
Introduction

Although the NMR spectroscopic technique has been now a
powerful tool for molecular structure analysis, the target
samples have been limited to purified compounds.  However,
the requirements for analyses of mixtures, such as biological
fluids, cosmetics, food, beverages, supplements, additives,
industrial materials, intermediate compounds of chemical
reaction assays and polymers have been increasing.

NMR-based metabonomics has become focused on the rapid
development of the bioscience frontiers of genomics and
proteomics.  Nicholson et al. have intensive research insight
into the NMR spectroscopy of biological fluids, such as urine,
spinal fluid, serum and intact tissue, and have established an
integrated NMR-spectroscopic and chemometric method for
metabolome.1 Their investigation of various kinds of toxicity in
animals has been combined with pattern-recognition methods
for a metabolic change in an integrated biological system rather
than individual cells.2,3 We studied urinalysis using 1H-NMR
spectra of disease model rats to detect basic metabolisms, which
resulted in clear classifications.4

For quality assessment or authentication, a metabolite
profiling or some chemometric analysis using 13C or 1H NMR
spectroscopy was carried out for several kinds of tea,5 coffee,6

juice,7 beer,8 olive oil,9 crude oil,10 and other mixtures.11 The
components of some of the kinds of teas were analyzed using
mass spectroscopy,12 HPLC13 or 1H NMR spectroscopy.5 Gall
et al. researched the metabolite profiling of 191 kinds of green
teas, mainly Chinese tea, using 1H NMR spectroscopy.5 They
discussed in detail the chemical compounds of the teas and
carried out of PCA and a cluster analysis in connection with
quality assessment and authentication.  They identified about 30

kinds of organic chemical components in the tea.  Four or more
kinds of catechin, caffeine, six kinds of amino acids, including
theanine, which is unique to tea, and some sugars were found.
The kinds of catechin are different between each tea.12–14 In
Japan, many researchers have reported on the chemical
compositions, processing, taste, aroma, and health-related
properties of Japanese green tea.15–17

Their chemometric methods were still insufficient, and also
provided unclear results for tea mixed with complex and multi-
factorial components.  For the successful analysis of mixtures,
fundamental applications are needed to establish a suitable
procedure.

Originally, chemometric methods including PCA, PLS,
SIMCA had been developed in the field of IR and Raman
spectroscopy to deconvolve the broad spectra.18–20 It has
subsequently been applied to the NMR spectra of bio samples
for the analysis of overlapped peaks and for categorization of
the metabolic functional profile.21,22 However, these
multivariate methods combined with NMR spectroscopy have
not yet been well-established for standard use.

The object of this paper is to provide a detailed multivariate
description based on NMR spectroscopy and a comprehensive
assessment of this approach by examining a mixed sample.  We
used over 180 kinds of green, oolong, black and other teas, and
measured their 1H NMR spectra.  In a 1H spectral pattern the
chemical compositions are reflected.  It is not necessary to
identify the proton signals of chemical compounds.  Each
spectrum is used to recognize as a whole pattern and the related
chemometric solutions can be adequately applied to discern the
significant features of the spectra.

Experimental

Materials
Most of the teas were purchased at shops selected as possible
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sources of pure species, and several other teas were supplied by
the Vegetable and Tea Institute, and the University of Shizuoka.
The genetic strain, season of picking, processing, etc. of the
latter teas were clearly known, but the majority of commercial
teas were mixed and identified only by the labels of the
packages.  One hundred seventy-six teas were available for this
study: 49 were Japanese green teas, 6 were Chinese green teas,
51 were black teas, 52 were oolong teas, 10 were Japanese hoji
teas, 2 were yellow teas, 2 were white teas, and 4 were puer
teas.  Some of the Chinese and black teas were mixed with
jasmine, mushroom, vanilla or bergamot.

Extraction
Three grams of tea leaves were stirred with 5 mL of distilled

water at 75˚C, allowed to cool for 3 min, and centrifuged at
10000 rpm for 10 min.  Each sample consisted of 500 μL of the
supernatant, and 50 μL of D2O containing TSP as a reference in
a 5-mm tube.

NMR spectroscopy
The 1H NMR spectra were recorded at 25˚C using a 500 MHz

JEOL ECA NMR spectrometer provided with an auto-sampler.
D2O was used as the internal field-frequency lock.  Each
spectrum consisted of 16 K complex data points with a
spectrum width of 5 kHz, obtained by 128 scans with an
acquisition time of 1.75 s and a recycle delay of 5 s per scan.
The pulse angle was 45˚.  The pre-saturation pulse sequence
was used to suppress the water signal.

NMR data-reduction procedures and pattern-recognition analysis
Each NMR spectrum was segmented into 228 regions of 0.04

ppm width over a range of 0.40 to 9.52 ppm, and an integral
calculation was performed for each spectral region.  Any
integrated regions from 4.52 to 5.20 ppm that contained a water
signal were eliminated from the data table, and then the total
data were reduced to 211 regions.  The remaining integral
values of each spectrum were normalized to the total of the
summed integral values for 100 in order to compensate for any
concentration difference between the tea samples.

The spectral processing mentioned above was performed by
“ALICE2 for Metabolome” β version software, followed by
multivariate statistical analysis using Sirius (PRS, Norway)
version 6.5 software.  We developed ALICE2 based on the
whole trial analysis described in this paper, and released as a
new software, “ALICE2 for Metabolome” version 1.0 (JEOL),23

which integrates NMR spectroscopy and the multivariate
pattern-recognition method of PCA and SIMCA in a single
interface.  The functionalities will be introduced elsewhere.

Results and Discussion

1H spectra of teas
The 1H NMR spectra were obtained for a total of 187 teas

infused from the leaves.  The metabolic profiling of Camellia
sinensis is also an interesting problem.  The detailed assignment
of signals has been mentioned elsewhere.24 Green tea is
unfermented, oolong is semi-fermented, and black is fully
fermented.  Hoji tea is roasted green tea.  Japanese green tea and
Chinese green tea are processed by steaming and by baking,
respectively.  Fermentation is an oxidation process by
peroxidase in the tea leaf, which produces theaflavins and

1308 ANALYTICAL SCIENCES   OCTOBER 2006, VOL. 22

Fig. 1 Example spectra of teas.  From the top; Japanese green tea (Yabukita), black tea (Assam), and hoji tea
(Kofu).  The grey box including water signals indicates the region removed from the analysis in each data set.  On the
top spectrum, A, k and * indicate the peaks of theanine, caffeine, and catechin, respectively.



thearubigins etc.25,26 The theaflavins and thearubigins present in
black and oolong teas, and those compositions might be
reflected in the spectral patterns.  Figure 1 shows the 1H NMR
spectra selected as a typical example of 3 type of tea, and in the
top spectrum, the characteristic signals of 3 major components
of teas mentioned in the Introduction section are indicated.  All
of the other chemical compositions, including polyphenols,
differ between teas.  The chemical compositions are influenced
not only by the level of fermentation, but also by many other
factors: the processing, genetic strain, growth altitude, picking
season, storage, flavor-additives, etc.  In our experiment, the tea
infusions sampled were similar to the tea we drink in daily life,
without the addition of any chemical buffer for controlling the
pH or other modification.

Pattern recognition analysis: (I) PCA-method
Eleven spectra were recognized as outliers and discarded by a

preliminary statistical analysis.  Subsequently a total of 176 teas
were used in the pattern-recognition analysis.  The number of
teas in each category is listed in the section of Materials.  They
were submitted to PCA in which all of the 211 variables,
bucketed regions, were equally accounted for the data sets.  The
result of the PCA score plot of PC1 and PC2 is shown in Fig. 2.
One point shows one spectrum of tea.  This figure shows no
clear classification between the tea categories from colored
differently beforehand.  The variance plot of each variable

which explains the contribution to the first major two PC’s and
the residuals were added with the score plot.  The plot shows
that the 3 larger variance regions around the variables of 3.30,
3.46 – 3.50, and 3.86 ppm contain the 3 largest caffeine peaks.
The grouping in the PCA score plot is influenced mostly by the
largest quantities of variation.  In this case, the caffeine peak
intensities have the predominant effect.

The initial intention of this experimental analysis was to
differentiate teas according to the categories we know in daily
life, e.g. green tea, black tea and oolong tea.  We did not predict
a major contribution of the caffeine peak variance to the
classification.  The score sum of PC1 and PC2 is 46%, which
was at a low level for explaining the characteristics of the
samples.  In the other case of mixed samples, employing simple
PCA once may perform a well-defined classification.4 For an
advanced analysis to extract the target information from
samples, the possible next steps are as follows:

1) Expand the higher order PCs by exploring the pairs of PC4-
PC5 or PC1-PC6 and so on.

2) Standardize or scale each variable for submitting PCA.
3) Adapt the SIMCA method for adequate variable selection

and to resubmit PCA.
Method 1) is not recommended in an exploration analysis

because it is an artificial trick to apply higher principal
components with lower contributions than PC1 or PC2,
especially in the case where the number of samples is small for
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Fig. 2 PCA score plot of PC1–PC2, in which 211 variables were equally accounted for the data
sets.  Each spectrum is colored by the category of tea.  Green, Japanese green tea; dark green,
Chinese green tea; red, black tea; blue, oolong tea; sky blue, hoji tea; black, puer tea; yellow, yellow
tea; white, white tea.  The lower plot is the contribution quantity of 211 variables, showing that
responsible for PCA classification.  The red, blue and green bars correspond to the contribution to
PC1, PC2 and the residuals, respectively.  The arrows from the right correspond to the peaks of 3.30,
3.46 – 3.50, and 3.86 ppm, respectively.



the statistical confidence.  Method 2) is available essentially
when they have a large dynamic range, which is not adequate in
the ordinary case of NMR spectral analysis, except for special
purposes, because the information on the spectral intensities
drops out and noises are often emphasized.  Consequently,
method 3) will enable us a useful analytical procedure not only
for NMR spectra datasets, but also for any other spectroscopic
data sets.

A flow chart of the analysis is shown in Fig. 3, which contains
the essential flow of (I) PCA → (II) SIMCA → (III) PCA.
Following step (I), the next procedure of the (II) and (III) steps
will be explained below.

Pattern-recognition analysis: (II) SIMCA-method
In most cases of mixture analysis, a priori rough knowledge

of the sample, such as normal or abnormal, is available.  It is
noted that the SIMCA method is powerful at making effective
use of knowledge and enabling us to conduct further analysis.
(II)-1) Preparatory step of SIMCA; making a mathematical
model.  First, the “training set” was selected as one type of
tea, for example, the 51 black teas listed in the Materials section
were selected and a “black tea model” was made in
mathematical terms by applying PCA.  Then, green tea samples
were selected and a “green tea model” was made independently.

Figure 4 shows a Cooman’s plot of the 2 independent models
of black and green aligned on the X axis and Y axis, respectively.
The two rigid lines show the class boundaries, i.e., 68%
confidence, 1σ, of the classification based on each of the green
and black tea models.1 There are no samples in the mixed area
of the 2 models in Fig. 4; thus, the Cooman’s plot resulted in a
well-characterized classification of the 2 models.  The 2 models
are considered to characterize by the fermentation level, since
green tea is non-fermented and black tea is fully fermented.
(II)-2) Use of the SIMCA method.   The SIMCA method has the
following 2 advantages:

A) The modeling power of each predefined model and the
discriminating power between the 2 models can be calculated.

B) Unknown samples are able to fit onto the predefined

models (classes).
A) Selection variables by discrimination power: This is step

A) in the flow of Fig. 3.  In Fig. 4, Cooman’s plot was added
with 3 plots of 211 variables; the upper 2 plots are the modeling
powers for green and black teas, respectively, and the lower plot
is the discrimination power between the 2 tea models.  Although
the modeling power profiles, i.e. overall spectral patterns,
resemble each other, there are some variables with distinct high
values in the discrimination plot.  The variables with higher
discrimination power than 1.0 contribute to discerning the two.
The cutoff level of discrimination power is not fixed, but
depends on the characteristics of the samples.  Here, the set Vgb

of 28 variables with higher discrimination power than 2.0 was
selected.  In the same way as for the pair of models; green and
hoji teas were employed SIMCA; the results are shown in Fig.
5.  In this case, the 2 modeling power profiles do not resemble
each other, and the discrimination powers are mostly higher
than that of Fig. 4.  The variables with discrimination power
higher than 3.0 were selected as sets of Vgh.  Likewise, SIMCA
was also applied to hoji and black models, and the variables
were selected as the set Vhb, not shown here in the figure.  Thus,
the total number of variables besides the overlapping ones was
46, Vgb + Vgh + Vhb, as summarized in Table 1.  They are used in
the following analysis of PCA, in the latter section (III).

B) Fitting a sample: Taking step B) in Fig. 3, 52 oolong
samples were fitted to either model of green and black tea in
Cooman’s plot in Fig. 4.  The result is shown in Fig. 6; each
sample of oolong teas that have distances of horizontal and
vertical vectors from each model was calculated and plotted in
the Cooman’s plot.  For the oolong teas, where broad
distributions appeared, some samples overlapped with the green
tea model, the others with black tea model; the remaining
samples were placed in between, or far from the 2 groups.
Several oolong teas were taste tested by us, and were found to
be matched well to this Cooman’s plot.  This shows the
excellent presentation of classification reflecting the fermentation
level.  It is considered that there was no analytical method
available to differentiate the fermentation, itself, until now.
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Fig. 3 Flow chart of the analysis.  The flow shown as a bold line, from (I), (II) to (III) is
the main one, however, other lines such as a dashed line are also available.



1311ANALYTICAL SCIENCES   OCTOBER 2006, VOL. 22

Fig. 4 Cooman’s plot for 2 models of black and green tea.  The symbol color indicates the
same as Fig. 2.  The Cooman’s plot describes the confidence of each model by the vertical
and horizontal solid lines.  The shaded quadrant shows an unoccupied field that indicates a
mixed area of both models’ classification.  The upper right plots show from the top: green
and black modeling power plots, respectively and discrimination power plot of 211
variables.

Fig. 5 Cooman’s plot of the hoji and green tea models, and the both modeling power plots,
from the top hoji and green tea, respectively and discrimination power plot of variables.



Pattern recognition analysis: (III) PCA-method
Following step (A), the final step (III) in Fig. 3 is to submit

the PCA again with the 46 adequate variables selected.  In
process (I) of the preliminary PCA, the overall variables equally
accounted for the data sets consequently acted as noises against
extracting the especially focused features in a multi-factorial
complex mixture, such as this case of commercial teas.

The result is shown in Fig. 7.  The green and black teas are
classified into separate groups with least mutual overlapping;
the oolong teas are distributed diffusely between the 2 groups
and overlap with the other 2 groups.  Yellow and white teas
were located at the near marginal region between the green and
black tea groups.  Considering that green tea is non-fermented,
black is fully fermented, yellow and white teas are slightly
fermented and oolong ones are at various stages of
fermentation, this classification expresses the important feature
of tea fermentation.  Hoji tea, which is roasted green tea of low
grade,14 was segregated from the green tea group in the PCA
score plot.  Roasting is considered to be thermal oxidation other
than the enzymatic oxidation of fermentation, and hoji tea was

reasonably classified.  The puer tea was transformed Chinese
green tea by a combination with microbial metabolism that
contains complex fermentation processes; it was located at the
exact marginal region between the black tea and hoji tea groups
in the PCA score plot.  This resulted in a very interesting
classification; nevertheless, our SIMCA was not employed for
puer tea.

A more detailed inspection shows the difference between the
2 green tea groups, Japanese and Chinese.  The difference could
be interpreted to reflect the processing between the 2 groups, as
mentioned above in this section.  To sum up, both PC1 and PC2
together indicate the responsibility for fermentation (oxidation)
and other processing, of which the features are the initial aim of
tea category classification.  It was shown that the score sum of
PC1 and PC2 was 73%, which is a good level.

In addition within the Japanese green tea group, we found Uji-
cha and Shizuoka-sencha located in the near upper and central
part, respectively, and Ban-cha was in the lower region, not
indicated in the figure.  These 3 teas are generally of higher,
middle and lower grade, respectively.  Hoji tea was also located
in the lower region.  These results may suggest that a detailed
characterization or authentication could be possible with an
augmented sample set, as suggested by our experimental PCA
score plot.

Figure 8 shows the distribution of the contribution quantities
that have the same meaning as Fig. 2.  The major contribution
variables are the consequent marker of resonance signals at
1.14, 3.14, 6.10, and around 6.6 ppm, which is a different set of
variables from that of Fig. 2.  The bucketed regions of 1.14 ppm
surely correspond to theanine, and that of 3.14 ppm might
correspond to one of the caffeine signals.  However, it might
identify a compound other than caffeine, because not all of the
caffeine signals appeared together.  To resolve the overlapped
peaks for unambiguous assignment, further analysis is
necessary, such as 2D NMR techniques.  For example, the
DOSY technique will add the correct dimension to resolve
overlapped peaks in 3 – 4 ppm, and give additional information
concerning catechin chemistry, as stated in the section 1H
spectra of teas; black teas and puer teas are known to have
oxidized catechins, such as theaflavin or the catechin dimmer.25

The peaks of 6.10 and around 6.60 ppm seem to correspond to
catechins, and it is worth mentioning that the latter regions of
catechin appeared as a marker variable candidates, even though
their intensities are very small in the original spectra, as shown
in Fig. 1.  As for our first screening stage, it showed that
catechins and theanine characterize the tea categories as they
appear in the literature.

Reproducibility of PCA for sample preparation
All of the tea samples were extracted at 75˚C for 3 min and
measured within 3 h in our experiment.  One of the Japanese
green teas, Uji-cha, was used for a reproducibility test of spectra
over temperature and time.  The tea samples were infused at
temperatures of 60, 75, and 90˚C, respectively.  In each case,
measurements at times of 1, 3, and 7 h while being sealed up in
sample tubes after infusion were also carried out.  The 9 spectra
themselves were submitted to PCA, and the result showed good
repeatability in times, but showed some spread by temperature.
However, the spread with temperature is actually very small in
the whole PCA score plot in Fig. 7.  The 9 samples were
submitted to PCA together with other teas and they fell into the
green tea group; the whole PCA score plot was not very much
different from Fig. 7, not shown here.  Thus, the repeatability of
the spectrum pattern for the sample in our experiments is
ensured.
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Table 1 Selected variable sets with higher discrimination 
power of each pair of teas, Vgr, Vgh, Vrh

Each number of variables is 28, 23, and 15, respectively.  The total 
number omitting the overlap is 46.

 1 7.98  *
 2 7.46   *
 3 7.42 * * *
 4 7.38   *
 5 7.34 * * *
 6 7.30  *
 7 7.14   *
 8 7.06 *
 9 6.66 *
 10 6.58  * *
 11 6.54  * *
 12 6.50  *
 13 6.10 * *
 14 6.02 *
 15 5.94 *
 16 5.90 *
 17 5.86 *
 18 5.46 *
 19 4.34 * * *
 20 4.26 *  *
 21 4.22  * *
 22 4.14 * *
 23 4.02 * *
 24 3.98 * *
 25 3.66 * *
 26 3.62  *
 27 3.34  *
 28 3.22   *
 29 3.14 *
 30 2.90 *
 31 2.78 * *
 32 2.66 *
 33 2.62 *
 34 2.58 *
 35 2.54 * *
 36 2.14  *
 37 2.06 *
 38 1.98   *
 39 1.74  *
 40 1.70  *
 41 1.66 * *
 42 1.50   *
 43 1.14  * *
 44 1.06 *
 45 1.02 *  *
 46 0.98 *
   28 23 15

ppm (±0.02) Vgr Vgh Vrh



Conclusion

1H spectra of about 180 kinds of tea were measured and
analyzed by a pattern-recognition method.  In the first analytical
step, PCA was used to survey the whole profile of the samples,

and then SIMCA was submitted for modeling by effective use
of a priori knowledge of the sample sets.  We selected the
variables contributing to discerning the tea categories by the
SIMCA method, and using the variables subjected to PCA
again, which resulted in clear classification.  This procedure
successfully extracted sample features and marker variables in
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Fig. 6 Fitting oolong teas onto the two predefined black and green tea.  The red and green
dashed lines indicate the residual distances of one of the samples from the black and green
tea models, respectively.

Fig. 7 Final PCA score plot, in which selected variables in the Table 1 are accounted for
the data sets.  The symbol colors indicate the same as in Fig. 2.  The score of PC1 and PC2 is
47.0 and 15.4%, respectively.



the case of a multi-factorial complex system such as tea.
In conclusion, the integrated NMR-spectroscopy and the

chemometric methods of PCA and SIMCA will provide a
standard and robust procedure for mixture analysis.
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residuals, which are in Table 1.  The largest 5 quantities are added by the chemical shifts (ppm).  The red,
blue and green bars are the same as in Fig. 2.


