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Bioethanol is one of the most studied alternative fuels nowadays. Due to its production process complexity and the low quality of
the mathematical models that describe it, a reliable controller is needed to maximize the fuel production and minimize its
environmental impact, even in the presence of uncertainty. Here, a controller for tracking optimal profiles considering model
errors and external perturbations is proposed. +is work is an improvement of a previously presented technique. To reduce the
earlier mentioned uncertainties’ effect during the fermentation, some tracking error integrators are added in the control action
calculation. +is simple modification ensures the tracking error convergence to zero, even in the presence of uncertainties
(demonstration available). Different tests are carried out and a performance comparison with the original controller is shown to
highlight improvements in the tracking error of up to 98% when integrators are incorporated. Furthermore, a classical PI
controller is contrasted with the proposed techniques.

1. Introduction

Excessive consumption of fossil fuels has led to a depletion of
this natural resource and an environmental contamination
caused by the greenhouse gases generated in their com-
bustion [1, 2]. Some of the most notorious consequences are
the global warming, acid rain, and urban smog [3]. For this
reason, renewable and nonpolluting alternative fuels have
become an investigation focus. One of the most important
research lines in this topic is the bioethanol production,
which is less toxic, readily biodegradable, and produces less
air-borne pollutants than petroleum fuel [4]. Its production
process involves a fermentation that transforms carbohy-
drates into alcohol. Moreover, it can be obtained from
different raw materials, which classify it into three categories
[4]: (i) first generation, involves feedstock like sugar cane,
sugar beet, wheat, sorghum, fruits, corn, potato, rice, sweet
potato, or barley [5, 6]; (ii) second generation, uses ligno-
cellulosic biomass from wood, straw, grasses, olive mill [7],
or pineapple waste [8], among others [9]; and (iii) third
generation comes frommacro- andmicroalgae biomass [10].

Furthermore, there are new investigations oriented to obtain
bioethanol from fecal waste [1, 11]. However, the second
generation is the most studied nowadays because it does not
generate a competition with the food industry as the first one
and is an alternative of final disposal for many types of waste.

+e bioethanol production process consists of a series of
stages; some of them depend on the raw material used:

(i) Pretreatment: it allows altering the lignin and
hemicellulose structure of lignocellulosic materials
to leave cellulose exposed; this stage facilitates the
next one and increases its efficiency.

(ii) Hydrolysis: with this treatment, long chains of
carbohydrates are reduced into monomeric sugars.

(iii) Fermentation: biological process ensures the trans-
formation of the monomeric sugars into alcohol
molecules by somemicroorganism (yeast or bacteria).

(iv) Distillation: the alcohol is separated from the culture
medium. +is method requires a significant amount
of energy, which makes the process more expensive.
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Many researchers have devoted their efforts to improve
each one of the stages mentioned. Herrero, et al. [7] pre-
sented the optimization results of the sulfuric acid pre-
treatment variables applied to improve sugars
bioavailability. Aimaretti et al. [12], studied two different
enzymatic hydrolysis strategies to increase fermentable
sugar concentration in the must. Kumar et al. [13] dem-
onstrated how to increase the efficiency of sugar conversion
and the ethanol yield of a fermentation applying gas
stripping at high temperature. In Tgarguifa et al.’s study [14],
the model and a distillation column optimization to produce
ethanol from wine are proposed.

+e fermentation step can be improved with many
strategies, such as the specific microorganism selection or
genetic modification of those microorganisms [3, 4]. Fed-
batch bioprocesses are intensively studied nowadays because
of their main advantages [15]. For example, the medium
substrate concentration can be regulated by an appropriate
feed rate profile [16], obtaining better production yields and
minimizing the production costs [15, 17]. However, bio-
processes control is required to follow a certain feed flow rate
and get stability and the best productivity [18]. Moreover, a
real-time bioprocess detailed control is a complex target but
is necessary to ensure raw materials optimal use, water and
energy-saving, final product consistent quality, a reduction
in wastes and process cycle time, replacement of costly and
slow laboratory testing, and continuous learning, which
opens up the possibility of bioprocess innovation. Fur-
thermore, the mathematical representation of the process is
the key to achieve good results.

A mathematical model provides a map from inputs to
responses. A model quality depends on how closely its re-
sponses match those of the true plant. However, a model set
which includes the true physical plant can never be con-
structed [19]. Generally, a bioprocess modelling presents
particular difficulty in their parameters determination caused
by the poorly understood microorganism’s dynamics (mul-
tivariable and highly nonlinear dynamics), the strongly cou-
pled variables, and the presence of numerous external
disturbances, which leads to many modelling uncertainties
[20]. Furthermore, sometimes those parameters are deter-
mined without a previous model analysis, or their values are
not informed with their respective confidence intervals
[21, 22]. Moreover, the time-varying parameters are usually
assumed constant [23]. Also, uncertainties associated with
processing technologies’ parameters are rarely considered [24].
Dismissal of aspects leads to a reality misrepresentation and, as
a result, a deficient performance with serious and imminent
risks [25, 26]. Hence, the main task to assure the bioprocess
quality implies finding a way to control these flaws [27–29].
For this reason, the development of new control schemes that
reduce the effect of uncertainties in the tracking error has
become an attention focus for the scientific community [21].

+e problem of model parameters determination has
motivated the development of many strategies. Donoso-Bravo
et al. [30] discussed existing methodologies for parameter
estimation and model validation in the field of anaerobic
digestion processes. Balsa-Canto and Banga [31] proposed an
iterative procedure to improve practical identifiability and to

help in the design of informative experiments. Vilas, et al. [32]
presented the theoretical background of a parameter identi-
fication protocol intended to deal with those mentioned
challenges. To reduce the complexity of tuning a complex
anaerobic digestion model, a particle swarm optimization-
based smart algorithm was developed to estimate all param-
eters [33]. Elenchezhiyan and Prakash [34] formulated state
estimation schemes for nonlinear hybrid dynamic systems
subjected to stochastic state disturbances and random errors in
measurements using interacting multiple-model algorithms.
In Pantano et al.’s study [35], the problem of optimal profiles
tracking control under uncertainties for a fed-batch bioprocess
with two control actions is addressed. In Lara-Cisneros et al.’s
study [36], an extreme-seeking scheme based on an approach
to variable structure control for fed-batch bioreactors, which
deals with uncertainty on the specific growth rate, is proposed.
For some other examples, see [37] and [38].

On the other hand, many scientists have developed
several feedback control strategies to deal with bioprocess
uncertainties, such as optimal control, nonlinear model
predictive control, fuzzy control, hybrid control, adaptive
control, tracking control, and neural network [37, 39–43].
Due to the online implementation difficulty, the high
computational cost, the imprecise mathematical models, and
online solutions, their use for bioprocesses is limited [17]
and is still a research topic [44].

Generally, for disturbances treatment, strategies to reject
or limit their effect are used. Among the most frequent ap-
proaches can be found prefeeding, disturbance observer,
disturbance and uncertainty estimation, or control for active
rejection of disturbances [45–49]. Disturbance estimation
needs a filter in their structure design (to ensure infinite norm
less than one), which increases the mathematical complexity.

For the specific case of ethanol production defined by
Hunag, et al. [50], Fernández, et al. [51] presented a con-
troller design focused on looking for control actions, to track
predefined concentration profiles. As the controller struc-
ture comes from the process mathematical model, it can be
implemented in many systems. +is procedure is simple,
versatile, and precise. Besides, only basic knowledge of
numerical methods and linear algebra are needed to im-
plement it. +e technique was tested against different dis-
turbances, showing an excellent performance and the
tracking error convergence to zero. However, its weakness is
handling model uncertainties and external perturbations.

In this paper, the control strategy presented in
Fernández, et al. [51] is improved. +is new alternative
allows tracking predefined optimal profiles considering
additive uncertainty in an underactuated system with only
one control action. To achieve this goal, a new term is added
to the original controller design equation. +is term rep-
resents the model uncertainties, which are avoided using
tracking error integrators. It is important to highlight that as
the number of integrators increases, the approximation
improves and the tracking error decreases. Furthermore, this
adjustment ensures signals uniformity and the tracking error
convergence to zero. In this way, a positive answer to the
tracking control challenging problem in multivariable
nonlinear systems with additive uncertainty is provided.
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+e paper is organized in four sections. Section 2
summarizes the ethanol bioprocess and the previously
presented controller technique. Section 3 explains the new
controller design, which takes into account the uncertainties.
Section 4 shows simulations testing the new controller
performance and a comparison with other control tech-
niques. Finally, conclusions are exposed.

2. Ethanol Bioprocess Model and
Controller Design

2.1. Ethanol Bioprocess Description. +e following mathe-
matical model describes a fed-batch ethanol fermentation. It
was originally proposed by Hunag, et al. [50]. Here, the yeast
Saccharomyces diastaticus is used. +e system input, feed
rate (U), is a 50–50 glucose and fructose mixture, while the
states are cells (X), ethanol (P1), glycerol (P2), glucose (S1),
and fructose (S2) concentration inside the reactor, whose
profiles variation over time is wanted to be tracked:

_X(t) � μ1 + μ2( X − U
V
X,

_S1(t) � −
qS1/P1
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+
qS1/P2
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 X + U
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_S2(t) � −

qS2/P1

YP1/S2

+
qS2/P2

YP2/S2

 X + U
V
(1 − λ)Sf − S2 ,

_P1(t) � − qS1/P1
+ qS2/P1

 X + U
V
P1,

_P2(t) � − qS1/P2
+ qS2/P2

 X + U
V
P2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where

_V(t) � U,

μ1 �
μm1

S1

KS1
+ S1 + S

2
1/KS1I

KP1

KP1
+ P1 + P

2
1/KP1I

,

μ2 �
μm2

S2

KS2
+ S2 + S

2
2/KS2I

KP2

KP2
+ P1 + P

2
1/KP2I

,

qS1/P1
�

]S1P1
S1

KS1P1
+ S1

kS1P1

kS1P1
+ P1

,

qS2/P2
�

]S2P2
S2

KS2P2
+ S2

kS2P2

kS2P2
+ P2

,

qS1/P2
�

]S1P2
S1

KS1P2
+ S1

kS1P2

kS1P2
+ P2

,

qS2/P1
�

]S2P1
S2

KS2P1
+ S2

kS2P1

kS2P1
+ P1

.

(2)

whereV is the culture volume, µ1 and µ2 are the specific yeast
cells growth rates, qS1/P1 and qS2/P1 are the specific ethanol
production rates, qS1/P2 and qS2/P2 are the specific glycerol
production rates, in all cases from glucose and fructose,
respectively. U is the control variable.

Hunag, et al. [50] applied a run-to-run optimization
procedure in order to estimate kinetic model parameters, fed
glucose concentration, feed strategy, and fermentation time
to maximize the ethanol production rate. +ose results are
used as references in this paper. A reactor with a total
working volume of 5 L was used. Temperature was main-
tained at 35.8°C by controlling the circulation of the cooling
water. +e airflow was fixed at 1.5 vvm, and the pH was kept
at 5.0 by adding 1N NaOH. +e biomass concentration was
determined spectrophotometrically at 540 nm, and the
corresponding dry weight of cells was obtained from a
calibration curve. +e concentrations of glucose, fructose,
ethanol, and glycerol were analyzed with a high-perfor-
mance liquid chromatograph [50]. Table 1 shows system’s
initial conditions, while parameters’ nomenclature, de-
scription, and values are exposed in Table 2.

2.2. Controller Design. +e methodology described in [51]
aims to find U in order to make the system follow pre-
established state variables profiles (references) with mini-
mum error. For the controller design is assumed that
reference profiles and states at each sampling instant are
known. Figure 1 shows the reference concentration profiles
and the feed flow rate. Next, the mentioned methodology is
summarized.

First, equation (1) is discretized using numerical
methods. Here, Euler is applied due to its simplicity and
good results [51].

dσ

dt
  � σn+1 − σn

TS
, (3)

where σ symbolizes each state variable, σn is the current σ
value measured from the reactor (online), σn+1 is σ value in
the next measurement instant, and TS is the sampling time
(0.1 h) [52]. +e process lasts 15.7 h (Tf ).

+e state variables in n+ 1 are approximated as follows:

σref ,n+1 − σn+1√√√√√√√√√√
errorn+1

� kσ σref ,n − σn √√√√√√√√
errorn

⟶ σn+1 � σref n+1

− kσ σref ,n − σn .
(4)

where σref is the reference state variables and kσ represents
the controller parameter for the variable σ. For this system,
the controller parameters are kX, kP1, kP2, kS1, and kS2. As
expected is the error reduction in each sampling time, it
must be fulfilled that 0≤ kσ < 1. +en, replacing equation (4)
in (3),

dσ

dt
  � σref n+1 − kσ σref n − σn(  √√√√√√√√√√√√√√√√√√√√σn+1

− σn
TS

� Δσ. (5)
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Applying equation (5) in (1),
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Expressing (6) in a matrix form,
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.

(7)
To find U, the equation system (7) must have an exact

solution. So, b has to be a linear combination of A columns
[53], in other words, A and b must be parallel. One way to
satisfy this condition is as follows:

cos(A, b) �
〈A, b〉

‖A‖∗ ‖b‖ � 1, (8)

where the operation between < > and ||.|| represents the
inner product and the vectors norm in Rn space, respectively.

At this point, a “sacrificed variable” selection is neces-
sary. +is variable, defined as S1ez, ensures that (7) has an
exact solution. For more details on its selection and cal-
culation, see [51]. Finally, Un is obtained using least squares
[53].

Table 2: Nomenclature, description, and values of parameters.

Parameter Description Value

µm1
Maximum specific growth rate coefficient for

yeast on glucose (h− 1)
1.8823

µm2
Maximum specific growth rate coefficient for

yeast on fructose (h− 1)
1.7098

YP1/S1 Yield coefficient for ethanol from glucose 0.5085
YP2/S1 Yield coefficient for glycerol from glucose 0.5331
YP1/S2 Yield coefficient for ethanol from fructose 0.5098
YP2/S2 Yield coefficient for glycerol from fructose 0.4462

KS1
Saturation coefficient for cell growth on

glucose (g/L)
159.75

KS1I
Inhibition coefficient for cell growth on

glucose (g/L)
94.233

KP1
Saturation coefficient for cell growth on

ethanol (g/L)
238.39

KP1I
Inhibition coefficient for cell growth on

ethanol (g/l)
2.7378

KS2
Saturation coefficient for cell growth on

fructose (g/L)
0.0726

KS2I
Inhibition coefficient for cell growth on

fructose (g/L)
9.0048

KP2
Saturation coefficient for cell growth on

glycerol (g/L)
35.958

KP2I
Inhibition coefficient for cell growth on

glycerol (g/L)
9.9722

KS1P1
Saturation coefficient for ethanol production

on glucose (g/L)
1.3409

kS1P1
Inhibition coefficient for ethanol production

on glucose (g/L)
18.612

KS2P1
Saturation coefficient for ethanol production

on fructose (g/L)
0.9129

kS2P1
Inhibition coefficient for ethanol production

on fructose (g/L)
1000

KS1P2
Saturation coefficient for glycerol production

on glucose (g/L)
6.7116

kS1P2
Inhibition coefficient for glycerol production

on glucose (g/L)
0.5863

KS2P2
Saturation coefficient for glycerol production

on fructose (g/L)
0.4310

kS2P2
Inhibition coefficient for glycerol production

on fructose (g/L)
1.150

]S1P1
Coefficient of maximum specific ethanol
production rate for yeast on glucose (h− 1)

1.5051

]S2P1
Coefficient of maximum specific ethanol
production rate for yeast on fructose (h− 1)

0.3321

]S1P2
Coefficient of maximum specific glycerol
production rate for yeast on glucose (h− 1)

0.0023

]S2P2
Coefficient of maximum specific glycerol
production rate for yeast on fructose (h− 1)

0.1609

Λ Proportion of glucose and fructose 0.5

Sf Sugar total feed concentration (g/L) 300

Table 1: Initial conditions for ethanol fermentation.

Variable Initial value

X (g/L) 1.5
P1 (g/L) 5.3
P2 (g/L) 0.0001
S1 (g/L) 8.6
S2 (g/L) 8.6
V (L) 1.35
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Un � ATA − 1ATb. (9)

2.3. Controller Tuning. In [51], the Monte Carlo algorithm
was used to find the kσ combination that minimizes the
accumulated error. +is methodology consists in simulating
the process N times using random kσ [54]:

N≥ log(1/δ)

log(1/1 − ε)
 , (10)

where δ is the confidence and ε the accuracy.
+en, two new terms are introduced, “tracking error”

and “total error”, equations (11) and (12), respectively:

en
���� ���� �

�����������������������������������������������������������������������������������������������
Xref ,n − Xn /maxXref ,n 2 + P1ref ,n − P1,n /maxP1ref ,n 2 + P2ref ,n − P2,n /maxP2ref ,n 2 + S2ref ,n − S2,n /max S2ref ,n 2


,

(11)

Ep � J
nTS�1

en
���� ����, (12)

where p represents the simulation in progress,
p � 1, 2, . . . , N and nTS the measurement instant, nTS� 1, 2,
. . ., J.

Equation (12) is the function cost to be minimized with
the Monte Carlo Algorithm.+en, kσ that minimize the total
error are selected.

Sequence of theMonte Carlo algorithm is as follows [55]:

(1) Define the controller’s parameters to be optimized.

(2) Determine the number of simulations to be per-
formed (N). +e values of δ and ε are chosen
depending on the desired accuracy, for example,
δ � 0.01 and ε� 0.005, resulting in N� 1000.

(3) A value is randomly assigned for each parameter of
the controller.

(4) +e process is simulated and the cost index (Ep) is
calculated.

(5) Repeat steps 3 and 4 until completing the N iterations.

(6) Finally, the controller parameters that minimize Ep
are selected.

Theorem. If the discrete system is given by equations (1), the
control action is calculated with equations (9), and kσ takes
values between zero and one (0< kσ < 1), then, the tracking
error convergence to zero when n tends to infinity is achieved.
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Figure 1: Cells, ethanol, glycerol, and fructose reference concentrations along the process. Reference feed flow rate.
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Demonstration. Replacing the sacrificed variable in (7) and
expressing the matrix system generically:

a1

a2

a3

a4

a5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
√√√√

A

Un �

b1

b2

b3

b4

b5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
√√√√

b

.
(13)

Solving (13) with least squares,

Un � ATA − 1ATb � a1b1 + a2b2 + a3b3 + a4b4 + a5b5
a21 + a

2
2 + a

2
3 + a

2
4 + a

2
5

.

(14)

From (13),

a1
a2
�
b1
b2
⟶ b2 �

a2
a1
b1,

a1
a3
�
b1
b3
⟶ b3 �

a3
a1
b1,

a1
a4
�
b1
b4
⟶ b4 �

a4
a1
b1,

a1
a5
�
b1
b5
⟶ b5 �

a5
a1
b1.

(15)

Replacing (15) in (14),

Un �
a1b1 + a22b1( /a1 + a23b1( /a1 + a24b1( /a1 + a25b1( /a1

a21 + a
2
2 + a

2
3 + a

2
4 + a

2
5

�
b1/a1(  a21 + a22 + a23 + a24 + a25( 

a21 + a
2
2 + a

2
3 + a

2
4 + a

2
5

�
b1
a1

�
Vn Xref ,n+1 − kX Xref ,n − Xn  − Xn /TS  − μ1 S1ez,n, P1,n  + μ2 S2,n, P1,n  Xn 

− Xn

.

(16)

Substituting (16) in (7),

Xn+1 � Xref ,n+1 − kX Xref ,n − Xn  + TS μ1 S1ez,n, P1,n 
− μ1 S1,n, P1,n Xn.

(17)
+en, the tracking error for X is defined as

eX,n+1 � Xref ,n+1 − Xn+1. (18)

Introducing (17) in (18),

eX,n+1 � kX Xref ,n − Xn  − TS μ1 S1ez,n, P1,n 
− μ1 S1,n, P1,n Xn.

(19)

+e µ1 (S1n, P1n) Taylor approximation in the desired
value µ1 (S1ez n, P1n) is

μ1 S1,n, P1,n  � μ1 S1ez,n, P1,n 

+
dμ1 S1, P1,n 

dS1

 S1n − S1ez,n 
S1�Sez,n+θ S1,n− S1ez,n( )�Sθ

,

where⟶ 0< θ < 1.
(20)

Substituting (20) in (19),

eX,n+1 � kX Xref ,n − Xn  − TS μ1 S1ez,n, P1,n  + dμ1 S1, P1,n 
dS1

 Sθ S1n − S1ez,n √√√√√√√√√√
− eS1 ,n

− μ1 S1ez,n, P1,n ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Xn,

eX,n+1 � kX Xref ,n − Xn  + TSdμ1 S1, P1,n 
dS1

SθeS1 ,nXn.

(21)
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Proceeding in a similar way for the other variables and
joining the final expressions,

eX,n+1

eS1 ,n+1

eS2 ,n+1

eP1 ,n+1

eP2 ,n+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

kX 0 0 0 0

0 kS1 0 0 0

0 0 kS2 0 0

0 0 0 kP1
0

0 0 0 0 kP2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eX,n

eS1 ,n

eS2 ,n

eP1 ,n

eP2 ,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

L

+TSXn

dμ1 S1, P1,n 
dS1

 Sθ
0

0

−
dqS1/P1

S1, P1,n 
dS1

 Sφ
−
dqS1/P2

S1, P2,n 
dS1

 Sα

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
√√√√√√√√√√√√√√√√√√√√√√√√

NL

eS1 ,n. (22)

In equation (22), L is a linear system and NL is a
bounded nonlinearity [51]. Note that if kσ � 0, the reference
is reached in one step. So, if 0< kσ < 1, the tracking error
tends to zero when n⟶∞ [51, 56].

2.4. Controller Implementation. +e control system diagram
is shown in Figure 2, and the mathematical procedure is
summarized in the following steps:

Step 1: Define Ts and σref. Read σn.

Step 2: Approximate the differential equations with
numerical methods, equations (3).

Step 3: Approximate the state variables in n+ 1 using
equation (4).

Step 4: Define and calculate the sacrificed variable.

Step 5: Calculate Un using least squares, equation (9).

3. Controller Design under Uncertainties

As a main contribution, the following procedure suggests an
important improvement for Fernández et al.’s [51] controller
performance.

3.1. Controller Design under Uncertainty. In this section, the
uncertainties effect in the tracking error is evaluated. With
the aim of representing the additive uncertainty effect in the
process mathematical model, the terms Eσ,n are added in
equation (7):

− Xn/Vn

λSf − S1,n /Vn
(1 − λ)Sf − S2,n /Vn

− P1,n/Vn

− P2,n/Vn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Un �

ΔX − µ1 + µ2( Xn

ΔS1 +
qS1/P1

YP1/S1

+
qS1/P2

YP2/S1

 Xn

ΔS2 +
qS2/P1

YP1/S2

+
qS2/P2

YP2/S2

 Xn

ΔP1 − qS1/P1
+ qS2/P1

 Xn

ΔP2 − qS1/P2
+ qS2/P2

 Xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
1

TS

EX,n

ES1 ,n

ES2 ,n

EP1 ,n

EP2 ,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
√√√√√√

En

. (23)

+e additive uncertainty (En) models several kinds of
mismatches as well as perturbed systems. En might depend
on the states variables and the system input. Moreover,
considering a real plant like zn+1� f (zn,un), the additive
uncertainty can be expressed as En� f (zn,un) – f (zn,un),
where f (zn,un) is the discrete-time nonlinear system model.

If z and u are assumed to be bounded, and f is Lipschitz
[57, 58], then Eσ,n can be modelled as a bounded uncertainty
[59, 60].

Taking into account this uncertainty and following the
same procedure of Section 2.3, the next final expression is
obtained:
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eX,n+1

eS1 ,n+1

eS2 ,n+1

eP1 ,n+1

eP2 ,n+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

kX 0 0 0 0

0 kS1 0 0 0

0 0 kS2 0 0

0 0 0 kP1
0

0 0 0 0 kP2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eX,n

eS1 ,n

eS2 ,n

eP1 ,n

eP2 ,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

L

+TSXn

dμ1 S1, P1,n 
dS1

 Sθ
0

0

−
dqS1/P1

S1, P1,n 
dS1

 Sφ
−
dqS1/P2

S1, P2,n 
dS1

 Sα
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eS1 ,n

√√√√√√√√√√√√√√√√√√√√√√√√√√√√
NL

−

EX,n

ES1 ,n

ES2 ,n

EP1 ,n

EP2 ,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
√√√√

En

.
(24)

Comparing (24) with (22), the error nonconvergence to
zero is noticed due to En presence. +erefore, the next step is
En approximation to reduce their effect in the tracking error,
achieving the convergence to zero.

3.2. Integral Action. Here, a novel approach is presented to
reduce the effect of En in the tracking error by adding some
integrators in the control action calculus equation. +e
advantage is that new terms do not add extra mathematical
complexity and maintain the simplicity of the scheme
presented by Fernández et al. [51].

As it was explained, En represents the additive uncer-
tainty, typical of mathematical model formulation errors and
the influence of external perturbation. +ose uncertainties
can not be measured, that is to say, they are unknown, but
they can be assumed as a polynomial so that all kinds of
possible uncertainties can be considered, which can be
constant, linear, quadratic, or other. In this way, by in-
creasing the order of the polynomial, the uncertainty ap-
proximation is improved and there is a tendency to reduce
the tracking error more and more. +is statement is
mathematically demonstrated below.

En differences are defined as

δEn � En+1 − En,

δ2En � δ δEn(  � δ En+1 − En(  � En+2 − 2En+1 + En,

δqEn � δ δq− 1En .
(25)

3.2.1. Constant Uncertainty. If En is assumed as a constant,
then δEn� 0. Denoting generally the error as eσ,n,

eσ,n � σref ,n − σn. (26)

An integrator could force the tracking error convergence
to zero. +is integrator is defined as follows:

Uσ,n+1 � Uσ,n + (n+1)TS
nTS

eσ,n(t)dt � Uσ,n + eσ,nTS. (27)

Consequently, equation (4) can be rewritten as

σn+1 � σref n+1 − kσ σref n − σn(  + lσUσ,n+1, (28)

where kσ and lσ are the proportional and integral controller
parameters, respectively.

Demonstration of error convergence to zero when un-
certainties are considered is given below.

Expressing equation (24) in the following summarized
way,

eσ,n+1 � kσeσ,n + NLn + En. (29)

Adding the integral,

eσ,n+1 � kσeσ,n − lσUσ,n+1 + NLn + En. (30)

Replacing equation (27) in (30),

eσ,n+1 � kσeσ,n − lσ Uσ,n + eσ,nT0  + NLn + En. (31)

+en, combining equation (30) with (31),

eσ,n+2 � kσeσ,n+1 − lσ Uσ,n+1 + eσ,n+1T0  + NLn+1 + En+1.

(32)

Linear algebra 
controller

System

Xref

P1ref

P2ref

S1ref

S2ref

X

P1

P2

S1

S2

References Control action

Un

Figure 2: Control system diagram.
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Otherwise,

eσ,n+2 � kσeσ,n+1 − NLn + En + kσeσ,n − eσ,n+1 
− lσ eσ,n+1T0  + NLn+1 + En+1,

eσ,n+2 � eσ,n+1 kσ − lσT0 + 1(  − kσeσ,n − NLn

+ NLn+1 − En + En+1√√√√√√√√
δEn�0

.

(33)

Remark. If En� cte, δEn� 0. Looking equation (33), it is
evidenced that the tracking error tends to zero with the
progress of the process.

3.2.2. Linear Uncertainty. If En is supposed as a linear
function, then δ2En� 0. Following the same reasoning as in
3.2.1, now two integrators are needed to compensate the
added uncertainty. +ose integrators are

Uσ1,n+1 � Uσ1,n + (n+1)TS
nTS

eσn(t)dt � Uσ1,n + eσnTS,

Uσ2,n+1 � Uσ2,n + (n+1)TS
nTS

Uσ1,n+1(t)dt � Uσ2,n + Uσ1,n+1TS.

(34)
Accordingly, equation (4) can be rewritten as

σn+1 � σref ,n+1 − kσ σref ,n − σn  + lσ1Uσ1,n+1 + lσ2Uσ2,n+1,

(35)
where kσ and lσ1 and lσ2 are the proportional and both
integral controller parameters, respectively.

After the same steps of 3.2.1 demonstration, the error
convergence to zero is achieved.

3.2.3. Polynomial Uncertainty. In this case, En is supposed as
anm-order polynomial function. So, if q>m, δqEn� 0. Using
the same steps before mentioned, it should be added m
integrators in order to compensate the uncertainties
considered.

Figure 3 shows the block diagram of the new control
system.

3.3. Controller Parameters Selection. For the error to de-
crease progressively and remain at low values, the linear
term of equation (24), L, must tend to zero. In Fernández
et al.’s study [51], this state was possible choosing kσ values
between zero and one. However, when integrators are
considered, two types of parameters are involved, propor-
tional and integral, what changes the parameters selection
condition to achieve the error convergence to zero.

In this way, starting from the characteristic equation of
the linear term of equation (33),

eσ,n+2 + − kσ + lσTS − 1( √√√√√√√√√√√√
a1

eσ,n+1 + kσ
a2

eσ,n � − NLn +NLn+1,

r2 + a1r + a2 � 0.

(36)

If the characteristic equation roots (r1 and r2) are be-
tween zero and one, it is guaranteed that the linear term
tends to zero when n tends to infinity. Hence, the root values
must be determined to calculate parameters.

As many authors recommend, theMonte Carlo algorithm
is used to find the best roots values [61–63]. +e steps to
follow are similar to those described in 2.3. Considering that
only one integrator is added, the process must be simulatedN
times (equation (10)), using random values of r1 and r2
(between zero and one). +en, kσ and lσ are obtained with

kσ � r1r2,

lσ �
− r1 − r2 + r1r2 + 1( 

TS
.

(37)

For each simulation, the cost function (equation (12)) is
calculated. Finally, the parameters corresponding to the
simulation with minimal total error are selected.

When more than one integrator are added, the process is
repeated, but now the characteristic equation order in-
creases, and consequently, the expressions for parameters
calculation change. For example, using two integrators, the
parameters are calculated as follows:

kσ � r1r2r3,

l1σ �
2r1r2r3 + 1 − r1r2 − r1r3 − r2r3( 

TS
,

l2σ �
− r1 − r2 − r3 − r1r2r3 + 1 + r1r2 + r1r3 + r2r3( 

T2
S

.

(38)
Table 3 shows the results of the three controllers tuning,

the original controller [51] (C1), a controller with one in-
tegrator (C2), and another with two integrators (C3).

4. Results and Discussion

+e next section demonstrates the effectiveness of the im-
provement proposed through four important tests. In the first
one, the operation of the three controllers is evaluated with a
step perturbation in the control action. In the second one, a
step and a ramp disturbance are added in the control action.
In the third, the controllers are evaluated under parametric
uncertainty using the Monte Carlo Algorithm. Finally, the
controllers are tested against all earlier mentioned pertur-
bations together. In each situation, the better performance of
controllers C2 and C3 is evidenced. Furthermore, a com-
parison with a typical industry controller is shown.

4.1. Simulation Adding a Step Perturbation in the Control
Action. In this test, a hypothetical situation that may pro-
duce an unexpected variation in the production is simulated.
According to this, a − 30% step perturbation in the bioreactor
feed rate is added to evaluate the response of the controllers.
Table 4 summarizes simulations results. Figure 4 shows the
control action variation compared to the reference and the
percentage error, considering C1 error as 100%. Note how
the Total Error improves when the new algorithm is applied,
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it is reduced by 89.91% just adding one integrator and by
94.55% with two integrators.

4.2. Simulation Adding Step and Ramp Perturbations in the
ControlAction. In this test, a ramp disturbance is added to the
step perturbation previously presented. Under those condi-
tions, controllers C1, C2, and C3 are evaluated. In Table 5, the
Total Errors obtained in the simulations are exposed. Figure 5
shows how the feed rate varies in each case. Besides, the
decrease of the Total Error is represented in the bar graph,
demonstrating the improvement of the controller when one
(91.4%) and two (97.1%) integrators are incorporated.

4.3. Parametric Uncertainties. In all bioprocess, model pa-
rameters may change unexpectedly [64]. If this variation is
not foreseen, there could be significant instabilities in the
process [26]. +erefore, to achieve good performance and
efficiency, bioreactors require advanced regulation proce-
dures [29].

As Monte Carlo Randomized Algorithm has been used
for uncertainty quantification in many applications [65, 66],
it is used for this test, following the procedure described in
2.3. +e number of simulations, N� 1000, is obtained with
equation (10), adopting a confidence (δ) of 0.01 and an
accuracy (ε) of 0.005. +erefore, the following test dem-
onstrates the technique success from a statistical point of
view [67–69].

In simulation, a way to quantify uncertainties and
perturbations is to specify the parameters’ real range of
variation instead of using a constant value with greater
error [70]. Hunag et al. [50] specified, in Table 1 of their
work, the parameters’ confidence interval for the ethanol
process under study. For this test, the information of the
mentioned table is used for control purposes. Using C1,
1000 simulations are carried out. In each simulation, all the
system parameters are randomly changed by ±10% of their
original range value (Table 1 of Hunag et al.’s study [50]).
+en, the Total Error is calculated with equation (12), and
the system parameters for the worst situation are selected.
+en, C2 and C3 are tested with those system parameters.
+e results are then compared considering the Total Error
(Table 6). Note how, even considering the most prob-
lematic situation of the system, the Total Error decreases
for each controller, and note the performance improve-
ment for the controllers C2 (51.27%) and C3 (56.56%) over
C1. Moreover, Figure 6 illustrates the accumulated error
for each simulation and evidences the improvement with a
bar graph.

Considering +eorem 1 of Tempo and Ishii [54], as the
tracking error (equation (11)) for the 1000 simulations re-
main bounded, the operation of the controllers C2 and C3
will be satisfactory with 99% of probability while the pa-
rameters vary within a range of ±10%.

4.4. Simulation Adding a Step and a Ramp Perturbation in the
Control Action and Parametric Uncertainty. +is last test
aims to demonstrate how the controllers can fix an im-
portant perturbation. In this way, the perturbations de-
scribed in 4.1, 4.2, and 4.3 are simultaneously considered.
Table 7 compares the resulting Total Errors. Also, Figure 7
shows the feed rate evolution in the three simulations, the
accumulated error obtained with each controller, and a
visible comparison of the performance improvement by a
bar graph, when controllers C2 and C3 are used. In this case,
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Xref

P1ref

P2ref

S1ref
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References
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Figure 3: New control system block diagram.

Table 3: Optimal controller parameters determined with Monte
Carlo algorithm.

Variable C1 C2 C3

kX 0.4946 0.9289 0.7264
kS1 0.3009 0.5411 0.3824
kS2 0.1126 0.3110 0.2918
kP1 0.4219 0.9953 0.9697
kP2 0.2876 0.9694 0.8557
L1X — 5.8101 5.0548
l1S1 — 0.2746 0.1422
L1S2 — 1.8725 1.7765
l1P1 — 3.0267 2.9858
L1P2 — 2.9409 3.9991
L2X — — 8.8199
l2S1 — — 0.6212
L2S2 — — 0.0003
l2P1 — — 1.0641
L2P2 — — 254.47

Table 4: Performance with a step perturbation in the control
action.

C1 C2 C3

Total Error 1.6151 0.1630 0.0881

10 Mathematical Problems in Engineering



Time (h)

2 4 6 8 10 12 14 15.7

F
ee

d
 r

at
e 

(L
/h

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1

C2

C3

Reference

0.066

0.068

0.07
Zoom view

(a)

Controller

C1 C2 C3

T
o

ta
l e

rr
o

r 
(%

)

0

10

20

30

40

50

60

70

80

90

100

(b)

Figure 4: (a) Controllers response to a step perturbation addition in the control action. (b) Total Error comparison. (C1) Original controller
[51]; (C2) controller with one integrator; (C3) controller with two integrators.

Table 5: Performance with step and ramp perturbations in the control action.

C1 C2 C3

Total Error 6.8438 0.5887 0.2032
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Figure 5: (a) Controllers response to a step and ramp perturbation addition in the control action. (b) Total Error comparison. (C1) Original
controller [51]; (C2) controller with one integrator; (C3) controller with two integrators.
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Table 6: Performance with system parametric uncertainty.

C1 C2 C3

Total Error 0.4820 0.2349 0.2094
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Figure 6: (a) Accumulated Error under parametric uncertainty. (b) Total Error comparison. (C1) Original controller [51]; (C2) controller
with one integrator; (C3) controller with two integrators.

Table 7: Performance with a simultaneous step and ramp perturbation in the control action under parametric uncertainties.

C1 C2 C3

Total Error 6.8371 0.8297 0.1322
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Figure 7: Continued.
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the performance error can be reduced by 87.87% just adding
one integrator and by 98.07% with two integrators.

To summarize, the addition of integrators in the controller
design has advantages, such as performance improvement, no
significant mathematical complexity increase, and additive
uncertainty consideration, although it has a disadvantage as
integrators are added, the equations order increases, making
mathematical development less simpler.

4.5. Comparison with a Typical Controller. For their simple
structure and easy parameter adjustment, PID or PI

controllers are still the most widely used in factories [71],
although their weakness with tracking variable set points
is well known [72–74]. Figure 8 shows a performance
comparison between the proposed controllers and a
traditional PI in the same ethanol production system.
Here, a step and a ramp perturbation in the control action
are added. +e best PI parameters were selected with a
Monte Carlo algorithm. PI accumulated error is much
higher than that of C1, due to the increase in error over
time.

It is important to note that a rigorous comparison be-
tween C1 and PI is detailed in [51].
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Figure 7: Controllers response comparison to a simultaneous step and ramp perturbation in the control action under parametric un-
certainties. (a) Control action. (b) Accumulated Error. (c) Total Error. (C1) Original controller [51]; (C2) controller with one integrator;
(C3) controller with two integrators.
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Figure 8: Total Error comparison when (a) a step and (b) a ramp perturbation in the control action are added. (PI) Proportional-integral
controller; (C1) original controller [51]; (C2) controller with one integrator; (C3) controller with two integrators.
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5. Conclusions

A previously presented control technique for tracking op-
timal profiles in nonlinear and multivariable systems was
improved. +e proposed methodology allows tracking
predefined concentration profiles, even in the presence of
typical bioprocess uncertainties like unknown nonlinearities
or parameters uncertainties. To take into account the
mentioned uncertainties, one or more integrators of the
tracking error are added in the controller design. +e main
contribution of this paper is to reduce additive uncertainties
influence on the tracking error without increasing the
controller complexity. Note that C2 and C3 preserve the
original controller advantages (simplicity, fast design, etc.)
but manage to reduce uncertainties effect.

+e Monte Carlo Randomized Algorithm is used to tune
the controllers and carry out the test with parametric un-
certainty. +e different tests carried out show the effec-
tiveness of the proposed procedure, reaching an
improvement of 98% in the worst case considered.

Comparing with other previous strategies that deal with
analogous uncertain control problems, the proposed con-
troller presents the advantage of avoiding the stochastic
modelling needed to deal with parameters under pertur-
bation of white noise. Besides, this nonlinear control does
not require a great mathematical effort and does not add
significant complexity to the original controller.
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[28] R. Simutis and A. Lübbert, “Bioreactor control improves
bioprocess performance,” Biotechnology Journal, vol. 10, no. 8,
pp. 1115–1130, 2015.

[29] J. Abdollahi and S. Dubljevic, “Lipid production optimization
and optimal control of heterotrophic microalgae fed-batch
bioreactor,” Chemical Engineering Science, vol. 84, pp. 619–
627, 2012.

[30] A. Donoso-Bravo, J. Mailier, C. Martin, J. Rodŕıguez,
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