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SUMMARY

Multivariable regression models are powerful tools that are used frequently in studies of clinical outcomes.
These models can use a mixture of categorical and continuous variables and can handle partially observed
(censored) responses. However, uncritical application of modelling techniques can result in models that
poorly fit the dataset at hand, or, even more likely, inaccurately predict outcomes on new subjects. One must
know how to measure qualities of a model’s fit in order to avoid poorly fitted or overfitted models.
Measurement of predictive accuracy can be difficult for survival time data in the presence of censoring. We
discuss an easily interpretable index of predictive discrimination as well as methods for assessing calibration
of predicted survival probabilities. Both types of predictive accuracy should be unbiasedly validated using
bootstrapping or cross-validation, before using predictions in a new data series. We discuss some of the
hazards of poorly fitted and overfitted regression models and present one modelling strategy that avoids
many of the problems discussed. The methods described are applicable to all regression models, but are
particularly needed for binary, ordinal, and time-to-event outcomes. Methods are illustrated with a survival
analysis in prostate cancer using Cox regression.

1. INTRODUCTION

Accurate estimation of patient prognosis is important for many reasons. First, prognostic
estimates can be used to inform the patient about likely outcomes of her disease. Second, the
physician can use estimates of prognosis as a guide for ordering additional tests and selecting
appropriate therapies. Third, prognostic assessments are useful in the evaluation of technologies;
prognostic estimates derived both with and without using the results of a given test can be
compared to measure the incremental prognostic information provided by that test over what is
provided by prior information.' Fourth, a researcher may want to estimate the effect of a single
factor (for example, treatment given) on prognosis in an observational study in which many
uncontrolled confounding factors are also measured. Here the simultaneous effects of the
uncontrolled variables must be controlled (held constant mathematically if using a regression
model) so that the effect of the factor of interest can be more purely estimated. An analysis of how
variables (especially continuous ones) affect the patient outcomes of interest is necessary to
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ascertain how to control their effects. Fifth, prognostic estimation is useful in designing random-
ized clinical trials. Both the decision concerning which patients to randomize and the design of
the randomization process (for example, stratified randomization using prognostic factors) are
aided by the availability of accurate prognostic estimates before randomization.? Lastly, accurate
prognostic models can be used to test for differential therapeutic benefit or to estimate the clinical
benefit for an individual patient in a clinical trial, taking into account the fact that low-risk
patients must have less absolute benefit (lower change in survival probability).?

To accomplish these objectives, analysts must create prognostic models that accurately reflect
the patterns existing in the underlying data and that are valid when applied to comparable data in
other settings or institutions. Models may be inaccurate due to violation of assumptions,
omission of important predictors, high frequency of missing data and/or improper imputation
methods, and especially with small datasets, overfitting. The purpose of this paper is to review
methods for examining lack of fit and detection of overfitting of models and to suggest guidelines
for maximizing model accuracy. Section 2 covers initial steps such as imputation of missing data,
pre-specification of interactions, and choosing the outcome model. Section 3 has an overview of
the need for data reduction. In Section 4, we discuss the process of checking whether a hy-
pothesized model fits the data. In Section 5, measures of predictive accuracy are covered. These
are not directly related to lack of fit but rather to the ability of the model to discriminate and be
well calibrated when applied prospectively. Section 6 covers model validation and demonstrates
advantages of resampling techniques. Section 7 provides one modelling strategy that takes
into account ideas from earlier sections and lists some miscellaneous concerns. Most of the
methods presented here can be used with any regression model. Section 8 briefly describes some
statistical software useful in carrying out the strategy summarized in Section 7. Section 9 has
a detailed case study using a Cox regression model for time until death in a clinical trial studying
prostate cancer.

2. PRELIMINARY STEPS

Before analyses begin, the researcher must specify the relationships of interest and define and
assemble the response variable and the potential predictors. At this point a frequent problem is
the extent of missing data. Some methods of dealing with missing data are given in References
4-7. Deletion of cases with missing predictors causes bias and increased variance. Even though
caution should be taken when imputing missing values, it is usually better to estimate selected
data values than to delete an entire subject’s record. Simple methods of imputation include the
use of the median, mean, or mode for missing values. This method is biased and inefficient when
predictors are correlated with one another.* Deriving customized regression models for predic-
ting each predictor from all other predictors is a better method. Kuhfeld® has implemented
a general imputation method that allows predictors to be non-linearly (and even non—monotoni-
caily) related to one another. This method has been modified by Harrell and implemented in the
S-Plus transcan function (Section 8), which yields stable imputations even when the fraction of
missing values is quite large. In some cases, surrogate predictors, not intended to enter the model
directly, are assembled to assist in imputing missing predictors in the model.

It is important that maximum information be extracted from predictors and response. Because
of this and because of problems with data reliability, when one has a choice of describing
a concept with a categorical variable or a continuous one, the continuous one is preferred. Subject
matter knowledge should guide the selection of candidate predictors. Early deletion of those with
little chance of being predictive or of being measured reliably will result in models with less
overfitting and greater generalizability.
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Plausible interactions should be carefully chosen because of problems of multiple parameters
(see reference 9 for additional thoughts on interactions). Certain types of interactions that have
frequently been found to be important in predicting clinical outcomes and thus may be pre-
specified are:

1. Interactions between treatment and the severity of disease being treated. Patients with little
disease have little opportunity to receive benefit.

2. Interactions involving age and risk factors, Old subjects are generally less affected by risk
factors. They have been robust enough to survive to their current age with risk factors
present.

3. Interactions involving age and type of disease. Some diseases are incurable and have the
same prognosis regardless of age. Others are treatable or have less effect on younger
patients.

4. Interactions between a measurement and the state of a subject during a measurement. For
example, left ventricular function measured at rest may have less predictive value and thus
have a smaller slope versus outcome than function measured during stress.

5. Interactions between calendar time and treatment. Some treatments evolve or their effec-
tiveness improves with staff training.

6. Interactions between quality and quantity of a symptom.

Careful fitting of a statistical model is essential so that interactions, if present, represent biologic
phenomena rather than general lack of fit of the model.

A tentative choice of the statistical model is sometimes based on previous distributional
examinations, but it is frequently based on maximizing how available information is used. Binary
and ordinal logistic models!®!3 are frequently used for discrete completely assessed outcomes,
and the Cox proportional hazards model'*!% and parametric survival models'® are frequently
used for censored time-to-event data. It is quite common to change the model after initial
modelling of predictors, because only then can adjusted distributional properties of Y and joint
properties of X and Y be assessed (Section 4.3).

3. DATA REDUCTION

Multivariable statistical models when developed carefully are excellent tools for making prognos-
tic predictions. However, when the assumptions of a model are grossly violated or when a model
is used unwisely for a given patient sample, the performance of the model may be poor. For
example, when the analyst has fitted not only real trends that further data would support, but in
addition has fitted idiosyncrasies in the particular dataset by analysing too many variables, the
model may predict inaccurately for a new group of patients. Only with appropriate model
validation can an apparently accurate model be shown to be inaccurate.

In developing a set of predictions based on 100 patients, no analyst would divide the patients
into 50 subgroups and quote the average outcome for each subgroup. Yet many articles have
appeared in the clinical literature where 20-50 variables were analysed on 100 patients. Re-
searchers apparently do not realize that when many predictor variables are analysed, variable
screening based on statistical significance and stepwise variable selection involve multiple
comparisons problems that lead to unreliable models. These methods are therefore not viable for
data reduction (see Reference 17 for a condemnation of stepwise variable selection).

The situation is actually worse than merely considering the number of predictors. If the analyst
used associations with Y to entertain non-linearities in the predictors or interaction terms, these
constructed variables need to be counted (see Table II for an example). We speak of the total
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predictor degrees of freedom (d.f), p, as the total number of parameters (columns of the design
matrix) examined during the course of analysis, excluding intercept term(s). If graphical or other
informal analyses are used to guide the analysis, it is difficult to define p — one needs to estimate
the effective number of parameters considered according to the flexibility of fits that were
considered.® The quantity p is the effective number of parameters aliowed for consideration, that
is, the number of regression coefficients estimated formally or informally without algebraic
restrictions.

To enhance the accuracy of a model, the number of variables used must be reduced or the
model must be simplified unless the sample is large. Unless a formal penalized estimation
technique is used,'® multiple comparisons problems that arise from ‘peeking’ at the outcome
variable must be eliminated; data reduction methods must be used that do not utilize the outcome
variable. Harrell et al.>® discussed some available data reduction methods and two regression
modelling strategies based on these methods that yield reliable models. They suggest as a rough
rule of thumb that in order to have predictive discrimination that validates on a new sample, no
more than m/10 predictor d.f. p should be examined to fit a multiple regression model, where m is
the number of uncensored event times (for example, deaths) in the training sample (the sample
used in fitting the model). For binary outcomes m is the number of patients in the less frequent
outcome category. If p > m/10, a data reduction technique such as principal components,
variable clustering, or deriving clinical summary indexes2°23 should be used until the number of
summary variables to use as candidates in the regression analysis is less than m/10.

Smith et al.?* found in one series of simulations that the expected error* in Cox model
predicted 5-year survival probabilities was below 0-05 when p < m/20 for ‘average’ subjects and
below 0-10 when p < m/20 for ‘sick’ subjects. For ‘average’ subjects, m/10 was adequate for
preventing expected errors > 0-1.

Better and more general than any of these rules is the reduction of d.f. using a shrinkage
method (Section 5.4).

4. VERIFYING MODEL ASSUMPTIONS: CHECKING LACK OF FIT
4.1. Linearity assumption

In their simpiest forms, all usual regression models assume that for a certain scale of Y, each
predictor variable X is linearly related to Y. In the logistic regression model for binary responses,
the initial assumption is that an X is linearly related to the log odds of response (log[ P/(1 — P)],
where P is the probability of response) for patients subgrouped by values of X. In the Cox
proportional hazards survival model, one initially assumes that at each time ¢, log[ — log(S(¢))]
and equivalently logA(t) are linearly related to X, where S(t) is the probability of surviving until
time ¢t and A(z) is the hazard function or instantaneous event rate at time ¢. It is easy to envision
cases where strong violations in the linearity assumption (say a U-shaped age relationship) will
result in erroneous predictions.

A direct way to check the linearity assumption, and to determine how to transform a specific
X if necessary, involves expanding X into multiple terms that can flexibly fit any smooth
relationship. The extra terms can be statistically tested to assess the adequacy of a linear
relationship, and the terms in toto can estimate the true transformation of X that would result in

* Absolute difference between predicted and actual S-year survival probabilities in a simulation study with known
survival functions
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a linear relationship with Y. A common choice of expansion is to add X? and perhaps higher
powers of X to the model. A more flexible approach is the use of piecewise linear regression or
piecewise cubic polynomials (spline functions). See references 25-27 for methods of fitting such
functions.

As an alternative, smoothed residual plots can be used to determine the functional form for
each predictor. For binary logistic models, smoothed partial residual plots!3:28:29 are useful, and
for the Cox model, smoothed martingale residuals plots detect regression shape departures.3°
Partial residuals in logistic models are particularly computationally efficient, as the analyst can fit
a simple model that is linear in all predictors and then use the residuals to obtain estimates of the
true functional forms. However, the plot for each predictor does assume that the other predictors
operate linearly and that all predictors are additive (see below). The usual martingale residual
plot for the Cox model provides an estimate of the departure from linearity for the predictor.

4.2, Additivity assumption

A further assumption of most regression models is additivity of effects of the predictors (lack of
interaction). Interactions can be tested and described by adding cross-product terms. It must be
borne in mind that interactions can take the form of a change in shape (for example, linear age
relationship for males, quadratic for females), so the cross-products needed in the model are not
always simple ones.

The number of possible cross-product terms is usually so large (especially when variables have
non-linear or multiple dummy variable components) that the predictors to check for additivity
must usually be specified before examining the data. Otherwise, type I errors and overfitting will
be significant problems. A compromise solution is to do pooled interaction tests. For example, in
a model with predictors age, sex, and dose, one may test all second-order interactions involving
age, all interactions involving sex, and all involving dose. A combined test of all two-way
interactions is also useful. If a pooled test is not significant, it may be unwise to pursue significant
component interactions.

4.3. Distributional assumption

The previous sections dealt with the proper specification of the X-structure of the model. Once
the analyst has determined which predictors are to be used and how they should be represented in
the model, most models have distributional assumptions that also need verification. The Cox
model does not assume anything about the survival function S(¢} across ¢ for an individual, but it
does assume how survival curves for different subjects are related. Specifically, it assumes that
log[ —log(S())] for different subjects are equidistant over time, or equivalently that hazard
functions for any two subjects are proportional over time. This proportional hazards assumption
can be checked using smoothed plots of a special type of residual from the model called the
Schoenfeld residual.3!-32 It can also be checked using hazard ratio plots, plots of modelled versus
stratified estimates,' and several other methods.3 Unlike the Cox model, fully parametric models
(for example, Weibull or log-normal survival models) have a distributional assumption even when
there are no covariables. If the form of S(¢) does not fit the data for these models, estimates of S(¢)
will be inaccurate.

* That s, a Cox model is fitted with the variable in question appearing as a covariate for which regression coefficient(s) are
estimated, then a second model is fitted where that variable is used as a stratification factor that modifies the underlying
survival function (but which does not have regression coefficients).
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5. QUANTIFYING PREDICTIVE ACCURACY

There are at least three uses of measures of predictive accuracy:

1. To quantify the utility of a predictor or model to be used for prediction or for screening to
identify subjects at increased risk of a disease or clinical outcome.?

2. To check a given model for overfitting (fitting noise resulting in unstable regression
coefficients) or lack of fit (improper model specification, omitted predictors, or underfitting).
More will be said about this later.

3. To rank competing methods or competing models.

The measures discussed below may be applied to the assessment of a predictive model using the
same sample on which the model was developed. However, this assessment is seldom of interest,
as only the most serious lack of fit will make a model appear not to fit on the sample for which it
was tailor-made. Of much greater value is the assessment of accuracy on a separate sample or
a bias-corrected estimate of accuracy on the training sample. This assessment can detect gross
lack of fit as well as overfitting, whereas the apparent accuracy from the original model
development sample does not allow one to quantify overfitting. Section 6 discusses how the
indexes described below may be estimated fairly using a validation technique.

8.1. General notions

In the simplest case, when the response being predicted is a continuous variable that is measured
completely (as distinct from censored measurements caused by termination of follow-up before all
subjects have had the outcome of interest), one commonly used measure of predictive accuracy is
the expected squared error of the estimate. This quantity is defined as the expected squared
difference between predicted and observed values, that is, the average squared difference between
predicted and observed values if the experiment were repeated infinitely often and new estimates
were made at each replication. The expected squared error can also be expressed as the square of
the bias of the estimate plus the variance of the estimate. Here bias refers to the expected value of
the estimate minus the quantity being estimated, such as the mean blood pressure. The expected
squared error is estimated in practice by the usual mean squared error.

There are two other terms for describing the components of predictive accuracy: calibration
and discrimination. Calibration refers to the extent of bias. For example, if the average predicted
mortality for a group of similar patients is 0-3 and the actual proportion dying is 0-3, the
predictions are well calibrated. Discrimination measures a predictor’s ability to separate patients
with different responses. A weather forecaster who predicts a 0-15 chance of rain every day of the
year may be well calibrated in a certain locality if the average number of days with rain is 55 per
year, but the forecasts are uninformative. A discriminating forecaster would be one who assigns
a wide distribution of predictions and whose predicted risks for days where rain actually occurred
are larger than for dry days. If a predictive model has poor discrimination, no adjustment or

! Often one wishes to designate a model as ‘minimally acceptable’ on the basis of some statistic, but in many cases it is
only possible to judge a model’s accuracy relative to another model. For example, a model for the probability of death
after open heart surgery may yield predicted probabilities that range from 0-001 to 0-1, so the model will not have a high
correlation (say 0-13) between predicted probability and observed outcome, but it may still be useful. If that model does
not fully adjust for patient risk factors, it may be inadequate for adjusting for case mix when comparing mortalities among
several hospitals. A more sensitive model with a correlation of, say, 0-135 may adjust away apparent differences in
mortality among hospitals.
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calibration can correct the model. However, if discrimination is good, the predictor can be
calibrated without sacrificing the discrimination (see Section 6 for a method for calibrating
predictions without needing more data). Here, calibrating predictions means modifying them,
without changing their rank order, such that the predictions are perfectly calibrated. van
Houwelingen and le Cessie®* present extensive information on predictive accuracy and model
validation.

5.2. Continuous uncensored outcomes

Discrimination is related to the expected squared error and to the correlation between predicted
and observed responses. In the case of ordinary multiple linear regression, discrimination can be
measured by the squared multiple correlation coefficient R?, which is defined by

R?*=1—(n—p)MSE/(n — 1)S3, (1)

where n is the number of patients, p is the number of parameters estimated, MSE is the mean
squared error of prediction (3]_,(Y; — ¥)? /(n—p), Y = predicted Y), and S} is the sample
variance of the dependent variable. When R? = 1, the model is perfectly able to separate all
patient responses based on the predictor variables, and MSE = 0.

_For a continuous uncensored response Y, calibration can be assessed by a scatter plot of
Y (predicted Y) versus Y, optionally using a non-parametric smoother to make trends more
evident.

5.3. Discrete or censored outcomes

When the outcome variable is dichotomous and predictions are stated as probabilities that an
event will occur, calibration and discrimination are more informative than expected squared
error alone in measuring accuracy.

One way to assess calibration of probability predictions is to form subgroups of patients and
check for bias by comparing predicted and observed responses (reference 29, pp. 140-145). For
example, one may group by deciles of predicted probabilities and plot the mean response
(proportion with the outcome) versus the mean prediction in the decile group. However, the
groupings can be quite arbitrary. Another approach is to use a smoother such as the ‘super
smoother’® or a scatterplot smoother3 to obtain a non-parametric estimate of the relationship
between ¥ and Y. Such smoothers work well even when Y is binary. The resulting smoothed
function is a nonparametric calibration or reliability curve. Smoothers operate on the raw data
(Y, Y) and do not require grouping Y, but they do require one to choose a smoothing parameter
or bandwidth.

As an example, consider a 7-variable binary logistic regression model to predict the probability
that a certain disease is present. The model was developed on a simulated 200-subject dataset of
whom 93 had a final diagnosis that is positive. While fixing the intercept and 7 regression
coefficients estimated from the training sample, predictive probabilities of disease were computed
for each of 200 subjects in a separate sample, of whom 104 had the disease. The non-parametric
calibration curve was estimated using a local least squares scatterplot smoother3$ with the S-Plus
function lowess,>” using the ‘no iteration’ option. The smoothed calibration graph is shown in
Figure 1. Also shown is the proportion of patients with disease, grouped by intervals of predicted
probability each containing 50 patients.

Note the typical regression to the mean effect caused by overfitting: predicted probabilities in
the range of 0-3 to 05 are too low. Actual probabilities are closer to the mean (104/200 = 0-52).
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Figure 1. Smooth non-parametric calibration curve (dashed line), subgroup estimates {dots), and ideal relationship
(dotted line). The distribution of predicted probabilities is shown above the x—axis. ‘Actual probability’ is an unbiased
estimate of the true probability of response given the level of the predicted probability

When Y is binary and Y is the predicted probability that Y = 1 versus Y = 0, the Brier score*®
or average (Y — Y)? is a commonly used mean squared error-type measure of predictive
accuracy.

For survival models, one may choose one or more times (,, t,, ..., i), and plot the predicted
probability of surviving until each ¢; versus the actual fraction of patients surviving past ¢;. The
problem here is that we cannot deﬁne Y; =1 if patient i survives past time t; and then plot the
mean Y (by deciles of Y or using a smoother) against the mean Y, since subjects not followed until
time t; are censored, that is, their final outcome status is unknown. One solution is to divide the
sample into intervals of ¥ so that there are 50 subjects in each 1nterva1 of predicted survival, and
then plot the mean Y within each interval versus the Kaplan-Meier*® survival estimate at time ¢;.

5.4. Shrinkage

Shrinkage is the flattening of the plot of (predicted, observed) away from the 45° line, caused by
overfitting. It is a concept related to regression to the mean. One can estimate the amount of
shrinkage present (using external validation) or the amount likely to be present (using bootstrap-
ping, cross-validation or simple heuristics). A shrinkage coefficient can be used to quantify
overfitting or one can go a step further and use the coefficient to re-calibrate the model. Shrinkage
can be defined as a multiplier y of XJ (excluding intercept(s)) needed to make yX B perfectly
calibrated for future data. The heuristic shrinkage estimator of van Houwelingen and le Cessie®*
(see also reference 40) is

. model y> —p

= Todel x* @

where p is the number of regression parameters (here excluding any intercept(s) but including ali
non-linear and interaction effects) and the model y? is the total likelihood ratio x? statistic
(computed using the full set of p parameters) for testing whether any predictors are associated
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with Y.§ For linear regression, van Houwelingen and le Cessie’s heuristic shrinkage estimate
reduces to the ratio of the adjusted R? to the ordinary R? (derivable from reference 34, Eq. 70).

As an example, suppose that an analyst has considered 10 predictor variables, 6 of which were
allowed to enter the model non-linearly (with 2 non-linear terms for each), and tested 8 interac-
tion terms, for a total of 30 degrees of freedom. The model y? is 100 for the full model fit with
p = 30 d.f. The expected shrinkage is 0-70, indicating that about 0-3 of the model fit is ‘noise’. The
‘final model’ obtained from forward variable selection contains only 3 significant coefficients and
has x? = 81, but overfitting is quantified using the 30 candidate d.f. In this example, the number of
variables, transformations, and interactions tried was too many for the sample size, and the
resulting model is expected to be unstable. As a rough estimate, 0-3 of what was learned from
developing the model was really non-replicable noise.

For mild overfitting in the case where the model is needed only to rank likely outcomes and not
predict absolute risks, shrinking the regression coefficients will not help since it will not increase
real discrimination. If the model is badly overfitted, the model may actually have negative (worse
than random) discrimination on new data, and it will have poor calibration. The following
heuristic strategy can then be used to determine whether data reduction is likely to result in
a model that has any discrimination and how much reduction is required to yield reliable
non-shrunken predictions.

First, fit a full model with all candidate variables, non-linear terms, and hypothesized interac-
tions. Let p denote the number of parameters in this model, aside from any intercept(s). Let LR
denote the likelihood ratio y? for this full model. The estimated shrinkage is (LR — p)/LR. If this
falls below 0-85, for example, we may be concerned. Let q denote the regression degrees of
freedom for a reduced model. In a ‘best case’, the variables removed to arrive at the reduced
model would have no association with Y. The expected value of the ¥ statistic for testing those
variables would then be p — q. The shrinkage for the reduced model is then on average
[LR —(p — g) — q]/[LR — (p — g)]. Solving for ¢ gives g < (LR — p)/9. Therefore, reduction of
dimensionality down to g degrees of freedom would be expected to achieve < 10 per cent
shrinkage. With these assumptions, there is no hope that a reduced model would have acceptable
calibration unless LR > p + 9. If the information explained by the omitted variables is less than
one would expect by chance {for example, their total y? is extremely small), a reduced model could
still be beneficial, as long as the conservative bound (LR — g)/LR > 09 or ¢ < LR/10 were
achieved. This conservative bound assumes that no x? is lost by the reduction, that is, that the
final model y* =~ LR. This is unlikely in practice, since the data reduction must be only X-driven.

As an example, suppose that a binary logistic model is being developed from a sample
containing 45 events on 150 subjects. A 10:1 events: d.f. rule suggests we can analyse 4-5 degrees of
freedom. The analyst wishes to analyse age, sex, and 10 other variables. It is not known whether
interaction between age and sex exists, and whether age is linear. A restricted cubic spline is fitted
with 4 knots (requiring two non-linear terms), and a linear interaction is allowed between age and
sex. These two variables then need 3 + 1 + 1 = 5 degrees of freedom. The other 10 variables
are assumed to be linear and to not interact with themselves or age and sex. There is a total of
15 df. The full model with 15 d.f has LR = 50. Expected shrinkage from this model is

# When stepwise fitting is done, the definition of p is confusing. Many analysts act as if the final model chosen with
stepwise variable selection was pre-specified, whether interpreting R?, confidence limits, or P-values. For estimating the
likely shrinkage, it has been shown that p is much closer to the number of candidate d.f. than to the number of parameters
fitted in a ‘final’ model.*® On a similar note, reference 18 showed how to adjust a linear test of association for having done
a test of quadratic effect, concluding that testing the single d.f. statistic for association as if it had 2 d.f. is nearly optimal.
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(50 — 15)/50 = 0-7. Since LR > 15 + 9 = 24, some reduction might yield a better validating
model. Reduction to g = (50 — 15)/9~4 d.f. would be necessary, assuming the reduced LR is
about 50 — (15 — 4) = 39. In this case the 10:1 rule yields about the same value for g. The analyst
may be forced to assume that age is linear, modelling 3 df. for age and sex. The other 10 variables
would have to be reduced to a single variable using principal components or another scaling
technique. This single variable may not be interpretable, but using a single score is better than
deleting all 10 variables from consideration. If the goal of the analysis is to make a series of
hypothesis tests (adjusting P-values for multiple comparisons) instead of to predict future
responses, the full model would have to be used.

Bootstrapping®* and cross-validation*! may also be used to estimate shrinkage factors. As
mentioned above, shrinkage estimates are useful in their own right for quantifying overfitting, and
they are also useful for ‘tilting’ the predictions so that the (predicted, observed) plot does follow
the 45° line, by multiplying all of the regression coeflicients by §. However, for the latter use it is
better to follow a more rigorous approach such as penalized maximum likelihood estimation,'®
which allows the analyst to shrink different parts (for example, non-linear terms or interactions)
of the equation more than other parts.*?

5.5. General discrimination index

Discrimination can be defined more uniquely than calibration. It can be quantified with
a measure of correlation without requiring the formation of subgroups or requiring smoothing.

When dealing with binary dependent variables or continuous dependent variables that may be
censored when some patients have not suffered the event of interest, the usnal mean squared
error-type measures do not apply. A c (for concordance) index’ is a widely applicable measure of
predictive discrimination - one that applies to ordinary continuous outcomes, dichotomous
diagnostic outcomes, ordinal outcomes, and censored time until event response variables. This
index of predictive discrimination is related to a rank correlation between predicted and observed
outcomes. It is a modification of the Kendall-Goodman-K ruskal-Somers type rank correlation
index*® and was motivated by a modification of Kendall’s 7 by Brown et al.** and Schemper.*®

The ¢ index is defined as the proportion of all usable patient pairs in which the predictions and
outcomes are concordant. The ¢ index measures predictive information derived from a set of
predictor variables in a model. In predicting the time until death, ¢ is calculated by considering all
possible pairs of patients, at least one of whom has died. If the predicted survival time is larger for
the patient who lived longer, the predictions for that pair are said to be concordant with the
outcomes. If one patient died and the other is known to have survived at least to the survival time
of the first, the second patient is assumed to outlive the first. When predicted survivals are
identical for a patient pair, 3 rather than 1 is added to the count of concordant pairs in the
numerator of c. In this case, one is still added to the denominator of ¢ (such patient pairs are still
considered usable). A patient pair is unusable if both patients died at the same time, or if one died
and the other is still alive but has not been followed long enough to determine whether she will
outlive the one who died.

Instead of using the predicted survival time to calculate ¢, the predicted probability of surviving
until any fixed time point can be used equivalently, as long as the two estimates are one-to-one
functions of each other. This holds for example if the proportional hazards assumption is
satisfied.

For predicting binary outcomes such as the presence of disease, ¢ reduces to the proportion of
all pairs of patients, one with and one without the disease, in which the patient having the disease
had the higher predicted probability of disease. As before, pairs of patients having the same
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predicted probability get 3 added to the numerator. The denominator is the number of patients
with disease multiplied by the number without disease. In this binary outcome case, ¢ is
essentially the Wilcoxon—-Mann—Whitney statistic for comparing predictions in the two outcome
groups, and it is identical to the area under a receiver operating characteristic (ROC) curve.*6:47
Liu and Dyer*® advocate the use of rank association measures such as ¢ in quantifying the impact
of risk factors in epidemiologic studies.

The ¢ index estimates the probability of concordance between predicted and observed re-
sponses. A value of 0-5 indicates no predictive discrimination and a value of 1-0 indicates perfect
separation of patients with different outcomes. For those who prefer instead a rank correlation
coefficient ranging from —1 to + 1 with 0 indicating no correlation, Somers’ D rank correlation
index is derived by calculating 2(c — 0-5) . Either ¢ or the rank correlation index can be used to
quantify the predictive discrimination of any quantitative predictive method, whether the
response is continuous, ordinal, or binary.

Even though rank indexes such as ¢ are widely applicable and easily interpretable, they are not
sensitive for detecting small differences in discrimination ability between two models. This is due
to the fact that a rank method considers the (prediction, outcome) pairs (0-01, 0), (09, 1) as no
more concordant than the pairs (0-05,0), (08, 1). A more sensitive likelihood-ratio y2-based
statistic that reduces to R? in the linear regression case may be substituted.*>5! Korn and
Simon?2 have a very nice discussion of various indexes of accuracy for survival models.

6. MODEL VALIDATION METHODS

As mentioned before, examination of the apparent accuracy of a multivariable model using the
training dataset is not very useful. The most stringent test of a model (and of the entire data
collection system) is an external validation — the application of the ‘frozen’ model to a new
population. It is often the case that the failure of a model to validate externally could have been
predicted from an honest (unbiased) ‘internal’ validation. In other words, it is likely that many
clinical models which failed to validate would have been found to fail on another series of subjects
from the original source, because overfitting is such a common problem. The principal methods
for obtaining nearly unbiased internal assessments of accuracy are data-splitting,>> cross-valida-
tion>* and bootstrapping.5+>® In data-splitting, a random portion, for example %, of the sample is
used for all model development (data transformations, stepwise variable selection, testing interac-
tions, estimating regression coefficients, etc.). That model is ‘frozen’ and applied to the remaining
sample for computing calibration statistics, c, etc. The size of the validation sample must be such
that the relationship between predicted and observed outcomes can be estimated with good
accuracy, and the remaining data are used as the training (model development) sample. Data-
splitting is simple, because all the modelling steps, which may include subjective judgements, are
only done once. Data-splitting also has an advantage when it is feasible to make the single split
with respect to geographical location or time, resulting in a more stringent validation that
demonstrates generalizability. However, in addition to severe difficulties listed below, data
splitting does not validate the final model, if one desires to recombine the training and test data to
derive a model for others to use.

Cross-validation is repeated data-splitting. To obtain accurate estimates using cross-valida-
tion, more than 200 models may need to be developed and tested,** with results averaged over the
200 repetitions. For example, in a sample of size n = 1000, the modelling process (all components
of it!) could be done 400 times, leaving out a random 50 subjects each time and developing
the model on the 950 remaining subjects. The benefits of cross-validation over data-splitting are
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clear; the size of the training samples can be much larger, so less data are discarded from the
estimation process. Secondly, cross-validation reduces variability by not relying on a single
sample split.

Efron has shown that cross-validation is relatively inefficient due to high variation of accuracy
estimates when the entire validation process is repeated.** Data-splitting is far worse; the indexes
of accuracy will vary greatly with different splits. Bootstrapping is an alternative method of
internal validation that involves taking a large number of samples with replacement from the
original sample. Bootstrapping provides nearly unbiased estimates of predictive accuracy that are
of relatively low variance, and fewer model fits are required than cross-validation. Bootstrapping
has an additional advantage that the entire dataset is used for model development. As others have
shown, data are too precious to waste.>**°

Suppose that we wish to estimate the expected value (for new patient samples similar to the
derivation sample) of the Somers’ D rank correlation coefficient between predicted and observed
survival time. The following steps can be used (see references 55, 58 and 60 for the basic method
when applied to binary outcomes):

1. Develop the model using all n subjects and whatever stepwise testing is deemed necessary.
Let D,,, denote the apparent D from this model, i.e., the rank correlation computed on the
same sample used to derive the fit.

2. Generate a sample of size n with replacement from the original sample (for both predictors
and the response).

3. Fit the full or possibly stepwise model, using the same stopping rule as was used to derive
Dypp-

4. Compute the apparent D for this model on the bootstrap sample with replacement. Call it
D boot-

5. ‘Freeze’ this reduced model, and evaluate its performance on the original dataset. Let

D, denote the D.

. The optimism in the fit from the bootstrap sample is Dyooy — Dorig-

. Repeat steps 2 to 6 100-200 times.

. Average the optimism estimates to arrive at O.

. The bootstrap corrected performance of the original stepwise model is D,,, — O. This
difference is a nearly unbiased estimate of the expected value of the external predictive
discrimination of the process which generated D,,,. In other words, D,,, — O is an honest
estimate of internal validity, penalizing for overfitting.

O 00 -~ N

As an example, suppose we want to validate a stepwise Cox model developed from, say, a sample
of size n = 300 with 30 events. The candidate regressors are age, age?, sex, mean arterial blood
pressure (MBP), and a non-linear interaction between age and sex with the terms age x sex and
age? x sex. MBP is assumed to be linear and additive. Denote these variables by the numbers 1-6.
The model x? is 45 with 6 d.f,, so the approximate expected shrinkage is 4338 = 0-87, or 0-13
overfitting, so some caution needs to be exercised in using the estimated model coefficients and
hence in using extreme predicted survival probabilities without calibration (shrinkage). The D for
the full model is 0-42. A step-down variable selection using Akaike’s information criterion
(AIC)3*®! as a stopping rule (x? for set of variables tested > 2 x d.f.) resulted in a model with the
variables age, age?, sex, age x sex. The reduced model had D = 0-39, a typical loss due to deleting
marginally important but statistically insignificant variables. Two-hundred bootstrap repetitions
are done, repeating the variable selection for each sample using the same stopping rule. We want
to detect whether the D = 0-39 is likely to validate in a new series of subjects from the same
population. The first five samples might yield the results shown in Table 1.
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Table I. Example validation of predictive discrimination

Re-sample Dyoot Variables retained Dyoor Doyig Optimism
Full model Reduced model

1 045 1,2,3,5,6 044 037 007

2 0-46 1,2 034 0-30 0-04

3 042 1,2,3,4 037 034 003

4 043 1,2,3,5 042 0-39 003

5 041 1,3,4 039 0-37 002

The average optimism is 0-038, so the bootstrap estimate of the expected validation of D, is
0-39 — 0-038 = 0-352. The analyst may or may not be worried about the 0-038 overfitting, but the
best estimate of predictive discrimination is D = (-352 — this is a better estimate of the likely
‘external’ validation accuracy than is 0-39 if all other aspects of the study design remain constant.
The D = 0352 is the honest estimate of predictive accuracy that should be quoted when the
researchers document the accuracy of the reduced modei that was developed on the entire dataset
using a stepwise variable selection algorithm.

It is usually informative to repeat the bootstrap validation with and without stepwise variable
selection. Usually, the amount of predictive information lost by deleting marginal variables is not
offset by the decreased optimism of the stepwise model. One way to demonstrate this point is to
observe how often ‘insignificant’ clinical predictors have clinically sensible signs on their regres-
sion coefficients. Stepwise variable selection, which requires binary decisions about the inclusion
of variables (unlike shrinkage), causes information to be lost.?

The same strategy can be used to estimate the over-optimism in an R? measure*® from the
original model fit. For estimating the prediction error at time ¢ in a survival model, similar steps
could also be used. Instead of validating a correlation D, we substitute for example the statistic
D = difference between mean predicted 2-year survival probability and Kaplan—-Meier 2-year
survival estimate. The survival estimates are made by, say, deciles of predicted 2-year survival
from the original model fit using the following steps, for example:

p—
4

Develop the model using all subjects.

2. Compute cut points on predicted survival at 2 years so that there are m patients within each
interval (m = 50 or 100 typically).

3. For each interval of predicted probability, compute the mean predicted 2-year survival and
the Kaplan-Meier 2-year survival estimate for the group.

4. Save the apparent errors — the differences between mean predicted and Kaplan-Meier

survival,

Generate a sample with replacement from the original sample.

Fit the full model.

Do variable selection and fit the reduced model.

Predict 2-year survival probability for each subject in the bootstrap sample.

Stratify predictions into intervals using the previously chosen cut points.

Compute Kaplan—-Meier survival at 2 years for each interval.

. Compute the difference between the mean predicted survival within each interval and the

Kaplan—Meier estimate for the interval.
12. Predict 2-year survival probability for each subject in the original sample using the model
developed on the sample with replacement.

mOYXINWL
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For the same cut points used before, compute the difference in the mean predicted 2-year
survival and the corresponding Kaplan—Meier estimates for each group in the original
sample.

Compute the differences in the differences between the bootstrap sample and the original
sample.

Repeat steps 5 to 14 100-200 times.

Average the ‘double differences’ computed in step 14 over the 100-200 bootstrap samples.
These are the estimates of over-optimism in the apparent error estimates.

Add these over-optimism estimates to the apparent errors in the original sample to obtain
bias-corrected estimates of predicted versus observed, that is, to obtain a bias- or overfit-
ting-corrected calibration curve.

7. SUMMARY OF MODELLING STRATEGY

. Assemble accurate, pertinent data and as large a sample as possible. For survival time data,

follow-up must be sufficient to capture enough events as well as the clinically meaningful
phases if dealing with a chronic disease.

. Formulate focused clinical hypotheses that lead to specification of relevant candidate

predictors, the form of expected relationships, and possible interactions.

. Discard observations having missing Y after characterizing whether they are missing

at random." See reference 62 for a study of imputation of Y when it is not missing at
random.

. If there are any missing X, analyse factors associated with missingness. If the fraction of

observations that would be excluded due to missing values is very small, or one of the
variables that is sometimes missing is of overriding importance, exclude observations with
missing values’. Otherwise impute missing Xs using individual predictive models that take
into account the reasons for missing, to the extent possible.

If the number of terms fitted or tested in the modelling process (counting non-linear and
cross-product terms) is too large in comparison with the number of outcomes in the
sample, use data reduction (ignoring Y)?°2* until the number of remaining free variables
needing regression coefficients is tolerable. Assessment of likely shrinkage (overfitting) can
be useful in deciding how much data reduction is adequate. Alternatively, build shrinkage
into the initial model fitting.'®

. Use the entire sample in the model development as data are too precious to waste. If steps

listed below are too difficult to repeat for each bootstrap or cross-validation sample, hold
out test data from all model development steps which follow.

Check linearity assumptions and make transformations in Xs as needed.

Check additivity assumptions and add clinically motivated interaction terms.

Check to see if there are overly-influential observations.® Such observations may indicate
overfitting, the need for truncating the range of highly skewed variables or making other
pre-fitting transformations, or the presence of data errors.

! For survival time data, no observations should be missing on Y. They should only have curtailed follow-up.

¥ Alternatively, impute missing values for the predictor but perform secondary analyses later to estimate the strength of
association between X and Y after deleting observations with that predictor imputed, as imputation will attenuate the
relationship.
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Check distributional assumptions and choose a different model if needed (in the case of
Cox models, stratification or time-dependent covariables can be used if proportional
hazards is violated).

Do limited backwards step-down variable selection.®® Note that since stepwise techniques
do not really address overfitting and they can result in a loss of information, full model fits
(that is, leaving all hypothesized variables in the model regardless of P-values) are
frequently more discriminating than fits after screening predictors for significance.?"*°
They also provide confidence intervals with the proper coverage, unlike models that are
reduced using a stepwise procedure,®®¢4-¢5 from which confidence intervals are falsely
narrow. A compromise would be to test a pre-specified subset of predictors, deleting them if
their total y* < 2 x d.f. If the x? is that small, the subset would likely not improve model
accuracy.

This is the ‘final’ model.

Validate this model for calibration and discrimination ability, preferably using bootstrap-
ping. Steps 7 to 11 must be repeated for each bootstrap sample, at least approximately. For
example, if age was transformed when building the final model, and the transformation was
suggested by the data using a fit involving age and age?, each bootstrap repetition should
include both age variables with a possible step-down from the quadratic to the linear
model based on automatic significance testing at each step.

If doing stepwise variable selection, present a summary table depicting the variability of the
list of ‘important factors’ selected over the bootstrap samples or cross-validations. This is
an excellent tool for understanding why data-driven variable selection is inherently
ambiguous.

Estimate the likely shrinkage of predictions from the model, either using equation (2) or by
bootstrapping an overall slope correction for the predictions.3* Consider shrinking the
predictions to make them calibrate better, unless shrinkage was built-in. That way,
a predicted 0-4 mortality is more likely to validate in a new patient series, instead of finding
that the actual mortality is only 0-2 because of regression to the mean mortality of 0-1.

8. SOFTWARE

Modern statistical software such as S-Plus®” on UNIX workstations makes it quite feasible to
perform the extensive calculations required to do the recommended model building steps. The
first author has written a package of UNIX S-Plus functions called Design®® that allow the
analyst to perform all analyses mentioned here including tests of linearity, pooled interaction
tests, model validation and graphical methods for interpreting models. Here are some examples:

# First find optimum transformations relating each predictor to each

# other, and use multiple regression in these transformations to

# impute missing values. Use shrinkage to avoid over-imputing

trans < transcan( ~ age + cholesterol + sys.bp + weight, imputed = T, shrink =T)
cholesterol « impute(trans, cholesterol) # impute missings

sys.bp «~ impute(trans, sys.bp)

# Fit a Cox P.H. model allowing some interactions with age and

# nonlinearity in cholesterol and sys.bp using restricted cubic splines

# x =T, y =T means store data in fit for future bootstrapping

fit « cph(Surv(fu.time, death) ~ age * (rcs(cholesterol) + res(sys.bp)) +

weight, x =T,y =T, surv =T, time.inc = 8)

anova(fit) # automatic pooled Wald tests
fastbw (fit) # fast backward step-down
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Table I1. Candidate predictors and d.f.

Predictor Name Number of Original levels
parameters

Dose of oestrogen X 3 placebo, (-2, 1-0, 50 mg oestrogen

Age in years age 3

Weight index: wt(kg) — ht(cm) + 200 wt 3

Performance rating pf 2 normal, in bed <50% of time, in bed
> 50%, in bed always

History of cardiovascular disease hx 1 present/absent

Systolic blood pressure/10 sbp 3

Diastolic blood pressure/10 dbp 3

Electrocardiogram code ekg 5 normal, benign, rhythm disturbance,
block, strain, old myocardial infarct, new
MI

Serum haemoglobin (g/100 mi) hg 3

Tumour size (cm?) 8z 3

Stage/histologic grade combination sg 3

Serum prostatic acid phosphatase ap 3

Bone metastasis bm 1 present/absent

# Next validate model, penalizing for backward stepdown variable selection

validate(fit, B = 100, bw =T) # bootstrap validation of accuracy indexes
calibrate(fit, B = 100, bw =T, u = 8) # bias-corrected 8-yr survival calibration
plot(summary(fit)) # plot hazard ratios with confidence limits
nomogram (fit) # draw nomogram displaying how model works
latex (fit) # typeset model equation

The Design library includes a function rcorr.cens for computing the general c-index, and the
function val.prob which produced Figure 1 and also prints a variety of accuracy measures. For
binary and ordinal logistic models and for ordinary linear models, Design has a general
penalized maximum likelihood estimation facility. Design is available in the statlib repository
(Internet address lib.stat.cmu.edu). transcan and impute are separate functions in
statlib which work on UNIX as well as DOS Windows S-Plus. Some other software systems
which have some intermediate-level capabilities include Stata (Computer Resources Center Inc.,
College Station TX), SPIDA (NHMRC Clinical Trials Centre, Eastwood, NSW Australia), and
SAS (SAS Institute Inc., Cary NC).

9. CASE STUDY

Consider the 506-patient prostate cancer dataset from Byar and Green®’ which has also been
analysed in references 68 and 69. The data are listed in reference 70, Table 46, and are available by
Internet at utstat.toronto.edu in the directory /pub/data-collect. These data were from
a randomized trial comparing four treatments for stage 3 and 4 prostate cancer, with almost equal
numbers of patients on placebo and each of three doses of oestrogen. Four patients had missing
values on all of the following variables: wt, pf, hx, sbp, dbp, ekg, hg, bm; two of these
patients were also missing 8z (see Table II for abbreviations). These patients will be excluded from
consideration.

There are 354 deaths among the 502 patients. If we only wanted to test for a drug effect on
survival time, a simple rank-based analysis would suffice. To be able to test for differential
treatment effect or to estimate prognosis or expected absolute treatment benefit for individual
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patients, however, we need a multivariable survival model.> First we consider fitting a full
additive model which does not assume linearity of effect for any predictor. Categorical predictors
will be expanded using dummy variables. For pf we could lump the last two categories since the
last category has only two patients. Likewise, we could combine the last two levels of ekg.
Continuous predictors will be expanded by fitting 4-knot restricted cubic spline functions, which
contain two non-linear terms and thus have a total of 3 df Table II defines the candidate
predictors and lists their d.f. The variable stage is not listed as it can be predicted with high
accuracy from 82, 8¢, ap, bm {stage could have been used as a predictor for imputing missing
values on Sz, Sg§).

There are a total of 36 candidate d.f. which should not be artificially reduced by ‘univariable
screening’ or graphical assessments of association with death. This is about { as many predictor
d.f. as there are deaths, so there is some hope that a fitted model may validate. Let us also examine
this issue by estimating the amount of shrinkage using equation (2). We use a Cox proportional
hazards model for time until death. The UNIX S-Plus Design library fits the full model using
restricted cubic spline expansions and makes use of Therneau’s survival4 package in statlib”!
to perform the calculations. First we invoke the transcan function and impute functions (from
statlib for any versions of S-Plus) to develop customized non-linear imputation equations for all
predictors and to apply these equations to impute missing values.

# Define function for easy determination of whether a value is in a list
'%in%’ « function (a, b) match (a, b, nomatch =0) >0

levels(ekg) [levels(ekg) %in% c(’old MI’,’recent MI’}] « 'MI’
# combines last 2 levels and uses a new name, MI

pf.coded <« as.integer(pf) # save original pf, re-code to 1-4
levels(pf) « c(levels(pf) [1: 3], levels(pf) [3]) # combine last R levels of original
w « transcan(~ sz + sg¢ + ap + sbp + dbp + age + wt + hg +
ekg + pf + bm + hx, imputed = T, impcat = 'tree’)
sz « impute(w, sz) # uses imputation rule w
sg <« impute(w, sg)
age < impute(w, age)
wt « impute(w, wt)
ekg ~ impute(w, ekg)

dd « datadist(rx, age, wt, pf, pf.coded, heart, map, hg, sz, sg, ap, bm)
options(datadist = 'dd’) # datadist stores characteristics of raw data

units(dtime) « 'Month'
8 « Surv(dtime, status! =’alive’)

f « cph(8 ~ rx + rcs(age,4) + res(wt,4) + pf + hx +
res(sbp,4) + res(dbp,4) + ekg + res(hg,4) +
res(sg,4) + res(sz,4) + res(ap,4) + bm)

The likelihood ratio y? statistic is 140 with 36 d.f. This test is highly significant so some modelling
is warranted. The AIC value (on the x? scale) is 140 — 2 x 36 = 68. The rough shrinkage estimate
is 0-743 (104/140) so we estimate that 26% of the model fitting will be noise, especially with regard
to calibration accuracy. The approach of reference 2 is to fit this full model and to shrink
predicted values. We will instead try to do data reduction (blinded to individual x? statistics
from the above model fit) to see if a reliable model can be obtained without shrinkage. A
good approach at this point might be to perform a variable clustering analysis which for our
purposes we will do informally. The data reduction strategy is listed in Table IIL. For ap, more
exploration is desired to be able to model the shape of effect with such a highly skewed
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Table I11. Data reduction strategy (blinded to Y)

Variables Reductions d.f. saved

wt Assume variable not important enough for 4 knots 1
Use 3 knots

pf Assume linearity 1

hx, ekg Make new 0,1,2 variable and assume linearity: 5

2 = hx and ekg not normal and benign,
1 = either, 0 = none

sbp, dbp Combine into mean arterial bp and use 3 knots: 4
map = % dpb + { spb

sg Use 3 knots 1

82 Use 3 knots 1

ap Look at shape of effect of ap in detail, -2

and take log before expanding in spline to achieve
numerical stability: add 2 knots

distribution. Since we expect the tumour variables to be strong prognostic factors we will retain
them as separate variables. No assumption will be made for the dose-response shape for
oestrogen, as there was reason to expect a non-monotonic effect due to competing risks for
cardiovascular death.

heart « hx + |(ekg %in% c¢(’normal’,’benign’))
label(heart) « 'Heart Diseage Code’
map « (Rxdbp + sbp)/3
label(map) « ’'Mean Arterial Pressure/10’
f « cph(8 ~ rx + recs(age,4) + res(wt,3) + pf.coded +
heart + rcs(map,3) + rcs(hg,4) +
res(sg,3) + rcs(8z,3) + res(log(ap),6) + bm,
x=T,y=T, surv =T, time.inc =5+ 123)
# X,y for predict, validate, calibrate; surv, time.inc for calibrate
The total savings is thus 11 d.f. The likelihood ratio y* is 126 with 25 d.f., with a slightly
improved AIC of 76. The rough shrinkage estimate is slightly better at 0-80, but still worrisome.
A further data reduction might be achieved by using the transcan transformations determined
from self-consistency of predictors, but we will stop here and use this model.
Now assess this model in more detail by examining coefficients and summarizing multiple
parameters within predictors using Wald statistics.

f # writing an object name in 8 causes it to be printed
Cox Proportional Hazards Model

cph(formula = 8 ~rx + rcs(age, 4) + res(wt, 3) + pf.coded + heart + rcs(map, 3) +
rca(hg, 4) + res(sz, 3) + rcs(sg, 3) + rcs(log(ap), 8) + bm,
x=T,y=T,surv="T, time.inc=8+12)

Obs Bvents Modsel L.R. d.f. P Score Score P RR
802 354 126 a6 0O 138 0 0221

coef se(coef) z P
rx = 02 mg estrogen 3.74e — 03 1.80e —01 0-0280 9-80e — 01
rx =1.0mg estrogen -—-4:21e—01 1-68e —01 —2-5427 1-10e — 02
rx =8.0mgestrogen —-973e-02 1-88¢—-01 -068176 6:37e — 01
age —1'17e—-0R 23Be—02 —-0-4998 68-17e — 01

age’ 2006 — 0% 3-86e —02 08120 8:04e - 01
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age’’ 271e —01 49Be -0l 06482 B-84e — 01
wt -—-246e -02 9-39e¢ - 03 -26178 8-86e — 03
wt' 1-84e — 02 1:12e — 02 1-6379 1-0le — 01
pf.coded 228e —01 1-3le-01 1-8628 6-28e — 02
heart 4186 — 01 8086 —02 B8-1723 231le — 07
map 3248 —02 8496 — 02 0-3817 7:03e — 01
map’ —4B7¢-02 94le-02 —0-4887 8:27e — 01
hg -1-86e —01 7-68e — 02 —20343 4-19e — 02
hg’ 7-42e —02 2-10e — 01 0-3830 7:R4e — 01
hg”’ 8080 — 01 1:2%7e + 00 04014 8-88e — Ol
8z 1-00e — 02 1-44e — 02 0-6988 4-87e¢ — 01

sz’ 8-79e —03 2-37e — 02 0-3718 7-10e — 01
88 7-19e —02 7-86e — 02 09138 38le — 01

sg’ —704e —03 9-83e — 02 -~0-0718 9-43e — 01
ap -—-796e-01 31lle—-01 —2-8684 1-08e — 02
ap’ 4-89e + 01 218e + 01 22482 246e — 02
ap’”’ —-3.64e + 02 1-B9e + 02 —2:23909 R-20e — 02
ap’”’ 4046 + 02 1-7Be + 02 230867 21le — 02
ap'’’’ -—989e +01 416e +01 —-23311 1-97e — 02
bm 3266 —02 1-8le—01 01790 8-88e — 01

# The terms with ’, »’, etc. after the name are cubic spline nonlinear terms

379

# The dose effect is apparently nonlinear.

# output was actually typesetted automatically using latex(anova(f))
# latex requires the print.display package from statlib

anova(f)

There are 12 parameters associated with non-linear effects, and the overall test of linearity
indicates the strong presence of non-linearity for at least one of the variables
age, wt, map, hg, 8z, 8¢, ap (see Table 1V). There is a difference in survival time between at
least two of the doses of oestrogen.

Now that we have a tentative model, let us examine the model’s distributional assumptions. As
mentioned in Section 4.3, the Schoenfeld partial residuals are an effective tool for checking the
proportional hazards assumption in the Cox model. Grambsch and Therneau’? have modified
these residuals so that smoothed plots of them estimate the effect of predictors on the log
instantaneous hazard rate as a function of follow-up time. Their scaled residuals estimate §(t), the
regression coefficient as a function of time. A messy detail is how to handle multiple regression
coefficients per predictor. Here we do an approximate analysis in which each predictor is scored
by adding up all the terms in the model to transform that predictor to be optimally related to the
log hazard (at least if the shape of the effect does not change with time). In doing this we are
temporarily ignoring the fact that the individual regression coefficients were estimated from the
data. For dose of oestrogen, for example, we code the effect as 0 (placebo), 0-0037 (0-2 mg),

—0-421 (1.0 mg), and —00973 (5.0 mg), and age is transformed as —0-0117 age + 002 age’
+ 0271 age’’, which in most simple form is

—1-17x10"2age + 3-48x 10~ 3(age — 56)% + 4-71x10*age — 713
—1-:01x10"3age — 75)3 + 509x 10~ %(age — 80)>
where (x) + means to ignore that term if x < 0, and the knots for age are 56, 71, 75 and 80 years.

In S-Plus the predict function easily summarizes multiple terms and produces a matrix (here,
z) containing the total effects for each predictor. Matrix factors can easily be included in model
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Table IV. Wald statistics for 8

x? df. P
rx 838 3 00387
age 12-85 3 0-0050
Non-linear 8-18 2 0-0168
wt 8-87 2 00118
Non-linear 268 1 0-1014
pf.coded 347 1 00625
heart 2675 1 < 00001
map 025 2 0-8803
Non-linear 024 1 06272
hg 11-85 3 0-0079
Non-linear 692 2 00314
sz 10-60 2 0-0050
Non-linear 014 1 0-7102
sg 314 2 0-2082
Non-linear 0-01 1 09429
ap 13-17 5 00218
Non-linear 1293 4 0-0116
bm 0-03 1 0-8579
TOTAL NON-LINEAR 3028 12 0-0025
TOTAL 12808 25 <0-0001

formulae.

z « predict(f, type = ‘terms’) # required x =T above to store design

# matrix
f.short « cph@@ ~ z,x=T,y=T) # store X, ¥ so can get residuals

The fit f.short based on the matrix z of single d.f. predictors has the same LR y? of 126 as the fit
f, but with a falsely low 11 d.f. All regression coefficients are unity.

Now get scaled Schoenfeld residuals separately for each predictor and test the proportional
hazards assumption for each using the ‘correlation with time’ test. Also plot smoothed trends in
the residuals. The plot method for cox.zph objects uses restricted cubic splines to smooth the
relationship.

phtest « cox.zph(f.short, transform = 'identity’)

phtest
rho chisq p

X 0-12965 685451 0-0108
age —0-08911 2.8518 00913
wt -—-000878 00269 0-8697
pf.coded ~—0-08238 1-4278 02321
heart 0-01017 00481 0-8319
map 0-03928 04998 04796
hg -0-08678 17368 0-18786
8z —008262 09834 03214
8¢ —004R786 06474 04210
ap 00137 0-06868 0-8133
bm 0-04891 09241 03364
GLOBAL NA 153776 0-1889
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Beta(t) for rx

Time

Figure 2. Raw and spline-smoothed scaled Schoenfeld residuals for dose of oestrogen, non-linearly coded from the Cox
model fit, with + 2 standard errors.”!

Only the drug effect significantly changes over time (P = 0-01 for testing the correlation rho
between the scaled Schoenfeld residual and time), but when a global test of PH is done penalizing
for 11 df, the P-value is 0-17. A graphical examination of the trends does not find anything
interesting for the last 10 variables. A residual plot is drawn for rx alone and is shown in Figure 2.

plot (phtest, var ='rx’)

We will ignore the possible increase in effect of oestrogen over time. If this non-PH is real,
a more accurate model might be obtained by stratifying on rx or by using a time x rX interaction
as a time-dependent covariable.

Note that the model has several insignificant predictors. These will not be deleted, as that
would not improve predictive accuracy and it would make confidence intervals for § or for
predicted survival probabilities with the correct coverage probabilities hard to obtain.5* At this
point it would be reasonable to test pre—specified interactions. Here we will test all interactions
with dose. Since the multiple terms for many of the predictors (and for rx) make for a great
number of d.f. for testing interaction (and a loss of power), we will do approximate tests on the
data-driven codings of predictors. P-values for these tests are likely to be somewhat anti-
conservative.

z.dose « z[,'rx'] # same as saying z[,1] — get first column
z.other « z[,-1] # all but the first column of z
f.ia « cph(8 ~ z.dose * z.other)

anova(f.ia)

Factor Chi-Square d.f. P

z.dose (Factor + Higher Order Factors) 189 11 0-082
All Interactions 12:2 10 0273

z.other (Factor + Higher Order Factors) 1343 20 0-000
All Interactions 122 10 0273

z.dose e z.other (Factor + Higher Order Factors) 122 10 0273

TOTAL 1373 Rl 0-000
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Figure 3. Shape of each predictor on log hazard of death. Y-axis shows XJ, but the predictors not plotted are set to

reference values. ‘Rug plots’ on the top of each graph show the data density of the predictor. Note the highly

non-monotonic relationship with ap, and the increased slope after age 70 which has been found in outcome models for
various diseases

Here ‘Factor + Higher Order Factors’ means the combined main effect and interaction effect.
The global test of additivity has P = 027, so we will ignore the interactions (and also forget to
penalize for having looked for them below!).

The following UNIX S-Plus statements plot how each predictor is related to the log hazard of
death, along with 0-95 confidence bands. Note that due to a peculiarity of the Cox model the
standard error of the predicted X J is zero at the reference values (medians here, for continuous
predictors).

par(mfrow = ¢(3, 4)) # 4 x 3 matrix of graphs

rec(-1,1 # use common y-axis range for all

plot(f, rx = NA, ylim =r) NA - use default range for predictor
plot(f, age = NA, yliim =r)

scatld(age) # scatld from statlib, for any 8-Plus

plot(f, wt = NA, ylim =) # scatld shows data density



MULTIVARIABLE PROGNOSTIC MODELS 383

1.0

08

04

Fraction Surviving 60 Months
0.6
\
‘l

0.2
T

0.0

T T

0.1 02 0.3 04 0.5 0.6
Predicted 60 Month Survival

Figure 4. Bootstrap estimate of calibration accuracy for 5-year estimates from the final Cox model. Dots correspond to
apparent predictive accuracy. x marks the bootstrap—corrected estimates

We first validate this model for Somers’ D,, rank correlation between predicted log hazard and
observed survival time, and for slope shrinkage. The bootstrap is used (with 200 re-samples) to
penalize for possible overfitting, as discussed in Section 6.

validate(f, B=R200,dxy =T, pr=T)

index.orig training test optimism index. n
corrected

Dxy —-0-337377 —0384844 0308978 —-0-08488 —0-28250 200

R2 0-221444 0-281368 018445 007681 014483 200

Slope 1.000000 1.000000 078464 021836 078464 200

Here ‘training’ refers to accuracy when evaluated on the bootstrap sample used to fit the model,
and ‘test’ refers to the accuracy when this model is applied without modification to the original
sample. The apparent D,, is —0-34, but a better estimate of how well the model will discriminate
prognoses in the future is D,, = — 0-28. The bootstrap estimate of slope shrinkage is 078,
surprisingly close to the simple heuristic estimate. The shrinkage coeficient could easily be used
to shrink predictions to yield better calibration.

Finally, we validate the model (without using the shrinkage coeflicient) for calibration accuracy
in predicting the probability of surviving 5 years. As detailed in Section 5, the bootstrap is used to
estimate the optimism in how well predicted 5-year survival from the final Cox model tracks
Kaplan—Meier 5-year estimates, stratifying by grouping patients in subsets with about 70 patients
per interval of predicted 5-year survival.

plot(calibrate(f, B =800, u = 5+ 12, m = 70))

The estimated calibration curves are shown in Figure 4. Bias—corrected calibration is very good
except for the two groups with extremely bad prognosis — their survival is slightly better than
predicted, consistent with regression to the mean. Even there, the absolute error is low despite a large
relative error. Hence for this example it may not be worthwhile to develop a model using shrinkage.

Now compare this analysis with three previous analyses of this dataset. In all three analyses, all
continuous covariables were arbitrarily categorized into intervals and scored with somewhat
arbitrary category codes. In none of the three were sbp, dbp, ekg, ap, bm considered. Patients
having missing values on any of the candidate predictors were excluded from consideration.
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Turn first to Byar and Green,®” who used an exponential survival model and dichotomized
treatment by combining placebo and low dose and combining the two highest doses. The
important predictors were found to be hx, sg, sz, hg, and the following interactions were
detected in an exploratory analysis which did not control for multiple comparisons: rx x sg and
rx x age. These interactions were not significant in the present model (even if dose were re—coded
as in Byar and Green).

Kay®® considered Cox models for various causes of death. For time until all-cause mortality,
Kay found that the most important predictors were 82, hx, sg, age. The treatment along with
age, hx were significant predictors of cardiovascular death. The treatment (in the opposite
direction), and hg, sz, sg predicted cancer death. Treatment and age, wt predicted time until
death from other causes.

Sauerbrei and Schumacher®® also used a Cox model and an approach in which a backward
elimination procedure was done for each of 100 bootstrap samples. The relative frequency of
selection of variables as ‘important’ was used as the criterion for inclusion of variables in the final
model. Variables were retained if they were selected > 70 times. All candidate predictors met this
criterion. Treatment interactions involving age and sg were the most common interactions (56
and 48 bootstrap repetitions, respectively), but they did not meet the criterion for selection. The
authors noted that these interactions were misleadingly more significant in a model which only
adjusted for ‘significant’ predictors instead of all candidate predictors.

None of the three references just cited provided a model validation or quantified the predictive
discrimination of the final model.

10. SUMMARY

Methods were described for developing clinical multivariable prognostic models and for assessing
their calibration and discrimination. A detailed examination of model assumptions and an
unbiased assessment of predictive accuracy will uncover problems that may make clinical
prediction models misleading or invalid. The modelling strategy presented in Section 7 provides
one sequence of steps for avoiding the pitfalls of multivariable modelling so that its many
advantages can be realized.
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