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MULTIVARIABLE PROCESS IDENTIFICATION FOR ROBUST CONTROL 

Y.C. ZHU, A.C.P.M. BACKX and P. EYKHOFF 

Abstract-In this work, multi-input multi-output (MIMO) process identification 

is studied, where the purpose of identification is control system design. An 

identification procedure is presented by which one can . estimate not only a 

nominal parametric process model, but also an upper bound of the model 

uncertainty (modelling errors) in the frequency domain. The basic steps of 

this method consist of high order model estimation and subsequent model 

reduction. One advantage is that, in this framework, fundamental problems such 

as input design and model structure selection can easily be solved. Another 

advantage of the method is numerical simplicity and reliability. The 

identified nominal model and the error bound can readily be used for robust 

control system analysis and design. A simulation example is given to 

illustrate the method. 

I Introduction 

Because of our limited knowledge about reality, mathematical models can never 

give an exact description of the system behavior under study; hence model 

uncertainties or modelling errors always exist. In the previous decade, robust 

control theory has been proposed and developed, cf. Zames (1981), Doyle 

(1984), Vidyasagar (1985) and Morari and Zaftriou (1989). The advantage of 

robust control is its capability to cope with modelling errors in the analysis 

and design of control systems. In order to apply robust control theory, one 

needs not only a nominal process model, but also a suitable description of the 

modelling errors which are typically in the form of some bounds of either 

parameter variations or transfer function variations. 

Although the topic of linear system identification has been studied 

extensively in the previous two decades, there are no straightforward methods 

which can derive error bounds of identified models in the frequency domain. 

Only very recently some researchers started to study this problem. Cloud and 

Kouvaritakis (1986) have proposed an error bound for MIMO FIR models when 

output disturbances are white noises; Kosut (1986) derived an error bound for 
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SISO prediction error models; Goodwin and Salgado (1989) proposed a method for 

quantifying uncertainty in the estimation of simplified SISO models; Helmicki 

et al. (1989) studied the problem in a deterministic setting for SISO 

processes; Correa (1989) presented some discussion about the problem in the 

framework of prediction error method; Van den Boom et al. (1991) proposed a 

method of SISO process identification in the frequency domain, where the 

H -norm is used as error criterion, in a deterministic 'setting. The work on 
00 

this topic is as yet so limited that this shGft list almost completes the 

story. It seems that identification is not ready yet for its use in robust 

control, at least r.;){ ior IYlIMO processes. 

In this W\ir.: we will present an identification method for linear time­

invariant MIMO processes, in which a nominal parametrical model of the process 

can be estimated together with an upper bound matrix of the modelling errors 

in the frequency domain. The idea of this method was first proposed in Zhu 

(1987a, 1989a) for SISO processes, based on a newly developed asymptotic 

theory of black-box model identification in Ljung (1985) and Ljung and Yuan 

(1985). Because the asymptotic theory can be extended to the MIMO case and the 

result has a nice structure (Yuan and Ljung, 1984, and Zhu 1987b,1989b), the 

method can be generalized for MIMO processes in a straightforward way (Zhu, 

1987c, 1990). The method has been applied to analyze the robust stability of a 

2-input 2-output glass tube production process (Zhu, 1990, Zhu and Bach, 

1991). 

First we introduce an asymptotic theory of the MIMO prediction error 

method (Section 2); then, based on this theory, the identification procedure 

is presented in Section 3, where identification input design is also 

discussed. In Section 4 we propose a method for a frequency weighted 

Frobenius-norm model reduction, which is needed in deriving an optimal reduced 

order model. The problem of model order determination and structure selection 

will be treated in Section 5. Section 6 presents a simulation study. Section 7 

gives the conclusions of this work. 

2 Black-Box Models Identified by h _ .'ktion Error Methods 

In the previous decade, many sophisticated time domain parametric 

identification methods have been developed. Most of these techniques can be 

classified in the set of prediction error methods. Recenily, Ljung and Yuan 

developed an asymptotic theory on the frequency domain properties of 

prediction error models; d. Ljung and Yuan (1985), Ljung (1985), and Yuan and 

Ljung (1984). The MIMO version of the theory (Zhu, 1989b) will briefly be 

2 



presented. 

Consider a discrete time process with m inputs and p outputs. A general 

linear time-invariant model for the relationship between inputs and outputs 

can be written 

00 

y(1) = I. Gk·u(t-k) + v(t) (2.1) 
k=1 

where: y(t) is the p-dimensional column output vector at time 1; u(t) is the 

m-dimensional column input vector at time 1; (G kJ is the impulse response of 

the process, which is a sequence of pxm matrices; and ( v(t) J is a 

p-dimensional stochastic stationary process with zero mean values. 

When the unit time delay operator q.1 is introduced: 

q'IU(t) = u(t-I) 

the model (2.1) can be written as 

where 

y(t) = G(q)u(t) + v(t) 

00 k 
G(q) = I. Gk'q' 

k=1 
is called the transfer operator of the process model. 

The transfer function matrix of the model is defined as 

G(i~ = ~ Gk'e,irok 
k=1 

-1t $ ro $ 1t 

For the output disturbances, a common approach is to assume that they are 

mutually independent and generated as filtered white noises: 

(2.2) 

(2.3) 

(2.4) 

v(t) = H(q)e(t) (2.5) 

where 

H k is a sequence of pxp matrices with 

Ho = I p (pxp identity matrix) 

and (e(t) J is a p-dimensional white noise vector, mutually independent, with 

covariance matrix R = diag[R ... R ], where R. is the variance of (e.(t) J. 
I P 1 1 

Both H(q) and lfl(q) are stable. Then (v(t)} will be a stationary process with 

spectral density 

00 ••• 

= I. [E{v(t)vT(t)J]e'IClY1: = H(el~RH\e'l~ 
t=-oo 
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where E means expectation. T means transpose. H(iCf) is the transfer function 

matrix of H(q): 

H(iCf) = ~ Hk"e-irok 

k=o 
-It ~ OJ ~ It 

which is diagonal. 

(2_7) 

The identification problem is to estimate an approximate model from 

observed input-output data. Denote the data sequence by z!'I: 
z!'I := y(I). u(I) •......• yeN). u(N) (2.8) 

where N is the nu~ .. Je~ :If samples of the data sequence. 

If we ha', "parametrized model: 

y(t) = G(q.B)u(t) + H(q.B)e(t) (2.9) 

where B is a d-dimensional parameter vector. we can determine the one step 

ahead prediction: 

;(tiB) = [Ip - l1\q.B)]y(t) + 11
1
(q.B)G(q.B)u(t) (2.10) 

and compute the prediction error 

e(t.B) = yet) - ;(tiB) = 111(q.B)[y(t) - G(q.B)u(t)] (2.11 ) 

Then a common way to determine the parameters is to minimize the squared sum 

of the prediction errors 
(2_12) 

where 

N 
V~B) = k L eT(t.B)e(t.B) 

t=l 

and D nC Rd is the parameter space. Here the subscript N is to emphasize that N 

data samples are used for the estimation; the dimension of the parameter space 

d depends on the numbers of process inputs and outputs. the model order and 

the model parametrization. The model degree n will be defined in the 

following. 

The general MIMO black-box moo'" is defined as 

A(q)y(t) = F-1(q)B(q)u(t) + D-1(q)C(q)e(t) 

where A(q). B(q). C(q). D(q) and F(q) are polynomial matrices with dimension 

pxp. pxm. PXP. pxp and pxp respectively: 

4 
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A (q) = I + A q-I + ... + A q-n 
pin 

B(q) = Blq-I + ... + Bnq-n 

C(q) = I + C q-I + ... + C q-n } 
pin 

D(q) = I + D q-I + ... + D q-n 
pin 

F(q) = 1 + F q-I + ... + F q-n 
pin 

The assumption that output disturbances are mutually independent implies that 

A(q), C(q) and D(q) are diagonal matrices. 

(2.14) 

In order to have a unique representation of a given MIMO process, some 

structural conditions should be imposed on the general model (2.14). A natural 

way to do this is by letting F(q) be diagonal matrices. This arrangement 

decomposes the MIMO process into p MISO (multi-input single--{)utput) 

sub-processes where the i-th subprocess is given as 

A.(q)y(t) = rl(q)B(q)u(t) + D:I(q)C(q)e(t) 
11 II I 11 11 1 

(2.15) 

The parameter vector for model (2.14) is 

9 = col [AI BI CI 01 FI A2 B2 C2 02 F2··· An Bn Cn On Fn1 (2.16) 

The degree of this model is defined as the degrees of the polynomials which 

are equal to n. Note that, in general, this degree is not the same as the 

McMillan degree which is defined as the dimension of the minimal state space 

realization of the model. Generally, the McMillan degree of the model equals 

p·n. 

Various model parametrizations used in practice are special cases of this 

general model: 

(I) Box-Jenkins model, A(q) = I; 

(2) ARMAX model, F(q) = D(q) = I; 
(3) OE (output error) model, A(q) = D(q) = C(q) = I; 
(4) ARX (equation error) model, F(q) = D(q) = C(q) = I; and 

(5) finite impulse response (FIR) or Markov parameter model, 

A(q) = F(q) = D(q) = C(q) = I 

Hence the problem statement (2.9) - (2.16) can cover most of the time domain 

identification techniques in practice. Specific methods can be obtained by 

taking a specific model parametrization. 

After the parameter estimation, the transfer function estimates are 
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denoted as: 

GJ.li~ = G(a,i~ } 
HJ.li~ = H(a,ei~ 

Asymptotic Properties of the Transfer Function Estimates 

When the identified model is used in controller design, we are more concerned 

about the quality of the transfer function estimates than about the accuracy 

of parameters. The eO';mation of a transfer function matrix is basically a 

non-parametric r" . :_ul. Since the process is viewed as a black-box, the 

internal parametrization via 6 is merely a vehicle to arrive at this estimate. 

Then, it is natural to let the model order n depend on the number of observed 

data samples, n = n(N). Typically, in order to have a model set that is large 

enough to contain the true process dynamics, or to give a good approximation 

of the true dynamics, we will allow the order n to increase when the number of 

data samples N increases, but n should be small compared to N. This can be 

formally expressed by the following assumptions 

n(N) .. 00 (2.17) 

and 
as N .. 00 (2.18) 

Assume that the true process is described by 

y(t) = GO(q)u(t) + Jt'(q)e(t) (2.19) 

where GO(q) and Jt'(q) are the true transfer operators of the process and the 

disturbance. They are both assumed to be stable filters. Denote the true 

transfer function matrices as GO(i~ and Jt'(ei~. Then, for an open loop 

experiment, under some suitable conditions of the inputs, the following 

results hold: 

w.p.! as N .. 00 
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where colO denotes the vector operator on a matrix, EO denotes mean value, 

q, «(0) and q, «(0) are the spectrum matrices of the inputs and disturbances u v 
respectively, ·T means inverse and transpose, ® denotes the Kronecker product. 

Result (2.21) and (2.22) are the MIMO extension of the result of Ljung (1985); 

the proof can be found in Zhu (1989b). Similar results hold for closed loop 

experiments, which are not shown here. 

From (2.20)·(2.22) we can say heuristically that the errors of the 

transfer function estimates. have an asymptotically normal distribution; the 

covariance matrix of G at a given frequency is proportional to the 

(generalized) noise-to-signal-ratio at that frequency and inversely 

proportional to the number of data N; the covariance increases with the model 

degree n, not with the number of parameters d. We also find that different 

model parametrizations will have the same asymptotic properties. 

Because the expression of the covariance matrix is remarkably simple, this 

result is very useful in applications, as will be shown in the following 

sections. 

3 Nominal Model and Error Bounds 

In this section, we will propose an identification method which will deliver 

both a nominal model and an upper bound matrix of the modelling errors, using 

the asymptotic theory of Section 2. Also the input design problem will be 

treated. 

Because the theory in the previous section is asymptotic both in the 

number of data samples N and the model order n, the results will be valid if 

the number of data samples is large and the model order is high. But in 

practice low order models are used for simulation, prediction and controller 

design. So our approach is to start with a high order model estimation and 

then to apply model reduction techniques to arrive at low order models. This 

approach has its practical background. For industrial process identification 

and control, we may have a large amount of data; and we have to use high order 

models to initially fit the complex dynamics of the process, as we in general 

do not have detailed knowledge of process dynamics. We can avoid numerical 

problems by combining high order estimation and model reduction, cf. Backx 

(1987) and Wahlberg (1989). By this approach one also can simplify the step of 

model order determination and structure selection, which is a hard job for 

MIMO processes. Input design for high order models is an easy task; cf. Yuan 

and Ljung (1984). 
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3.1 An Algorithm for Estimating a Nominal Model with an Error Bound 

The asymptotic theory implies that the model parametrization is not a crucial 

issue for high order models. In this case the ARX model is the most simple 

parametrization which can supply both the process model and disturbance model. 

It is well known that the least squares estimation of ARX model parameters is 

a linear regression problem, which can be solved reliably with simple 

numerical techniques. Assume that an open loop experiment is performed; also 

assume that the inputs are mutually independent. The following steps are 

proposed: 

Step 1 EstiL.iLe the parameters of the ARX model with a high order, e.g. 

n = 20 - 30. The matrix A(q) has a diagonal form: 

A(q) = diag [ All (q) ... A pp (q)]. 

Then we have 

and the spectrum estimates of the disturbances are 

where R is the estimated covariance of the equation error residuals. 

(3.1) 

(3.2) 

Denote Gn.(ei~ and G"..(i~ as the (ij) element of G~li~ and GO(i~ 
1 J IJ N' 

respectively. Then according to (2.20) - (2.22), and remembering that the 

inputs are mutually independent, we have asymptotically 

{C:;li~ - G7li~} E ASN(O, ~~'(OO)<I>y(OO») 
J I 

(3.3) 

and we can define the 30' bound for {G~.(i~ - Gn.(i~} as 
IJ IJ 

IG~/i~ - G7j(i~1 ~ 3/ ~~'(oo)<I>y(OO) 
) I 

w.p.99.99% (3.4) 

where <I> (00) is the spectrum of u.(t), and <l>y(OO) is the spectrum of y.(t). 
u. J. 1 

J I 

Step 2 , Perform a ,model re<!uction on GZ<q) to obtain a low ?~der process 

model d(q), and on HZ<q) = Aiv'(q) to obtain a disturbance model H (q), where 

I means the low order. Model reduction by truncated balanced realization and 

by optimal Hankel norm approximation are two well known methods (Glover, 

1984). When the high order model is obtained by identification, a model 
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reduction method which can take the properties of the high order model into 

account will be preferred; cf., Wahlberg (1989). In the next section a method 

of frequency weighted Frobenius norm MIMO model reduction will be proposed 

which works on polynomial matrices. The order and structure selection for the 

low order model will be treated in Section 5. 
Define the modelling errors as 

\fi,j 

where (;l.(i~ is the (i,j) element of O! 1 i~. Then 
II N' 

The first term in (3.6) we call the bias part of the modelling errors and the 

second term the variance part of the modelling errors. Now 

From (3.4) it follows that, 

(3.5) 

(3.6) 

(3.7) 

w.p. 2! 99.99% (3.8) 

This is the basis for estimating the upper bound matrix. 

Step 3 Define the upper bound matrix 

il(ro) = {il(ro) J 
II 

(3.9) 

such that 

I ~.(i~ I ::; Ll(ro) 
lJ IJ 

\fi,j \fro (3.10) 

Finally we estimate Ll(ro) by 

(3.11) 

where Cf) u(ro) is calculated as the sample spectrum: 
I 
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and <l>v(ro) is given in (3.2). 
i 

N 
~ u.(t)u.(t-t») 

t = 1 ) ) 

·ion e 

• 

Remarks-If a good model structure is selected and a proper model reduction 

technique is used in Step 2, it is possible to obtain a low order model which 

is more accurate than the high order modeL In this case, the 3cr bounds will 

be the bounds for the errors of the low order model as welL Then the formula 

for the upper bol.>,,,1 hp.comes 

(3.llb) 

This bound tighter than that is given in (3.11). 

Notice that the probability of 3cr bound of a normal complex variable IS 

greater than that of a normal real variable. 

In formula (3.11) we note that the bias part of the modelling errors is 

caused by model reduction; the variance part can be affected by the input 

spectrum, the model order and the number of data samples which are design 

variables chosen by the user. If at some frequencies the modelling errors are 

too large for a specific application of the model, we know from (3.11) that we 

can reduce the modelling errors at those frequencies by: (I) performing 

another model reduction, (2) modifying the input spectrum (input design), (3) 

using more data (increase experiment time) and (4) reducing the model degree 

n. The last choice should be made with caution, because too Iowan order will 

introduce more bias. 

This type of algorithm can be applied also to closed loop experiments. In 

this case, use the expression of the asymptotic covariance matrix for closed 

loop experiments; see Zhu (1989b). 

This type of algorithm can also be used for a FIR model, see Zhu (1990). 

Here we prefer an ARX model to FIR mo..:_. because: (I) for modelling a given 

process the degree (see the definition in Section 2) and number of parameters 

of an ARX model are usually less than those of a FIR model; (2) a FIR model 

does not supply a disturbance modeL 
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3.2 Performing Input Design before any Identification and Control Test 

Input design is important in detennining the quality of an identified model. 

Conventional methods of optimal input design use the covariance of the model 

parameters as the measure of model quality (see Mehra, 1974). This methodology 

can not address directly the intended use of the model; and the calculation of 

the optimal input needs the true model which is not known. 

The problem of input design is very much related to the intended use of 

the model. Now let us assume that the model is used for controller design in 

an internal model control (see Morari and Zafrriou, 1989) which is a very 

suitable scheme for controlling e.g. an indusrrial process with time delays. 

In this control scheme, the identified process model is placed in parallel 

with the process, and the differences between the process outputs and 

simulated model outputs are fedback to the controller. Therefore a model which 

can optimally simulate the underlying process for certain given inputs will be 

most suitable for a internal model control scheme. 

Denote u'(t) as the control input to the process (the simulation input to 

the model) with spectrum <l>~(ro) (which, in general, is different from the 

spectrum of the input used in the identification experiment). Yuan and Ljung 

(1985) have shown that in the SISO case, the optimal input which minimizes the 

mean square of the simulation error for the high order model is given by 

<l>:P(ro) = ~/<l>~(ro)<l>V<ro)' (3.12) 

where ~ is a constant which is adjusted with respect to the constraint of 

input amplitude or output variance. This result agrees with our engineering 

intuition: it says that the process should be excited more at those 

frequencies where the simulation input has more power and where disturbances 

make more trouble. Notice that this spectrum is not related to the process 

transfer function. 

It can be shown (see Lenssen, 1988) that for MIMO processes, under the 

assumption that the input signals are mutually independent, the optimal input 

spectrum for the i-th input is given by 

p 
<l>~(ro)·I. <l>v(ro) 

i j = 1 j 

(3.13) 

Similarly, the optimal input spectrum for other uses, such as prediction, pole 

placement control design, can be derived; see Yuan and Ljung (1985), Gevers 

and Ljung (1986). 

Initially one might think that fonnula (3.12) or (3.13) is useless 
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because one does not know (us(t») before identifying the process, designing 

the controller and testing the closed loop control system. Examine a feedback 

control system in which the main goal of the control is disturbance reduction. 

Then the control input is the filtered disturbance 

u'(t) = T(q)v(t) (3.14) 

where T(q) is the unknown transfer operator from the disturbance to the input. 

The optimal input is (for SISO process) 

<f>~P(O) = J.1IT(ej~l<f>v(O) (3.15) 

Because T(q) is unknown, we can simply let T(q) = 1. Then we have a first 

approximation to :he optimal input: 

If T( ej~ is flat over the 

very good approximation. 

<f> u(O) = J.1<f> v(O) 

bandwidth of the disturbance 

(3.16) 

{v(t»), this will be a 

Similarly, for a MIMO process, we can have an approximation to the i-th 

input 

<f> (0) = J.1 ! <f> (0) (3.17) 
u. . V 

I J = 1 J 

If the number of inputs and the number of outputs of the process are equal and 

the decoupling technique is used in controller design, T(ej~ will be nearly 

diagonal. In this case, the approximation of the i-th optimal input signal is 

<f> (0) = J.1 u . 
• 

(3.18) 

Hence, the nearly optimal input spectrum can be derived without knowing the 

process model and the controller; the output disturbance (v(t») can be 

measured from the uncontrolled process when keeping the input constant. 

If some readers are still not convinced yet, let us look at the 

consequence of this input design method for model errors in the SISO case. 

Substituting (3.16) into (3.4), we obtain a constant 30 bound of the errors of 

the high order model as 

I GO(i~ - Gn(i~ I $ 3/ N ~ J.1 w.p. 99.99% 

This means that we will minimize, in a stochastic sense, the L -norm of the 
00 

errors of the high order model by using (3.16). This is not at all a bad 

choice. 

When taking into account other control requirements, such as setpoint 
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tracking and robust stability, the following modification of (3.16) is 

recommended: 

(3.19) 

Here <1>(00) is a spectrum which adds some energy to the input signal at 

frequency bands which are important for tracking and robust stability; ILl and 

IL are adjusted to meet the constraint on input amplitude or output variance, 
2 

and to weight the relative importance of the two terms. The spectrum can be 

realized by filtering a white noise signal or a PRBNS (pseudo random binary 

noise sequence) signal, with a filter which has the property that the square 

of the filter transfer function approximates the desired input spectrum given 

in (3.19). The modification for the MIMO case is the same. 

Thus we have a input design method which is not only very simple, but 

also most economical: the nearly optimal input signal can be determined by 

only measuring the output of the existing uncontrolled process. This makes the 

method very applicable. 

3.3 On the Use of the Upper Bound Matrix 

When a nominal model and an upper bound matrix are obtained by the methods in 

the previous subsection, the real process GO(i~, which is not completely 

known, can be described in the following class: 

GO(ei~ = G(ei~ + ~(eiOl) 

I ~.(eiOl) I S K .(00) Vi,j VOl } 
1 J 1 J 

(3.20) 

The upper bound matrix K(Ol) = (K..(Ol) J gives a structured description of the 
1J 

model uncertainty, because it preserves the multivariable nature of the 

problem: the amplitudes of the errors of each transfer function estimate are 

upper bounded by the elements of K(Ol) in the frequency domain, the only 

missing information are the phase angles of the errors ~(i~. 
It is known from linear algebra that 

(3.21 ) 

This means that the maximum singular value of the upper bound matrix is an 

upper bound of unstructured model uncertainty. 

Robust Stability Analysis Kouvaritakis and Latchman (1985) have developed 

a result which is most suitable for the stability test of the process given in 

(3.20). Denote C(i~ as the transfer function matrix of the feedback 
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controller, then the process defined in class (3.20) will be stabilized by the 

controller if and only if 

"VOl E (0, Ttl 

where cr(-) denotes the maximum singular value, and (i~ is omitted to save 

space. Here L and R are diagonal positive nonsingular scaling matrices which 

need to be determined frequency by frequency by some optimization procedure. 

Determining the Weighting Matrix for Il-Synthesis In Doyle's Il-synthesis 

(Doyle, 1984), the robust stability and robust performance can be analyzed and 

optimized simultaneously. In this framework, the model error ~(i~ matrix is 

rearranged in the tollowing way: 

GO(i~ W ~cW 
1 2 

where ~. is a diagonal matrix: 

~e = diag[~~l(i~, ~~l(i~, "', ... 

Notice that ~~.(i~ # ~ . .(i~. It can be shown that under this arrangement 
IJ IJ 

W, = [I In, W, = r K'K ], • = b"] 
m pl 

Now we are ready to use the Il-synthesis. 

Robust fault detection A robust fault detection method was proposes by 

Emami-Naeini et al. (1988) where they use an upper bound of the unstructured 

model uncertainty in the analysis and design of fault detection systems. The 

upper bound given in (3.21) can serve their purpose. 

4 Model Reduction of the Identified High Order ARX Model 

In the procedure proposed in Section 3.1, the low order model is obtained by 

model reduction. The existing popuiar methods, such as balanced model 

reduction and model reduction by Hankel norm approximation, are numerically 

simple, but they do not minimize a criterion .vhich is physically sensible. The 

properties of these methods in the frequency domain are not clear, except some 

upper bounds. In this section, a method of model reduction is proposed in 

which the asymptotic properties of the high order model will be taken into 

account 
From (2.20)----(2.22) we know that for each high order transfer function 
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estimate: 

(4.1) 

and for each disturbance model estimate: 

(4.2) 

We can view the high order ARX model as the noisy observations of the true 

process (Wahlberg, 1989). Because we know the asymptotic distribution of the 

high order estimates, it is natural to apply the maximum likelihood method to 

these observations to find the low order model. Denote d(q) and HI q) as the 

reduced order process model and disturbance model respectively, then using 

(4.1) and (4.2), it can be shown (Wahlberg, 1989) that the asymptotic maximum 

likelihood loss function of the process model is: 

(4.3) 

and the loss function of the disturbance model is 

(4.4) 

Minimizing these loss functions is equal to the frequency weighted Frobenius 

norm model reduction. Note that the weights in (4.3) and (4.4) are the 

inverses of asymptotic variances of the high order process model and 

disturbance model respectively. Hence frequencies where the high order model 

has small variance (error) will have a large weight in the estimation 

criterion; this is physically appealing. The direct minimization of these loss 

functions involves nonlinear optimization which is numerically difficult; we 

have not yet seen any efficient algorithm for MlMO models. 

Conventional model reduction methods calculate the parameters of the 

reduced model from the parameters of the high order model. The method proposed 

here takes another approach. We first simulate the high order model to 

generate the input/output data, and then calculate the reduced order model 

from the data. This can be called an identification approach to model 

reduction and the advantage of it will become clear soon. 
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·_-----

A Reduction of the Process Model 

Given the high order ARX model of the process: 

G~q) = [An(q)r I8n(q) 

where 

An(q) = diag[An (q) ... An (q)] 
II pp 

and 
[ 

8n (q) ... 8n 
(q) ] 

... 111m n . 
B (q) = :.. : 

An· 'n· 
B (q) ... B (q) 

. pi pm 

As mentioned br'~-~ :!;is is a diagonal form representation of the process 

model in which the model is decomposed into p MISO sub-models. 

Given the low order model of the process, also in a diagonal form: 

where 
, 

, I " 'I [II (q) .. -B 1m (q)] 
A (q) = diag [A (q) ... A (q)] and B (q) = ... . 

II pp . .• 
.... . ..... 

(q) .. .s (q) 
pI pm 

Notice that for the low order model there is a degree, denoted by Ii, for each 

(4.5) 

(4.6) 

MISO sub-model; in general the degrees of various MISO sub-models are 

different. Here I only means the low order model which is not the degree of 

it. 

We propose the following 

Procedure 4.1 

For the i-th MISO sub-model: 

Stage 1 Simulation. Collect the inputs, (u(t), t = 1, ... ,N), which have 

been used in the identification experiment. Filter the inputs by the inverse 

of the disturbance model ljHn(q) = An. (q). Then simulate the i-th MISO high , , 
order sub-model using the filtered inputs: 

; (t) = 1 [8n (q) ... jJ" (q)][An (q)u(t)] (4.7) 
, An () II 1m .. 

ii q 
This is equivalent to 

; (t) = [8n (q) ... 8n (q)] u(t) 
I 111m 

(4.8) 
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which is simpler. Thus we obtain the input/output data of the i-th MISO 

sub-model: 

where 

Z; := ;i(I), ur,I(1), ... , ur,m(1), ... , ... ,y(N), Ur,I(N),·· ur,m(N) 

U (f) = A n(q)U(f) 
r " 

Stage 2 SteigIitz-McBride iteration. The algorithm was proposed by 

Steiglitz and McBride (1965), which can be seen as an approximation of the 
Ak Ak Ak 

output error method. Denote A .. (q) and B .I(q), ... , B. (q) as the estimates of 
11 1 1m 

the low order i-th MISO sub-model at iteration k. First filter the inputs 
Ak 

U (t),··,ur (t) and the output y.(t) by IjA .. (q). Then refined estimates 
A'.t4- ,m A k+ A k+ 1 " 

A . . I(q) and B. \q), ... , B. I(q) are obtained by minimizing 
1 I 111m 

0'+1 = I N {Ak+1 [y i (f) ] . N L .. (q) -kr---
1 f=1 11 A () 

ii q 

A U (t)}2 
_ ... _ Bk+l(q) [ k r ,m ] 

1m Ak ( ) 
ii q 

Denote ek+ I as the parameter vector of Ak+l(q) and iJk+l(q), ... , iJk+l(q): 
1 II 111m 

Ak+1 _ [Ak+l Ak+1 i/+I Ak+1 Ak+1 Ak+1 T 
8. - a .. I,···,a .. /., ·1 1,··,b· 1 I·,···,.··,b. I,··,b. I.] 

1 II, 11,1 1, 1,1 1m, 10l,1 

and denote the data vector as 

A 

Ak _ [-y ,<t-I) -y i (t-li) 
<p(t.9) - k , .. " k 

1 Aii(q) A)q) 

U (f-I) U (f-li) 
---,;-,~ k];=' '--- ,"', ~! ki;" --

A(q) A .(q) 
I I I 1 

U r ,~t-I) ... U r ,~t-li) ] 
,Ak ,'Ak 

Aii(q) Aii(q) 

Then (4.9) is a linear least squares problem and its solution is 

Ak+1 
9. 

1 

If i < p go to Stage I, else stop. 

The initial estimate 

(4.9) 

(4.10) 

• 

The most simple way of initialization is to perform a normal equation error 
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least squares on the data. This implies the prefilter AO~ = 1 in (4.9). 
"k 11" 

The filter If A .. (q) will be mostly a lowpass filter, so is 1/:4n.(q) where 
'" 11 11 

A n.(q) is from the high order model. Hence we can initialize the iteration by 
11... ... 

setting AO.(q) = An.(q). 
11 11 

It has been experienced that a (frequency weighted) balanced model 

reduction or a (frequency weighted) Hankel norm approximation can deliver 

"good" reduced order models. Hence the third choice of initialization is to 

use the A..(q) polynomial from one of these models. 
u 

The convergence properties 

The model reduction nroblem (4.9) and (4.10) is an identification problem in 

which the data are noise free, but the model order is lower than the order of 

the process. In the literature there is no theoretical result on the 

convergence properties of the Steiglitz-McBride method when the model order is 

lower than that of the process. Our experience shows that the algorithm always 

converges when used in model reduction. The same finding was reported by Fan 

and Jenkins (1986) who use the method for adaptive filtering. We feel that 

these are not just coincidences. Before any theoretical result can be 

developed, let us propose the following 

Conjecture 4.1 Assume that the inputs are persistently exciting, that is, 

~<p(t,ak)T<p(t,ak) is nonsingular, and 
t = 1 I 1 

"k If A .. (q) is stable for all k. Then the 
" 

iteration (4.9) and (4.10) converges. 

We welcome interested researchers to prove this, or to find a counter example. 

The loss function in the frequency domain 

Assume that the algorithm converges at iteration k+ 1. Then the loss function 

in (4.9) becomes 

_It liN { m" "['" }2 V~+ = N L L [Gn(q) - G(q)]An(q)u(t) 
• t = 1 j = 1 . ) 'J .. J 

Letting N ~ 00, applying Parseval's identity and remembering that ut(t), 

u (t) are mutually independent, one can show (see Ljung, 1987) that 
m 
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0+1 = r 1 
i j=l2lt 

-It 

This is precisely the loss function of the asymptotic maximum likelihood 

estimation (4.3) for the i-th MISO sub-model, except that Jt'..(ei~ has been 
... ",. 11 

replaced by the high order estimate H".(e'~ = IjAn.(e'~. 
11 11 

B Reduction of the Disturbance Model 

Given the high order disturbance model 
iIn(q) = [An(q)rl = diagrrAn (q)rl [An (q)rl] 

Ll II pp 

(4.11) 

which is diagonal, we want to find the reduced order model in the following 

form 

C (q) 
• pp ] 

D (q) 
pp 

where , 
• -Ii 

+ c··lq D, , , 

D .. (q) = 1 + d q.1 + ... + d q.li 
u ii,l fi,ii , 

with Ii being the order of the i-th disturbance model which can be different 

from Ii, the order of the i-th sub-model of the process. Because iIn(q) and 

iii (q) are diagonal, we have p SISO model reduction problems. 

For the i-th sub-model: 

(4.12) 

Stage 1 Simulation. Generate a zero mean white noise sequence (e(t), 

I = 1, "', N}. Filter e(l) by the inverse of the disturbance model 

IjiIn(q) = An. (q). Then simulate the i-th SISO high order sub-model of the .. 
disturbance using the filtered white noise 

v. (t) = n 1 [A~. (q)e(l)] 
, A () .. 

ii q 

This is equivalent to 

v. (t) = e(t) , 
which is simpler. Thus we obtain the input/output data of the i-th SISO 

sub-model: 

z!" := ~.(1), e
f
(1), ... ,~.(N), ef(N)· " , 
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where 

ef(t) = An.(q)e(t) 
11 

Stage 2 Steiglitz-McBride iteration. This is similar to the iteration for 

the process model reduction, and we will not repeat it. 

Following the same argument as for (4.11), we can show that the proposed model 

reduction method for the disturbance model minimizes the following loss 

function 

1 
Z1t 

when N ~ 00. This is precisely the loss function of the asymptotic maximum 

likelihood estimation (4.4) for the i-th SISO sub-model· of the disturbance, 

except H"..(ei"1 being replaced by the high order estimate 
A • 11 A • 

Hn(el"1 = IjAn(el"1. 
11 11 

In this section an asymptotic maximum likelihood model reduction technique is 

proposed, where the low order models of the process and the disturbance are 

calculated from the simulated data of the high order models. The advantages of 

the technique are: (1) it minimizes a criterion which is physically sensible, 

(2) it is numerically simple, and (3) it can cope with MIMO models. This makes 

the method suitable not only for model reduction of identified high order 

models as in this work, but also for other purposes such as model reduction of 

theoretical (Physical) models and controller reduction. 

5 Model Structure Determination 

Before performing model reduction as proposed in the previous section, the 

orders of the p MISO sub-models, {It, ... , lpl, need to be determined. This 

set of indices defines the model structure of the MIMO process model (4.6). 

Model order and structure selection is a central issue in system 

identification. Many researchers have put their attention on this topic, and 

there exists a multitude of methods for model order/structure selection; see 

Stoica et al. (1986) and Janssen (1988) for recent overviews. Most of the 

existing methods assume that the true process belongs to a set of candidate 

model structures and try to find a 'right' structure. This assumption, 

however, is neither likely to be fulfilled in practice, nor is it necessary 
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for applications such as simulation, prediction and control. What we want is a 

model structure which gives a suitable approximation of those process features 

in which we are interested for the underlying application. Other difficulties 

of many proposed methods are: they are computationally costly, especially for 

MIMO processes; and they are numerically not reliable, they can fail to find 

the best or a 'right' structure when some minimization algorithm stops at a 

local minimum. Some numerically simple methods exist, but usually they do not 

use a criterion which is physically sensible. 

Here we will propose a method of model structure selection for the low 

order model (4.6), based on the asymptotic theory in Section 2 and some 

physical intuition. The advantages of the method are: (1) it uses frequency 

domain measures in determining the model structure, and (2) it is numerically 

simple and reliable. 

Our idea of order/structure selection is: chose the order such that the 

variance part and bias part of the errors (see (3.6» are approximately equal. 

The reasoning behind this idea can be explained as follows: (loosely 

speaking) suppose that the high order model has 10% error, it is only possible 

to find the true model if the low order model can deviate from the high order 

model with 10%. If we let the variance part and the bias part of the errors to 

be approximately equal, we get the following: 

A MIMO model structure selection rule 
For the i-th sub-model: Perform model reduction with various orders and select 

the lowest order, Ii, such that in the frequency range which is important for 

control system design: 

(5.1) 

The relation (5.1) can be called bias/variance equivalence principle. This 

selection can be done simply by visual inspection. Applying the order 

selection rule (5.1) to each MISO high order sub-model; then we can determine 

the structure of the low order MIMO model. 

The same idea can be applied for determining the orders of the 

disturbance model. 

Remarks-In this work we look at the identification problem as approximate 

modelling. Hence we do not intend to find the 'right' model structure; instead 
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we want to find a model structure such that the reduced order model will have 

smallest errors in the important frequency range. The consequence of this 

philosophy is that the selected order can be either lower or higher than the 

, true' order of the process. 

In this selection rule, the order to be selected is related to the noise­

to-signal ratio, to the experiment time and to the order of the high order 

model. This is again physically sensible. 

If one finds that the visual inspection according to (5.1) is not 

scientific enough, we suggest to use the weighted Frobenius norm; this can be 

done by integrating the both sides of (5.1) over the frequency range which is 

important for control system design. 

The final model obtained by our method is given in polynomial matrix 

description in a diagonal form; and the process is decoupled into MISO 

sub-processes. This is a Box-Jenkins model. This model can be directly used 

for controller design by using the polynomial method; see Kucera (1979). The 

model can also be converted to a state space realization for the use in 

control system analysis and design. Generally speaking, the McMillan degree of 

the model equals the sum of the degrees of the MISO sub-models; in this case 

the diagonal form description is called irreducible. It possible, however, 

that a diagonal form polynomial matrix description is not irreducible, i.e., 

the sum of the degrees of the MISO sub-models is greater than the McMillan 

degree of the model. If this happens, the minimal realization technique can be 

used to eliminate the extra states. 

6 A Simulation Study 

In this section, a simulation study is performed in order to validate the 

identification method proposed in the previous sections. The model of a glass 

tube production process is used for the the simulation study. Two variables 

need to be controlled for this process: diameter of the _ tube and the wall 

thickness of the tube; two variables are chosen as the control inputs: drawing 

speed and pressure of the blowing gas. Thus this is a 2-input 2-output 

process. The identification and control of this process has been studied in 

Backx (1987); see also Backx and Damen (i ~39). The model is given in a state 

space realization with McMillan degree 6. In this study that model is used as 

the true process and the input/output data are generated .by simulation. Fig. 

6. I shows the transfer functions (amplitudes) of the process. The output 

disturbances are colored noises which are generated by filtering two white 

noises by two lowpass filters. The power of the disturbances IS 10% of the 
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power of the correponding outputs The inputs are generated according to the 

input design method (3.17). 2000 data samples are used in the identification. 

High order ARX model estimation. An ARX model with degree 30 is estimated in 

this step. In Fig. 6.1the transfer functions (amplitudes) are compared with 

those of the process. 

As mentioned before, the errors of this high order model will be called 

the variance part of the modelling errors. The 30 bound of the variance part 

of the errors are calculated according to (3.4), and they are plotted together 

with the errors in Fig. 6.2. The error is defined as the absolute value of the 

difference between each true transfer function and that of the model. We see 

that the 30 bounds cover the errors almost entirely except some frequency 

points. 

Model order reduction and model structure selection. The model reduction 

method in Section 4 is used for calculating the low order models. The 

Steiglitz-McBride iteration converges in the calculations of all the low order 

models. For the 4th degree model, the iteration converges at iteration 3; for 

the 5th degree model, the iteration converges at iteration 15. 

According the model structure selection rule (5.1), the structure (4, 4) 

is the best choice. In Fig. 6.3, the errors of the models of structure (4, 4) 

and (5, 5) are compared. We find that the model quality of the structure 

(4, 4) is indeed better than that of structure (5, 5). 

In Fig. 6.4 the errors of the low order model with structure (4, 4) are 

compared with the errors of the 30th degree ARX model. We note that the low 

order model has a better quality. 

In Fig. 6.5 the errors of the low order model with structure (4, 4) are 

compared with the errors of the low order model with structure (4,4) that are 

obtained by performing the balanced model reduction on each 25th degree MISO 

models. There is a sharp distinction between the performances of the two 

methods of model reduction. 

Upper bound matrix. Formula (3.11) is used to calculate the upper bound 

matrix for the model with structure (4, 4); and the upper bounds are plotted 

together with the errors of the model in Fig. 6.6. We see that the bounds 

become loser than the 30 bound for the variance; compare Fig. 6.2. As remarked 

in Section 3, if a good model structure is selected and a proper model 

reduction is performed, then the errors of low order model will be in general 
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smaller than the errors of the high order model; in this case the 3cr bounds 

can be used as the total bounds. In Fig. 6.7 the errors of the low order model 

with structure (4, 4) are plotted together with the 3cr bounds. We find that 

indeed the 3cr bounds can be used as the total bounds, except the transfer 

function (1, 1) at very low frequencies where the model reduction does not 

function very well; see Fig. 6.4. 

7 Conclusions 

Several fundamental problems in MIMO process identification, such as input 

design, model order and structure selection, and model uncertainty have been 

treated in this paper. Also an identification approach to model reduction has 

been proposed. The method of input design presented addresses directly the 

intended use of the model, and at same time it is very simple and economical. 

A method has been proposed for identifying a nominal model of a MIMO process, 

together with an upper bound matrix of the modelling errors in the frequency 

domain. This is motivated by the development in robust control theory. The 

identification method is based on recent results on identification combined 

with our physical intuition. The applicability of our method relies on the 

fact that in all the steps the method uses criteria which are physically 

sensible; at the same time the computations needed are simple and reliable. 

The method has been validated by a simulation study. Note that this method IS 

not only valid for finite dimensional processes. It can also be used for the 

identification of infinite dimensional processes, if we start with a 

sufficiently high order model. Now we are ready for real applications. 
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Fig. 6.1 Transfer functions (amplitudes) of the process (solid line) and 

transfer functions (amplitudes) of the high order model (dashed 
line). 
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Fig. 6.2 The errors of the high order model (variance part) (dashed 

line) and the 3cr bounds (solid line). 
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Fig. 6.3 The errors of the model with structure (5,5) (solid line) and 

the errors of the model with structure (4,4) (dashed line). 

30 



Errors of 04 11 and 030 11 0.2 r-==r-=-~-r--==:"=r-=----, 

0.15 

0.1 

4 

Frequency [rls] 

Errors of 04 21 and 030 21 0.2 r-==r"=':~-'r-=:"=r-=---, 

0.15 

0.1 

0.05 

" " .. , , , , 
, I " , , ' 

, r ~ ~\ 
~: ,~ : ~" ,. 

\I \, I ," I 

" ... ' \, ..... \,' o L.I..--":--====::::±~~_-.J 
012 3 4 

Frequency [rls] 

Errors of 04 12 and 030 12 0.1 r-==r-=-=-=----T"'-="'-""P-='--, 

0.08 

0.06 I~ ", 
I, " 
:,: I 

• I ~ t : " " ,'" : :: I: ~ 
\ I"'" I \, ',' :: " 
I I \ I ~ I, /' 

~
\ :', " I, :,'\ I 

" I ' " .' I I 

, I,' I ~ 
O~--~----~--~~--~ 

0.04 

0.02 

o 1 2 3 4 

Frequency [rls] 

Errors of 04 22 and 030 22 0.2 r--"="'-;'-"'-''-'''-';:='''''-'''T~'''---, 

0.15 

0.1 

0.05 

1 2 3 4 

Frequency [rls] 

Fig. 6.4 The errors of the model with structure (4,4) (solid line) and 

the errors of the high order model (dashed line). 
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by balanced model reduction (dashed line). 

32 



ERR 11 BN011 0.25 ~-----.!~~¥'-'-'-'~~-~ 

0.2 

0.15 • 

0.1 

• 
• 

• · • 
0.05 ~. 

• • 
~-------

OL--~~~==~--~-~ 

o 1 2 3 4 

Frequency [rls] 

ERR 21 BN021 0.4 .--.---,E~~~~~------, 

0.3 

0.2 

.. · . 0.1 : .. r.· ' .. , ., --, 
OL------L-~-~~== __ ~ ____ ~ 
o 1 2 3 4 

Frequency [rls] 

ERR 12 BND12 0.3 ~-----.!=~¥'-'-'-'''-'-''~-~ 

0.2 

0.1 
.' ., 
.' .' •• o I '..- .. ---- -------------------

o 1 2 3 

Frequency [rls] 

4 

ERR 22 BN022 0.4 ..-------.'="-"'''1-'''-'-'-''=.----, 

0.3 

0.2 

0.1 .. \ 
III , 
n. , 
III , 
• II ..... _ 

O' --------- -------- -
o 1 2 3 

Frequency [rls] 

4 
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