estimated. For a linear system,
averaging over different periods is sufficient, whereas for a nonlinear system, it is essential
to average over blocks where Rdiag in each block should have different realizations of the
random phases. The reason is that nonlinearities otherwise will distort the estimate and
give a too low uncertainty estimate, see Pintelon and Schoukens (2001, Chap. 3) and
Schoukens et al. (2005).

For the industrial robot, the nonlinearities cause large distortions and averaging over
multiple blocks is therefore important (Wernholt and Gunnarsson, 2006a). For the same
reason, one should only excite odd frequencies (only ωk = 2π(2k + 1)/(NPTs) in (3)),
see Schoukens et al. (2005).

5 Parameter Estimation

When the FRFs have been estimated from data, the next step is to linearize the nonlinear
model (1) in the same positions and calculate the parametric FRFs, G(i)(ωk, θ), i =
1, . . . , Q. A cost function V (θ) is then formed, measuring the (weighted) discrepancy
between the parametric FRF and the estimated nonparametric FRF for all theQ positions.
This cost function is finally minimized to identify the unknown parameters.

First, two different parameter estimators will be analyzed and compared. Next, the
selection of optimal positions for the experiments is treated, and finally, the solution of
the optimization problem is discussed.

Remark A.1. Note that the parametric FRF, G(i)(ωk, θ), is a function of the nonlinear
gray-box model (1) such that for each parameter vector θ during the minimization, (1) is
linearized in (x

(i)
0 , u

(i)
0 ) before calculating the FRF.
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5.1 Estimators

Weighted Nonlinear Least Squares (NLS) Estimator

The NLS estimator is given by

θ̂NLS
Nf

= arg min
θ∈Θ

V NLS
Nf

(θ), (4a)

V NLS
Nf

(θ) =

Q∑

i=1

Nf∑

k=1

[E(i)(k, θ)]H [Λ(i)(k)]−1E(i)(k, θ), (4b)

E(i)(k, θ) = vec(Ĝ(i)(ωk)) − vec(G(i)(ωk, θ)), (4c)

with Λ(i)(k) a Hermitian (Λ = ΛH ) weighting matrix, and (·)H denoting complex con-
jugate transpose. The asymptotic properties (Nf → ∞) of this estimator will be derived
in the following theorem.

Theorem A.1

Consider the NLS estimator (4) and assume that:

1. Ĝ(i)(ωk) = G(i)(ωk, θ0) + η(i)(ωk) with vec(η(i)(ωk)) a zero mean circular com-

plex random vector, independent over i and ωk, with covariance matrix Λ
(i)
0 (ωk).

2. Θ is a compact set where V NLS
Nf

(θ) and its first- and second-order derivatives are

continuous for any value of Nf .

3. For Nf large enough, the expected value of V NLS
Nf

(θ) has a unique global minimum

in Θ.

The estimator θ̂NLS

Nf
will then converge to θ0 as Nf → ∞ and

√
Nf (θ̂NLS

Nf
− θ0) is asymptot-

ically Normal distributed with covariance matrix Pθ,

Pθ =
1

2



 1

Nf

Q∑

i=1

Nf∑

k=1

ℜ
{

Ψ
(i)
0 (k)Ξ(i)(k)[Ψ

(i)
0 (k)]T

}



−1

×



 1

Nf

Q∑

i=1

Nf∑

k=1

ℜ
{

Ψ
(i)
0 (k)Σ(i)(k)[Ψ

(i)
0 (k)]T

}




×



 1

Nf

Q∑

i=1

Nf∑

k=1

ℜ
{

Ψ
(i)
0 (k)Ξ(i)(k)[Ψ

(i)
0 (k)]T

}



−1

, (5)

with the Jacobian matrix [Ψ
(i)
0 (k)]T = ∂ vec(G(i)(ωk,θ))

∂θ

∣∣∣
θ=θ0

, (·) denoting complex con-

jugate, and

Ξ(i)(k) = [Λ(i)(ωk)]−1,

Σ(i)(k) = [Λ(i)(ωk)]−1Λ
(i)
0 (ωk)[Λ(i)(ωk)]−1.
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The covariance is minimized by using the optimal weights

Λ(i)(ωk) = Λ
(i)
0 (ωk), (6)

which also simplifies (5) to

Pθ =
1

2



 1

Nf

Q∑

i=1

Nf∑

k=1

ℜ
{

Ψ
(i)
0 (k)[Λ(i)(ωk)]−1[Ψ

(i)
0 (k)]T

}



−1

.

Proof: Follows from fairly straightforward calculations using Theorem 7.21 in Pintelon
and Schoukens (2001).

Note that in addition to the mentioned assumptions, there are some technical details
for the asymptotic normality that η(i)(ωk) has uniformly bounded absolute moments of
order 4 + ǫ with ǫ > 0. See Pintelon and Schoukens (2001, Theorem 7.21) for details.

Weighted Logarithmic Least Squares (LLS) Estimator

For systems with a large dynamic range, the NLS estimator may become ill-conditioned.
The weighted logarithmic least squares (LLS) estimator has been suggested as an alterna-
tive (Pintelon and Schoukens, 2001, pp. 206–207)

θ̂LLS
Nf

= arg min
θ
V LLS

Nf
(θ), (7a)

V LLS
Nf

(θ) =

Q∑

i=1

Nf∑

k=1

[E(i)(k, θ)]H [Λ(i)(k)]−1E(i)(k, θ), (7b)

E(i)(k, θ) = log vec(Ĝ(i)(ωk)) − log vec(G(i)(ωk, θ)), (7c)

where logG = log |G| + j argG. This estimator has improved numerical stability and is
particularly robust to outliers in the measurements. However, from a theoretical point of
view, the estimator is inconsistent (limNf→∞ θ̂LLS

Nf
6= θ0). The bias can be neglected if the

signal-to-noise ratio (vec(Ĝ) vs.
√

diag {Λ0}) is large enough (at least 10 dB according
to Pintelon and Schoukens, 2001, p. 207).

Similarly to Theorem A.1, one can show that the covariance matrix, using the LLS
estimator (7), is approximately given by (5) with

Ξ(i)(k) =
[
G

(i)
d (ωk, θ0)Λ

(i)(ωk)[G
(i)
d (ωk, θ0)]

H
]−1

,

Σ(i)(k) = Ξ(i)(k)Λ
(i)
0 (ωk)Ξ(i)(k),

and G(i)
d (ωk, θ0) = diag

{
vec(G(i)(ωk, θ0))

}
. Using the optimal weights

Λ(i)(ωk) =
[
G

(i)
d (ωk, θ0)

]−1

Λ
(i)
0 (ωk)

[
G

(i)
d (ωk, θ0)

]−H

, (8)

gives approximately the same covariance as for the NLS estimator.
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Selection of Weights

Even if the covariance is minimized by using the optimal weights, the choice of weights
will in general deviate from the optimal ones for a number of reasons. Firstly, the true
covariance matrix Λ

(i)
0 (ωk) is usually not known so the user must instead be content with

an estimated covariance matrix Λ̂
(i)
0 (ωk). Secondly, the weights also reflect where the

user requires the best model fit. This is important in case the model is unable to describe
every detail in the measurements. The bias-inclination will then be small for frequencies,
elements, and positions where the weights [Λ(i)(ωk)]−1 are large.

For a resonant system, it is often easier to use the LLS estimator in the way that even
constant weights will make sure that both resonances and anti-resonances are matched by
the model. This is due to the fact that the logarithm in the LLS estimator inherently gives
the relative error, compared to the absolute error when using the NLS estimator. With
the NLS estimator, the anti-resonances are easily missed if not choosing large weights at
those frequencies.

5.2 Optimal Positions

Given a nonlinear gray-box model (1), the information about the unknown parameters
will differ between nonparametric FRF estimates in different positions. Therefore, given
a limited total measurement time, one should perform experiments in the position(s) that
contribute the most to the information about the unknown parameters. In Wernholt and
Löfberg (2007), this problem is formulated as follows: Assume a set of Qc candidate
positions. Determine the number of experiments to be performed in each position (mi

experiments in position i) such that the parameter uncertainty is minimized, given a total
of M =

∑Qc

i=1mi experiments. Determining the values mi, i = 1, . . . , Qc, is a combina-
torial experiment design problem which relatively quickly will become intractable when
Qc is large. If M is not too small, a good approximate solution can be found by relaxing
the constraint that each mi should be an integer. This relaxed problem is convex, which
enables the global optimum to be found. In the paper Wernholt and Löfberg (2007), it is
also shown that the experiment design is efficiently solved by considering the dual prob-
lem. The candidate positions are obtained by griding the workspace. Given thousands
of candidate positions, only a few positions typically have a nonzero mi in the optimum.
See Wernholt and Löfberg (2007) for details and examples.

5.3 Solving the Optimization Problem

The minimization problem to be solved, (4) or (7), is unfortunately non-convex. Here, the
problem is solved using fminunc in MATLAB, which is a gradient-based method which
only returns a local optimum. Due to the existence of local minima, a good initial parame-
ter vector, θinit , is important. The problem is solved for a number of random perturbations
around θinit in order to avoid local minima. Or, alternatively stated, to obtain a local min-
imum which is good enough for the purpose of the model. The quality of the resulting
model, as well as problems with local minima and identifiability properties, depend on the
choices of estimator, weights, and position(s) for the experiments. This will be illustrated
in the next section.
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6 Experimental Results

The described identification procedure from the previous sections will here be used for
the identification of an industrial robot from the ABB IRB6600 series using an experi-
mental controller. A nonlinear gray-box model with 26 unknown parameters is used. The
nonparametric FRFs are estimated in the 15 optimal positions from Wernholt and Löfberg
(2007) by using an odd orthogonal random phase multisine signal with a flat amplitude
spectrum as excitation and averaging over a number of blocks. The parameters are then
estimated using the following estimators:

LLSM15U: LLS estimator, Q = 15, only magnitude (log |G|), user-defined weights.

LLS15U: LLS estimator, Q = 15 , user-defined weights.

LLS15O: LLS estimator, Q = 15, optimal weights.

NLS15U: NLS estimator, Q = 15, user-defined weights.

NLS15O: NLS estimator, Q = 15, optimal weights.

LLS1U: LLS estimator, Q = 1, user-defined weights.

For simplicity only diagonal weights [Λ(i)(ωk)]−1 are considered1. The user-defined
weights are constant for each element in the FRF, the same for all positions, zero for low
frequencies where the nonparametric FRF is uncertain, and lower for the non-diagonal
elements in the FRF. The optimal weights are calculated from (6) and (8), using the esti-
mated covariance Λ̂

(i)
0 (ωk) and G(i)(ωk, θ0) ≈ Ĝ(i)(ωk). The optimal weights often turn

out to be small at the resonances and anti-resonances due to a larger relative error in the
nonparametric FRF estimate at those frequencies. For the LLS1U estimator, the single
position with the smallest theoretical parameter covariance is used.

To assess the sensitivity to the initial parameter vector, θinit , 100 optimizations are
performed for each of the 6 estimators, using randomly perturbed initial parameters,
θ
[l]
init , l = 1, . . . , 100 (the same for all estimators). Each element in θ[l]init is obtained

by multiplying the corresponding element in θinit by 10ϕ, where ϕ is a random number
from a uniform distribution on the interval [−1, 1].

To evaluate the resulting 600 models, the same cost function is used for all mod-
els. The LLS cost, V LLS(θ), is calculated with optimal weights and user-defined weights,
which can be seen in Figures 3 and 4, respectively. The cost varies quite much between the
different estimators. What is more important is the trend over the different optimizations.
The first three estimators tend to be much more robust to varying initial parameters.

To compare the number of reasonable models, some measure is needed. Since the
optimal weights are small at the resonances and anti-resonances, Figure 3 is not so well
suited for judging if resonances (and anti-resonances) are accurately modeled or not. Con-
sider therefore Figure 4. When comparing the FRFs of the parametric models with the
estimated nonparametric FRFs, the models usually miss important resonances when the

1This means that, e.g., (4b) can be rewritten as

V NLS
Nf

(θ) =
∑Q

i=1

∑Nf

k=1

∑ny

m=1

∑nu
n=1 |Ĝ

(i)
mn(ωk) − G

(i)
mn(ωk, θ)|2W

(i)
m+(n−1)ny

(ωk),

where W (i)(ωk) is the diagonal of [Λ(i)(ωk)]−1.
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Figure 3: Normalized LLS cost with optimal weights for all initial parameters and

all estimators.
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Table 1: Statistics for the LLS15U estimator, where the first five columns are ob-

tained using the 31 best models in Figure 4, and the last column is calculated for the

best model, using (5).

θi min median max mean std stdth

k1 0.97 1.01 1.05 1.01 0.020 0.0069
k2 0.99 1.02 1.04 1.02 0.012 0.0081
k3 0.061 1.00 3.67 1.10 0.66 0.103
k4 0.72 0.99 1.26 0.97 0.13 0.042
c1 0.84 0.99 1.45 1.00 0.12 0.037
c2 0.24 1.04 1.51 0.99 0.30 0.056
c3 0.16 0.55 7.05 1.57 1.93 0.865
c4 0.048 0.44 34.1 2.27 6.14 0.186

normalized cost in Figure 4 exceeds approximately 1.5. That gives the following per-
centage of reasonable models (out of the 100 models): LLS15U, 80 %, LLSM15U, 64 %,
LLS15O, 35 %, NLS15U, 3 %, LLS1U, 2 %, and NLS15O, 0 %. These numbers are only
approximate since the same cost can be achieved if one resonance is missed completely
but all others are accurate, and if many resonances are only modeled with moderate ac-
curacy. The latter is often the case for the LLS15O estimator since the exact location of
the resonances, as well as their damping, are not so important when using the optimal
weights.

To further evaluate the estimated models, the parameter variation is studied. The
spring parameters of the gearboxes and the arm structure as a function of the sorted opti-
mizations can be seen in Figures 5 and 6, respectively. These parameters are normalized
by the best LLS15U model. One immediately notes that the arm structure springs are
harder to estimate, in particular one of them. This parameter does not influence the FRF
that much in the selected frequency interval and is therefore hard to estimate. Considering
the number of optimizations with estimated parameters inside the interval [0.5, 2] (black
lines in the figures) gives the following percentage of reasonable models (out of the 100
models): LLS15U, 62 %, LLSM15U, 43 %, LLS15O, 21 %, NLS15U, 2 %, LLS1U, 2 %,
and NLS15O, 0 %. One arm structure parameter is excluded in these numbers, but the
LLS15U estimator actually manages to accurately estimate the 12 spring parameters in
12 % of the optimizations. The dampers are unfortunately much harder to accurately es-
timate, as can be seen in Figure 7. Some of the damping parameters fluctuate quite much
even among the best models.

The LLS15U estimator is further analyzed by computing the theoretical parameter
uncertainty from (5) for the model with the lowest V LLS cost, as well as the statistics for
the best 31 models, i.e., all models with a cost less than 1.05 in Figure 4. Statistics for
8 representative springs ki and dampers di are shown in Table 1, where the parameters
with both the smallest and the largest uncertainties are included. The conclusions are
that the springs are more accurately estimated than the dampers and that the theoretical
uncertainty gives a good indication of the quality of the estimated parameters.
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Figure 5: Normalized spring parameters of the gearboxes for the 6 different estima-

tors, sorted according to Figure 4.
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Figure 6: Normalized spring parameters of the arm structure for the 6 different

estimators, sorted according to Figure 4.
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Figure 7: Normalized damping parameters of the gearboxes (left column) and the

arm structure (right column) for the estimators LLSM15U, LLS15U and LLS15O,

sorted according to Figure 4.
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Figure 8: Estimated nonparametric FRF Ĝ(i)(ωk) and parametric FRF G(i)(ωk, θ)
(the best LLS15U model) in one of the positions. Input: 6 motor torques, out-

put: 6 motor accelerations. Thin line: Ĝ(i)(ωk), shaded: one standard deviation for

Ĝ(i)(ωk), and thick line: G(i)(ωk, θ).

Figure 8 finally shows the magnitude of the estimated nonparametric FRF and the
best parametric model for one of the positions. The identified model gives a good global
description of the dynamics in the frequency range of interest.

7 Concluding Discussion

This paper has dealt with the problem of estimating unknown elasticity parameters in a
nonlinear gray-box model of an industrial robot. An identification procedure has been
proposed where the parameters are identified in the frequency domain, using estimates
of the nonparametric FRFs for a number of robot configurations/positions. The nonlinear
parametric gray-box model is linearized in the same positions and the optimal parameters
are obtained by minimizing the discrepancy between the nonparametric and the paramet-
ric FRFs. Two different parameter estimators (NLS and LLS) have been analyzed. The
estimators, as well as the selection of weights in the estimators, have been evaluated in an
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experimental study. The conclusions of the experimental study are that:

• the LLS estimator is superior to the NLS estimator for this type of system,

• more than one position is needed in order to get a reasonable estimate,

• using phase information improves the estimate,

• rough user-defined weights work much better than the theoretically optimal weights,

• gearbox parameters are easier to estimate than arm structure parameters,

• spring parameters are easier to identify than damping parameters, and

• the theoretical uncertainties for the estimated parameters in Table 1 give a good
indication of the quality of the estimated parameters.

The uncertainties in the dampers and in some of the springs in the best identified model
are quite large, but the resulting global model should anyway be useful for many purposes.

An explanation to the fourth point is that the assumptions in Theorem A.1 are violated
since the nonparametric FRF estimate has bias errors due to nonlinearities and closed-loop
data, and the model is unable to describe every detail of the true system. The weights
should, for such a case, primarily be selected to distribute the bias, not to get minimum
variance. The theoretically optimal weights are low at the resonance and anti-resonance
frequencies (due to uncertainties in the FRF), which in turn give large model errors there.

The fifth point comes as no surprise. The model structure, where all elastic effects in
the arm structure are lumped into a few spring-damper pairs, can of course be modified
and refined. Both regarding the location of these spring-damper pairs, as well as how
many that are needed in order to properly model the system. Identifiability of these added
parameters can also be discussed. Maybe additional sensors are needed, e.g., accelerom-
eters attached to the structure, as is the case in experimental modal analysis (Behi and
Tesar, 1991; Verboven, 2002).

The main reasons for the large uncertainties in the damping parameters probably are
that the system is poorly damped and that the nonparametric FRFs contain errors at the
resonances and anti-resonances such that unique damping parameters are hard to find.

A number of areas are still subject to future work. The selection of weights can
certainly be improved by combining the user choices and the estimated FRF uncertainty.
The selection of frequencies, as well as the amplitude spectrum for the nonparametric
FRF estimation can be further improved. An experimental verification of the optimal
positions for identification is still interesting to perform. The parameter accuracy and
problems with local minima, versus measurement time and excitation energy are also
interesting problems to study. Using a frequency-domain method for identification of
a nonlinear system has some problems, as was pointed out in Section 2. Therefore, it
would be interesting to apply time-domain prediction error methods as a comparison, even
though that involves a number of hard problems to tackle, also mentioned in Section 2. A
simulation-based study, using a realistic nonlinear model, could also be enlightening.

Finally, to conclude this paper: Identification of industrial robots is a challenging task.
Using a general purpose method by pressing a button will almost surely fail. The problem
instead requires a combination of tailored identification methods, experiment design, and
a skilled user, using all available knowledge about the system.
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Abstract

Nonparametric estimation methods for the multivariable frequency response
function are analyzed, both in open and closed loop. Expressions for the
bias and covariance are derived and the usefulness of these expressions is
illustrated in simulations of an industrial robot where the different estimators
are compared. The choice of estimator depends on the signal-to-noise ratio
as well as the measurement setup and a bias-variance trade-off.

1 Introduction

This paper studies the properties of some nonparametric frequency response function
(FRF) estimation methods for multivariable systems, both for open-loop and closed-loop
data. Nonparametric estimates of the FRF give valuable information about the dynam-
ics of a system and are often used as an intermediate step in a parametric identification
process to assess the quality of the measurements and visualize the complexity of the
modeling problem. In a second step, a parametric model can be estimated, either by,

1. treating the estimated FRF as a measurement and minimize the distance between
the model and the estimated FRF as is done in, e.g., experimental modal analysis
(Verboven, 2002), or,

2. directly from the measured input and output data (Ljung, 1999; Pintelon and Schou-
kens, 2001).

The paper mainly deals with the H1 estimator, but three other estimators will be
treated as well in various degrees: the arithmetic mean (ARI) estimator, the joint input-

output (JIO) estimator, and the errors-in-variables (EIV) estimator. These estimators will
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be described in more detail in Section 2, see also Wellstead (1981), Cobb and Mitchell
(1990), Pintelon and Schoukens (2001), Verboven (2002), Guillaume et al. (1996, 1992)
and Guillaume (1998).

Previous studies of the performance of the EIV and H1 estimators for multivariable
systems are presented in, e.g., Guillaume et al. (1996), Verboven (2002), and Dobrowiecki
et al. (2005) for open-loop data and Wernholt and Gunnarsson (2004) contains some early
work for closed-loop data. The open-loop covariance expressions from the two papers
Guillaume et al. (1996) and Dobrowiecki et al. (2005) will here be combined and co-
variance expressions for the H1, ARI, and EIV estimators are presented. For closed-loop
data, an asymptotic expression for the bias of the H1 estimator is derived together with
asymptotic covariance expressions for the JIO and EIV estimators, as well as approximate
covariance expressions for the H1 and ARI estimators.

For a numerical illustration, a simulation model of an industrial robot will be used.
The robot application is interesting since it gives many challenging problems for system
identification methods, such as a multivariable nonlinear system, oscillatory behavior, and
data collection under feedback control. An overview of identification in robotics can be
found in Kozlowski (1998). See also Öhr et al. (2006), Berglund and Hovland (2000),
and Khorrami et al. (1995) for examples where nonparametric FRF estimates are used
for the identification of parametric robot models. The simulation results are evaluated
using the derived bias and variance expressions. Experimental results from real robots are
presented in, e.g., Wernholt (2004) and Wernholt and Gunnarsson (2006).

The paper is organized as follows. Section 2 presents the nonparametric estimation
methods that will be used in the paper. The estimation methods are analyzed in Section 3
for open-loop data and Section 4 for closed-loop data. The estimators and the derived
error expressions are illustrated in a numerical example in Section 5. Finally, Section 6
contains some conclusions.

2 FRF Estimation Methods

The setup considered in this paper is given by

y(t) = G(q)u(t) + v(t), (1)

where G(q) is the ny × nu multivariable discrete-time transfer operator, with q being the
shift operator, and v(t) is the measurement noise. The input and output signals, u(t) ∈
R

nu and y(t) ∈ R
ny , are measured at time instants tn = nTs, n = 1, 2, . . . , N , with

sampling period Ts.

To avoid leakage effects in the discrete Fourier transform (DFT), which is used by
the identification methods, the input signal, u(t), is assumed to be NP -periodic (u(t +
NPTs) = u(t)) and an integer number of periods, P , of the steady-state response is
collected, giving N = PNP samples for each experiment. Consider now the DFTs of the
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input and output signals

U(ωk) =
1√
N

N∑

n=1

u(nTs)e
jωknTs ,

Y (ωk) =
1√
N

N∑

n=1

y(nTs)e
jωknTs ,

where only the NP frequencies ωk = k 2π
NP Ts

, k = 1, 2, . . . , NP are considered. Given
periodic data, the following linear mapping holds exactly in the noise-free case

Y (ωk) = G(ejωkTs)U(ωk),

where G(ejωkTs) ∈ C
ny×nu is the FRF. To be able to extract G(ejωkTs) from data, at

least nu different experiments are needed. The data vectors from ne ≥ nu different
experiments will be collected into matrices (bold-face in the sequel) where each column
corresponds to one experiment. The input-output relation can then be written as

Y(ωk) = G(ejωkTs)U(ωk), (2)

where U(ωk) ∈ C
nu×ne and Y(ωk) ∈ C

ny×ne . If U(ωk) has rank nu, a nonparametric
estimate of G(ejωkTs) can be formed by, e.g., using the H1 estimator (Guillaume et al.,
1996; Pintelon and Schoukens, 2001; Verboven, 2002)

ĜH1(ejωkTs) = Y(ωk)UH(ωk)[U(ωk)UH(ωk)]−1, (3)

where (·)H denotes complex conjugate transpose. When the measurements are corrupted
by noise, (2) changes to

Y(ωk) = G(ejωkTs)U(ωk) + V(ωk). (4)

The H1 estimator (3) can still be used, but the estimate will contain errors due to the noise.
In general the choice of excitation signal offers a large freedom in terms of frequency

contents, magnitude, and so on, as long as the matrix U(ωk) has rank nu. In this paper,
the orthogonal random phase multisine signal will be used. This signal has been sug-
gested in Dobrowiecki et al. (2005) and Dobrowiecki and Schoukens (2005) to minimize
the variance (detσ2

Ĝ
, cf. (10)) given certain amplitude constraints for the input signal.

Assuming ne = M · nu, U(ωk) is partitioned in M blocks of size nu × nu as

U(ωk) =
[
U

[1](ωk) . . . U
[M ](ωk)

]
, (5a)

U
[m](ωk) = U

[m]
diag(ωk)T, m = 1, . . . ,M, (5b)

with U
[m]
diag(ωk) = diag

{
U

[m]
l (ωk)

}nu

l=1
a diagonal matrix where each U

[m]
l (ωk) is a

random phase multisine signal, and T is an orthogonal matrix. A scalar random phase
multisine signal u(t) can be written as

u(t) =

Nf∑

k=1

Ak cos(ωkt+ φk),
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with amplitudes Ak, frequencies ωk chosen from the grid { 2πl
NP Ts

, l = 1, . . . , NP /2− 1}
(NP even), and random phases φk uniformly distributed on the interval [0, 2π). The
optimal matrix T, with constraints |Til| ≤ 1, is given by (Dobrowiecki and Schoukens,
2005)

Til = e
2πj
nu

(i−1)(l−1). (6)

For the single input, single output (SISO) case, a number of different FRF estimators
have been suggested in the literature (see, e.g., Pintelon and Schoukens, 2001; Wellstead,
1981), which all have different properties regarding bias (for the output-noise case only
in closed loop) and variance. These estimators can often be generalized to the multiple
input, multiple output (MIMO) case, as for the H1 estimator (3). By using (5a), (3) can
be rewritten as

ĜH1 =

[
1

M

M∑

m=1

Y
[m]

U
[m]H

][
1

M

M∑

m=1

U
[m]

U
[m]H

]−1

.

(For notational simplicity, the frequency argument will be omitted when not explicitly
needed.) Another useful estimator is the arithmetic mean estimator (Guillaume, 1998;
Pintelon and Schoukens, 2001)

ĜARI =
1

M

M∑

m=1

Ĝ[m] =
1

M

M∑

m=1

Y
[m][U[m]]−1. (7)

If the reference signal is measured, an asymptotically (ne → ∞) unbiased estimator has
been proposed in Wellstead (1981), which can be generalized to the MIMO case as (Cobb
and Mitchell, 1990; Verboven, 2002)

ĜJIO = YR
H
[
UR

H
]−1

, (8)

where R is the reference DFT matrix, see (16), and JIO stands for joint input-output

estimator (cf. Ljung, 1999, p. 438). This estimator is based on the instrumental variables
principle and is also called HIV, Hs, Hc, or 3-channel FRF estimator in the literature (see
Cobb and Mitchell, 1990; Verboven, 2002). By using (5a), (8) is rewritten as

ĜJIO =

[
1

M

M∑

m=1

Y
[m]

R
[m]H

][
1

M

M∑

m=1

U
[m]

R
[m]H

]−1

.

If the same excitation is used in all blocks with synchronized measurements1, then the JIO
estimator reduces to the errors-in-variables2 estimator (Guillaume et al., 1996; Pintelon
and Schoukens, 2001)

ĜEIV =

[
1

M

M∑

m=1

Y
[m]

][
1

M

M∑

m=1

U
[m]

]−1

. (9)

The EIV estimator does not require the reference signal to be known and this is also the
maximum likelihood estimator for normally distributed noise (Guillaume et al., 1996).

1Synchronized measurements here means that all U
[m] are equal, except for noise. This can easily be

achieved by using one orthogonal multisine signal with multiple periods, where each period then is treated as a
“block”.

2Measurements y(t) = G(q)u(t) + vy(t) and u(t) + vu(t) with measurement noise vu(t) and vy(t).
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3 Open-Loop Error Analysis

In this section, the estimators will be analyzed for open-loop data. The analysis of the
H1 estimator is closely related to the work in Guillaume et al. (1996), Verboven (2002),
and Dobrowiecki et al. (2005). In Dobrowiecki et al. (2005), covariance expressions are
derived when the orthogonal multisine signal (5) is used as input. The MIMO system
is there viewed as ny separate MISO systems with output noise. Implicitly, the output
noise is assumed to be independent over the different outputs so expressions for the co-
variance between different rows in Ĝ are not presented. In this paper, the MIMO system
will be considered without such noise assumption, which can be seen as applying (5) to
Theorem B.1. In addition, the ARI and EIV estimators are treated. These results will be
extended to the closed-loop case in Section 4.

3.1 Noise Assumptions

Assumption B.1. For each of the ne experiments, the DFT of the noise, V (ωk) satisfies

E(V (ωk)) = 0, E(V (ωk)V T (ωk)) = 0,

E(V (ωk)V H(ωk)) = σ2
V (ωk),

for k = 1, . . . , Nf , with E(X) the expected value of X . V (ωk) is therefore circular com-
plex. In addition, it is assumed that the noise is independent and identically distributed
over the ne different experiments.

This assumption is common and justifiable in most practical circumstances3 and en-
ables us to obtain the following result for the covariance of V(ωk).

Lemma B.1

Consider the DFT matrix V(ωk) ∈ C
ny×ne in (4). Under Assumption B.1, the covariance

σ2
V

(ωk) is given by

σ2
V

(ωk) = E(vec(V(ωk)) vec(V(ωk))H) = I ⊗ σ2
V (ωk),

where ⊗ is the Kronecker product.

Proof: Let Vi denote column i in V. σ2
V

will then be a block matrix with blocks
E(ViV

H
j ) ∈ C

ny×ny . Expanding this expression and using Assumption B.1 gives that
E(ViV

H
j ) = σ2

V if i = j and zero otherwise. σ2
V

will therefore be a block-diagonal
matrix with σ2

V in all the diagonal blocks, which can be written as I ⊗ σ2
V .

3.2 Bias and Covariance

The bias and covariance of the H1 estimator (3) will now be derived in the following
theorem. The same result can be found in Verboven (2002, p. 24) and Brillinger (1981,
Theorem 8.2.5), see also Guillaume et al. (1996).

3For example, the DFT of filtered white noise is asymptotically circular complex when the number of sam-
ples, N → ∞ (see Pintelon and Schoukens, 2001, Theorem 14.25).
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Theorem B.1

Consider the H1 estimator (3) and assume an open-loop setup (4) where U(ωk) and

V(ωk) are independent and the noise fulfills Assumption B.1. The estimate ĜH1(ejωkTs)
will then be unbiased and the covariance σ2

ĜH1
(ωk) is given by

σ2
ĜH1

(ωk) = E(vec(G̃H1(ejωkTs)) vec(G̃H1(ejωkTs))H) =

= E(
[
U(ωk)UH(ωk)

]−T
) ⊗ σ2

V (ωk). (10)

Proof: The estimation error G̃H1 can be rewritten as

G̃H1 = ĜH1 −G = (GU + V)U† −G = VU
†, (11)

with U
† = U

H(UU
H)−1. E(G̃H1) = 0 follows since E(V) = 0 and U and V are

independent. For the covariance, vec(G̃H1) can be rewritten as vec(G̃H1) = (U†T ⊗
I) vec(V) by using vec(ADB) = (BT ⊗ A) vec(D) (see, e.g., Pintelon and Schoukens,
2001, p. 420). Equation (10) then follows from

σ2
ĜH1

= E(vec(G̃H1) vec(G̃H1)H)

= E([U†T ⊗ I] vec(V) vec(V)H [U†T ⊗ I]H)

= Eu([U†T ⊗ I]Ev(vec(V) vec(V)H)[U†T ⊗ I]H)

= Eu([U†T ⊗ I][I ⊗ σ2
V ][U† ⊗ I])

= E(U†T
U†) ⊗ σ2

V = E([U†H
U

†]T ) ⊗ σ2
V

= E([(UU
H)−1

UU
H(UU

H)−1]T ) ⊗ σ2
V ,

using E(·) = Eu(Ev(·)) in the second step since U and V are independent, Lemma B.1
in the third step, and (A⊗B)(C ⊗D) = (AC) ⊗ (BD) twice in the fourth step.

Continuing the error analysis with the orthogonal multisine signal (5) gives the fol-
lowing results (cf. Dobrowiecki et al., 2005).

Corollary B.1

Using an orthogonal multisine signal (5) with T from (6) simplifies σ2
ĜH1

in Theorem B.1

to

σ2
ĜH1

= diag

{
1

nu

∑M
m=1 |U

[m]
l |2

}nu

l=1

⊗ σ2
V ,

and the variance of each element in ĜH1 to

σ2
Ĝ

H1
ij

=
σ2

V,ii

nu

∑M
m=1 |U

[m]
j |2

. (12)

Proof: Follows by noting that TT
H = nuI for (6) as

UU
H =

∑
m

U
[m]

U
[m]H =

∑
m

U
[m]
diagTT

H
U

[m]H
diag

= nu

∑
m

U
[m]
diagU

[m]H
diag = nu

∑
m

diag
{
|U [m]

l |2
}nu

l=1
.
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This means that different columns in ĜH1 are uncorrelated and that the covariance for
a certain column is inversely proportional to the total input power in that particular input
channel. Note that if another type of excitation signal U is used, without the property
that UU

H is diagonal, then the covariance is increased and the columns in ĜH1 will be
correlated. The variance (12) is given by a noise-to-signal ratio, where σ2

V,ii is the noise
variance in output i and the denominator is the total power for input j during the ne

experiments.
The covariance for the ARI and EIV estimators, (7) and (9), can easily be derived,

similarly to the proof of Theorem B.1,

σ2
ĜARI =

1

M2
E(

M∑

m=1

[
U

[m]
U

[m]H
]−T

) ⊗ σ2
V , (13)

σ2
ĜEIV = ME(

[
M∑

m=1

U
[m]

M∑

n=1

U
[n]H

]−T

) ⊗ σ2
V . (14)

The H1, ARI, and EIV estimators coincide in case all U
[m] are equal. The ARI and

H1 estimators coincide also when using the orthogonal multisine signal with the same
magnitude in all blocks, |U [m]

l | = |Ul|, m = 1, . . . ,M . In other cases the covariance is
typically larger for the ARI estimator than the H1 estimator, and the EIV estimator can
have infinite covariance.

All estimators are unbiased in the case of open-loop data and output noise. The EIV
(and JIO) estimators are in addition unbiased in the error-in-variables case and for closed-
loop data, which will be treated next.

4 Closed-Loop Error Analysis

In this paper, the aim is to analyze also the properties of the estimation methods in a
closed-loop setup. Therefore, let the input in (1) be given by

u(t) = F (q)(r(t) − y(t)), (15)

where F (q) is the controller and r(t) ∈ R
ny is the reference signal. For simplicity,

ny = nu will be assumed in this section (ny ≥ nu is enough for most expressions). The
input DFT matrix U(ωk) is then given by

U(ωk) = Gu(ejωkTs)(R(ωk) − V(ωk)), (16)

where
Gu(q) = (I + F (q)G(q))−1F (q).

4.1 Bias

Since U and V now are correlated, the H1 estimator (3) will be biased. To analyze the
bias, we will assume a closed-loop setup according to (1) and (15), where the noise fulfills
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Assumption B.1 and R and V are independent and uniformly bounded. The estimation
error is given by

G̃H1 =ĜH1 −G = VU
† = V(R − V)†G−1

u (17)

=[VR
H − VV

H ][RR
H + VV

H − RV
H − VR

H ]−1G−1
u .

Calculating the bias E(G̃H1) is hard due to the matrix inverse, even though Taylor expan-
sions can be used, see Guillaume et al. (1992) and Guillaume (1998). Instead, consistency
will first be considered, where ĜH1 is said to be (strongly) consistent if a.s.lim

ne→∞
ĜH1 = G.

This analysis will use some fundamental results for stochastic limits, see, e.g., Pintelon
and Schoukens (2001, Chap. 14) for a summary.

With suitable assumptions on V to avoid inversion of a singular matrix4, G̃H1 is uni-
formly bounded and continuous, viewed as a function of V and R. The almost sure limit
(a.s.lim) and a continuous function may be interchanged, such that the limit can be moved
into the expression as

a.s.lim
ne→∞

G̃H1 =

[
a.s.lim
ne→∞

1

ne

ne∑

i=1

ViR
H
i − a.s.lim

ne→∞

1

ne

ne∑

i=1

ViV
H
i

]
×

[
a.s.lim
ne→∞

1

ne

ne∑

i=1

RiR
H
i + a.s.lim

ne→∞

1

ne

ne∑

i=1

ViV
H
i

− a.s.lim
ne→∞

1

ne

ne∑

i=1

RiV
H
i − a.s.lim

ne→∞

1

ne

ne∑

i=1

ViR
H
i

]−1

G−1
u .

The sums a.s.lim
ne→∞

1
ne

∑ne

i=1 ViR
H
i , and so on, of independent and uniformly bounded

variables can, by the strong law of large numbers, be replaced by expectation, which
gives

a.s.lim
ne→∞

G̃H1 = −σ2
V [σ2

R + σ2
V ]−1G−1

u , (18)

where σ2
R = limne→∞

1
ne

∑ne

i=1 E(RiR
H
i ). The estimator is therefore inconsistent. For

G̃H1 uniformly bounded, a.s.limne→∞ G̃H1 = limne→∞ E(G̃H1), which means that (18)
also is an expression for the asymptotic bias. Using G−1

u = G+ F−1 finally gives

a.s.lim
ne→∞

ĜH1 = σ2
R[σ2

R + σ2
V ]−1G− σ2

V [σ2
R + σ2

V ]−1F−1. (19)

For frequencies where the signal-to-noise ratio (SNR) is poor, the estimate will tend to
the inverse controller. If σ2

V and σ2
R are diagonal, (18) simplifies to

a.s.lim
ne→∞

G̃H1
ij = −

σ2
V,ii

σ2
V,ii + σ2

R,ii

(Gij + F−1
ij ), (20)

such that the asymptotic relative bias (limne→∞ E(G̃H1
ij )/Gij) will be (approximately)

proportional to the noise-to-signal ratio.

4If the probability density function of V is short-tailed (e.g., uniform), that is handled if the SNR is large
enough. See Guillaume et al. (1992) for details.
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These bias expressions could be compared with the expressions for the ARI estimator
(7) in the SISO case (Pintelon and Schoukens, 2001)

E(G̃ARI) = −e−σ2
R/σ2

V G−1
u ,

E(ĜARI) = (1 − e−σ2
R/σ2

V )G− e−σ2
R/σ2

V F−1,

which indicate a huge difference for large SNRs. A similar difference can be seen also
in the MIMO case. When the SNR is small, on the other hand, the ARI estimator will
deteriorate since U

[m] could loose rank for some blocks, giving infinite covariance. The
H1 estimator is, in that respect, a more robust estimator.

For closed-loop data, the EIV and JIO estimators should also be considered since
they are consistent and asymptotically unbiased, which can be seen by studying their
estimation errors

G̃EIV =

[
1

M

M∑

m=1

V
[m]

][
1

M

M∑

m=1

U
[m]

]−1

, (21)

G̃JIO =

[
1

ne

ne∑

i=1

ViR
H
i

][
1

ne

ne∑

i=1

RiR
H
i − 1

ne

ne∑

i=1

ViR
H
i

]−1

G−1
u , (22)

and using similar arguments as for G̃H1 , see also Verboven (2002).
A problem with the asymptotic bias expressions (18)–(20) is that for large SNRs,

ne must be fairly large until these expressions are useful, mainly due to the variance of
X = 1

ne

∑ne

i=1 Vi(Ri − Vi)
H . To see this, assume for simplicity normally distributed

noise and σ2
R = α · I and σ2

V = β · I , with α and β scalars. The matrix X , with mean
−σ2

V , then has variance E(|(X+σ2
V )ij |2) = (βα+β2)/ne. For the matrix to be diagonal

dominant, we require (βα+ β2)/ne ≪ β2, or ne ≫ 1 + α/β, where α/β is the SNR.

4.2 Covariance

It is hard to obtain exact covariance expressions for the considered estimators for the
closed-loop case since the noise appears in the matrix inverse. However, for the JIO
estimator an asymptotic expression is given by the following theorem.

Theorem B.2

Consider the JIO estimator (8) and assume a closed-loop setup according to (1) and (15),
where the noise fulfills Assumption B.1 and R and V are independent and uniformly

bounded. The covariance is then asymptotically (ne → ∞) given by

σ2
ĜJIO

=
[
G−H

u E((RR
H)−1)G−1

u

]T ⊗ σ2
V , (23)

with G−1
u = G+ F−1.

Proof: (sketch) Consider the estimation error (22). The matrix inverse will be dominated
by [ 1

ne

∑ne

i=1 RiR
H
i ]−1 since 1

ne

∑ne

i=1 ViR
H
i → 0 as ne → ∞. G̃JIO = VR

†G−1
u is

then a valid approximation for large ne. This corresponds to using U = GuR in (11) and
the covariance (23) is therefore obtained by inserting U = GuR into (10).
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Even though this is an asymptotic covariance expression, it still gives valuable insight
to how the covariance is affected by the closed-loop setup, even for a finite number of
experiments ne. The validity for finite ne will depend both on the SNR and ne.

To obtain covariance expressions for the remaining estimators, the following approx-
imation will be used

U ≈ GuR, (24)

which requires V ≪ R in order to be valid for the H1 and ARI estimators. Using (24) for
the EIV estimator will give the asymptotic covariance expression, similarly as for the JIO
estimator. The approximation (24) can be viewed as neglecting the noise in the feedback
loop. Inserting (24) into the open-loop expressions from the previous section then yield:

σ2
ĜH1

=
[
G−H

u E((RR
H)−1)G−1

u

]T ⊗ σ2
V , (25)

σ2
ĜARI =

[
G−H

u

1

M2
E(

M∑

m=1

(R[m]
R

[m]H)−1)G−1
u

]T

⊗ σ2
V , (26)

σ2
ĜEIV =



G−H
u ME(

[
M∑

m=1

R
[m]

M∑

n=1

R
[n]H

]−1

)G−1
u




T

⊗ σ2
V . (27)

According to the stated expressions (23), (25)–(27), the four estimators will have the
same covariance in case all R[m] are equal. Except for the EIV estimator, the expressions
coincide also when using the orthogonal multisine signal (28) with the same magnitude
in all blocks, |R[m]

l | = |Rl|, m = 1, . . . ,M . However, when the SNR is reduced, the
covariance of the H1 and ARI estimators will deviate from the approximate expressions,
typically giving a larger covariance for the ARI estimator and a lower covariance for the
H1 estimator. This can also be seen in the numerical illustration in the next section.

Now, similar expressions to Corollary B.1 will be derived using the orthogonal multi-
sine signal

R(ωk) =
[
R

[1](ωk) . . . R
[M ](ωk)

]
, (28a)

R
[m](ωk) = R

[m]
diag(ωk)T, m = 1, . . . ,M, (28b)

as in (5) with T from (6). This parameterization corresponds to an optimal experiment
design given output amplitude constraints, compared to the open-loop case (5) when hav-
ing input amplitude constraints. If we actually have input constraints in the closed-loop
case, R = G−1

u U can be used, yielding Rdiag = G−1
u Udiag. Note that Rdiag then no

longer is diagonal.

Corollary B.2

Using an orthogonal multisine signal (28) with T from (6) simplifies the covariance of

the JIO and H1 estimators to

σ2
Ĝ

=

[
G−H

u diag

{
1

nu

∑M
m=1 |R

[m]
l |2

}nu

l=1

G−1
u

]T

⊗ σ2
V ,
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with G−1
u = G+ F−1. The variance of each element in Ĝ can be written as

σ2
Ĝij

= σ2
V,ii

nu∑

l=1

|(G+ F−1)lj |2

nu

∑M
m=1 |R

[m]
l |2

. (29)

One immediately notes that to reduce the variance, the reference signal should be
as large as possible. In addition, a large gain controller will also reduce the variance.
Actually, F = −G−1, would give zero error but is unrealistic since it corresponds to a
marginally stable system and infinite input power. If the noise variance is the same for the
different outputs, then all elements in a column will have the same variance. The variance
will typically vary between different columns so for a symmetric system (|Gij | = |Gji|),
the variance will usually be non-symmetric (σ2

Ĝij

6= σ2
Ĝji

). Small elements in a column

will also, in general, have a larger relative error (σĜij
/|Gij |).

5 Numerical Illustration

As a numerical illustration, a simulation model of an industrial robot will be used. The
modelG(q) is a linearized version of a nonlinear state-space model from Öhr et al. (2006)
with 24 states, describing the dynamics of the first three axes (nu = ny = 3) from applied
motor torque to achieved motor velocity (the FRF ofG can be seen in all the figures). The
controller F (q) is a diagonal PI controller with a gain of 8 dB in the excited frequency
interval. A sampling period of Ts = 0.5 ms is used with N = NP = 104 samples from
the steady-state response.

As excitation, the orthogonal multisine signal (6) and (28) is used with a flat amplitude
spectrum from 2 to 60 Hz and R

[m]
diag the same in all M = 100 blocks. The EIV and

JIO estimators will therefore coincide in this illustration. The noise v in (1) is normally
distributed white noise, giving a diagonal covariance matrix σ2

V . The resulting signal-
to-noise ratio, SNRi = 20 log10(σR,ii/σV,ii), is constant for the excited frequencies.
Simulations with two different SNRs, 3 dB and 22 dB will be presented. The statistical
properties of the estimators are obtained by repeating the simulations 100 times with
different noise realizations.

First, consider the 22 dB case and the three estimators: H1 (3), ARI (7) and JIO (8).
The bias E(G̃) and variance σ2

Ĝ
(actually the standard deviation σĜ) of the estimators are

plotted in Figures 1 and 2, respectively. In addition are the bias expression for the H1

estimator, (18), and the variance expression (29) plotted. Note that all four covariance
expressions, (23), (25)–(27), coincide for the excitation used in this illustration. That
can also be seen in Figure 2, where the variance is approximately the same for the three
estimators and the variance expression is fairly accurate.

As was mentioned in the end of Section 4, the variance is non-symmetric, which
can be seen by comparing elements (1,3) and (3,1) in Figure 2. For small elements, the
relative error is also larger, which can be seen by, e.g., comparing elements (1,1) and (3,1)
in Figure 2. This is inherent in all the studied estimation methods.

The bias of the ARI and JIO estimators, see Figure 1, are approximately the same
and always equal to or lower than for the H1 estimator. The asymptotic bias expression
(18) is a lower limit for the bias of the H1 estimator and there is a good match when G
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Figure 1: Bias for the estimators with 22 dB SNR. Thick black line: G, thick gray

line: bias expression (18), black line: H1, gray line: ARI, and thin black line: JIO.

is large, especially for the diagonal elements. In this simulation, σ2
V and σ2

R are diagonal
so the asymptotic expression (18) simplifies to (20). A problem is that with M = 100,
the off-diagonal elements of V(R − V)† in (17) are still quite large. If all elements of
V(R−V)† would be equal to α, then the bias is G̃ij = α

∑
l(Glj +F−1

lj ), i.e., the same
bias for all elements in a given column. That is almost the case here since M = 100 is
not large enough, which explains the behavior for the off-diagonal elements in Figure 1.

To see the different properties of the three estimators, the SNR is reduced to 3 dB and
the bias and variance are plotted in Figures 3 and 4, respectively. As can be seen, there is
now a big difference both in bias and variance. The H1 estimator gives largest bias and
smallest variance and the JIO estimator gives smallest bias and a smaller variance than
the ARI estimator. The JIO estimator should therefore be used if the reference signal is
measured, or the EIV estimator in case the measurements are synchronized and the same
excitation is used in all blocks. The variance expression (29) predicts the variance of the
JIO estimator fairly accurately, but the bias expression (18) for the H1 estimator differs
quite much here. The validity of the bias expression with respect to the SNR therefore
needs further studies.

Since the properties of the EIV and JIO estimators coincide for certain excitations,
one might wonder which one is the preferred choice. Assuming a linear system, there is
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Figure 2: Standard deviation for the estimators with 22 dB SNR. Thick black line:

G, thick gray line: the variance expression (29), black line: H1, gray line: ARI, and

thin black line: JIO.

no point in using different realizations of the orthogonal multisine signal in the different
blocks. Instead can the same excitation be applied for numerous periods, treating each
period as a “block” (which is the case in these simulations). As long as the measure-
ments can be synchronized, the EIV estimator is then the preferred choice. Both since
the measurements of the reference signal are not needed and in case there are any non-
linearities in the feedback loop. On the other hand, consider the case with a nonlinear
system and the aim to find a linear approximation of the system. Then it is crucial to use
different realizations of the orthogonal multisine signal to find the best linear approxima-
tion (Dobrowiecki and Schoukens, 2005; Wernholt and Gunnarsson, 2006) and the EIV
estimator cannot be used. The choice therefore depends on the measurement setup as well
as assumptions about if the system is linear or not.

6 Conclusion

In this paper, four nonparametric FRF estimation methods (H1, ARI, JIO, EIV) for mul-
tivariable systems have been studied. Covariance expressions for open-loop data are pre-



128 Paper B Analysis of Methods for Multivariable Frequency Response Function ...

−60

−40

−20

0

20

−60

−40

−20

0

20

M
a

g
n

it
u

d
e

 (
d

B
)

10
0

10
1

−60

−40

−20

0

20

10
0

10
1

Frequency (Hz)

10
0

10
1

Figure 3: Bias for the estimators with 3 dB SNR. Thick black line: G, thick gray

line: bias expression (18), black line: H1, gray line: ARI, and thin black line: JIO.

sented for the H1, ARI, and EIV estimators. For closed-loop data, an asymptotic ex-
pression for the bias of the H1 estimator is derived together with asymptotic covariance
expressions for the JIO and EIV estimators, as well as approximate covariance expres-
sions for the H1 and ARI estimators.

In the simulations, all estimators give approximately the same variance for large SNRs
and the bias of the H1 estimator is larger or equal to the bias of the ARI and JIO estimators
(JIO and EIV coincide in the simulations). For small SNRs, the H1 estimator gives largest
bias and smallest variance and the JIO estimator gives smallest bias and a smaller variance
than the ARI estimator. Among these estimators, either the JIO or EIV estimator is the
preferred choice, depending on if the reference signal is measured or if the same excitation
is used in all blocks with synchronized measurements. Otherwise, the ARI estimator
should be used if the SNR is guaranteed to be large enough in all blocks (since each U

[m]

must be invertible, see also (13)). If that cannot be guaranteed, the H1 estimator should
be used. The H1 estimator is also a good choice if the bias is negligible.

The proposed covariance expressions predict the covariance fairly accurately, espe-
cially for the JIO estimator, but the bias expression (18) for the H1 estimator differ quite
much for small SNRs.
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Abstract

Nonparametric estimation methods for the multivariable frequency response
function are experimentally evaluated using closed-loop data from an indus-
trial robot. Three classical estimators (H1, joint input-output, arithmetic
mean) and two estimators based on nonlinear averaging techniques (har-
monic mean, geometric/logarithmic mean) are considered. The estimators
based on nonlinear averaging give the best results, followed by the arithmetic
mean estimator, which gives a slightly larger bias. The joint input-output es-
timator, which is asymptotically unbiased in theory, turns out to give large
bias errors for low frequencies. Finally, the H1 estimator gives the largest
bias for all frequencies.

Keywords: System identification, frequency response methods, multivari-
able systems, non-parametric identification, closed-loop identification, in-
dustrial robots

1 Introduction

Nonparametric estimates of the frequency response function (FRF) give valuable infor-
mation about the dynamics of a system and are often used as an intermediate step in a
parametric identification process to assess the quality of the measurements and visualize
the complexity of the modeling problem. In a second step, a parametric model can be
estimated, either by, 1) treating the estimated nonparametric FRF as a measurement and

135
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Figure 1: The ABB manipulator IRB6600.

minimize the discrepancy between the model and the estimated FRF as is done in, e.g.,
experimental modal analysis (Verboven, 2002), or, 2) directly from the measured input
and output data, (Ljung, 1999; Pintelon and Schoukens, 2001).

This paper studies five different estimators: H1, joint input-output (JIO), arithmetic

mean (ARI), logarithmic mean (LOG), and harmonic mean (HAR). These estimators will
be described in more detail in the next section. The experimental comparison of the
estimators will be carried out using measurements from the first three axes of an industrial
robot in the ABB IRB6600 series, see Figure 1. The robot application is interesting
since it gives many challenging problems for system identification methods. The robot
dynamics is multivariable, nonlinear, oscillatory, and, moreover, data must be collected in
closed loop. Examples when nonparametric FRF estimates are used for the identification
of parametric robot models can be found in, e.g., Wernholt and Moberg (2007), Öhr et al.
(2006), Berglund and Hovland (2000), and Khorrami et al. (1995).

The five estimators differ in requirements on the measurement setup and signal-to-
noise ratio (SNR), as well as in bias and variance properties. Using nonparametric frequ-
ency-domain methods for closed-loop data might give biased estimates. The JIO estimator
is asymptotically unbiased, and the bias of the other estimators varies depending on the
SNR. A recent study on the first three estimators can be found in Wernholt and Gunnars-
son (2007). See also Pintelon and Schoukens (2001), Guillaume (1998), and Verboven
(2002).

2 Measurement Setup

The open-loop system to be identified is unstable, which makes it necessary to collect
data while the robot controller is running in closed loop. Consider therefore the setup in
Figure 2, where the controller takes as input the difference between the reference signal
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r and the measured and sampled output y, and u is the input. The disturbance v contains
various sources of noise and disturbances.

Remark C.1. Figure 2 is a simplified block diagram since some disturbances enter early
in the robot system, such as motor torque ripple (Gutt et al., 1996).

An experimental control system is used, which enables the use of off-line computed
reference signals for each motor controller. The experiments are performed by first mov-
ing the robot arm into a position and then applying a speed reference signal to the robot
controller. The resulting motor torques (actually the torque reference to the torque con-
troller) and angular positions are sampled and stored. The measured angular positions are
then filtered and differentiated to obtain estimates of the motor angular speeds, which are
here considered as the output signals.

To avoid leakage effects in the discrete Fourier transform (DFT), which is used by the
estimation methods, the excitation signal, r, is assumed to beNP -periodic, r(t+NPTs) =
r(t) with Ts the sampling period, and an integer number of periods of the steady-state
response are collected.

ControllerΣ
+

Robot
u

Σ

−

r y

v

Figure 2: Closed loop measurement setup.

3 FRF Estimation Methods

3.1 Basic Idea

Consider the DFTs of the input, U(ωk), output, Y (ωk), and reference, R(ωk), for the NP

frequencies ωk = k 2π
NP Ts

, k = 1, 2, . . . , NP . Assuming a linear system and periodic
data, the following mapping holds exactly in the noise-free case

Y (ωk) = G(ωk)U(ωk), (1)

where G(ωk) ∈ C
ny×nu is the FRF of the linear system. To be able to estimate G(ωk)

from data, at least nu different experiments are needed. The data vectors from ne ≥ nu

different experiments are collected into matrices (bold-face in the sequel) where each
column corresponds to one experiment. The input-output relation can then be written as

Y(ωk) = G(ωk)U(ωk), (2)

where U(ωk) ∈ C
nu×ne and Y(ωk) ∈ C

ny×ne . If U(ωk) has rank nu, an estimate of
G(ωk) can be formed by, e.g., using the H1 estimator (Guillaume et al., 1996; Pintelon
and Schoukens, 2001; Verboven, 2002)

ĜH1(ωk) = Y(ωk)UH(ωk)[U(ωk)UH(ωk)]−1, (3)
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where (·)H denotes complex conjugate transpose.
Disturbances as well as nonlinearities will modify the mapping (1), which in turn will

introduce errors in the estimated FRF. For a nonlinear system, we are looking for a linear
approximation of the input-output behavior. The properties of such approximations have
been extensively studied in, e.g., Schoukens et al. (2005) and Dobrowiecki and Schoukens
(2007). See also Wernholt and Gunnarsson (2006) for some results on how nonlinearities
affect the FRF estimation of industrial robots.

3.2 Some Classical Estimators

For the single input, single output (SISO) case, a number of different nonparametric FRF
estimators have been suggested in the literature (see, e.g., Guillaume et al., 1992; Pintelon
and Schoukens, 2001; Wellstead, 1981), which all have different properties regarding bias
and variance. These estimators can often be generalized to the multiple input, multiple
output (MIMO) case, as for the H1 estimator (3).

If the reference signal is measured, an asymptotically (ne → ∞) unbiased estimator
has been proposed in Wellstead (1981), which can be generalized to the MIMO case as
(Cobb and Mitchell, 1990; Verboven, 2002)

ĜJIO = YR
H
[
UR

H
]−1

, (4)

where JIO stands for joint input-output estimator (cf. Ljung, 1999, p. 438). (For notational
simplicity, the frequency argument will be omitted when not explicitly needed.) This
estimator is based on the instrumental variables principle and is also called HIV, Hs, Hc,
or 3-channel FRF estimator in the literature (Cobb and Mitchell, 1990; Verboven, 2002).

In this paper, we will assume that ne is a multiple of nu such that the DFT matrices
can be partitioned into M blocks of size nu × nu as

R(ωk) =
[
R

[1](ωk) . . . R
[M ](ωk)

]
, (5)

and similarly for U(ωk) and Y(ωk). If the same excitation is used in all blocks with
synchronized measurements (e.g., by using multiple periods and treating each period as a
“block”), then the JIO estimator reduces to the errors-in-variables1 (EIV) estimator (Guil-
laume et al., 1996; Pintelon and Schoukens, 2001)

ĜEIV =

[
1

M

M∑

m=1

Y
[m]

][
1

M

M∑

m=1

U
[m]

]−1

. (6)

The EIV estimator does not require the reference signal to be known and this is also the
maximum likelihood estimator for Normal distributed noise (Guillaume et al., 1996). The
estimator is therefore often regarded as the optimal one to use, given that the measure-
ments are synchronized and the same excitation is used in all blocks.

Another useful estimator is the arithmetic mean (ARI) estimator (Guillaume, 1998;
Pintelon and Schoukens, 2001)

ĜARI =
1

M

M∑

m=1

Ĝ[m], (7)

1Measurements Y = GU + Vy and U + Vu with measurement noise Vu and Vy .
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where
Ĝ[m] = Y

[m][U[m]]−1. (8)

In case of measurement noise on the input, or closed-loop data, this estimator gives less
bias than the H1 estimator (Pintelon and Schoukens, 2001).

3.3 Estimators Based on Nonlinear Averaging Techniques

The averaging in (7) can be generalized to include nonlinear averaging techniques. This
has been studied in Guillaume et al. (1992) for SISO systems and Guillaume (1998) ex-
tends some of these results to MIMO systems. The FRF is then estimated as

Ĝ = g−1

(
1

M

M∑

m=1

g
(
Ĝ[m]

))
,

where z = g(x) is some nonlinear function with inverse x = g−1(z). Here, we will
consider the following functions

g(x) =






x arithmetic mean,

log x logarithmic mean,

x−1 harmonic mean.

In Guillaume et al. (1992), the properties of FRF estimators based on nonlinear av-
eraging are studied and compared with the classical estimators. They include analytical
bias expressions for a number of different estimators when the measurement noise in the
input and output signals are uncorrelated (i.e., not a closed-loop setup). Their conclusion
is that the use of many classical estimators, such as H1, is not advisable in most practical
situations due to larger bias errors. For non-synchronous measurements (where EIV is not
applicable), they propose to use estimators based on nonlinear averaging, where the log-
arithmic mean estimator (also called geometric mean) performs well in all their analyzed
situations. This estimator is also particularly robust to outliers.

Using the complex logarithm, log x = log |x|+j arg x, will introduce some problems
when averaging the phase, due to the phase wrapping at −π (−π < arg x ≤ π). A solu-
tion to this problem is given in Guillaume et al. (1992) for the scalar case by multiplying
each Ĝ[m](ωk) by e−jϕ(ωk) before the averaging, and afterward multiply the result by
ejϕ(ωk), where the phases ϕ(ωk) are obtained using some other estimator. The observa-
tions are then close to the positive real axis when performing the averaging.

For multivariable systems, the nonlinear averaging functions can either be applied
element-wise or by treating them as matrix functions. The element-wise approach gives
worse estimates, which has been showed in Guillaume (1998) and also seen in our exper-
imental results. The matrix function approach g(A), where A ∈ C

n×n, can be described
by using an eigenvalue decomposition

A = V ΛV −1,

where V contains the n orthogonal (if A = AT ) eigenvectors and Λ is a diagonal matrix,
Λ = diag {λl}n

l=1, with the n eigenvalues. A matrix function g(A) is then given by

g(A) = V g(Λ)V −1 = V diag {g(λl)}n
l=1 V

−1. (9)
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Using this, the logarithmic mean (LOG) estimator is finally given by

ĜLOG = P−1
1 exp

(
1

M

M∑

m=1

log
(
P1Ĝ

[m]
))

, (10)

where exp and log are treated as matrix functions (9). The matrix P1 is used to avoid the
phase wrapping problems. Here, the matrix is selected as

P1 = V [1] diag
{
e−j arg λ

[1]
l

}n

l=1
[V [1]]−1, (11)

where Ĝ[1] = V [1]Λ[1][V [1]]−1 (see Guillaume, 1998).
The last estimator to consider, the harmonic mean (HAR) estimator, is given by

ĜHAR =

[
1

M

M∑

m=1

[
Ĝ[m]

]−1
]−1

. (12)

Since [Ĝ[m]]−1 = U
[m][Y[m]]−1, this actually corresponds to calculating the arithmetic

mean of the output-input behavior, and then taking the inverse (ny = nu is required). The
output DFT matrices, Y[m] ,m = 1, . . . ,M , are then inverted, compared to inverting the
input DFT matrices when using the ARI estimator (7). Note that the HAR estimator also
uses the matrix function approach.

In this paper, these estimators will be evaluated experimentally. For a theoretical
discussion about the estimators and their properties, see the included references in this
paper as well as the discussion in Section 5.3.

4 Excitation Signals

In general the choice of excitation signal offers a large freedom in terms of frequency
contents, magnitude, and so on, as long as the matrix U(ωk) has rank nu. In this paper,
the orthogonal random phase multisine signal will be used. This signal has been suggested
in Dobrowiecki et al. (2005) and Dobrowiecki and Schoukens (2005, 2007) as input in the
open-loop case to minimize the FRF uncertainty, given input amplitude constraints. Here,
the orthogonal multisine signal will be used as reference signal, which corresponds to an
optimal experiment design given output amplitude constraints. Each block in (5) is then
given by

R
[m](ωk) = R

[m]
diag(ωk)T, m = 1, . . . ,M, (13)

with
R

[m]
diag(ωk) = diag

{
R

[m]
l (ωk)

}ny

l=1
,

a diagonal matrix where each R[m]
l (ωk) is a random phase multisine signal, and T is an

orthogonal matrix. A scalar random phase multisine signal r(t) can be written as

r(t) =

Nf∑

k=1

Ak cos(ωkt+ φk), (14)
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with amplitudes Ak, frequencies ωk chosen from the grid { 2πl
NP Ts

, l = 1, . . . , NP /2− 1}
(NP even), and random phases φk uniformly distributed on the interval [0, 2π).

The optimal matrix T, with constraints |Til| ≤ 1, is given by (Dobrowiecki and
Schoukens, 2007)

Til = e
2πj
nu

(i−1)(l−1). (15)

The number of frequencies as well as the amplitude spectrum will affect the quality of the
FRF estimate. Using too many frequencies will give a low SNR, which increases both the
bias and the variance in the estimate. The FRF estimate can be improved by averaging
over multiple blocks and/or periods. The covariance matrix can then also be estimated.

For a linear system, averaging over different periods is sufficient, whereas for a non-
linear system, it is essential to average over blocks where Rdiag in each block should have
different realizations of the random phases. The reason is that nonlinearities otherwise
will distort the estimate and give a too low uncertainty estimate. To reduce these nonlin-
ear distortions, one should also excite only odd frequencies (odd l in the frequency grid
for (14)). For details, see Dobrowiecki and Schoukens (2007) and Pintelon and Schou-
kens (2001, Chap. 3). For the industrial robot, the nonlinearities cause large distortions
(Wernholt and Gunnarsson, 2006). Averaging over multiple blocks is therefore important,
so the EIV estimator is not applicable here.

5 Experimental Results

5.1 Measurement Data

As excitation, the orthogonal random phase multisine signal is used as motor speed ref-
erence r with period time T0 = NPTs = 10 s. A flat amplitude spectrum is used for
100 log-spaced odd frequencies between 1 and 60 Hz (i.e., the grid 1.1, 1.3, . . . , 59.9 Hz).
To reduce nonlinear effects, M = 100 blocks with different realizations of the random
phases are used. The magnitude of R

[m]
diag is the same in all blocks. The commanded input

u and measured output y are both sampled at fs = 1/Ts = 2 kHz.
To reduce the effect of static friction, it is common to use an excitation signal that

avoids zero velocity as much as possible. Therefore the reference is given by r(t) =
rms(t)+rs(t), with rms(t) the multisine signal and rs(t) a single sinusoid with frequency
0.7 Hz. The amplitude of rs(t) is selected sufficiently larger than maxt |rms(t)| to avoid
passing through zero velocity due to the multisine. Reducing the effect of static friction is
really important for this type of system, as has been pointed out in Wernholt and Gunnars-
son (2006). A drawback is that the sinusoid introduces large errors at a few of its overtones
due to nonlinearities in the system. The first five overtones, 2.1, 3.5, 4.9, 6.3, 7.7 Hz, are
therefore removed in the resulting FRF estimate.

The FRF estimates turn out to have fairly large errors at low frequencies. Therefore,
10 additional blocks of data are collected using only four frequencies in the multisine
(1.1, 2.7, 4.3, 5.9 Hz). This improves the SNR, which in turn will reduce the error at these
frequencies.

In the figures, the FRF estimates from motor torque to motor acceleration are plotted.
That avoids the integrator (−20 dB/decade) such that resonances appear more clearly.
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5.2 Evaluation of FRF Estimators

The five estimators from Section 3 (H1, JIO, ARI, HAR, LOG) will now be used for FRF
estimation. Since the true system is unknown, we cannot calculate the bias of the estima-
tors. The assessment of the FRF estimates will therefore be partly based on experience
from robot experts, as well as knowledge about the system and theoretical results.

The magnitude and phase of the resulting estimates, using 100 blocks of measurement
data, are shown in Figure 3. The magnitude estimates agree quite well for frequencies
above 5 Hz, except for the H1 estimator which tends to give much lower values. For low
frequencies (1–5 Hz), the estimates fluctuate quite much. By comparing the estimates
with the ones using 10 blocks with four frequencies (circles in Figure 3), it is evident
that the JIO and H1 estimators give large errors there. The estimators based on nonlinear
averaging, HAR and LOG, give almost the same estimate and agree very well with the
estimates using four frequencies. The ARI estimator works much better than JIO and H1,
but does not match the performance of HAR and LOG (compare, e.g., element (2,3)).
Considering the phase estimates, all five estimators agree remarkably well for frequen-
cies above 5 Hz. For low frequencies, the HAR and LOG estimators give much better
estimates than the others.

In the simulation study in Wernholt and Gunnarsson (2007) it was noted that the un-
certainties in nonparametric FRF estimates usually are non-symmetric, even if the true
system is symmetric. This can be seen in Figure 3 as well, where one standard deviation
of the ARI estimator is included. Compare, e.g., elements (1,2) and (2,1), or elements
(2,3) and (3,2). For small elements, the relative error is also larger, which can be seen by
comparing elements (1,1) and (2,1). These effects are inherent in all the studied estima-
tion methods. From the standard deviation, it is also evident that the classical estimators
(H1, JIO, and ARI) cannot handle a low SNR (at low frequencies and resonances) as good
as the estimators based on nonlinear averaging techniques (HAR and LOG).

The estimates in Figure 3 are very clear and accurate, but measuring 100 blocks takes
almost 3 hours in our experimental setup (approximately 1 minute per block of effective
measurements, plus additional time for saving data, etc.). It is therefore interesting to
study the quality of the estimates using less data.

Figure 4 shows the estimates using only 5 blocks, where LOG using 100 blocks is
included for comparison. For low frequencies, all estimators give biased estimates in
element (2,1). Otherwise, the same comments as for Figure 3 are valid here as well. To
be noted is that ARI fluctuates quite much at the resonances. Since the reference signal
has a flat amplitude spectrum, the input is small at the resonances. The fluctuations are
therefore probably caused by inverting a matrix that is quite sensitive to noise.

Next, we will compare the different estimators as a function of the number of blocks.
Let ĜM denote the FRF estimate calculated from M blocks of data. Consider now the
difference between ĜLOG

100 (the LOG estimate in Figure 3) and the estimates ĜH1

M , ĜJIO
M ,

ĜARI
M , ĜHAR

M , and ĜLOG
M , where the number of blocks, M , will vary between 1 and 100.

To measure the difference between two estimates, the following cost is used

clog(G1, G2) =




∑

i,j,k

∣∣logG1
ij(ωk) − logG2

ij(ωk)
∣∣2



1/2

. (16)
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Figure 3: Estimated FRFs using 100 blocks of data. ARI is plotted with one standard

deviation (shaded). Circles: estimates using 10 blocks with four frequencies.
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100 , ĜM ) for 1–60 Hz (left) and 5–60 Hz (right) as a

function of the number of blocks, M . ĜM is replaced by each of the five estimators.

In addition, phase wrapping problems in the complex logarithm are handled to ensure that
| argG1

ij(ωk)− argG2
ij(ωk)| ≤ π. The difference between ĜLOG

100 and the other estimates
can be seen in Figure 5.

First, note that all estimators coincide for M = 1. When M is increased, so is the
difference between the estimators. The most interesting thing to note from Figure 5 might
be that HAR and LOG give better results than the other estimators for all M > 1. HAR
might be slightly better than LOG for small M , but they otherwise give approximately
the same performance. What might be surprising, given the previous results in Figures 3
and 4, is that H1 gives almost the same cost as LOG and HAR for low values of M .
The explanation can be found in Figure 4 where all estimates differ from ĜLOG

100 for low
frequencies. Another interesting thing to note is that ARI gives a larger cost than H1

when M ≤ 10. The main reason is the large errors at the resonances for ARI. JIO gives
the worst overall performance, mainly due to the errors at low frequencies. Considering
only the interval 5–60 Hz in Figure 5, JIO and ARI give approximately the same cost for
M ≤ 30, except that the cost for JIO fluctuates more.

Since we are comparing the estimates with ĜLOG
100 , the fact that LOG and HAR are the

best comes as no surprise when M is close to 100. However, this is also the case if we
compare with ĜARI

100 (for M ≤ 50) or some of the other estimators. The previous conclu-
sion that LOG and HAR are the best estimators therefore holds also in this comparison.
Finally, this section is ended by Figure 6, where estimates using LOG for some values of
M , including M = 1, are given. As can be seen, the fluctuations are fairly large when
using only one block of data.

5.3 Discussion

From theoretical studies, as well as experimental experience, it is known that the bias
depends on the SNR, such that the bias is reduced when the SNR is increased. The data
set with 10 blocks and four frequencies can therefore be considered to give a smaller
bias. This can also be seen in Figure 3 where all five estimators give approximately the
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same estimate. Since we are dealing with linear approximations of a nonlinear system,
a comparison of estimates using different types of excitation signals should however be
done with some care. The best linear approximation might be different when changing the
amplitude spectrum and/or the signal shape. This can, e.g., be seen in Wernholt and Gun-
narsson (2006) where estimates are compared when using different excitation amplitudes
as well as with and without a filtered square wave (to reduce the effect of static friction).

The H1, ARI, and JIO estimators have been analyzed in, e.g., Wernholt and Gun-
narsson (2007), Pintelon and Schoukens (2001) and Verboven (2002). The H1 and ARI
estimators are known to give biased estimates for closed-loop data. The bias of the H1

estimator is much larger, except for small SNRs where the ARI estimator deteriorates.
The JIO estimator is asymptotically unbiased (M → ∞) and is therefore expected to give
the best performance when the number of blocks increases. This is also the conclusion in
Wernholt and Gunnarsson (2007), where the JIO, ARI, and H1 estimators are compared
in a simulation study with a similar setup as in this paper, but with a linear robot model.
In our experimental results, the JIO estimator does not seem to perform that well, at least
not if the low-frequency behavior is considered.

A limitation with the JIO estimator, besides that an additional signal is needed, is that
the whole measurement setup must be linear, including the controller. This is due to the
fact that ĜJIO actually is based on H1 estimates of the FRFs from r to y, Ĝry , and r to
u, Ĝru, as ĜJIO = ĜryĜ

−1
ru . Both these FRFs incorporate the whole measurement setup,

including the controller. In our application, the controller, e.g., has a saturation to ensure
that the motors are not overloaded. The other methods considered in this paper are only
affected by nonlinearities in the input-output system.

The properties of the LOG and HAR estimators have been analyzed in e.g., Guillaume
et al. (1992), Guillaume (1998), and Pintelon and Schoukens (2001). The HAR estimator
is particularly useful when the input SNR is low since the input DFT matrix U

[m] is not
inverted. In our setup we are using the orthogonal multisine signal as reference R

[m], so
the output Y

[m] will be approximately orthogonal as well, or at least well-conditioned.
The input U

[m], on the other hand, can be quite ill-conditioned for certain frequencies
(e.g., close to resonances, or for low frequencies since we are using a flat speed reference
signal). The HAR estimator is therefore well suited for our setup. The LOG estimator is
inherently robust to outliers since the logarithmic function attenuates the effect of occa-
sional large errors. For the classical estimators, a large number of blocks are needed to
average out such effects. This can, e.g., be noted with the ARI estimator at the resonances
in Figure 4.

As was mentioned in Section 5.1, it is important to compensate for the static friction.
Using the single sinusoid caused large errors at some of its overtones due to nonlinearities
in the system. This might depend on the fact that its phase is the same in all experiments.
Different ways of reducing the effects of static friction would therefore be interesting to
study.

As future work remains a thorough simulation study using a realistic nonlinear robot
model where friction as well as other nonlinear effects in actuators and sensors are added,
such as torque ripple (Gutt et al., 1996) and resolver ripple (Hanselman, 1990). The bias
can then be studied for the different estimators as a function of the excitation signal and
the nonlinearities.
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6 Conclusion

This paper has dealt with nonparametric multivariable FRF estimation using closed-loop
data from an industrial robot. Three classical estimators (H1, JIO, ARI) and two esti-
mators based on nonlinear averaging techniques (HAR, LOG) have been compared. The
orthogonal random phase multisine signal has been used, where the number of experi-
ments have been varied to see how the estimators depend on the amount of data. The
estimators based on nonlinear averaging give the best results, followed by the arithmetic
mean estimator, which gives a slightly larger bias. The joint input-output estimator, which
is asymptotically unbiased in theory, turns out to give large bias errors for low frequencies.
Finally, the H1 estimator gives the largest bias for all frequencies.
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Abstract

A method for the detection and estimation of nonlinear distortions when iden-
tifying nonparametric multivariable frequency response functions (FRF) is
considered. The method is successfully applied to experimental data from
an industrial robot, collected in closed loop. The results show that nonlinear
distortions are indeed present and cause larger variability in the FRF than the
measurement noise contributions.

Keywords: Frequency response functions, multivariable systems, nonlinear
distortions, non-parametric identification, industrial robots

1 Introduction

Industrial robots pose a challenging modeling problem. Usually a robot has six joints,
with coupled dynamics, giving a truly multivariable system. The dynamics is nonlinear,
both with respect to the rigid body dynamics and other things such as friction, torque and
resolver ripple, and a transmission with backlash, hysteresis, and nonlinear stiffness. The
robot arm and transmission are more or less elastic and, in addition, the data collection
must usually be carried out in closed loop. The identification of such a complex sys-
tem is a huge task, both in finding suitable model structures and efficient identification
methods. Under certain simplifying assumptions, a subset of the parameters can be iden-
tified. Neglecting elastic effects, a nonlinear model of the rigid body dynamics can be
estimated using least squares techniques. This is a much studied problem in the literature
(see, for example, Kozlowski (1998) for an overview). Taking elastic effects into account
makes the identification problem more involved, since now typically only a subset of the
state variables are measured and one can therefore not use linear regression. A common
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remedy is to study the dynamic behavior around certain positions and there estimate para-
metric or nonparametric (linear) models (see, e.g., Albu-Schäffer and Hirzinger, 2001;
Behi and Tesar, 1991; Johansson et al., 2000; Wernholt and Gunnarsson, 2006b). One
application area for linear models is control design, where a global controller is achieved
through gain scheduling. The linear models could also be used for the tuning of elastic
parameters (typically springs and dampers) in a global nonlinear elastic model, as in Öhr
et al. (2006). For both of these application areas, it is important that the estimated linear
models are accurate, or at least are delivered with some estimated uncertainty regions. In
the presence of nonlinearities, these uncertainty regions tend to be underestimated. It is
therefore of great importance to use an identification method that can detect the presence
of nonlinearities and in addition quantify how the estimated models are affected. In this
paper a method presented in, e.g., Pintelon et al. (2004a,b) and Schoukens et al. (2005)
will be applied and evaluated. The aim of the method is to make it possible to detect the
presence of nonlinearities and quantify how much they affect the nonparametric estimate
of the frequency response function (FRF). In Pintelon et al. (2004a,b) the method was ap-
plied to electronic systems, and it will here be used to analyze closed-loop experimental
data (both SISO and MIMO measurements) from an industrial robot. See also Verboven
et al. (2006) for experimental results of a 2x2 mechanical system (a car body, using shak-
ers as excitation and measuring applied forces and accelerations). An early version of the
results presented here was given in Wernholt and Gunnarsson (2006a).

2 Measurement Setup

The data used in this paper are collected at ABB Robotics in Västerås, Sweden, using
an experimental industrial robot system, similar to the ABB IRB6600 robot in Figure 1.
Each axis of the robot arm is actuated by an electric motor via a transmission and the
movements are controlled by a computer system. The first three axes will be considered
in this work, giving a multivariable system with three inputs (commanded motor torques)
and three outputs (motor velocities).

For this particular industrial robot, the motor angles are measured using resolvers
(Hanselman, 1990). The measured angles are then filtered and differentiated to obtain
estimates of the motor velocities, which are here considered as the output signals. As
actuators, AC permanent magnet motors are used.

For this kind of application it is necessary to use feedback control while data are col-
lected, both for safety reasons and in order to keep the robot around its position. Consider
therefore the setup in Figure 2, where the controller takes as input the difference between
the reference signal r and the measured and sampled output y, and u is the input. The
measurement noise, v, contains various sources of noise and disturbances (e.g., torque
and resolver ripple). An experimental control system is used, which makes it possible to
use off-line computed reference signals for each motor controller. The excitation signals
are applied as reference signals for the motor velocities. The experimental controller can
approximately be seen as a diagonal PI-controller.

Both the resolvers and the actuators, as well as the transmission, are sources of nonlin-
earities. Due to non-ideal resolver characteristics, a nonlinear measurement error appears
(often called resolver ripple) which is periodic for full turns of the motor (Hanselman,
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Figure 1: The ABB IRB6600 robot.
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Figure 2: Closed loop measurement setup.

1990). AC motors give rise to a similar ripple in the motor torque, also periodic for full
turns of the motor but in addition proportional to the motor current. For details, see Gutt
et al. (1996). As transmission, compact gearboxes (RV gears) are used due to their low
backlash, compact size, and high torque transmission. This will however introduce non-
linear stiffness, friction, and kinematic errors (see Dhaouadi et al. (2003) for an example
with harmonic drives).

3 Estimation Method

In this section, the estimation method from Pintelon et al. (2004a,b) and Schoukens et al.
(2005) will be described. First, in Section 3.1, some properties of nonparametric FRF
estimates are introduced. The estimation method is then described in Section 3.2 for the
SISO case, and in Section 3.3 for the MIMO case. Since the theoretical background to
the estimation method is based on an open-loop setup, that is mainly how the material
will be presented in this section as well, with some comments on the differences for the
closed-loop case.
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3.1 Introduction

The basic quantities for estimation of both the nonparametric FRF of the input-output
relation and the nonlinear distortions are the DFTs of the input and output signals, i.e.,

U(ωk) =
1√
NP

NP∑

n=1

u(nTs)e
jωknTs , Y (ωk) =

1√
NP

NP∑

n=1

y(nTs)e
jωknTs , (1)

where Ts and NP denote the sampling interval and the number of data, respectively. The
FRF estimate is obtained by forming

Ĝ(ωk) =
Y (ωk)

U(ωk)
. (2)

To avoid leakage effects in the DFTs, the input signal, u(t), is assumed to beNP -periodic
and an integer number of periods, P , of the steady-state response are collected, giving
N = PNP samples for each experiment. The properties of the nonparametric FRF es-
timate have been investigated in, e.g., Ljung (1999) and Pintelon and Schoukens (2001).
Given that the true input-output relationship is linear and the output is subject to an addi-
tive zero mean disturbance,

y(t) = G0u(t) + v(t), (3)

the analysis shows that the estimate is unbiased (E(Ĝ) = G0) and its variance decays as
1/P if the input signal is periodic, as stated above, and uncorrelated with the disturbance.

In this paper, the input-output relationship is nonlinear, which requires additional re-
sults. A special class of periodic input signals will then be used, namely random phase
multisines, defined as

u(t) =

Nf∑

k=1

Ak sin(ωkt+ φk), (4)

with amplitudesAk, frequencies ωk chosen from the grid { 2πl
NP Ts

, l = 1, . . . , NP /2−1},
and random phases φk uniformly distributed on the interval [0, 2π). One of the benefits
from using this kind of input signal is that it enables quantification of nonlinear effects
in the system. This can be done, either by: 1) looking at non-excited harmonics in the
output spectrum, or 2) by performing multiple experiments with different realizations
of the random phase multisine signal and then comparing FRF estimates from different
periods and experiments (Pintelon et al., 2004a,b). The fundamental observation, from
Pintelon and Schoukens (2001, 2002), is that using random phase multisines as input
signal in an open-loop setting, with Nf sufficiently large, the FRF of a wide class of
nonlinear systems1 can be written as

G(ωk) = GR(ωk) +GS(ωk) +NG(ωk), (5)

with GR the best linear approximation to the nonlinear system2, GS a zero mean stochas-
tic nonlinear contribution, and NG the measurement noise contribution. For different re-
alizations of the random phase multisine, the stochastic nonlinear contribution, GS , acts

1Systems that can be represented by a Volterra description (Pintelon and Schoukens, 2001, p. 74).
2For the class of Normal input signals (e.g., random phase multisine) with a given power spectrum.
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as circular complex noise. Therefore GS cannot be distinguished from the measurement
noise. Still, for a given realization, GS is a deterministic component that will look the
same for different periods. The best linear approximation, GR, depends only on the input
spectrum and odd nonlinearities.

It is usually recommended to use so-called odd random phase multisines, i.e., to only
excite the odd harmonics (l odd in the frequency grid). The motivation is that in that
case, only odd nonlinearities contribute to the variance of GS (at the odd frequencies).
Exciting all harmonics increases the variance of GS also at the odd frequencies due to
even nonlinearities and a combination of odd and even frequencies.

For closed-loop data, the properties of the FRF are much harder to analyze. The input
signal will then be correlated with the measurement noise which, even in a linear setting,
will give biased FRF estimates (see, e.g., Pintelon and Schoukens, 2001; Wernholt and
Gunnarsson, 2007). What is worse, even if a multisine excitation is used as reference
signal, the input signal now also depends on the nonlinearities due to the feedback. This
changes the amplitude distribution of the input signal and a theoretical analysis becomes
hard. The estimation method, presented next, can still be applied to closed-loop data for
detection of nonlinearities. The resulting estimates should, however, be treated with some
care since the assumptions for deriving (5) are not fulfilled.

3.2 SISO Measurements

To be able to distinguish between the measurement noise and the stochastic nonlinear con-
tributions, two different measurement strategies were proposed in Pintelon et al. (2004a,b)
for the characterization of operational amplifiers. The first strategy uses a single exper-
iment with P ≥ 6 periods of the steady-state response. The excitation signal is an odd
random phase multisine signal, where certain odd frequencies are eliminated as well. The
stochastic nonlinear contributions are then found by analyzing the non-excited frequen-
cies, where even nonlinearities show up at even frequencies and odd nonlinearities at the
non-excited odd frequencies. The strategy also includes a procedure to handle closed-
loop data (the excitation is then applied as reference signal to the controller), where the
problem is that the input is nonzero also at non-excited frequencies due to feedback of
the nonlinear distortions. Linear contributions must then be compensated for, which is
handled by interpolating the FRF, see Pintelon et al. (2004a,b) for details.

Here, their second strategy will be used, which requires M ≥ 6 different experiments
with P ≥ 2 periods in each experiment3. This strategy is more time consuming and will
not give a classification in odd and even degree nonlinear distortions for closed-loop data.
Still, no approximation (interpolation) is used and the strategy can easily be extended to
the multivariable case. The two strategies could also be combined in order to obtain the
classification in odd and even degree nonlinearities.

To simplify the notation, the estimation method will now be described for the SISO
case. In the MIMO case, the method is applied element-wise, see Section 3.3.

From the measurements, M × P FRFs, Ĝ[m,p], can be calculated as (see (2))

Ĝ[m,p](ωk) =
Y [m,p](ωk)

U [m,p](ωk)
, (6)

3Needed if the nonparametric FRF estimate is used for parametric modeling to preserve the properties of the
maximum-likelihood estimator (Pintelon and Schoukens, 2001).
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where U [m,p] and Y [m,p] are the DFTs, see (1), of the input and output signals from period
p in experiment m. In the following variance expressions, (5) is used together with the
assumption that N [m,p]

G is independent over m and p and that G[m,p]
S is equal over p but

independent over m.
For each experiment, one can calculate the average FRF Ĝ[m] and its sample variance

σ̂2
Ĝ[m]

according to

Ĝ[m] =
1

P

P∑

p=1

Ĝ[m,p], (7)

σ̂2
Ĝ[m] =

P∑

p=1

|Ĝ[m,p] − Ĝ[m]|2
P (P − 1)

. (8)

The FRF Ĝ and its sample variance are obtained by averaging over the M experiments as

Ĝ =
1

M

M∑

m=1

Ĝ[m], (9)

σ̂2
Ĝ

=
M∑

m=1

|Ĝ[m] − Ĝ|2
M(M − 1)

. (10)

The mean values of the sample variances (8) and (10) are given by

E(σ̂2
Ĝ[m]) =

σ2
NG

P
, (11)

E(σ̂2
Ĝ

) =
σ2

GS
+

σ2
NG

P

M
. (12)

For a linear system, σ̂2
Ĝ

originates only from the measurement noise source NG and is
therefore, using (11) and (12) with σ2

GS
= 0, approximately equal to the mean value of

σ̂2
Ĝ[m]

divided by M

σ̂2
Ĝn

=
1

M2

M∑

m=1

σ̂2
Ĝ[m] . (13)

If σ̂2
Ĝ

is significantly larger than σ̂2
Ĝn

, this indicates a nonlinear behavior and

σ̂2
GS

= max
(
M
(
σ̂2

Ĝ
− σ̂2

Ĝn

)
, 0

)
, (14)

is a variance estimate for the stochastic nonlinear contribution.

3.3 MIMO Measurements

For the MIMO case (ny outputs, nu inputs), the input vector is not invertible and it is
therefore impossible to calculate an estimate like in (6) directly from data. To han-
dle this, M · nu experiments are carried out and grouped into M blocks of nu exper-
iments. For each block m and period p the sampled data are collected into matrices,
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U
[m,p](ωk) ∈ C

nu×nu and Y
[m,p](ωk) ∈ C

ny×nu (bold-face in the sequel) where each
column corresponds to one experiment. If U

[m,p](ωk) has full rank, a nonparametric
estimate of the multivariable FRF can be formed as

Ĝ[m,p](ωk) = Y
[m,p](ωk)

(
U

[m,p](ωk)
)−1

. (15)

As excitation signal, the so-called orthogonal random phase multisine (Dobrowiecki and
Schoukens, 2005) will be used. This signal has been suggested in Dobrowiecki and
Schoukens (2005) as input to maximize |detU|, given certain input amplitude con-
straints, which in turn will minimize the uncertainty in the FRF estimate (cf. (17)). Using
this type of signal as reference signal instead corresponds to the case of output amplitude
constraints. For each block of nu experiments, the excitation signal is then generated as

R(ωk) = Rdiag(ωk)T, (16)

where Rdiag(ωk) is a diagonal matrix where each diagonal element contain a random
phase multisine signal and T is an arbitrary, deterministic, orthogonal matrix. Here, the
elements of T are chosen as

Tkn = e
2πj
nu

(k−1)(n−1).

See, e.g., Dobrowiecki and Schoukens (2005) for a background to this choice. For each
of the M blocks, a new Rdiag(ωk) is generated, in the sense that a new realization of the
random phases is created.

To obtain variance expressions for the MIMO case, the same method as in Section 3.2
is used, but now taken element-wise.

4 Experimental Results

To illustrate the estimation method, both SISO and MIMO experiments have been carried
out. For the SISO case, only axis 1 of the industrial robot is excited. The SISO measure-
ments are easier to analyze and give insights that can be used when trying to analyze the
MIMO measurements.

As excitation, an odd random phase multisine signal will be used as motor velocity
reference r(t) with period time T0 = NPTs = 10 s. A flat amplitude spectrum is used
in the frequency interval 1–40 Hz, giving 195 excited frequencies. The commanded input
u and measured output y are both sampled at fs = 1/Ts = 2 kHz. Since nonlinear
effects are studied, the results will vary with the excitation signal, such as its shape and
amplitude. This is, for example, the case when having a nonlinear spring stiffness in
the transmission. Typically, the spring gets stiffer for larger amplitudes. Different signal
amplitudes will be studied for the MIMO case. To reduce the effect of static friction, it
is common to use an excitation signal which avoids zero velocity as much as possible.
Therefore some experiments are carried out where r(t) = rms(t) + rsq(t), with rms(t)
the multisine signal and rsq(t) a square wave with frequency 0.1 Hz. To avoid too large
input torques, the square wave is low-pass filtered with a cut-off frequency of 1 Hz.

In the figures, the FRF estimate from motor torque to motor acceleration is plotted.
That avoids the integrator (−20 dB/decade) such that the resonances appear more clearly.
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Figure 3: Estimated FRF Ĝ (black line) together with standard deviations σ̂Ĝ (gray

line) and σ̂Ĝn (thin black line) for data sets 1 (left) and 2 (right).

4.1 SISO Measurements

Two data sets are collected from axis 1 of the industrial robot with amplitudes:

Data set 1: maxt |rms(t)| = 16 rad/s, maxt |rsq(t)| = 0 rad/s.

Data set 2: maxt |rms(t)| = 16 rad/s, maxt |rsq(t)| = 20 rad/s.

For each data set, M = 6 experiments are performed and P = 2 periods of the steady-
state response are collected. The estimation method, according to (6)–(10) and (13), is
then applied to the two different data sets. The estimated FRF, Ĝ, together with the total
sample variance σ̂2

Ĝ
and the noise sample variance σ̂2

Ĝn
(actually the standard deviations

σ̂Ĝ and σ̂Ĝn) can be seen in Figure 3 for the two data sets. From the figure, it is evident
that nonlinear distortions are indeed present and cause larger variability in the FRF than
the measurement noise contributions (σ̂Ĝ ≫ σ̂Ĝn). Using the filtered square wave also
gives slightly more pronounced resonances since the influence of static friction is reduced.

Since the nonlinear distortions give larger variability than the measurement noise,
averaging over different experiments is important in order to get a more accurate FRF
estimate. Averaging over several periods will not be as effective since that only reduce
the measurement noise contributions. A somewhat puzzling result is that the variance in
the estimate is increased around the resonance frequency at 9 Hz when using the filtered
square wave. In Figure 4 the input and output spectra are plotted for the two different
data sets. By comparing the input spectra for the two cases it can be seen that without
the filtered square wave the input power around the resonance frequency is larger. This is
reasonable since the static friction acts as an increased damping, which in turn requires a
larger input signal in order to follow the reference signal. Assuming similar noise levels,
the filtered square wave will therefore give a lower signal-to-noise ratio (SNR). That ex-
plains the increased variance, which, in a linear setup, usually is given by σ2

Ĝ
= σ2

V /|U |2,
where σ2

V (ωk) = E(|V (ωk)|2) is the noise variance (assuming open loop, see (Ljung,
1999, p. 176)).
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Figure 4: Input spectrum |U |2 (black) and output spectrum |Y |2 (gray) for the six

experiments of data sets 1 (left) and 2 (right).

4.2 MIMO Measurements

For the MIMO case, three different data sets are collected with amplitudes:

Data set 3: maxt |rms(t)| = 5 rad/s, maxt |rsq(t)| = 6 rad/s.

Data set 4: maxt |rms(t)| = 10 rad/s, maxt |rsq(t)| = 12 rad/s.

Data set 5: maxt |rms(t)| = 10 rad/s, maxt |rsq(t)| = 0 rad/s.

For each data set, M = 9 blocks of experiments are performed and P = 2 periods of the
steady-state response are collected. The estimation method, according to (15), (7)–(10),
and (13), is then applied (element-wise) to the three different data sets. The estimated
FRF, Ĝ, together with the total sample variance σ̂2

Ĝ
and the noise sample variance σ̂2

Ĝn
(actually the standard deviations σ̂Ĝ and σ̂Ĝn) can be seen in Figures 5–7 for the three
data sets.

The influence of the excitation amplitude can be studied in Figures 5 and 6. As can
be seen, a lower amplitude gives more fluctuations in the FRF estimate. For the (1,1)
element one can also see a slightly increased anti-resonance frequency at 4 Hz, indicating
a nonlinear stiffness (to see this effect more clearly, the difference in amplitudes should
actually be larger). Comparing Figures 6 and 7, one clearly sees the influence of static
friction and the importance of using the square wave. In Figure 7, almost all resonances
have disappeared for axes 2 and 3. Still, similar to the SISO case, the variance of the
estimate is increased around the resonance frequencies when using the square wave.

The FRF estimate in Figure 7 is, according to its sample variance, fairly accurate (at
least for the diagonal elements), but still almost all resonances have disappeared. How
can this be the case? To answer this question, one should study the properties of GR(ωk)
in (5), the best linear approximation to the nonlinear system. A linear approximation of
a nonlinear system will depend on both the amplitude distribution and the spectrum of
the excitation signal. Adding a square wave changes the shape of the excitation signal
and will therefore change the best linear approximation. The user must therefore decide
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Figure 5: Estimated FRF Ĝ (black line) for data set 3 together with standard devia-

tions σ̂Ĝ (gray line) and σ̂Ĝn (thin black line).
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Figure 7: Estimated FRF Ĝ (black line) for data set 5 together with standard devia-

tions σ̂Ĝ (gray line) and σ̂Ĝn (thin black line).

which “best” linear approximation that is most suitable for the modeling purpose and
select a corresponding excitation signal for the experiments.

As was noted in the SISO case, the SNR was a possible explanation for the increased
variability in the estimates when using a square wave. For the MIMO case, the av-
erage uncertainty (standard deviation) in the FRF estimate is inversely proportional to
|detU|1/nu . To see this, we first need the covariance matrix4

σ2
Ĝ

= Cov(vec(Ĝ)) = [UU
H ]−T ⊗ σ2

V , (17)

where ⊗ is the Kronecker product and σ2
V = E(V V H) is the covariance matrix of the

measurement noise. As a measure of the size of this covariance matrix, the geometric

mean of its volume is used, i.e., (detσ2
Ĝ

)
1

nuny = (detσ2
V )1/ny/|detU|2/nu . Taking the

square root then gives the expression.
In Figure 8, the average of |detU[m,p]|1/nu (over the M = 9 different blocks) of

the input matrix can be seen for the three different data sets. As can be seen, the average
input power is reduced by adding the square wave (compare thin black line and gray line),
except for frequencies above 25 Hz. The biggest differences are for frequencies 1–3 Hz
and 9–20 Hz. This can also be noted by comparing Figure 8 with the total sample variance
σ̂2

Ĝ
in Figures 6 and 7 (e.g., element (2,2)). To conclude: the square wave is useful to

obtain nonparametric FRF estimates with more pronounced resonances by avoiding static
friction, but the price to pay for this is increased variance.

4Assuming a linear system and neglecting correlation between the input signal and the measurement noise,
see Wernholt and Gunnarsson (2007), Theorem 1.
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Figure 8: Average of |detU[m,p]|1/nu (over the M = 9 different blocks) of the

input matrix for data sets 3 (black line), 4 (gray line), and 5 (thin black line).

Nonparametric MIMO FRF estimates also tend to be non-symmetric, even if the un-
derlying linear system is symmetric (Gij = Gji) (Wernholt and Gunnarsson, 2004, 2007).
This can be noted here as well in Figures 5–7 for frequencies below 4 Hz, especially for
the elements (1,2), (1,3), (2,1) and (3,1). To understand this, consider once more the
covariance matrix in (17). The variance of element Ĝij is given by the noise-to-signal
ratio

σ2
Ĝij

=
[[

UU
H
]−1
]

jj

[
σ2

V

]
ii
, (18)

where [σ2
V ]ii is the noise variance in output i. One thing to note here is that all elements in

a column will have the same influence from the input signal. If the noise variance would
be approximately equal for the different outputs, then the uncertainty of all elements in
a column would be approximately equal. By using (18), a non-symmetric FRF estimate
comes as no surprise. There are, of course, no guarantees that the variance should be
equal for elements Ĝij and Ĝji.

5 Conclusion

A method for the detection and estimation of nonlinear distortions in nonparametric FRF
estimates has successfully been applied to experimental data from an industrial robot. The
results show that nonlinear distortions are indeed present and cause larger variability in the
FRF than the measurement noise contributions. To get more accurate nonparametric FRF
estimates one should therefore use available measurement time to average estimates from
several experiments with random phase multisines. Averaging over several periods will
not be as effective since that only reduces the measurement noise contributions. Using a
filtered square wave to reduce the effect of friction will give more pronounced resonances,
but will at the same time give larger variability in the FRF estimates due to a poorer SNR.
This could be handled by modifying the amplitude spectrum of the excitation signal.
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Abstract

Experiment design involving selection of optimal experiment positions for
nonlinear gray-box models is studied. From the derived Fisher information
matrix, a convex optimization problem is posed. By considering the dual
problem, the experiment design is efficiently solved with linear complexity
in the number of candidate positions, compared to cubic complexity for the
primal problem. In the numerical illustration, using an industrial robot, the
parameter covariance is reduced by a factor of six by using the 15 optimal
positions compared to using the optimal single position in all experiments.

1 Introduction

Experiment design has been treated in the literature for almost half a century in both statis-
tics and engineering areas, where some basic references are Fedorov (1972) and Goodwin
and Payne (1977). A recent survey can also be found in Gevers (2005). The experiment
design problem aims at finding the optimal experiment conditions, χ, contained in some
set χ, that minimize a criterion related to the expected outcome of the experiment under
certain constraints.

For parameter estimation, the parameter accuracy is a function of both the experi-
mental conditions and the estimator. It is common, see Goodwin and Payne (1977), to
assume that the estimator is efficient in the sense that the parameter covariance matrix
achieves the Cramér-Rao lower bound (inverse of the Fisher information matrix), which
is a lower limit on the covariance matrix that can be obtained with an unbiased estimator.
The Fisher information matrix can be obtained without specifying an estimator. Usually,
an assumption of normally distributed noise is made. According to Goodwin and Payne
(1977, p. 127), this is not very restrictive since, asymptotically, the covariance matrix in
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many cases will be the same even for other noise distributions. This is, for example, the
case for the prediction error method (Ljung, 1999).

The classical approach has then been to minimize some scalar measure of the (asymp-
totic) covariance matrix Pθ(χ, θ0) with constraints on the input and/or the output power.
Some commonly used measures are A-optimality TrPθ(χ, θ0), D-optimality detPθ(χ, θ0),
E-optimality λmax (Pθ(χ, θ0)), and L-optimality Tr (WPθ(χ, θ0)). An inherent problem
in most experiment design problems is that the covariance matrix depends on the true sys-
tem parameters θ0. These parameters are, at least partly, unknown or uncertain, otherwise
there would be no need for an experiment. This has been handled in different ways in the
literature. One could either assume a good prior estimate of θ0 and hope for the best, or
use some robust experiment design methods. Various strategies have been suggested, in-
cluding sequential design (iterate between parameter estimation and experiment design),
Bayesian design (minimize the expected value over the prior parameter distribution) and
min-max design (minimize the worst case when the parameters are contained in a given
set). For references, see, e.g., Goodwin et al. (2006).

In addition to the problem of knowing θ0, experiment design problems are, in their
original form, often intractable due to non-convex and infinite-dimensional constraints,
as well as the problem of finding a signal realization which has the desired spectral prop-
erties. However, due to great advances in the optimization community, there exist today
many useful methods to reformulate the experiment design problems into tractable con-
vex optimization problems. Here, Jansson and Hjalmarsson (2005) is a good example,
where a framework for this reformulation is presented, based on linear parameterizations
of the signal spectrum. Constraints on these spectra can be included, as well as quality
constraints and robustness constraints as long as they can be rewritten as convex functions
of the inverse (asymptotic) covariance matrix.

2 Problem Description

The work in this paper is inspired by the problem of identification of flexibility param-
eters in a nonlinear industrial robot model in Öhr et al. (2006). The industrial robot is
challenging for system identification since it is a multivariable, nonlinear, unstable, and
highly resonant system. Consider therefore the nonlinear gray-box model

ẋ(t) = f(x(t), u(t), θ), (1a)

y(t) = h(x(t), u(t), θ), (1b)

with state vector x(t) ∈ R
nx , input u(t) ∈ R

nu , output y(t) ∈ R
ny , and the nonlinear

functions f(·) and h(·), parameterized by θ ∈ R
d. A discrete-time feedback controller1

u(t) = F (q)(r(t) − y(t)) is used to stabilize the system, where F (q) is the controller
and q is the difference operator. The experiment design problem involves finding the
excitation signal r(t) (and possibly F (q) if that is a design variable) that minimizes the
parameter uncertainty, given certain constraints on r(t), u(t), x(t). This is a nonlinear
optimal control problem which is extremely hard to solve. One option would be to apply

1Physical modeling makes continuous-time gray-box models most natural. Still, a discrete-time controller
will be used which gives that the excitation signal r(t) in the experiment design is a discrete-time signal. For
simplicity, blocks for sample and hold are left out in the sequel.
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a prediction error method for the parameter estimation. A covariance matrix could then be
calculated from the cost function. However, minimizing some measure of this covariance
matrix would probably be a hard non-convex optimization problem. In addition comes
the problem of obtaining a stable predictor for the nonlinear system.

In this paper, a different approach will be used, where we assume that r(t) is a small
perturbation around a certain operating point (x0, u0), called position in this paper. The
perturbation is assumed to be small enough to justify linearization of the nonlinear system
(1) and the use of linear theory. The identification will be carried out in the frequency
domain by comparing the experimental FRF (Frequency Response Function) with the
parametric FRF obtained by linearizing the nonlinear model.

The information about the unknown parameters will differ between different posi-
tions. Therefore, given a limited total measurement time, one should perform experi-
ments in the position(s) that contribute the most to the information about the unknown
parameters. Here, a set of Qc candidate positions will be assumed and a total of M ex-
periments should be performed. For each position, a separate experiment design problem
can be solved, as in Jansson and Hjalmarsson (2005), where the excitation signal is opti-
mized in order to meet constraints and minimize the parameter uncertainty, given a fixed
measurement time.

This will be a suboptimal solution to the overall experiment design problem since the
optimization is done in two steps. However, in principle it is possible to solve the overall
problem by, for each position, parameterize the excitation signal (Nf parameters) and add
constraints, and then solve the resulting problem withQc ·Nf variables. The optimization
problem is still convex if the constraints are convex functions of the variables that define
the excitation signals (for example, a power constraint). This is an interesting extension
of the work presented here and preliminary studies show promising results.

The paper is organized as follows: In Section 3, the Fisher information matrix is
derived, assuming certain properties of the estimated FRFs. This enables the formulation
of the experiment design problem in Section 4. The solution to this problem is discussed
in Section 5. A numerical illustration, using the industrial robot, is given in Section 6.
Finally, some conclusions are drawn in Section 7.

3 The Information Matrix

In this section, we assume that information about the unknown parameters can be obtained
by collecting measurements from the nonlinear system in Qc different positions. The
complex-valued FRF measurements are assumed to have the following properties.

Assumption E.1. Let Ĝ(i)(l) ∈ C
n denote measurement l in position i. For each posi-

tion i = 1, . . . , Qc, mi experiments will be carried out, giving a total of M =
∑Qc

i=1mi

experiments. The measurements Ĝ(i)(l) can be written as

Ĝ(i)(l) = G(i)(θ0) + η(i)(l), (2)

where G(i)(θ) is the parametric FRF for position i and θ0 is the same for all positions. The
measurement noise η(i)(l) is a zero mean, circular complex normally distributed random
variable, independent (over i and l) and identically distributed (over l) with covariance
matrix Λ

(i)
0 .
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For FRF measurements with Nf frequencies, n would be n = nu · ny ·Nf , see (13).
Given the measurements and a model, one must come up with an estimator θ̂M for the
unknown parameters. If the estimator is unbiased (E(θ̂M ) = θ0), the covariance of any
such estimator is bounded by the Fisher information matrix H ,

E((θ̂M − θ0)(θ̂M − θ0)
T ) � H−1. (3)

This bound is often referred to as the Cramér-Rao lower bound. Next, the Fisher in-
formation matrix, H , as well as the maximum likelihood estimator are derived, given
Assumption E.1.

Theorem E.1

Given Assumption E.1, the Fisher information matrix is given by

H =

Qc∑

i=1

miHi, (4)

where Hi is the information matrix in position i,

Hi = 2ℜ
{

Ψ(i)(θ0)[Λ
(i)
0 ]−1[Ψ(i)(θ0)]

T
}
, (5)

with the Jacobian matrix [Ψ(i)(θ)]T = ∂G(i)(θ)
∂θ ∈ C

n×d and (·) denoting complex conju-

gate.

Proof: The information matrix H is calculated as

H = E(

[
∂ log f(Ĝ|θ)

∂θ

][
∂ log f(Ĝ|θ)

∂θ

]T
∣∣∣∣∣∣
θ=θ0

),

where f(Ĝ|θ) is the conditional probability density function (PDF) for Ĝ, given θ, where Ĝ
denotes the set of measurements {Ĝ(i)(l), l = 1, . . . ,mi, i = 1, . . . , Qc}. Independent
measurements give that

f(Ĝ|θ) =

Qc∏

i=1

mi∏

l=1

f(Ĝ(i)(l)|θ) =

Qc∏

i=1

mi∏

l=1

fη(i)(E(i)(l, θ)),

where E(i)(l, θ) = Ĝ(i)(l) − G(i)(θ) and fη(i)(x) is the PDF for the noise η(i)(l) ∈ C
n.

Zero mean circular complex normally distributed noise has the PDF (Pintelon and Schou-
kens, 2001, p. 437)

fη(i)(x) =
1

πn det(Λ
(i)
0 )

exp(−xH(Λ
(i)
0 )−1x),

which gives

log f(Ĝ|θ) = −
Qc∑

i=1

mi∑

l=1

(
n log π + log det Λ(i)

o + [E(i)(l, θ)]H [Λ(i)
o ]−1E(i)(l, θ)

)
, (6)
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and

∂ log f(Ĝ|θ)
∂θ

∣∣∣∣∣
θ=θ0

=

Qc∑

i=1

mi∑

l=1

2ℜ
{

Ψ(i)(θ0)[Λ
(i)
0 ]−1η(i)(l)

}
.

Since η(i)(l) is independent over i and l, the information matrix H is finally given by

H =

Qc∑

i=1

mi∑

l=1

4Cov(ℜ
{

Ψ(i)(θ0)[Λ
(i)
0 ]−1η(i)(l)

}
)

=

Qc∑

i=1

mi∑

l=1

2ℜ
{

Cov(Ψ(i)(θ0)[Λ
(i)
0 ]−1η(i)(l))

}

=

Qc∑

i=1

mi · 2ℜ
{

Ψ(i)(θ0)[Λ
(i)
0 ]−1[Ψ(i)(θ0)]

T
}
,

where the fact that η(i)(l) is a circular complex random vector has been used. [If x is
a zero mean circular complex random vector (Cov(x) = E(xxH), E(xxT ) = 0), then
y = Ax, with A a complex matrix, is circular complex as well. For a circular complex
random vector, Cov(ℜ{x}) = 0.5ℜ{Cov(x)} is also easy to verify.]

Corollary E.1

Given Assumption E.1, the maximum likelihood estimator θ̂ML
M = arg maxθ log f(Ĝ|θ)

is given by

θ̂ML
M = arg min

θ

Qc∑

i=1

mi∑

l=1

[E(i)(l, θ)]H [Λ(i)
o ]−1E(i)(l, θ), (7)

with E(i)(l, θ) = Ĝ(i)(l) − G(i)(θ). The estimator is also efficient, in the sense that the

Cramér-Rao lower bound in Theorem E.1 is attained asymptotically (M → ∞).

Proof: The likelihood function is given by (6) which immediately gives (7). Efficiency
follows from classical results for the maximum likelihood estimator in case of indepen-
dent measurements (see, e.g., Ljung, 1999, p. 215).

4 The Experiment Design Problem

Consider the information matrix H in Theorem E.1. The experiment design problem can
be stated as follows: Given Qc different candidate positions and a total number of M
experiments to be carried out, choose the numbers mi, i = 1, . . . , Qc to minimize some

measure of the Cramér-Rao lower bound H−1.

Some commonly used measures were mentioned in Section 1. The solution will in
general depend on what measure that is used. For simplicity, we will here consider the
D-optimal design problem. One could also argue that some quality constraints should be
added that reflect the intended model application, e.g., the weighted relative error (see
Jansson and Hjalmarsson, 2005). That is, however, beyond the scope of this paper, whose
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main purpose is to illustrate that the optimal solution involves experiments in more than
one position. The D-optimal design problem can be posed as

minimize log det

[
1

M

Qc∑

i=1

miHi

]−1

,

subject to m � 0, 1
Tm = M, m ∈ Z

Qc ,

(8)

where Hi = HT
i ∈ R

d×d is the information matrix from position i, see (5) and the
factor 1/M is added to obtain the average information matrix. This is a combinatorial

experiment design problem since the mi are constrained to be integers. Given a large
number of candidates Qc, the problem will relatively quickly become intractable2. This
problem fits into the framework of Boyd and Vandenberghe (2004, Chap. 7.5) where also
E-optimal and A-optimal designs are treated. See also Vandenberghe et al. (1998, Section
2.4). WhenM is large, a reasonable approximate solution can be obtained by considering
the relaxed experiment design problem

minimize log det

[
Qc∑

i=1

λiHi

]−1

,

subject to λ � 0, 1
Tλ = 1,

(9)

For the relaxed problem, M will no longer affect the solution λ∗ and the Cramér-Rao
lower bound H−1 is thus inversely proportional to the number of experiments, M , that
will be carried out. For the combinatorial problem (8), this is only asymptotically true
(cf. Figure 4).

From the solution λ∗ of the relaxed problem (9) it is possible to obtain a suboptimal
solution m̃ to the combinatorial problem (8) by using Algorithm E.1.

Algorithm E.1

m̃ := round(Mλ∗)

while
∑M

i=1 m̃i 6= M do

if
∑M

i=1 m̃i > M then

k := arg maxi(m̃i −Mλ∗i )
m̃k := m̃k − 1

else

k := arg mini(m̃i −Mλ∗i )
m̃k := m̃k + 1

end if

end while

Even though this is a suboptimal solution, it is possible to evaluate the solution by com-
paring the cost V (Mλ∗) and V (m̃), where

V (x) = log det

[
∑

i

xiHi

]−1

.

2The mixed integer conic solver in YALMIP (Löfberg, 2004) is capable of solving (8) for the design problem
presented in Section 6 for a few hundred positions.
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V (Mλ∗) is a lower bound on V (m∗), so we have V (Mλ∗) ≤ V (m∗) ≤ V (m̃). If
the difference V (m̃) − V (Mλ∗) is small, then V (m̃) must be close to V (m∗). Note
that when M is small, the difference V (m̃) − V (Mλ∗) will be large, but that is usually
the case also for V (m∗) − V (Mλ∗). (This is, for example, evident for M = 1 in the
numerical illustration, see Figure 4.)

5 Solving the Experiment Design Problem

Determinant maximization problems arise in many fields (see Vandenberghe et al. (1998)
for an overview) and efficient solvers for this class of optimization problems are available.
In fact, any semidefinite programming solver can be used to solve determinant maximiza-
tion problems, although it requires cumbersome reformulations (Ben-Tal and Nemirovski,
2001). A recent example of a specialized solver is SDPT3 (Toh et al., 2006), which is
designed to solve conic programming problems (which includes linear, quadratic, and
semidefinite programs) with additional logarithmic barrier terms in the objective. This
includes the determinant maximization problem (9) as a special case.

The purpose of this section is to motivate an alternative representation of (9), derived
from duality. A common mis-conception is that when a so-called primal-dual solver such
as SDPT3 is used, it does not make any difference how the model is implemented, in
terms of primal and dual models. However, this is a dangerous fallacy.

Although the details are beyond the scope of this paper, we note that the complexity
of solving the determinant optimization problem (9), with d≪ Qc, can be shown to be at
least cubic in Qc (a linear system of size Qc ×Qc has to be solved repeatedly during the
solution process), when the model (9) is interpreted as the dual problem in the primal-dual
pair in a standard conic programming model.3. Accordingly, the complexity of solving
(9) scales badly with an increasing number of positions, Qc.

Hence, blindly stating and solving the problem (9) can easily lead to unnecessarily
complex models. Instead, we derive the dual of (9) as (cf. Vandenberghe et al., 1998,
Eq. (3.4))

minimize log detW−1,

subject to W = WT ≻ 0,

Tr(WHi) ≤ d, i = 1, . . . , Qc.

(10)

This problem, once again interpreted as the dual problem of the primal-dual pair, has
only d(d + 1)/2 variables (the variables parameterizing the symmetric matrix W ). An
increasing number of positions now instead leads to a growing number of linear inequality
constraints. Although the complexity of solving a semidefinite program depends on the
number of linear inequalities in the dual, it scales much better than increasing the number
of variables. Roughly speaking, while complexity with respect to the number of variables
in the dual for a standard SDP solver is at least cubic, the computational complexity with
respect to the number of linear inequality constraints is essentially linear.

3Following the primal-dual definitions in Toh et al. (2006), which also is the way the modeling language
YALMIP (Löfberg, 2004) and most people in the control community interprets problems.
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Figure 1: The ABB manipulator IRB6600.

Note that the original variables λ are dual variables related to the inequality constraints
in the model (10). Hence, after solving the problem using the primal-dual solver SDPT3,
the original variables are easily recovered.

6 Numerical Illustration

As a numerical illustration, we will use an industrial robot, see Figure 1. First, the robot
model will be described in Section 6.1. The measurements Ĝ(i)(l) will, for each ex-
periment, be the nonparametric FRF estimate for a number of frequencies, which is ex-
plained in Section 6.2. In Section 6.3, the experiment design problem will be solved using
YALMIP (Löfberg, 2004) and SDPT3 (Toh et al., 2006) and the results are presented in
Section 6.4.

6.1 Robot Model

The model comes from Öhr et al. (2006) and consists of a kinematic chain of rigid bod-
ies representing the links in the manipulator arm. The links are connected in joints by
gearboxes and motors, and due to flexibilities in the gearboxes, spring-damper pairs are
introduced between all motors and links. Two additional spring-damper pairs are intro-
duced in some joints to model bearing flexibilities. The model dynamics can be described
by the following set of equations.

[
v̇b

v̇a

]
= M−1

a (qb, qa)

[
c(qb, qa, vb, va) + g(qb, qa) −

[
τb
τg

]]
,

v̇m = M−1
m (τg + u) , q̇a = va, q̇m = vm, q̇b = vb,

τg = Kg(qa − qm) + Cg(va − vm), τb = Kbqb + Cbvb,
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where qa, qm, qb are angular positions for arms, motors, and bearings, respectively. The
matrix Ma(qb, qa) is the inertia matrix for the arms and Mm is the diagonal inertia ma-
trix for the motors. The Coriolis and centrifugal torques are described by the function
c(qb, qa, vb, va), and g(qb, qa) represents gravity torque. The time t is omitted in the
expressions. The matrices Kg, Cg and Kb, Cb describe the flexibilities and are here diag-
onal.

The model used in the numerical illustration has three-dimensional spring-damper
pairs in the three main axes joints (1–3) and one-dimensional spring-damper pairs (gear-
box) in the remaining joints (4–6), see Figure 1. This gives 12 spring-damper pairs and 18
degrees of freedom (6 arms + 6 motors + 2 · 3 joints having bearing flexibilities) and the
nonlinear gray-box model (1) will have 36 states. As output, the motor angular velocity
will be used, y = vm. The rigid body parameters are known from a CAD (Computer
Aided Design) model and the nominal spring-damper parameters are obtained from the
identification described in Öhr et al. (2006). For the experiment design, θ will contain the
12 spring parameters (d = 12). In addition, these are scaled by the nominal values such
that θ0 = 1.

The model equations are linearized inQc different positions qm = q
(i)
m , i = 1, . . . , Qc,

with vm = va = vb = 0, u = τg and qb, qa the solution to g(qb, qa) =
[
τT
b τT

g

]T
. (For

simplicity, qa = qm, qb = 0 can be used with minor errors if the springs are reasonably
stiff.) From a resulting continuous-time transfer function G

(i)
c (s, θ), the discrete-time

FRF G(i)(ejωTs , θ) is given by (Åström and Wittenmark, 1984, Chap. 4.5)

G(i)(ejωTs , θ) =
1 − e−jωTs

jωTs
G(i)

c (jω, θ), (11)

where higher-order terms in the Poisson summation formula have been neglected. These
terms are small since Ts is small and frequencies above π/Ts rad/s are well attenuated by
the dynamics in the torque controllers (left out in the modeling).

6.2 Measurements

Assume a closed-loop setup

y(t) = G(q)u(t) + v(t), u(t) = F (q)(r(t) − y(t)),

where y, r ∈ R
ny and u ∈ R

nu . The nonparametric FRF estimate is then calculated from
the DFT matrices Y(ωk) ∈ C

ny×nu and U(ωk) ∈ C
nu×nu like

Ĝ(ejωkTs) = Y(ωk)U−1(ωk),

where each column of Y(ωk) and U(ωk) contain the DFT of the sampled data from
each sub-experiment (for a multivariable system, nu sub-experiments are needed to form
the FRF estimate). As excitation, an orthogonal random phase multisine signal (Do-
browiecki and Schoukens, 2005) will be used, which gives R(ωk) = Rdiag(ωk)T, where
Rdiag(ωk) = diag

{
R1(ωk), . . . , Rny

(ωk)
}

, each Rl(ωk) is a random phase multisine
signal, and T is an orthogonal matrix with TT

H = nuI . Assuming ny = nu and v(t)
being noise, independent and identically distributed for different sub-experiments, with
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Figure 2: Singular values for the model (11) in position qm = 0 together with the

inverse controller F−1 (dashed line).

power spectrum Φv(ωk) ∈ C
ny×ny gives the uncertainty Λ

(i)

Ĝ
(ωk) in the nonparametric

FRF estimate Ĝ(i)(ejωkTs) as follows (omitting the frequency argument).

Λ
(i)

Ĝ
= Cov(vec(Ĝ(i))) =

1

nuΦr0

[
(G(i) + F−1)H(G(i) + F−1)

]T
⊗ Φv, (12)

where Φr0(ωk) = |R0(ωk)|2 (assuming |Rl(ωk)|2 = |R0(ωk)|2, l = 1, . . . , ny). It
should be mentioned that (12) is an approximation since the FRF will be slightly biased
due to data collection under feedback control. For details and proof, see Wernholt and
Gunnarsson (2007).

In the numerical illustration, Φv(ω) = Cvω
2I and Φr0

(ωk) = Cr for Nf = 50 loga-
rithmically spaced frequencies between 2 and 60 Hz and zero otherwise. The uncertainty
will therefore be scaled by the factor Cv/Cr. A diagonal PI controller is used and the
singular values for F−1(ejωkTs) as well as G(i)(ejωkTs , θ0) for position qm = 0 can be
seen in Figure 2. To view all 36 elements, see (Öhr et al., 2006).

For the experiment design, [Ψ(i)(θ)]T = ∂G(i)(θ)
∂θ and Λ

(i)
0 are needed to calculate the

information matrix Hi in (5). Here, the model G(i)(θ) is given by

G(i)(θ) =




vec(G(i)(ejω1Ts , θ))

...
vec(G(i)(ejωNf

Ts , θ))



 , (13)

where G(i)(ejωkTs , θ) is the parametric FRF in (11) and Ψ(i)(θ) is calculated numeri-
cally by central differences. The covariance matrix Λ

(i)
0 is a block-diagonal matrix with
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Λ
(i)

Ĝ
(ω1), . . . ,Λ

(i)

Ĝ
(ωNf

) on the diagonal. As candidate positions, all possible combina-
tions of

qm1 = {0, 45, 90}, qm2 = {−60, −45, · · · , 90},
qm3 = {−165, −150, · · · , 60}, qm4 = {0, 45, 90},
qm5 = {−90, −45, 0, 45, 90}, qm6 = 0,

will be used, giving a total of Qc = 7920 candidate positions. qm6 = 0 is used since
the payload is symmetric with respect to qm6. The position in Figure 1 corresponds to
qm = 0.

6.3 Solution using YALMIP and SDPT3

The experiment design problem (9) (or actually the dual problem (10)) will now be solved
using YALMIP (Löfberg, 2004) and SDPT3 (Toh et al., 2006). Although YALMIP always
assumes that a model represents the dual in the primal-dual pair, it is possible to use the
automatic dualization feature. If this is used, the dual problem (10) is automatically de-
rived from (9) and solved, conveniently allowing us to solve the most efficient model
without manually deriving any duals. This is particularly useful if we want to change the
original problem (9) by adding additional constraints or terms in the objective, without de-
riving a new dual problem by hand. The original λ variables are automatically recovered
by YALMIP from dual variables in SDPT3.

As we mentioned in Section 5, the computational complexity of solving the design
problem is roughly linear when dualized, and cubic when interpreted in the naive original
form. Although a dualized model gives us several orders of magnitudes faster compu-
tations, there is still room for improvement. The solver SDPT3 is developed with large
sparse problems in mind, whereas our problem turns out to be dense. By changing one line
of linear algebra code in SDPT3 from sparse to dense, the solver ran approximately four
times faster on the dualized model. The optimization models were evaluated experimen-
tally4 and the computation times are illustrated in Figure 3. Note that the primal model
only could be solved up toQc ≈ 4000 due to memory limitations. The curves confirm the
linear growth in Qc for the dualized models, whereas the naive primal formulation grows
slower than the expected cubic, but still requires far more computational effort. This sim-
ply indicates that there are other major contributors to the computations than the solution
of the linear system, which was used for the crude asymptotic complexity estimate.

6.4 Results

The solution to the relaxed experiment design problem (9) with Qc = 7920 candidate
positions gives a λ∗ with 15 nonzero elements. The corresponding positions and λ∗-
values are presented in Table 1 together with the geometric mean (detH−1

i )1/d as a
measure of the covariance matrix. In addition are the positions presented with min, max,
and median covariance. These values should be compared with a covariance value of 1 for

4Using a 1.7 GHz Pentium M processor with 1 GB RAM. A complete implementation, with illustrative data,
can be found at http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php?n=Examples.Experiment
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Figure 3: Computation time when solving the primal and dual problems as a func-

tion of the number of candidate positions Qc.

the optimal solution5 to the relaxed problem. The 15 optimal positions are also illustrated
in Figure 5.

As was mentioned in Section 4, a sub-optimal solution to the original combinatorial
experiment design problem can be obtained by using Algorithm E.1. The resulting co-
variance, V (m̃) with V (x) = (det

∑
i xiHi)

−1/d, is plotted in Figure 4 together with the
relaxed value V (Mλ∗) as a function of M . In addition are the corresponding values plot-
ted for the optimal single position (min in Table 1) and the mean value using M random
positions.

The difference between the combinatorial problem, V (m̃), and the relaxed problem,
V (Mλ∗), gets small already for quite small M values (M ≈ 10). The accuracy obtained
by performing M = 10 experiments distributed over the optimal positions (then actually
≤ 10 positions) corresponds to almost 60 experiments in the optimal single position. Or
the other way, 3 experiments in different positions give the same accuracy as 10 experi-
ments in the optimal single position.

In addition, using multiple positions will probably make the experiment design more
robust to uncertainties in θ0, but that analysis is left for future work. To robustify the
experiment design, one could also add the convex constraint that no more than a certain
fraction of the M experiments is concentrated in less than a given fraction of the Qc

possible experiments, see Vandenberghe et al. (1998, Section 2.4) for details6.
If the user has no knowledge about the system, multiple random positions might be a

5A covariance value of 1 corresponds to Φv(ωk)/Φr(ωk) ≈ 58 · ω2
k

, which means a really poor SNR. In
the real application, the SNR is large which will give a much better parameter accuracy.

6Unfortunately, the structure in the design problem that was exploited to derive an efficient dual formulation
will typically be lost when adding additional complicated constraints.
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Table 1: The solution to the relaxed experiment design problem (9). The covariance

is the geometric mean (detH−1
i )1/d. In addition are the positions presented with

min, max, and median covariance.

Pos qm1 qm2 qm3 qm4 qm5 Cov λ
1 0 −30 −75 0 0 15.4 0.1083
2 45 −60 −30 0 45 19.6 0.0256
3 45 −60 −30 45 45 21.2 0.0093
4 45 −30 −30 45 −45 6.3 0.1606
5 45 −30 60 45 90 7.4 0.0509
6 45 15 −150 90 90 20.1 0.0350
7 45 15 −15 90 −45 26.6 0.0881
8 45 45 −150 45 −90 15.4 0.0895
9 45 45 −105 0 −90 26.4 0.0927

10 90 −60 −60 90 90 23.9 0.0451
11 90 −30 −30 90 90 12.9 0.0238
12 90 −30 0 90 −45 40.6 0.0225
13 90 0 −105 45 −90 23.9 0.0192
14 90 30 30 0 90 11.7 0.1300
15 90 60 15 0 0 24.7 0.0993

Min 45 15 −135 45 45 5.9
Med 45 30 −90 90 −90 122.6
Max 0 60 −90 90 0 673.6
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Figure 4: Covariance, (detH)−1/d, as a function of the number of experiments M .
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Pos 1 Pos 2 Pos 3 Pos 4

Pos 5 Pos 6 Pos 7 Pos 8

Pos 9 Pos 10 Pos 11 Pos 12

Pos 13 Pos 14 Pos 15

Figure 5: Illustration of the optimal positions from Table 1, here viewed from the

side. The payload is marked by a circle.

good alternative, compared to using one random position, which is indicated by the dotted
curve in Figure 4. Using 1 random position for M = 100 experiments will in average
give 10 times worse accuracy compared to using 100 random positions. This might not be
so surprising, but it is interesting to notice that with M = 100, the optimal single position
is only 3 times better than using 100 random positions.

7 Conclusion

Experiment design involving selection of optimal experiment positions has been treated.
From the derived Fisher information matrix, a convex optimization problem is posed.
By considering the dual problem, the experiment design is efficiently solved with linear
complexity in the number of candidate positions, compared to cubic complexity for the
primal problem. In the numerical illustration, the 15 optimal positions reduce the pa-
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rameter uncertainty by a factor of 6, compared to using the optimal single position in all
experiments.

Acknowledgments

This work was supported by ABB AB – Robotics and VINNOVA’s Center of Excellence
ISIS at Linköping University. The authors also want to thank Martin Enqvist for inspiring
discussions.

References

Åström, K. and Wittenmark, B. (1984). Computer Controlled Systems – Theory and

Design. Prentice-Hall, Englewood Cliffs, New Jersey.

Ben-Tal, A. and Nemirovski, A. (2001). Lectures on Modern Convex Optimization: Anal-

ysis, Algorithms, and Engineering Applications. MPS-SIAM series on Optimization.
SIAM, Philadelphia, Pennsylvania.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press.

Dobrowiecki, T. and Schoukens, J. (2005). Measuring linear approximation to weakly
nonlinear MIMO systems. In Proc. 16th IFAC World Congress, Prague, Czech Repub-
lic.

Fedorov, V. V. (1972). Theory of optimal experiments. Academic Press, New York.

Gevers, M. (2005). Identification for control: From the early achievements to the revival
of experiment design. European Journal of Control, 11(4-5):335–352.

Goodwin, G. C. and Payne, R. L. (1977). Dynamic System Identification: Experiment

Design and Data Analysis. Academic Press, New York.

Goodwin, G. C., Rojas, J. S., and Welsh, J. S. (2006). Good, bad and optimal experi-
ments for identification. In Glad, T. and Hendeby, G., editors, Forever Ljung in System

Identification, pages 103–125. Studentlitteratur, Lund.

Jansson, H. and Hjalmarsson, H. (2005). Input design via LMIs admitting frequency-wise
model specifications in confidence regions. IEEE Transactions on Automatic Control,
50(10):1534–1549.

Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall, Upper Saddle
River, New Jersey, USA, 2nd edition.

Löfberg, J. (2004). YALMIP : A toolbox for modeling and optimization in MATLAB. In
Proc. CACSD Conference, Taipei, Taiwan. Available from http://control.ee.

ethz.ch/~joloef/yalmip.php.



184 Paper E Experiment Design for Identification of Nonlinear Gray-Box Models ...

Öhr, J., Moberg, S., Wernholt, E., Hanssen, S., Pettersson, J., Persson, S., and Sander-
Tavallaey, S. (2006). Identification of flexibility parameters of 6-axis industrial manip-
ulator models. In Proc. ISMA2006 International Conference on Noise and Vibration

Engineering, pages 3305–3314, Leuven, Belgium.

Pintelon, R. and Schoukens, J. (2001). System identification: a frequency domain ap-

proach. IEEE Press, New York.

Toh, K. C., Tütüncü, R. H., and Todd, M. J. (2006). On the implementation and
usage of SDPT3 – a MATLAB software package for semidefinite-quadratic-linear
programming, version 4.0. Available from http://www.math.nus.edu.sg/

~mattohkc/guide4-0-draft.pdf.

Vandenberghe, L., Boyd, S., and Wu, S.-P. (1998). Determinant maximization with linear
matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications,
19(2):499–533.

Wernholt, E. and Gunnarsson, S. (2007). Analysis of methods for multivariable frequency
response function estimation in closed loop. In 46th IEEE Conference on Decision and

Control, New Orleans, Louisiana. Accepted for publication.



Paper F

Nonlinear Gray-Box Identification of a

Flexible Manipulator

Edited version of the paper:

Wernholt, E. and Gunnarsson, S. (2007c). Nonlinear gray-box identification
of a flexible manipulator. Submitted to Control Engineering Practice.

Parts of the paper in:

Wernholt, E. and Gunnarsson, S. (2006b). Nonlinear identification of a phys-
ically parameterized robot model. In Proc. 14th IFAC Symposium on System

Identification, pages 143–148, Newcastle, Australia.

Wernholt, E. and Gunnarsson, S. (2005). Nonlinear grey-box identification of
industrial robots containing flexibilities. In Proc. 16th IFAC World Congress,
Prague, Czech Republic.

Preliminary version published as Technical Report LiTH-ISY-R-2739, Dept. of Electrical
Engineering, Linköping University, SE–581 83 Linköping, Sweden.

185





Nonlinear Gray-Box Identification of a Flexible
Manipulator

Erik Wernholt and Svante Gunnarsson

Dept. of Electrical Engineering,
Linköping University,

SE–581 83 Linköping, Sweden.
E-mail: {erikw,svante}@isy.liu.se.

Abstract

A three-step procedure for nonlinear gray-box identification of an industrial
manipulator containing flexibilities is studied. The aim of the first two steps
is to obtain good initial values for the third prediction error minimization
step. In the first step, rigid body dynamics and friction are identified us-
ing a separable least-squares method. In the second step, initial values for
flexibilities are obtained using an inverse eigenvalue method. Finally, in the
last step, the remaining parameters of a nonlinear gray-box model are iden-
tified directly in the time domain using prediction error minimization. The
identification procedure is exemplified using real data from an experimental
industrial robot. The estimated physical parameters have realistic numerical
values and give a model with good correspondence to FRF measurements.

Keywords: Identification, Robotics, Flexible arms, Friction, Manipulators

1 Introduction

System identification in robotics is a vast research area and can be divided into, at least,
three different levels or application areas. These levels involve the estimation of the kine-
matic description, the dynamic model (often divided into rigid body and flexible body
dynamics), and the joint model (e.g., motor inertia, gearbox elasticity and backlash, mo-
tor characteristics, and friction parameters). An overview of identification in robotics can
be found in Kozlowski (1998), and examples of previous work are also given in Section 4
in connection with the presentation of the steps in the identification procedure.

The work reported here considers identification of rigid body dynamics, friction, and
flexibilities using a three-step procedure. The procedure was first introduced in Wernholt
and Gunnarsson (2005), and it is here extended in two ways. First, a nonlinear friction
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Figure 1: The ABB manipulator IRB6600.

model is included, leading to a pseudo-linear regression, and, second, the example is
based on a three-mass model. An early version of the results presented here was also
given in Wernholt and Gunnarsson (2006).

The problem treated here is closely related to the problems considered in, for example,
Östring et al. (2003) and Isaksson et al. (2003). In Östring et al. (2003), a method is
applied where inertial parameters as well as parameters describing the flexibility of a
three-mass model are identified directly in the time domain. However, only linear models
were considered in their work, and the initial values in the identification were selected in
an ad hoc manner. Isaksson et al. (2003) consider gray-box identification of a two-mass
model with backlash, where black-box modeling is used to find initial parameter values.
The three-step procedure is also utilized in Gunnar et al. (2006) where an actuator model,
including hysteresis, is identified for a particular type of parallel robot structure.

2 Problem Description

The starting point for the paper is an industrial robot of the type shown in Figure 1. For
simplicity the presentation will consider a situation where the robot movements are not
affected by gravity. This is the case when the movement only involves the first joint,
denoted Axis 1 in Figure 1, and this is the situation that will be considered here. The
case when also the gravity is involved will be dealt with in future work. Previous work,
see, e.g., Östring et al. (2003), has shown that a three-mass model can give a sufficiently
accurate description of the robot dynamics for movements involving the first joint. It
should however be noted that the results in Östring et al. (2003) are based on data from
a smaller robot (ABB IRB1400), while here data will be collected from an experimental
robot of essentially larger size. Broadband excitation indicates that a higher model order
might be needed in some cases, see Figure 5. It is however assumed here that a three-mass
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Figure 2: The three-mass flexible model of the robot arm.

model gives a sufficiently accurate description in the frequency range up to 20 Hz. The
robot dynamics for movements involving the first joint will hence be described by the
model in Figure 2. Gear ratio rg = 1 is used in the model, which gives better numerical
properties and easier notation. The true physical parameters can later be obtained by a
simple scaling with the true gear ratio.

The input is the torque τ generated by the electrical motor, while the output is the
motor velocity q̇m. In practice only the motor angle is measured, but since the noise level
is low this signal can be differentiated with sufficiently good result. The velocities of the
other masses, q̇g and q̇a, are not measurable. Flexibility in the gearbox is modeled by a
nonlinear spring, τs(·), between the motor and the second mass. The spring between the
second and third mass represents flexibilities in the arm structure. Finally, friction in the
system is modeled by nonlinear friction, τf (·), acting on the first mass. Applying torque
balances for the three masses and introducing the states

x(t) =





qm(t) − qg(t)
qg(t) − qa(t)

q̇m(t)
q̇g(t)
q̇a(t)




, (1)

gives the nonlinear state-space model

ẋ =





x3 − x4

x4 − x5
1

Jm
(−τs(x1) − dg(x3 − x4) − τf (x3) + u)

1
Jg

(τs(x1) + dg(x3 − x4) − kax2 − da(x4 − x5))
1

Ja
(kax2 + da(x4 − x5))




, (2)

y = x3, (3)

where Jm, Jg , and Ja are the moments of inertia of the motor, gear, and arm, respectively,
u = τ is the motor torque, dg and da are damping parameters, and ka is the stiffness of
the second spring. The spring and gear friction torques, τs and τf respectively, are often
approximated by linear models (see, e.g., Östring et al., 2003). In this work, a nonlinear
friction model from Feeny and Moon (1994) will be used to capture Coulomb friction and
the Striebeck effect1 as

τf (x3) = Fvx3 + (Fc + Fcs sech(αx3)) tanh(βx3), (4)

1Decreasing friction with increasing velocity at low velocity.
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where sech(x) = 1/ cosh(x), Fv and Fc are the viscous and Coulomb friction coeffi-
cients, Fcs and α are used to model the Striebeck effect, and β is used to get a smooth
model without discontinuity at zero velocity, which is more suitable for simulation. As a
comparison, two simpler friction models

τf (x3) = Fvx3 + Fc tanh(βx3), (5)

τf (x3) = Fvẋ3 + Fc sign(x3), (6)

will be used as well. For details on friction modeling, see Armstrong-Hélouvry et al.
(1994). A recent friction model can also be found in Makkar et al. (2005). The torque of
the spring is modeled as

τs(x1) = kg1x1 + kg3x
3
1, (7)

where kg1 and kg3 are the parameters of the spring.

3 Nonlinear Gray-Box Identification

The aim is to identify the parameters in the robot model, described in Section 2, us-
ing experimental data. The starting point for the nonlinear gray-box identification is the
continuous-time state-space model structure

ẋ(t) = f(t, x(t), u(t), θ), (8a)

y(t) = h(t, x(t), u(t), θ) + e(t), (8b)

where f and h are nonlinear functions. x(t) is the state vector, u(t) and y(t) are input and
output signals, e(t) a white measurement noise signal, and t denotes time. Finally θ is the
vector of unknown parameters. Given a set of input/output-data the aim is to determine
the parameter vector that minimizes a criterion like

VN (θ) =
1

N

N∑

t=1

ε2(t, θ), (9)

where ε(t) denotes the prediction error

ε(t, θ) = y(t) − ŷ(t, θ). (10)

The experiments presented in this paper will utilize the nonlinear gray-box model struc-
ture IDNLGREY, available in the System Identification Toolbox (SITB) (Ljung, 2007). The
model structure IDNLGREY is similar to the IDGREY model structure in SITB. The model
can be either a discrete-time or continuous-time state-space model, and it is defined in
a MATLAB m-file/mex-file. In the current version of the software, only OE-models can
be used, i.e., only additive white noise, e(t), on the output. The prediction ŷ(t|θ) then
becomes the simulated output of the model (8) with the input u(t) , without e(t), for
the current parameter vector θ. The criterion (9) is minimized by an iterative numerical
search algorithm which involves simulation of the system for different values of θ. The
user specifies an initial parameter vector and it is also possible to fix some components in
θ, as well as include min and max values for each parameter. To speed up the numerical
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optimization, the simulation model is implemented in a mex-file (C-code). An inherent
problem of the iterative search needed for minimization of the prediction error criterion
(9) is that only convergence to a local minimum can be guaranteed. In order to converge to
the global minimum, good initial parameter estimates are needed. Therefore a three-step
identification procedure is proposed in the following section.

4 Three-Step Identification Procedure

The first step of the procedure considers identification of rigid body dynamics and friction.
In the second step, initial values for flexibilities are obtained, and finally, in the third step,
the nonlinear gray-box identification procedure is applied.

4.1 Step 1: Rigid Body Dynamics and Friction

There exists a vast amount of literature on the identification of rigid body dynamics (see,
e.g., Gautier and Poignet, 2001; Grotjahn et al., 2001; Kozlowski, 1998; Swevers et al.,
1997). The standard procedure includes a dynamic model

Hrb(qm, q̇m, q̈m)θrb = τ, (11)

which is linear in the rigid body parameters θrb. Each link gives ten physical parameters.
This representation is redundant, but there are methods to find a minimal dimensional
parameter vector θb, called base parameters, that characterize the dynamic model like

Hb(qm, q̇m, q̈m)θb = τ. (12)

The base parameters are nonlinear functions of the physical parameters like

θb = φ(θrb). (13)

In the presence of friction, τ in (12) should be replaced by τ−τf (q̇m). Usually the friction
model (6) is used, which gives two additional parameters per link to estimate, but still a
linear regression. This model is not sufficient to correctly describe dynamic friction (see
Armstrong-Hélouvry et al., 1994), but compensates the major frictional effects on the
identification of rigid body dynamics when using a high amplitude excitation. The robot
is moved along some (optimized) trajectory and applied torque and joint movements are
recorded. The parameters are then estimated using linear regression.

Here, the more advanced friction model (4) will be used in order to more accurately
model the low velocity behavior. For the robot model in Section 2, the rigid body dynam-
ics and friction is

(Jm + Jg + Ja)q̈m + τf (q̇m) = τ, (14)

which can be written as a pseudo-linear regression

τ̂(t|ρ, η) = ρTϕ(t, η), (15)
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when

ϕ(t, η) =





q̈m
q̇m

tanh(βq̇m)
sech(αq̇m) tanh(βq̇m)



 ,

ρ =
[
J Fv Fc Fcs

]T
, η =

[
α β

]T
.

Here, J is the only base parameter and (13) simplifies to J = Jm + Jg + Ja.
Minimizing an identification criterion like

VN (ρ, η) =
N∑

t=1

|τ(t) − ρTϕ(t, η)|2 = |τ − Φ(η)ρ|2, (16)

then is a separable least squares problem since the least squares part ρ can be separated
out using

ρ̂ = [ΦT (η)Φ(η)]−1ΦT (η)τ , (17)

and the problem is reduced to finding the optimal η. See Golub and Pereyra (1973) for a
thorough treatment of this approach.

The result from the first step is estimates of the base parameters θb = J and the
friction parameters θfr =

[
Fv Fc Fcs α β

]T
.

4.2 Step 2: Initial Values for Flexibilities

The major flexibilities in an industrial robot are normally located at the joint level, due
to the transmission. A two-mass model (or coupled two-mass models for multivariable
cases) is then sufficient to describe the dynamics. Weaker (more compliant) robot struc-
tures will in addition introduce significant flexibilities in the links and their connections.
Therefore higher-order models are sometimes needed in order to get a sufficient descrip-
tion of the system. Identification of flexibilities is more involved than the identification
of rigid body dynamics. The main reason is that only a subset of the state variables now
are measured and one can therefore not use linear regression. Many different methods
are described in the literature to handle this problem, see for example Behi and Tesar
(1991), Johansson et al. (2000), and Albu-Schäffer and Hirzinger (2001). They differ in,
for example, assumed model structure, required measurement signals, and complexity of
the identification method.

Here, a method described in Berglund and Hovland (2000) and Hovland et al. (2001)
will be used for the identification of masses, springs and dampers, only using applied
torque and joint movements. The identification is based on an estimated nonparametric
Frequency Response Function (FRF) together with the solution of an inverse eigenvalue
problem. Consider an nth order spring-mass system, which can be modeled as

Mq̈m +Kqm = τ, (18)

where M is a diagonal inertia matrix, qm is a vector of the position of the masses, and K
is a tridiagonal matrix built up from the n − 1 spring constants. The eigenvalues of the
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system are given by using q̈m = −λqm, τ = 0, as

Bu = λu, (19)

where B = L−1KL−T , u = LT qm, and L = M1/2. Using the nonparametric FRF gives
information about the resonance and anti-resonance frequencies. The first eigenvector u1

ofB can be derived from the squared resonance and anti-resonance frequencies, assuming
that the damping is negligible. The B matrix can then be computed recursively by the
Lanczos algorithm using u1 and the squared resonance frequencies. Finally, the elements
of M and K can be reconstructed by using their special structure. A damping matrix can
be estimated afterwards by minimizing the discrepancy between the nonparametric FRF
and the parametric model at the resonance and anti-resonance frequencies, using some
optimization routine. For details about the method, see Berglund and Hovland (2000) and
Hovland et al. (2001) and the references therein.

The result from the second step gives initial estimates of (some) rigid body parameters,
θrb, and parameters describing the flexibilities, θfl, typically springs and dampers. As an
optional step, one could of course refine all these estimated parameters by curve fitting
between the nonparametric FRF and the parametric model as well.

4.3 Step 3: Nonlinear Gray-Box Identification

Combining the estimates from steps 1 and 2 gives an initial parameter estimate, and the
nonlinear gray-box identification method described in Section 3 can now be applied. To
reduce the complexity, parameters estimated with high accuracy in the previous steps can
be fixed in this step, leading to a lower dimensional iterative search. Keeping θ̂b and θ̂fr

from step 1 fixed will result in a modified criterion

min
θ
VN (θ) =

1

N

N∑

t=1

ε2(t, θ), (20)

subject to φ(θrb) − θ̂b = 0, (21)

θfr − θ̂fr = 0, (22)

where θ =
[
θT

fr θT
rb θT

fl

]T
.

5 Data Collection

The data used for identification are real data collected from an experimental robot. The
open-loop system to be identified is unstable, which makes it necessary to collect data
while the robot controller is running in closed loop. An experimental control system is
used, which makes it possible to use off-line computed reference signals for the con-
trollers. For the different steps in the identification procedure, different excitation signals
are needed.

In step 1, the rigid body dynamics and friction parameters should be excited without
introducing any oscillations due to the flexibilities. Therefore a low frequency excitation
is preferred.
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Table 1: Estimated parameters from step 1, including one standard deviation.

J 0.0329 ± 0.0027 Fcs 3.9863 ± 4.5876
Fv 0.0099 ± 0.0074 α 3.2402 ± 0.5469
Fc 0.7430 ± 0.3774 β 0.7994 ± 0.2685

In step 2, on the other hand, the whole frequency band should be excited where notch
and peak frequencies in the FRF are expected. Since nonparametric FRF estimates are
based on an assumption of linearity, the influence of nonlinear friction should be reduced,
so a broadband excitation with as few zero velocity crossings as possible is selected.

Finally, for step 3 a data set (or a combination of data sets) is needed that excite all
free parameters in the model. The following periodic excitation signals will be used as
reference speed, q̇ref

m , for the controller. They all have a period time of 10 s and one
period of the steady-state response is collected, sampled at 2 kHz (Ts = 0.5 ms).

Data set 1: Multisine signal (sum of sinusoids) with frequencies 0.1, 0.3, and 0.5 Hz.
Five different peak values have been applied: 1, 5, 20, 40, and 160 rad/s.

Data set 2: Multisine signal with a flat amplitude spectrum in the frequency interval 1–
40 Hz with a peak value of 16 rad/s. The multisine signal is superimposed on a fil-
tered square wave with amplitude 20 rad/s, frequency 0.1 Hz, and cut-off frequency
1 Hz.

Data set 3: Similar to data set 2, but without the square wave.

For details on the selection of excitation signals, see, e.g., Pintelon and Schoukens (2001)
and Ljung (1999).

6 Results

The physical parameters in the robot model from Section 2 will here be identified by
applying the proposed three-step identification procedure from Section 4, using the ex-
perimental data described in Section 5.

6.1 Step 1

Using data set 1, with one period of data for each of the five amplitudes, together with
the separable least squares method, as described in Section 4.1, gives parameter estimates
according to Table 1.

As can be seen, some of the friction parameters have a quite large standard deviation,
which actually indicates that the model cannot fully describe the data sets used for iden-
tification. The parameters in the right column only affect the low velocity region, and in
this region the five experiments in data set 1 with different amplitudes behave quite dif-
ferently (for example smaller β for larger amplitudes). An even more advanced friction
model which handles these differences is therefore needed in order to fully capture the
friction dynamics.
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Figure 3: Level curves showing the increase in the loss function (in percent) when

moving away from the optimum.

Table 2: Loss function when evaluating the estimated friction models using data set

1 for different amplitudes.

Amplitudes: 1 5 20 40
Model (4) 0.0794 0.0458 0.0287 0.0439
Model (5) 0.0897 0.0406 0.0292 0.0443
Model (6) 0.1603 0.0475 0.0275 0.0449

The separable least squares problem has no local minima in the area of interest, as can
be seen in Figure 3. The loss function (9) is also relatively insensitive to different values
of the two parameters since such differences can be somewhat compensated by the Fcs

parameter.
To see the differences, the two simpler friction models (5) and (6) are estimated as

well. Figure 4 shows the resulting friction curves. To evaluate the models, the loss func-
tion for some of the amplitudes are shown in Table 2. The advanced model (4) is slightly
better than the 3 parameter model (5). For the 2 parameter model (6), the loss function
for amplitude 1 is drastically increased. For large amplitudes, no major differences can
be noted.

6.2 Step 2

In this step, first the nonparametric FRF must be estimated. Before the estimation, the
input signal should be modified according to the estimated friction model from step 1.
This gives minor differences for data set 2, but for data set 3 the resonances get more
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Figure 4: Estimated friction models. Thick line: (4), thin line: (5), dashed line: (6).

visible. The FRF for data set 2 from motor torque to motor acceleration can be seen in
Figure 5 on page 198. Solving the inverse eigenvalue problem according to Section 4.2
gives initial estimates of θrb =

[
Jm Jg Ja

]T
and θfl =

[
kg1 kg3 ka dg da

]T
,

except for kg3 which is kept zero at this step due to the assumption about linearity. These
values can be seen in Table 3, model m5init;

6.3 Step 3

Combining the estimates from steps 1 and 2 gives the initial model m5init in Table 3.
The nonlinear gray-box identification according to Section 4.3 is then applied, using data
set 2. First, kg3 = 0 is used, giving the model m5. Releasing kg3 gives the model
m5kg3. For comparison, models are also estimated using the simpler friction models
from Section 6.1, giving models m3 and m2, where the number indicates the number of
friction parameters. The rigid body parameters, θrb, and the second damper are estimated
with a standard deviation less than 10 %. For the remaining parameters in θfl, the standard
deviation is less than 2 %.

To validate the estimated models, four additional realizations of the multisine signal
have been applied, both for data set 2 and 3. The loss function for each of the models
in Table 3, including the rigid model from step 1 have then been calculated for each
of the realizations. Their values have first been normalized by the loss using the rigid
model, and secondly averaged over the realizations to get the average loss, shown in
Table 4. Comparing m5init and m5 shows the big improvement by using step 3 in the
procedure. For data set 2, the more advanced friction model (4) reduces the loss function,
compared to using (6). For data set 3, on the other hand, there are no major differences.
This can partly be understood by the fact that a correct friction model is more important
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Table 3: Estimated parameters, where m5init comes from the first two steps and

the other models are estimated in step 3. Parameters grouped as θfr, θrb, and θfl.

m5init m5 m3 m2 m5kg3 Scaling
Fv 0.986 0.986 0.979 1.04 0.986 (·10−2)
Fc 0.743 0.743 0.748 0.700 0.743
Fcs 3.99 3.99 0 0 3.99
α 3.24 3.24 0 0 3.24
β 0.799 0.799 6.67 ∞ 0.799
Jm 5.90 8.36 8.36 8.63 8.29 (·10−3)
Jg 20.1 20.5 20.5 21.6 20.6 (·10−3)
Ja 6.87 4.03 4.06 2.65 4.06 (·10−3)
kg1 20.6 21.3 21.3 20.5 20.3
kg3 0 0 0 0 13.1
ka 20.2 15 15.1 11.1 15.2
dg 62.4 50.9 51.5 50.9 46.2 (·10−3)
da 9.88 5.15 5.06 1.69 4.54 (·10−3)

Table 4: Average loss when evaluating the models using new realizations of data

sets 2 and 3.

m5init m5 m3 m2 m5kg3

Data set 2 0.5574 0.2727 0.2746 0.3133 0.2705
Data set 3 0.4441 0.1658 0.1661 0.1656 0.1638

for open-loop simulations if one must track a slowly varying signal, like the square wave.
Using acceleration as output from the model would probably give a different result. The
nonlinear spring stiffness reduces the loss function, as can be seen by comparing the loss
for m5 and m5kg3. Using a data set with a different amplitude would probably show an
even bigger difference.

The discontinuous friction model (6) gives problems in simulation and therefore (5)
with a large β is used instead. This is actually another reason for using the more advanced
friction model (4), besides that it gives better performance.

Finally, a Bode diagram of the estimated model m5 can be seen in Figure 5 together
with the estimated nonparametric FRF for data set 2.

6.4 Discussion

Using the first step, where the rigid body dynamics and friction are estimated, is really
important. The total inertia, J = Jm + Jg + Ja, as well as all the friction parameters
are kept fixed during the last step when applying the nonlinear gray-box identification.
Another option is to include data set 1 in the last step and allow all parameters to be
estimated, which has been treated in Wernholt and Gunnarsson (2005).

The method described in Section 4.2, where an inverse eigenvalue problem is solved,
is quite sensitive to changes in the FRF. Large variations in the identified parameters have
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Figure 5: Magnitude of the FRF for data set 2 from motor torque to motor acceler-

ation (thin line) together with the estimated model m5 (thick line).

been observed, even for a fairly small perturbation of the location of the resonances. This
method should therefore be replaced by, or complemented by, curve fitting the parametric
model and the estimated nonparametric FRF.

During the iterative numerical search in the last step, it is important to ensure that
every model that is tried by the optimization method is stable. Therefore, a constraint that
all parameters must be positive is used.

As future work remains to apply this procedure to a multivariable system, or at least
to an axis affected by gravity. One big problem to tackle then is that the model is unstable,
which requires some changes to ensure a stable predictor. There can also be numerical
problems since the dimension of the problem is larger, both in terms of states and param-
eters.

7 Conclusion

A three-step identification procedure has been used for the identification of rigid body
dynamics, friction, and flexibilities, only using measurements on the motor side. The
procedure has been exemplified using experimental data from an industrial robot together
with a flexible three-mass model where nonlinear spring stiffness and a nonlinear fric-
tion model have been added. The estimated physical parameters have realistic numerical
values and give a model with good correspondence to FRF measurements. To further
improve the results the friction could be modeled even more accurately.
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Notation

Note that all vectors are column vectors. The same symbol can be used for different
purposes. The principal notation is listed below, any deviations from this is explained in
the text.

Symbols and Operators

Z The set of integers
N The set of natural numbers (0 ∈ N)
R The set of real numbers
C The set of complex numbers
t Time variable
s Laplace transform variable
z z-transform variable
p Differentiation operator, pu(t) = du(t)

dt
q Shift operator, qu(t) = u(t+ Ts)
j Imaginary unit
N Number of samples
NP Number of samples in each period
P Number of periods
M Number of experiments (or blocks of experiments for MIMO systems)
Nf Number of frequencies
Q Number of positions
Qc Number of candidate positions (for experiment design)
ny Number of outputs
nu Number of inputs

201



202 Notation

ne Number of experiments
Ts Sampling period
T0 Period, T0 = TsNP

u(t) Input signal at time t
y(t) Output signal at time t
r(t) Reference signal at time t
v(t) Disturbance signal at time t
x(t) State vector at time t
ẋ(t) Time derivative of x(t)
F (·) Controller
G(·) Transfer function from input to output

U(ωk) DFT of input signal u(t)
Y (ωk) DFT of output signal y(t)
R(ωk) DFT of reference signal r(t)
V (ωk) DFT of disturbance signal v(t)
ωk DFT frequency, see (3.21)
U(ωk) Input DFT matrix of size nu × ne, see (3.40), and similarly for Y(ωk),

R(ωk), and V(ωk)
U

[m](ωk) Block m of size nu × nu of the DFT matrix U(ωk), see (3.43)
U

[m]
diag(ωk) Diagonal matrix of multisine signals, U

[m](ωk) = U
[m]
diag(ωk)T, see

(3.67)
T Permutation matrix, see (3.67)
Ĝ(i)(ωk) Nonparametric FRF estimate in position i
G(i)(ωk, θ) FRF of parametric model in position i, see Section 4.4.4
Ĝ[m,p](ωk) Nonparametric FRF estimate from block m and period p
Ĝ[m](ωk) Nonparametric FRF estimate from block m, see (3.45)
GR(ωk) Best linear approximation, see (3.71)
GS(ωk) Stochastic nonlinear contribution, see (3.71)
NG(ωk) Measurement noise contribution, see (3.71)

qa Vector of arm joint coordinates
qm Vector of motor joint coordinates
qe Vector of elastic coordinates, see (2.11)
τ Vector of motor torques
τfa Arm friction, see (2.5)
τfm Motor friction, see (2.9)
Fv , Fc Viscous and Coulomb friction parameters
Ma(qa) Inertia matrix in the dynamic equations (2.5)
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ca(qa, q̇a) Velocity dependent term in the dynamic equations (2.5)
ga(qa) Gravitational term in the dynamic equations (2.5)
Jm, Ja Moments of inertia of the motor and arm
rg Gear ratio
kg , dg Spring stiffness and damping of elastic gear
ke, de Spring stiffness and damping of elastic arm structure, see (2.11)

θ Vector of (unknown) parameters
θ̂ Estimated parameters
ŷ(t|θ) A model’s prediction of y(t) given θ and data up to time t− Ts

ε(t, θ) Prediction error, y(t) − ŷ(t|θ)
VN (θ) Prediction error criterion, see (3.32)
θ̂N Parameter estimator, see (3.32)

E(x) Expectation of the random variable x
Cov(x) Covariance matrix of the random variable x
Φu(ω) Spectrum for the signal u(t)
Φyu(ω) Cross spectrum between y(t) and u(t)
Pθ Covariance matrix, see (3.58b)
N (m,P ) Normal (Gaussian) distribution with mean value m and covariance ma-

trix P
σ2

X Covariance matrix, σ2
X = Cov(vec(X))

∼ Denotes “is distributed according to”
∝ Proportional to
∈ Belongs to
∀ For all
arg minx f(x) The value of x that minimizes f(x)
sign(x) Sign function
|z| Absolute value, |z| =

√
x2 + y2, with z = x+ jy and x, y ∈ R

arg(z) Argument or phase φ of complex variable z = |z|ejφ

∂ Partial derivative
∂f
∂x (x0) Jacobian matrix, where element ij is defined as

[∂f
∂x (x0)]ij = ∂fi(x)

∂xj

∣∣∣
x=x0

detA Determinant of matrix A
TrA Trace of matrix A
AT Transpose of matrix A
AH Complex conjugate transpose of matrix A
A−1 Inverse of matrix A
λmax(A) Largest eigenvalue of matrix A
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vec(A) Stack the columns of matrix A =
[
A1 A2 · · · An

]
on top of each

other as
[
AT

1 AT
2 · · · AT

n

]T

diag {ak}n
k=1 n× n diagonal matrix with elements a1, a2, . . . , an on the diagonal

diag {A} Will return the diagonal of the square matrix A as a column vector
diag {a} A diagonal matrix with the vector a on the diagonal
O(·) Denotes “order of”, e.g., f(x) = O(g(x)) means that there exist x0 and

k such that |f(x)| ≤ k|g(x)| for x > x0

Abbreviations and Acronyms

a.s.lim almost sure limit
e.g. for example
i.e. in other words
ARI Arithmetic mean (estimator)
CAD/CAM Computer Aided Design/Computer Aided Manufacture
CRLB Cramér-Rao lower bound
DAE Differential-Algebraic Equation
DFT Discrete Fourier Transform
DOF Degrees Of Freedom
EIV Errors-in-variables (estimator)
ETFE Empirical Transfer Function Estimate
FFT Fast Fourier Transform
FRF Frequency Response Function
HAR Harmonic mean (estimator)
IRB Industrial RoBot, used in names for ABB robots
JIO Joint input-output (estimator)
LLS Logarithmic Least Squares
LOG Logarithmic mean (estimator)
LTI Linear Time Invariant
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
NLS Nonlinear Least Squares
ODE Ordinary Differential Equation
RV Rotary Vector (gear)
SCARA Selective Compliant Assembly Robot Arm
SISO Single Input Single Output
SNR Signal-to-Noise Ratio
SVD Singular Value Decomposition
TCP Tool Center Point
YALMIP Yet Another LMI Parser
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