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INTRODUCTION 

Multivariate analysis provides statistical methods for study of the joint rela­
tionships of variables in data that contain intercorrelations. Because several 
variables can be considered simultaneously, interpretations can be made that 
are not possible with univariate statistics. Applications are now common in 
medicine (117), agriculture (218), geology (50), the social sciences (7, 178, 

193), and other disciplines. The opportunity for succinct summaries of large 
data sets, especially in the exploratory stages of an investigation, has contrib­
uted to an increasing interest in multivariate methods. 

The first applications of multivariate analysis in ecology and systematics 
were in plant ecology (54, 222) and numerical taxonomy (187) more than 30 

years ago. In our survey of the literature, we found 20 major summaries of 
recent applications. Between 1978 and 1988, books, proceedings of sym­
posia, and reviews treated applications in ecology (73, 126, 155, 156), 

ordination and classification (13, 53, 67, 78,81,83,90,113,121,122,159), 

wildlife biology (33, 213), systematics (148), and morphometries (45, 164, 
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130 JAMES & MCCULLOCH 

Table 1 Applications of multivariate analysis in seven jour­
nals, 1983-1988. In descending order of the number of applica­
tions, the journals are Ecology, 128; Oecologia, 80; Journal of 

Wildlife Management, 76; Evolution, 72; Systematic Zoology, 

55; Oikos, 41; Journal of Ecology, 35; and Taxon,  27. 

Principal components analysis 
Linear discriminant function analysis 
Cluster analysis 

MUltiple regression 
Multivariate analysis of variance 
Correspondence analysis 
Principal coordinates analysis 

Factor analysis 
Canonical correlation 
Loglinear models 
Nonmetric multidimensional scaling 
Multiple logistic regression 

119 
100 

86 
75 

32 
32 
15 

15 

13 
12 

8 
7 

514 

200). For the six-year period from 1983 to 1988 (Table 1), we found 514 
applications in seven journals. 

Clearly, it is no longer possible to gain a full understanding of ecology and 
systematics without some knowledge of multivariate analysis. Or, con·· 
trariwise, misunderstanding of the methods can inhibit advancement of the 
science (96). 

Because we found misapplications and misinterpretations in our survey of 
recent journals, we decided to organize this review in a way that would 
emphasize the objectives and limitations of each of the 12 methods in 
common use (Table 2; Table 3 at end of chapter). Several books are available: 
that give full explanations of the methods for biologists (53, 128, 148, 159,. 

164). In Table 3, we give specific references for each method. In the text we 
give examples of appropriate applications, and we emphasize those that led to 
interpretations that would not have been possible with univariate methods. 

The methods can be useful at various stages of scientific inquiry (Figure 1). 
Rather than classifying multivariate methods as descriptive or confirmatory, 
we prefer to consider them all descriptive. Given appropriate sampling, 6 of 
the 12 methods can also be confirmatory (see inference in Table 2). Digby & 
Kempton (53) give numerous examples of applications that summarize the 
results of field experiments. Most often the methods are used in an explora­
tory sense, early in an investigation, when questions are still imprecise. This 
exploratory stage can be a very creative part of scientific work (206, pp. 
23-24). It can suggest causes, which can then be formulated into research 
hypotheses and causal models. According to Hanson (86), by the time the 
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MUL TIV ARIATE ANALYSIS 1 3 1  

Table 2 General objectives and limitations of multivariate analysis 

Objectives Codes to Procedures (see Table 3) 

I. Description 
2. Prediction 
3. Inference 
4. Allocation 
5. Classification 

6. Ordination 

Limitations: 

All 
MR. LDFA, MLR 
MR, MANOVA, LDFA, FA, MLR, LOGL 
LDFA 

LDFA, MLR, CLUS 
LDFA, PCA,PCO,FA,CANCOR,COA,NMDS 

1. The procedures are correlative only; they can suggest causes but derived 
factors (linear combinations of variables) and clusters do not necessarily 
reflect biological factors or clusters in nature. 

2. Because patterns may have arisen by chance, their stability should be 
checked with multiple samples, null models, bootstrap, or jackknife. 

3. Interpretation is restricted by assumptions. 
4. Automatic stepwise procedures are not reliable for finding the relative 

importance of variables and should probably not be used at all . .  

theoretical hypothesis test has been defined, much of the original thinking is 
over. In the general scientific procedure, descriptive work, including descrip­
tive applications of multivariate analysis, should not be relegated to a status 
secondary to that of experiments (28). Instead it should be refined so that 
research can proceed as a combination of description, modelling, and ex­
perimentation at various scales ( 1 06). 

The opportunities for the misuse of multivariate methods are great. One 
reason we use the analogy of Pandora's box is that judgments about the results 
based on their interpretability can be dangerously close to circular reasoning 
( 1 24,  pp. 1 34-1 36; 1 79). The greatest danger of all is of leaping directly from 
the exploratory stage, or even from statistical tests based on descriptive 
models, to conclusions about causes, when no form of experimental design 
figured in the analysis. This problem is partly attributable to semantic differ­
ences between statistical and biological terminology. Statistical usage of 
terms like "effect" or "explanatory variable" is not meant to imply causation, 
so the use of terms like "effects" and "roles" in titles of papers that report 
descriptive research (with or without statistical inference) is misleading. 
Partial correlations and multiple regressions are often claimed to have sorted 
out alternative processes, even though such conclusions are not justified. "If 
. . . we choose a group of . . .  phenomena with no antecedent knowledge of the 
causation . . .  among them, then the calculation of correlation coefficients, 
total or partial, will not advance us a step toward evaluating the importance of 
the causes at work" (R. A. Fisher 1 946, as quoted in reference 54, p. 432). 
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Figure 1 General research procedure showing stages (double boxes) at which exploratory and 
inferential* (confirmatory) multivariate analysis may be appropriate (modified from 106). 

Although this idea is familiar to biologists, it seems to get lost when they enter 
the realm of multivariate work. 

The objective of the present review is to help the researcher navigate 
between the Scylla of oversimplification, such as describing complex patterns 
with univariate analyses (147), and the Charybdis of assuming that patterns in 
data necessarily reflect factors in nature, that they have a common cause, or, 
worse, that statistical methods alone have sorted out multiple causes. 

Present understanding of the role of multivariate analysis in research affects 
not only the way problems are analyzed but also how they are perceived. We 
discuss three particularly controversial topics, and we realize that not all 
researchers will agree with our positions. The first is the often-cited "prob­
lem" of multicollinearity, the idea that, if correlations among variables could 
be removed, one could sort out their relative importance with multivariate 
analysis. The problem here is a confusion between the objectives of the 
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MULTIVARIATE ANALYSIS 133 

method and the objectives of the researcher. Second, in the sections on 
analysis and ordination in plant ecology, we discuss the special problems that 
arise with indirect ordinations, such as the cases where the data are the 
occurrences of species in stands of vegetation. The arch pattern frequently 
seen in bivariate plots is not an artifact of the analysis; it is to be expected. 
Third, in the section on morphometrics, we explain why we argue that shape 
variables, which we define as ratios and proportions, should be studied 
directly. Of course the special properties of such variables require attention. 
We do not treat cladistics or the various software packages that perform 
multivariate analyses. In the last section, we give examples of how some 
basic concepts in ecology, wildlife management, and morphometrics are 
affected by the ways in .which multivariate methods are being applied. 

SUMMARY OF METHODS: OBJECTIVES 
LIMITATIONS, EXAMPLES 

Overview 

It is helpful to think of multivariate problems as studies of populations of 
objects about which information for more than one attribute is available (48 ,  
1 69). One can describe the pattern of relationships among the objects (in­
dividuals, sampling units, quadrats, taxa) by ordination (reduction of a matrix 
of distances or similarities among the attributes or among the objects to one or 
a few dimensions) or by cluster analysis (classification of the objects into 
hierarchical categories on the basis of a matrix of inter-object similarities). In 
the former case, the objects are usually displayed in a graphic space in which 
the axes are gradients of combinations of the attributes. Principal components 
analysis is an ordination procedure of this type. It uses eigenstructure analysis 
of a correlation matrix or a variance-covariance matrix among the attributes. 
Principal coordinates analysis is a more general procedure in the sense that it 
starts with any type of distance matrix for distances among objects. Both 
principal components analysis and principal coordinates analysis are types of 
multidimensional scaling. Nonmetric multidimensional scaling uses the ranks 
of distances among objects, rather than the distances themselves. Correspon­
dence analysis is an ordination procedure that is most appropriate for data 
consisting of counts (contingency tables). In this case, the distinction between 
objects and attributes is less relevant because they are ordinated simultaneous­
ly. Factor analysis is similar to principal components analysis in that it uses 
eigenstructure analysis, usually of a correlation matrix among attributes. It 
emphasizes the analysis of relationships among the attributes. Canonical 
correlation reduces the dimensions of two sets of attributes about the same set 
of objects so that their joint relationships can be studied. 

When the objects fall into two or more groups, defined a priori, the 
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134 JAMES & MCCULLOCH 

problem is frequently to describe the differences among the groups on the 
basis of a set of attributes. Multivariate analysis of variance, which is often 
used in the analysis of experiments, can be used to test for differences among 
groups. Linear discriminant function analysis describes which of the attributes 
contribute most to the differences between the groups. When it is used as an 
exploratory ordination procedure, to reduce multigroup data to fewer di·· 
mensions on the basis of a set of attributes, it is called canonical variates 
analysis. Another objective of linear discriminant function analysis, used less 
frequently in ecology and systematics, is to assign new objects to previously 
separated groups. Multiple logistic regression permits the prediction of a 
binary (0, 1 )  attribute from a set of other attributes, which may be categorical 
or continuous. Its counterpart for approximately normally distributed data is 
multiple regression. Loglinear analysis can reveal the relationships among 
categorical variables. It assumes a multiplicative model , so it is linear after 
logarithms are taken . 

Procedures 1-7 in Table 3 use linear combinations of the variables in some 
fashion. They are only efficient with continuous data. If the variables being 
analyzed are denoted by Xl> X2, . • .  ,Xm then all the linear techniques find 
linear (additive) combinations of the variables that can be represented by: 

1 .  

where bl, b2, . • •  , bn represent coefficients determined from the data. The 
way the coefficients are found is governed by the method used. For example, 
in principal components analysis they are chosen to make the variance L as 
large as possible, subject to the constraint that the sum of squares of the b's 
must be equal to one. 

Linear methods are appropriate when the researcher wants to interpret 
optimal linear combinations of variables (e.g. principal components in prin­
cipal components analysis, factors in factor analysis, and discriminant func­
tions in l inear discriminant function analysis). 

The researcher applying linear methods usually assumes that the values of 
the variables increase or decrease regularly and that there are no interactions. 
If this is not the case, one should transform the variables to make them at least 
approximately linear (55). For example, a quadratic model can be constructed 
with XI as a variable WI and X2 as WI squared, or interactions can be 
included, in which X3 is WI times W2 ( 104, 133). For some of the techniques 
the analysis of residuals can uncover the need for the inclusion of nonlinear 
terms or interactions. In multivariate analysis of variance, the nonlinearities 
appear in the interaction terms and may reveal biotic interactions in ex­
perimental results (see below). Presence-absence data, categorical data, and 
ranks are usually more efficiently handled with nonlinear models. It seldom 

A
n
n
u
. 
R

ev
. 
E

co
l.

 S
y
st

. 
1
9
9
0
.2

1
:1

2
9
-1

6
6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 F

lo
ri

d
a 

S
ta

te
 U

n
iv

er
si

ty
 o

n
 0

5
/0

5
/0

9
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



MULTIVARIATE ANALYSIS 135 

makes sense to calculate weighted averages from these types of data, as one 
does with the linear methods. With nonlinear methods, the variables are 
combined with nonlinear functions. 

The coefficient of an individual variable represents the contribution of that 
variable to the linear combination. Its value depends on which other variables 
are included in the analysis. If a different set of variables is included, the 
coefficients are expected to be different , the "bouncing betas" of Boyce (27). 

The term "loading," often encountered in multivariate analysis, refers to 
the correlation of an original variable with one of the linear combinations 
constructed by the analysis. It tells how well a single variable could substitute 
for the linear combination if one had to make do with that single variable (89, 
p. 221). High positive or negative loadings are useful in the general in­
terpretation of factors. However, the signs and magnitudes of the coefficients 
should only be interpreted jointly; it is their linear combination, not the 
correlations with the original variables (cf 220), that must be used to gain a 
proper multivariate interpretation. Rencher (162) shows how , in linear dis­
criminant function analysis, the correlations with the original variables (load­
ings) lead one back to purely univariate considerations . This distinction is not 
important with principal components analysis because the correlations are 
multiples of the coefficients and their interpretations are equivalent . 

Unfortunately, in observational studies, it is often difficult to provide clear 
descriptions of the meanings of individual coefficients . Mosteller & Tukey 
(146, p. 394) discuss the important idea of the construction of combinations 
of variables by judgment, in the context of multiple regression. 

Some of the problems we found in our literature survey apply to univariate 
as well as to multivariate statistics. The first one is that statistical inference is 
being used in many cases when its use is not justified. The "alpha-level 
mind set" of editors leads them to expect all statements to be tested at the 0.05 

level of probability (175). As a result, our journals are decorated with galaxies 
of misplaced stars . What the authors and editors have forgotten is that 
statistical inference, whether multivariate or univariate, pertains to general­
ization to other cases. 

Confirmatory conclusions are only justified with a statistical technique if 
the study was conducted with appropriate sampling. It is the way the data 
were gathered, or how an experiment was conducted, that justifies inferences 
using statistical methods, not the technique itself. Inferences are justified only 
if the data can be regarded as a probability sample from a well-defined larger 
population. When this is not the case, probability values should not be 
reported, and the conclusions drawn should extend only to the data at hand. 

The tendency to perform statistical tests when they are not justified is 
related to the even more general problem of when generalizations are jus­
tified . There are too many cases in which results of analyses of single study 
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136 JAMES & MCCULLOCH 

plots or single species are assumed to be representative of those for large areas 
or many species. More caution is warranted even in cases of widespread 
sampling. For example, if several vegetation variables are measured at a 
series of regularly spaced sites along an altitudinal gradient, the correlations 
among the variables will show their joint relationship to altitude, but these 
will differ from the correlations that would have been found had the sites been 
randomly selected. A principal components analysis based on the former 
correlations should not be interpreted as giving information about sites in 
general, and only limited interpretations are possible, even in an exploratory 
sense. 

A further extension of the tendency to overinterpret data is the unjustified 
assignment of causation in the absence of experimentation. Papers that report 
the use of stepwise procedures (automatic variable selection techniques) with 
multiple regression, multivariate analysis of variance, linear discriminant 
function analysis, and multiple logistic regression to assess which variables 
arc important are examples of the disastrous consequences of this tendency. 
Such judgments about the importance of variables usually carry implications 
about causal relationships. In the section on multiple regression, we defendl 
our position that stepwise procedures should not be used at all. 

In summary, when faced with data that contain sets of correlated variables: 
ecologists and systematists may prefer to interpret each variable separately. In 
such cases univariate methods accompanied by Bonferroni-adjusted tests (89,. 
especially pp. 7-9, but see index; 150) may be appropriate. Often, however,. 
the joint consideration of the variables can provide stronger conclusions than 
are attainable from sets of single comparisons. With proper attention to the: 
complexities of interpretation, combinations of variables (components, fac . . 

tors, etc) can be meaningfuL Linear methods of multivariate analysis (Table 
3, 1-7) should be used when the researcher wants to interpret optimal linear 
combinations of variables. Otherwise, nonlinear methods (Table 3, 8-12) are 
more appropriate and usually more powerful .  Multivariate statistics, model . . 

ling, and biological knowledge can be used in combination and may help the 
researcher design a crucial experiment (Figure 1). 

Review of Methods 

Our survey of the literature revealed that the methods most commonly applied 
in ecology were principal components analysis, l inear discriminant function 
analysis, and multiple regression; in systematics the order of use was cluster 
analysis, principal components analysis, and linear discriminant function 
analysis.  Therefore in this section we devote most of the space to these 
methods. 

We have included both multiple regression and multiple logistic regression 
even though many statisticians would not classify these methods as multi .. 
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variate, a term they use only where the "response" (Y) variable rather than the 
"explanatory" (X) variable is multivariate . We acknowledge that, in multiple 
regression and multiple logistic regression, the outcome variable is univariate, 
but we include the topics here because many methodological issues in multi­
ple regression carry forward to multivariate generalizations. The intercorrela­
tions among the explanatory variables (X's) in multiple regression are impor­
tant to proper interpretation of the results. 

MULTIPLE REGRESSION The objective of multiple regression should be 
either to find an equation that predicts the response variable or to interpret the 
coefficients as associations of one of the explanatory variables in the presence 
of the other explanatory variables. The coefficients (b(, b2, • • •  , bk) in 
Equation 1 have been determined either to maximize the correlation between 
Y (the response variable) and L (the linear combination of explanatory var­
iables) or equivalently to minimize the sum of squared differences between Y 
and L. Only in experiments where the X's are controlled by the investigator 
can the individual coefficients of a multiple regression equation be interpreted 
as the effect of each variable on the Y variable while the others are held 
constant, and only when a well-defined population of interest has been 
identified and randomly sampled can multiple regression provide statistically 
reliable predictions. Unfortunately,  these conditions are rarely met. "Valida­
tion" with new, randomly collected data will be successful only when the 
original sample is typical of the new conditions under which validation has 
takcn place, and this is usually a matter of guesswork. 

Many workers think that, if one could eliminate multicollinearity (in­
tercorrelations) among the X variables in a descriptive study, the predictive 
power and the interpretability of analyses would be improved (35). This belief 
has led to the practice of (a) screening large sets of redundant variables and 
removing all but one of each highly correlated set and then (b) entering the 
reduced set into a stepwise multivariate procedure, with the hope that the 
variables will be ranked by their importance. Statisticians have pointed out 
many times that this is unlikely to be the case. The procedure of screening 
variables may improve prediction, but it may also eliminate variables that are 
in fact important, and stepwise procedures are not intended to rank variables 
by their importance. 

Many authors have documented the folly of using stepwise procedures with 
any multivariate method (99; 100; 139, pp. 344-357, 360-361; 215, p. 177, 

Fig. 8 . 1 ,  pp. 195-196). One example is the reanalysis by Cochran of data 
from a study of the relationship between variation in sets of weather variables 
and the number of noctuid moths caught per night in a light trap. Stepwise 
forward and backward variable selection procedures did not give the same 
best variable as a predictor or even the same two or three variables as the best 
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subsets of predictors (51). In another case, an investigator analyzing 13 out of 
21 attributes of 155 cases of viral hepatitis used the bootstrap procedure to 
obtain repeated samples of the 155 cases. Of 100 stepwise regressions, only 
one led to the selection of the same four variables chosen by the initial 
stepwise regression, and it included a fifth one in addition (139, pp. 356--
357). Clearly, stepwise regression is not able to select from a set of variables 
those that are most influential. 

Wilkinson (217, p. 481) used strong language to defend his refusal to 
include a stepwise regression program in a recent edition of the SYSTAT 
manual: "For a given data set, an automatic stepwise program cannot neces­
sarily find a) the best fitting model, b) the real model, or c) alternativc� 
plausible models. Furthermore, the order variables enter or leave a stepwise 
program is usually of no theoretical significance." 

The best that can be hoped for, when an automatic selection method like 
stepwise mUltiple regression is used, is selection of a subset of the variables 
that does an adequate job of prediction (188, p. 668). However, this predic­
tion can be achieved more reasonably without the stepwise proccdure. Thc! 
most reasonable solution for observational studies that have a battery of 
explanatory variables is to combine them into biologically meaningful groups 
(146), then to examine all possible subsets of regressions. The results may 
provide useful overall predictions, but even in this case they should not be 
used to rank variables by their importance. Thus, Abramsky et al (1) need not 
worry about field tests purported to discover interspecific competition from 
the values of coefficients in multiple regression equations. The method is 
statistically inappropriate for this purpose. 

Progress toward assessing the relative importance of variables can be made 
by modelling, a subjective step that incorporates subject-matter knowledge 
into the analysis. Interactive methods (96) and methods of guided selection 
among candidate models (4) can incorporate reasonable biological informa­
tion into the analysis (see, e.g., 37, 153, 182). This step can help develop 
causal hypotheses, but the testing still requires some form of experiment and 
outside knowledge. When controlled experiments are not feasible, quasiex­
peri mental designs can be used to provide weak inferences about causes (32, 
41, 44, 106, 111). Such designs involve either blocking, time-series models, 
or both. 

We regret to report that, in our survey of recent journals in ecology and 
systematics, we could not find a single application of multiple regression to 
recommend as a good example. Even recent attempts to measure natural 
selection in the wild by means of multiple regression (119) are susceptible to 
the criticisms mentioned above (47, 136a). Use of a path-analytic model has 
been suggested as a means of adding biological information to the analysis 
(47, 136a), but even here, because it is not possible to break correlations 

A
n
n
u
. 
R

ev
. 
E

co
l.

 S
y
st

. 
1
9
9
0
.2

1
:1

2
9
-1

6
6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 F

lo
ri

d
a 

S
ta

te
 U

n
iv

er
si

ty
 o

n
 0

5
/0

5
/0

9
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



MULTIVARIATE ANALYSIS 139 

among characters with experiments , it is not possible to discover whether 
selection is acting on individual characters .  For an example of a proper 
application of multiple regression and subsequent discussion, see Henderson 
& Velleman (96) and Aitkin & Francis (2). 

MUL TIV ARIATE ANALYSIS OF VARIANCE Multivariate analysis of variance 
is an inferential procedure for testing differences among groups according to 
the means of all the variables . It is like the usual analysis of variance except 
that there are multiple response variables (Yt. Y2, • . •  , Yn) . The relationship 
with univariate analysis of variance can be understood if MANOV A is viewed 
as an analysis of linear combinations of the response variables, 

2. 

Ly is now a single, combined, response variable. A univariate analysis of 
variance can be performed on Ly and an F-statistic calculated to test for 
differences between groups . One of the suggested tests in MANOV A (Roy's 
maximum root test criterion) is the same as choosing the b's in equation (2) to 
maximize the F -statistic and then using the maximized value of F as a new 
test statistic. MANOV A requires that each vector of Y's should be in­
dependent and that they follow a distribution that is approximately multi­
variate normal. A good nonmathematical introduction is available (85). 

In a good example of the application of multivariate analysis of variance in 
ecology, a manipUlative factorial experiment designed to determine processes 
that affect the numbers of tadpoles of several species of amphibians was 
conducted in artificial ponds. Predation, competition, and water level were 
the explanatory variables and were regulated (216). The model incorporated 
the explanatory variables both additively and as interactions with other vari­
ables. In one case of interaction between predation and competition, predation 
on newts (Notophthalmus) reduced the effects of competition as the pond 
dried up, allowing increased survival of the toad Bufo americanus. This result 
would not have been apparent from univariate analyses by species . For an 
application in a more evolutionary context, see Travis (204). In this paper, he 
used MANOV A to show that families of tadpoles grew at different rates but 
were not differentially susceptible to the inhibitory effects of population 
density. 

LINEAR DISCRIMINANT FUNCTION ANALYSIS Linear discriminant function 
analysis can be regarded as a descriptive version of multivariate analysis of 
variance for two or more groups . The objective is to find linear combinations 
of the variables that separate the groups. In Equation 2 above they give rise to 
the largest F-statistics. The researcher wants to understand Ly and what 
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determines the groups to which specific data vectors belong. Linear dis·· 
criminant function analysis does not formally require any assumptions, but ill 
is the best technique for multivariate normal data when variances and covari·· 
ances are the same in each group. Then the optimal combination of variables 
is linear. If the attributes are nonlinearly related, or the data are otherwise not 
multivariate normal (for example, categorical data), variances and covari·· 
ances are poor summary statistics, and the technique is inefficient. An 
appropriate alternative, when there are only two groups, is multiple logistic 
regression (see below). 

In a summary of applications of linear discriminant function analysis in 
ecology, Williams (220) warns that more attention should be paid to the 
assumption of equality of dispersion within groups. He also emphasizes the 
special problems that arise if the sample sizes are small or different (see also 
34,201, 210). Williams & Titus (221) recommend that group size be three 
times the number of variables, but this criterion is arbitrary. Discriminant 
function axes can be interpreted in either a univariate or a multivariate way 
(see overview). Again, the elimination of variables before the analysis and 
stepwise procedures should be avoided (163). 

When the data are plotted on axes defined by the discriminant functions, 
the distances (Mahalanobis 02) are measured in relation to variances and 
covariances. Population means may be judged far apart in cases in which the 
groups are similar except in one small but statistically highly significant way. 
This is not true of Euclidean distances in principal components space, so th� 
two types of distances should not be interpreted in the same way (106, cf 34). 
Graphic presentation of the results can be clarified by the use of either 
concentration ellipses (43) around groups or confidence ellipses (105) around 
means of groups (188, pp. 594-601). 

Linear discriminant function analysis can be used to summarize the results 
of an experiment (e.g. 91), but in both ecology and systematics it is used most 

often as an exploratory ordination procedure. In such cases it is called 
canonical variates analysis. Many descriptive uses concern resource use and 
the ecological niche. In the literature on wildlife management, there are 
applications that attempt to define the habitat of a species from quantitative 
samples of the vegetation taken in used and unused sites. These topics are 
discussed in later sections. 

Some early exploratory applications of linear discriminant function analysis 
have made important contributions to studies of comparative morphology and 
functional anatomy. A good example is work comparing the shapes of the 
pectoral girdles (clavicles and scapulae) of mammals (8, 157). The variables 
were angles and indices based on the orientation of the attachments of 
muscles, so they were related functionally to the use of the forelimb. In Figure 
2, for primates, the first discriminant function (linear combination of var-
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iables) separates the great apes, which use the forelimbs for hanging, from the 
quadrupedal primates. The second variate expresses an uncorrelated pattern of 
development that separates ground-dwellers from arboreal dwellers, some of 
which are quadrupedal in trees. Convergences between the suborders An­
thropoidea and Prosimii and radiations within them are demonstrated simulta­
neously (see 164 and Figure 2), and graded patterns within groups are 
evident. The analysis shows, in a way that could not have been demonstrated 
with univariate methods or with cluster analysis, that complex adaptations of 
biomechanical significance can be usefully viewed as a mosaic of positions 
along a small number of axes of variation. Note that, although the data were 
unlikely to have been normally distributed, the multivariate descriptive 
approach was very helpful, and the 9-variable data set for 25 taxa was 
displayed in two dimensions. 

PRINCIPAL COMPONENTS ANALYSIS Principal components analysis has 
been used widely in all areas of ecology and systematics. It reduces the 
dimensions of a single group of data by producing a smaller number of 
abstract variables (linear combinations of the original variables, principal 
components). The method is based on maximization of the variance of linear 
combinations of variables (Ly). Successive components are constructed to be 
uncorrelated with previous ones. Often most of the variation can be summa­
rized with only a few components, so data with many variables can be 

]I 

Anthropoid 

brachiators 

1 0 

Prosltnion 

hangers 

'1 

-;1. Anthropoid 
semibrachiators 

Canonical Axis I 

Anthropoid 
quadrupeds 

Figure 2 Discriminant function analysis of data for the shape of the pectoral girdle (clavicle and 
scapula) of primates by genera (redrawn from Figure 2 of 8). 
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displayed effectively on a two- or three-dimensional graph that uses the 
components as axes. 

If the original variables were not measured on the same scale, the analysis 
should be performed on standardized variables by the use of the correlation 
matrix rather than the variance-covariance matrix. Unfortunately, with the 
correlation matrix, the interpretation of "variance explained" or accounted for 
by each component is changed, because all the variables have been standard.­
ized to have a variance of one. With the variance-covariance matrix, the 
eigenvalues and percent of eigenvalues are equal to the variances of the 
components and the percent of variance explained by the components. This 
interpretation does not hold for analyses using the correlation matrix. When 
one is presenting the results of a principal components analysis, it is important 
to give the list of objects and attributes, the eigenvalues, and any coefficients 
that are interpreted and to state whether the analysis was performed on the 
variance-covariance or the correlation matrix. 

Principal components analysis requires no formal assumptions, but in 
practice it is important to be aware of some of its limitations: 

(a) Because it is based on either variances and covariances or correlations, 
principal components analysis is sensitive to outliers, and the coefficients of 
individual components are highly subject to sampling variability. One should 
not put too much emphasis on the exact values of the coefficients. 

(b) When the distribution of ratios or proportions is reasonably near to 
normal, the analysis can be useful (see, e. g. , 103, 125, 176), but without 
transformations principal components analysis cannot capture nonlinear rela­
tionships (135). Investigators whose data consist of counts, ratios, pro­
portions, or percentages should check to see whether transformations might 
make their distribution more appropriate or whether a nonlinear approach 
would be preferable. Methods have been developed that incorporate the use of 
ratios through log transformations (140-142; see section on morphometries). 

(c) Mathematically orthogonal (independent) factors need not represent 
independent patterns in nature (14), so biological interpretations should be 
made with care. 

(d) Contrary to some recommendations (101, 191), principal components 
analysis should not be used in a multiple-sample situation, as it then con­
founds within- and between-group sources of variation (60, 148, 194). In 
studies of geographic variation, a PCA on means by locality will give the 
appropriate data reduction. 

A particularly interesting example of principal components analysis is its 
application to data for the genetic structure of present-day human populatioJlls 
in Europe on the basis of a correlation matrix of the frequencies of 39 alleles 
(5, pp. 102-108). A map on which the scores by locality for principal 
component 1 are contoured shows a clear gradient from the Middle East 
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toward northwestern Europe, a pattern highly correlated with archeological 
evidence for the pattern of the ancient transition from hunting and gathering to 
agricultural societies. The analysis is compatible with the authors' demic 
diffusion hypothesis, which states that this major cultural change was associ­
ated with a population expansion. The genetic structure of living populations 
may still reflect the ancient Neolithic transition. In quantitative genetics, 
principal components analysis has been used to analyze genetic correlations 
during development (40, 205). In morphometrics, comparisons of congeneric 
songbirds in a space defined by principal components 0 23 , 151) have led to 
useful graphic comparisons of complex forms. Little progress would have 
been made with any of these problems by the use of univariate statistics. 

PRINCIPAL COORDINATES ANALYSIS Principal coordinates analysis begins 
with a matrix of distances among objects (159) and, to the extent possible, 
these distances are retained in a space with a reduced number of dimensions. 
It is the same as the technique called classical scaling by psychometricians 
(38, p. 190; 202). If the data are quantitative and the distances are squared 
distances between units in a coordinate space (Euclidean distances), a princi­
pal coordinates analysis will produce the same result as will a principal 
components analysis on the correlation matrix among the attributes (53). 

In a good example in systematics, a matrix of Roger's genetic distances 
among colonizing populations of common mynahs (Acridotheres tristis) was 
expressed in a two-dimensional graphic space, and the popUlations in the 
graph were then connected with a minimum spanning tree according to their 
distances in the full dimensional space (16). 

Another useful analysis using principal coordinates analysis was performed 
on a matrix of the number of interspecific contacts among 28 species of 
mosses (53). The procedure allowed investigators to express the associations 
in two dimensions, and the species were seen to occur along a shade-moisture 
gradient in which six habitats were clearly separated. 

FACTOR ANALYSIS Basic computational similarities lead many people to 
regard factor analysis as a category of procedures that includes principal 
components analysis, but historically the two methods have had different 
objectives. Whereas principal components analysis is a descriptive technique 
for dimension reduction and summarization, factor analysis explores the 
resultant multivariate factors-the linear combinations of the original vari­
ables (89). The computational distinction is that, in factor analysis, the axes 
are rotated until they maximize correlations among the variables, and the 
factors need not be uncorrelated (orthogonal). The usual interpretation of the 
factors is that they "explain" the correlations that have been discovered among 
the original variables and that these factors are real factors in nature. Un-
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fortunately, factor analysis encourages subjective overinterpretation of the 
data. A reading of the mythical tale about Tom Swift and his electric factor 
analysis machine (6) or Reyment et al (164, pp. 102-106) will persuade moslt 
people of the dangers of overinterpretation. Some newer versions of factor 
analysis, such as linear structural analysis (223, 224), avoid some of th(: 
problems of ordinary factor analysis. 

Applications of factor analysis in systematics through 1975 have been 
summarized (31, pp. 135-143), and several examples have appeared in the 
more recent ecological literature (66a, 95, 127, 174). Q-mode factor analysis 
investigates the correlations among objects rather than attributes. It has been 
applied in an exploratory way in numerical taxonomy (185, p. 246) and 
morphometrics (77). The distinction between Q-mode and the more con·· 
ventional R-mode analysis has been discussed by Pielou (159). 

CANONICAL CORRELATION Canonical correlation is a generalization of 
correlation and regression that is applicable when the attributes of a single 
group of objects can be divided naturally into two sets (e.g. morphological 
variables for populations of a species at a set of sites and environmental 
variables associated with the same set of sites). Canonical correlation calcu· 
lates overall correlations between the two sets. Linear combinations within 
the first set of variables, Lb and within the second set, L2, are considered 
simultaneously, and the linear combinations that maximize the correlation 
between Ll and L2 are selected. Further linear combinations are extracted that 
are uncorrelated with earlier ones. These are uncorrelated between sets except 
for paired linear combinations. Sample sizes that are small in relation to the 
number of variables can lead to instability, and the linear constraints imposed 
by the method can make interpretation difficult (198). 

In spite of its limitations, canonical correlation has been useful in an 
exploratory sense in several ecomorphological and coevolutionary studies. 
One such study showed that the size of the rostrum of aphids increases and 
that of the tarsus decreases in proportion to the degree of pubescence of thl� 
host plant: these features could easily obscure underlying phylogenetic rela­
tionships (137). Another study explored the canonical correlation between bee 
and flower morphology by comparing eight species of bees according to their 
choice of flowers (87). Gittins (72) and Smith (183) review other examples. 

MULTIPLE LOGISTIC REGRESSION Multiple logistic regression is a mod­
ification of multiple regression for the situation in which the response variabk 
(Y) is categorical and takes one of only two values, 0 or 1. Multiple logistic 
regression models the log of the odds that Y = 1 (In (Pr(Y = 1 )/Pr(Y = 0))) as 
a linear function of the independent variables, which can be continuous or 
categorical. The method can be used either to predict values of the response 
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variable or to get information about particular X variables and the response 
variable. These are some of the same goals addressed by multiple regression , 
and multiple logistic regression is susceptible to many of the same limitations 
as multiple regression .  Inference of causation (e.g. 1 66) is not justified, and 
stepwise procedures should  be avoided. Multiple logistic regression can be 
used as an alternative to two-group linear discriminant function analysis when 
one or more of the variables are not continuous. In this  case the response 
variable is group membership, and the explanatory variables are those used to 
discriminate between the two groups. If the data are multivariate normal , 
linear discriminant function analysis is a more efficient procedure (56). 

Multiple logistic regression is used frequently in wildlife studies, but most 
applications (e.g .  108,  1 1 5)  use stepwise procedures. As discussed pre­
viously, this is not a reliable way to rank variables by their importance. 

LOGLINEAR MODELS Loglinear analysis is an extension of the familiar 
chi-square analysis of two-way contingency tables (tables of counts or re­
sponses) for which there are more than two variables. If some of the variables 
are continuous, they must be categorized before loglinear analysis is used. 
The objective is simply to study the relationships among the variables. When 
there is a distinction between the variables, one being a response variable and 
the others explanatory variables, loglinear analysis is not appropriate. Fien­
berg (64) gives a good introduction to both loglinear models and multiple 
logistic regression. 

There are more examples of loglinear analysis in behavior than there are in 
ecology (63, 94). Examples of its use in ecology include a study of population 
attributes in Snow Geese (Chen caerulescens). including interrelationships 
among parental morphs and the sex and cohort affiliations of the goslings 
(65); a study of interrelations among characteristics of fruits of the entire 
angiosperm tree flora of southern Africa (14); and a defense of the existence 
of a previously described (52) nonrandom pattern for the distribution of birds 
on the islands of the Bismarck Archipelago in the South Pacific Ocean (71 ). 
One excellent study combined a loglinear analysis with "causal ordering" of 
the variables, thereby injecting some reasonable biological information into 
the model for a competition hierarchy among boreal ants (2 1 1 ). This is a good 
example of how a problem can be carried forward through the research 
process as outlined in Figure 1 .  The next step would be the design of a critical 
experiment. 

CORRESPONDENCE ANALYSIS, RECIPROCAL AVERAGING, AND DE­

TRENDED CORRESPONDENCE ANALYSIS Correspondence analysis, which 
is the same as reciprocal averaging, is an ordination procedure that de­
composes a two-way contingency table of counts of objects and their attri-
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butes (97 ,  98). The data might be the number of times various plant species 
occur on different quadrats, the number of times particular behaviors occur 
among various species, or the number of fin rays on various fish. Scores are 
calculated for each of the row and column categories of the table, and row and 
column eigenvectors show the ways in which the rows and columns deviatl::! 
from what would be expected with independence. These scores are used as 
axes for dimension reduction , and objects and attributes are ordinated simulta­
neously. Because the analysis uses chi-square distances (81, p. 54) it should 
be based on data of counts. Continuous data such as allele frequencies, 
percentage of ground cover, or percentage of time spent foraging would be 
more efficiently handled by another method. 

An excellent example of correspondence analysis is a summary of data for 
the distribution of 1 7  genera of antelope in 1 6  African wildlife areas (82). 
With supplemental information about the vegetation in these areas and about 
the distribution of the same species in the past, the authors were able to make 
inferences about the distribution of habitats in the past. In another example, 
an ordination of 37 lakes in the Adirondack Mountains of northern New York 
was found to be highly correlated with surface lakewater pH (37). 

The term indirect ordination in plant ecology refers to the above class of 
problems, those involving a reduction of the dimensions of a table (matrix) of 
data for the occurrence of a set of species at a set of sites. The data may be 
counts, presence-absence data, or percentages. Because the species are likely 
to be responding in a unimodal way to underlying environmental gradients 
and each species is likely to have an individualistic response, their joint 
distribution is likely to be one of successive replacement (13). Phytosociolo­
gists have long felt that, in such cases, neither correspondence analysis nor 
any of the other traditional ordination procedures give reasonable results. In 
particular, they complain that an arch or horseshoe effect is evident in the 
pattern of sites in a two-dimensional ordination . Detrended correspondence 
analysis is an ad hoc technique intended to remove this  arch (36, 67). 
However, it  sometimes fails and can even introduce further distortion (112). 
A recent critique by Wartenberg et al (214) argues that detrending does not 
contribute to the analysis and that the arch is not an anomaly. Rather, it is an 
inherent property of data that represent transitions in species abundances as 
one passes through localities more favorable to some species and later more 
favorable to other species. Not even nonmetric multidimensional scaling (sel::! 
below) can provide satisfactory single-dimensional ordinations in this case 
(214), because the relationships among the variables (species) are both non­
linear and nonmonotonic. With the indirect ordination problem, the arch in 
two-dimensional plots is  to be expected. An unambiguous ordering along the 
arch would be an acceptable result. 
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NON METRIC MULTIDIMENSIONAL SCALING Nonmetric multidimensional 
scaling is potentially a robust ordination method for reducing the dimensions 
of data without a priori transformations (see, e.g . ,  59,  112 ,  1 36, 1 54,  and 
especially 214). The results are often similar to those of principal components 
analysis. 

Like principal components analysis and principal coordinates analysis, it is 
a scaling technique, but with nonmetric multidimensional scaling, only the 
rank order of interobject distances is used. Thus the objective is  to estimate 
nonlinear monotonic relationships. A limitation of both principal coordinates 
analysis and nonmetric multidimensional scaling is that interpretations must 
be qualitative and subjective. Bccause the axcs are not functions of original 
variables, they are not very useful for formulating hypotheses about possible 
causal relationships. In fact  with principal coordinates analysis and nonmetric 
multidimensional scaling, variables do not enter into the analysis; only in­
terobject distances are used . 

CLUSTER ANALYSIS With cluster analysis, objects are placed in groups 
according to a similarity measure and then a grouping algorithm. The reduc­
tion in the data comes from forming g groups (g less than n) out of n objects. 
In ecology and systematics, the general term "cluster analysis" usually means 
agglomerative hierarchical cluster analysis. This is a set of methods that starts 
with a pairwise similarity matrix among objects (individuals, sites, pop­
ulations, taxa; see Section on distances and similarities). The two most similar 
objects are joined into a group, and the similarities of this group to all other 
units are calculated . Repeatedly the two closest groups are combined until 
only a single group rcmains. Thc results are usually expressed in a dendro­
gram, a two-dimensional hierarchical tree diagram representing the complex 
multivariate relationships among the objects. 

The most appropriate choice among the various algorithms for agglomerat­
ing groups depends upon the type of data and the type of representation that is 
desired . It  has become conventional in ecology and systematics to use the 
UPGMA (unweighted pair-group method using averages). This method usual­
ly distributes the objects into a reasonable number of groups. It calculates 
differences between clusters as the average of all the point-to-point distances 
between a point in one cluster and a point in the other (53, 159, 1 85). There 
are also algorithms for divisive cluster analysis ,  in which the whole collection 
of objects is divided and then subdivided (67). 

Cluster analysis is most appropriate for categorical rather than continuous 
data. It is less efficient than principal components analysis or linear dis­
criminant function analysis when the data are vectors of correlated measure­
ments. It has been the primary method used in phenetic taxonomy (185), in 
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which many attributes are considered simultaneously and the objects (op­
erational taxonomic units or OTU's) are clustered according to their overall 
similarity. Cluster analysis produces clusters whether or not natural groupings 
exist, and the results depend on both the similarity measure chosen and the 
algorithm used for clustering. Dendrograms codify relationships that may not 
really be stable in the data. They are frequently overinterpreted in both 
systematics and ecology . Nevertheless, as applied by Sokal et al (186) to the 
hypothetical caminalcules, cluster analysis can be as robus t  for the reconstruc­
tion of hierarchical phylogenetic relationships as are cladistic methods. Sys­
tematics relies heavily on both cluster analysis and cladistics. 

RELATED MATTERS 

Jackknife and Bootstrap 

Jackknifing (146, 148 ,  pp. 31-33) and bootstrapping (57, 58) are statistical 
techniques that resample the data in order to calculate non parametric es­
timates of standard errors . They are particularly effective in two situ ations 
that arise frequently in multivariate analysis: 

(a) in estimation of standard errors for complicated statistics for which the 
sampling variabi lity is not well understood and standard formulas are not 
available (e.g .  coefficients of principal components) and 

(b) when the distributional assumptions necessary for the use of standard 
error formulas are not met (e.g .  for non normal or skewed data). 

Jackknifing and bootstrapping differ in the ways in which they resample the: 
data and calculate standard errors . With the typical jackknifing method, each 
of the observations in a sample, which may be multivariate ,  is left out of the: 
data set in tum, and the statistic for which one wants the standard error is 
recalculated. The variability in these recalculated values is used to calculate: 
the standard error. Examples would be applications to coefficients of principall 
components in studies of morphometric variation (69). 

With bootstrapping for a single sample, a random sample with replacement 
is drawn from the original sample until it is the same size as the originall 
s ample. Some of the original observations are likely to occur more than once: 
in the bootstrap sample. The statistic is recalculated from this sample. This 
process is repeated, typically 200 or more times, and the standard deviation 
of the recalculated values is used as the standard error. Often, the bootstrap 
can be applied more easily to complicated situations than can the j ackknife" 
which is mainly a single-sample technique. Applications of the j ackknife 
and bootstrap for estimating population growth rates have been com-· 
pared (134). 
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Distances and Similarities 

MULTIVARIATE ANALYSIS 1 49 

We use the terms distance and similarity to describe various measures of the 
association between pairs of objects or their attributes. Principal coordinates 
analysis, nonmetric multidimensional scaling, and cluster analysis require the 
input of a matrix of such measures. Cluster analysis operates most naturally 
with similarities, whereas principal coordinatcs analysis and nonmetric multi­
dimensional scaling are traditionally described in terms of distances (53). 
With some types of data, such as immunological data (42) or DNA hybridiza­
tion data ( 1 80), laboratory results are in the form of interobject distances so 
they can be entered directly or transformed to similarities as needed. The 
various distance and similarity measures have been compared (53 ;  1 49 ,  Ch. 9; 
1 59). The proper choice of a measure differs according to the form of the data 
(measurements, counts, presence-absence, frequencies), thc type of standard­
ization desired, and whether or not it is appropriate to use metric distances. 
The special problems that pertain to genetic distances have been discussed 
elsewhere ( 17, 61 , 149,  1 72). 

SPECIAL PROBLEMS IN ECOLOGY AND 
SYSTEMA TICS 

We think that the present understanding of multivariate analysis among 
ecologists and systematists is affecting not only how they treat data but how 
research questions are formulated. To illustrate this point, we .discuss in this 
section some particular issues in animal community ecology, wildlife man­
agement, ordination in plant ecology, and morphometrics. 

Resource Use and the Niche 

Soon aftcr it was proposed that the realized ecological niche be viewed as an 
area in a multidimensional resource hyperspace (102), Green (79) used linear 
discriminant function analysis to construct two-dimensional graphic ordina­
tions of the relationships of bivalve molluscs in lakes in central Canada based 
on physical and chemical properties of the lakes. In many subsequent studies, 
linear discriminant function analysis has proved useful as a descriptive tech­
nique for summarizing, displaying, and comparing differences in resource use 
among populations (see summaries in 92 and 1 77). 

Green (79, 80) and others have attempted a statistical test for niche size and 
overlap, but unfortunately, linear discriminant function analysis is not appro­
priate as a test of niche size. Equality of dispersion matrices is an assumption 
of the statistical model , but at the same time niche size is being defined by a 
characteristic of the dispersion matrix. Having been assumed, it cannot be 
tested (106, pp. 42-44). No one would expect the mean resource use of 
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different species to be exactly the same, so the test is only of whether sample 
sizes in the study are sufficiently large to show these differences (see 1 69). 

One can obtain data on resource use for each of a set of species and then 
express an assemblage as an ordination of their variation (43 ,  79, 1 04 ,  and 
others). Or one can compare used with available resources (34). The former 
approach has been used to study the regeneration niche of plants (70) and to 
analyze interspecific associations in plant populations to get a "plant's eye 
view" of the biotic environment (207). In these cases the data were the species 
of plants that were neighbors of the species of interest. Grubb (84) used this 
general approach to show how species-specific "regeneration niches" vary. 
He suggested that this variation may contribute to the maintenance of the 
coexistence of both common and rare species in a plant community. This is 
the kind of new hypothesis, suggested partly by multivariate work, that could 
be tested with experiments. 

Wildlife Management 

Wildlife biologists have maintained a good dialogue with statisticians about 
multivariate statistical methods (33 ,  2 1 3) ,  and they are aware of the potential 
problems with scale, sampling, and linear methods (2 1 ). Also, they have been 
urged to become more experimental ( 1 73, 209). 

We will give two examples of troublesome areas. First, in recent years the 
US Fish and Wildlife Service has supported a large program to produce 
predictive models of wildlife-habitat relations (2 1 2) .  Unfortunately, thus far, 
few of these models have achieved high predictive power ( 1 8 , 29, 1 38) .  There 
are several reasons for these problems (1 30), not all statistical, but the issues 
of sampling procedures , adjustment for nonlinearities, screening variables to 
obtain an uncorrelated set, and the use of stepwise procedures discussed 
above need more attention . Even if predictive models can eventually be 
developed, there is no guarantee that they will be useful for management 
( 195). That would require the additional step of causal analysis (see previous 
section). 

An additional problem arises with studies of habitat selection, which in 
wildlife biology usually means the difference between occupied and available 
(unoccupied) habitat for a particular species. A common procedure is to 
measure many variables pertaining to the vegetation and its structure both at 
various localities where a species of interest occurs and at randomly selected 
locations. Then stepwise discriminant function analysis or stepwise multiple 
logistic regression is usually applied to examine differences between occupied 
and unoccupied sites and to rank the habitat variables by their "importance" 
( 1 29 ,  1 65 and citations therein, 1 67) .  To see the problem with this approach,  
excluding the problems with stepwise procedures, recall that the linear dis­
criminant function analysis model tests mean differences between groups. If a 
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species were highly narrow (selective) in its habitat use , but the mean were 
the same as that of the average habitat, the species would be judged not to be 
selective by the model (see Species B in Figure 3a and 1 07) .  Also, the 
characteristics of the poorly defined "unused" group will always affect the 
result (2 1 9) .  Some of these problems are avoided if sites are located along 
principal component 1 for variation in randomly selected sites (192). An 
alternative is to use the first two principal components ( 131) for randomly 
selected sites and to depict concentration ellipses (188, pp. 594-601 ) for 
occupied and random sites on a graph with those components serving as axes 

A. 

Canonical Axis I 

B. 

Ava/�able haMaf 
5 (sampled af random) 

II 

Principal Component I 

Figure 3a Comparisons of habitat used and habitat available for four hypothetical species (A. 

B, C, D). Four separate two-group linear discriminant function analysis or multiple linear 
regression tests between used and available habitat. one for each species, would test differences 
in means but not variances. A and B would not be different from habitat available: C and D would 
be different. However, this result is misleading because B is as selective (same variance) as D and 
is more selective (lower variance) than C .  

Figure 3b Distribution o f  randomly selected sites i n  a bivariate graphic space determined by 
principal components I and II of their habitat characteristics. Concentration ellipses for randomly 
selected sites and for sites that are occupied by the species of interest indicate both the habitat 
used and its variance relative to the total variance. 
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(Figure 3b). This  procedure assumes sufficient covariation in the data set Dor 
randomly selected sites that two reliable axes can be derived (152). One study 
that demonstrated the instability that can result otherwise attributed it  to 
interobserver bias (76). 

Ordination in Plant Ecology 

The most general definition of ordination is  the reduction of a multivariate 
data set for a set of objects and their attributes so that their pattern can be sef:n 
on a continuous scale (159). Thus linear discriminant function analysis, 
principal components analysis, principal coordinates analysis, and nonmetric 
multidimensional scaling all qualify as ordination procedures (Table 2). 
Ordination procedures are useful for descriptions of the results of environ­
mental perturbations and experiments (53), but they are used most often in 
purely observational studies. Several particularly useful reviews of the ordina­
tion literature are available (53, 11 2,  159). 

In plant ecology, the term ordination usually refers to analyses in which the 
objects are stands of vegetation at study sites. When the attributes are sets of 
environmental variables, such as soil nutrients or quantitative measures of the 
structure of the vegetation, the objective is usually to find a combination of 

attributes that may suggest an underlying cause for a systematic pattern of the 
distribution of the stands, one not obvious from the geographic distribution of 
the stands. Austin et al (15) present some new extensions of this approach, 
which is called direct ordination or gradient analysis. The more common 
approach in plant ecology is to analyze a matrix of data for the presences and 
absences of species in each stand, or their actual or relative density, biomass, 
or cover (83), as the attributes. This is called indirect ordination. The objec ­
tive is to find a systematic pattern of relationships among the stands based on 
the cooccurrences of their component species. The resultant ordination may 
subsequently be related to environmental factors (14). 

If sites are being ordinated (the usual R-mode analysis), and they have beeJll 
selected at random ,  inferences about patterns in a larger area are possible. I f  
the objects and attributes are exchanged (Q-mode analysis), species are 
ordinated. The biplot (66, 196), a graphical version of principal components 
analysis and correspondence analysis, can provide a simultaneous view of 
ordinations of species and stands. The special problems that arise with 
indirect ordinations when the attributes do not increase or decrease regularly 
through the data are discussed in the section on correspondence analysis. 
Previous criticisms of principal components analysis as an indirect ordination 
technique (e.g .  67) should be reconsidered in the light of these arguments. 

In recent years, principal coordinates analysis and nonmetric multi­
dimensional scaling have been popular indirect ordination methods. Phytoso-­
ciological studies that use indirect ordinations of stands by their species 
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composition have provided succinct descriptions of stands by their species 
composition. We agree with Harper (88) that if the objective is to determine 
causes, the approach of focusing a study on the population biology of species 
independently and including all interspecific interactions , rather than on 
studying relationships among communities or among stands , should also be 
tried. Experiments and quasiexperiments will be required, and multivariate 
descriptive work at the population level, now a poorly developed field, should 
be important. 

Morphometries 

Morphometrics is the mathematical description of the form of organisms. 
There are many different kinds of problems in morphometric work, and even 
for a given problem researchers do not always agree about the best methods of 
analysis (46). The literature on multivariate morphometries includes applica­
tions in growth (203) and quantitative genetics ( 1 1 8 ,  208) . 

For a long time the appealing graphic technique of the transformation of a 
grid to show its deformation when drawings of two organisms were compared 
( 197) did not seem to be amenable to quantification. However, the study of 
geometric transformations of forms has been extended, and several techniques 
have been developed to describe geometric shape change between forms when 
the data are for x,y coordinatcs for homologous landmarks (23-26, 39, 1 0 1 , 
1 5 8 ,  1 84).  Size and shape are considered to be latent unmeasured variables , 
defined only after the demonstration of a global transformation between 
forms .  Sometimes principal components analysis is used to reduce the di­
mensions of the result. 

Mapping techniques are another set of methods designed to detect shape 
change among two-dimensional forms ( 1 9 ,  20, 1 8 1 ,  1 84) . In this case the data 
are interpoint distances between two superimposed forms .  Fourier analysis, 
another alternative for the description of forms that have fixed outlines, can 
capture shape information without using sets of homologous landmarks ( 1 6 1  , 
1 70) . Ferson et al (62) applied linear discriminant function analysis to sueh 
shape data for two electromorph groups of the mussel Mytilus edulis . 

A more general problem in morphometries than the quantification of shape 
change among two-dimensional objects is the study of allometry, how shape 
changes with size during growth, or among members of a population, or 
among populations or taxa. Many systematists prefer conventional linear 
methods of multivariate analysis for this problem ( 148 , 1 64) . The data are 
standardized measurements taken on each organism. Atchley et al ( 1 2) de­
scribe the geometric and probabilistic aspects of distances among individuals 
(objects) in multivariate morphometric space . 

If the variation in the original data is predominantly in size, the coefficients 
of the first principal component based on a variance-covariance matrix will be 
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of the same sign , and that component will be highly correlated with the 
original variables. Size can be defined variously as this first component, as 
any one of the original variables, or as any combination of the original 
variables that is biologically reasonable (1 68). Principal component 1 of the 
correlation matrix has also been used as a size statistic (1 32). It is oft(:n 
correlated with other reasonable size measures, but we do not recommend i t  
a s  a size statistic because differences i n  scale (size) among the variables have 
been removed by the construction of the correlation matrix. Similarly, a 
proposed method to constrain the first principal component of the correlation 
matrix of the logs of the measurements to be a measure of shape-free size 
( 1 89) does not fully achieve its objective, because the residual variation is not 
interpretable as shape. A complex method proposed for the removal of 
within-group size in a mUltiple-group principal components analysis ( 1 0 1 )  
removes size-related shape a s  well a s  size, and the residual variation is not 
necessarily uncorrelated with size ( l 7l ). 

With a principal components analysis on the variance-covariance matrix of 
log measurements , the relative magnitudes of the coefficients can often 
indicate whether the component contains shape information as well as size 
information ( 145) .  Although the first principal component often has been 
designated as a general size factor, it usually contains an unknown amount of 
allometrically related shape variation (68 , 93 , 1 40) and interpretation of the 
second component as shape alone is unwise (1 1 0, 190). A solution to the 
problem of the study of shape independently of size is to study shape directly, 
as either ratios or proportions, expressed as the differences between th(! 
logarithms of distances. Of course the proper mathematical treatment of shape 
variables requires great care , but the direct study of shape variables should 
play a central role in morphometric analyses . 

The study of allometry, the covariation of size and shape rather than of size 
and size-free shape or shape orthogonal to size, has been emphasized by 
Mosimann (140). He shows that, if biologically reasonable size and shape: 
variables can be defined a priori , and if the data can be assumed to be: 
lognormally distributed, substantial mathematical theory is available for 
morppometric studies. The lognormal assumption can be tested (1 1 0). Log 
transformations do no( always equalize variances (30), but equal variances 
among measurements are by no means required for morphometric analysis 
( 1 43). Thus shape variables, which are dimensionless ratios or proportions 
expressed as differences between logarithms, can be analyzed directly with 
either univariate or multivariate methods (144, 1 45 ). In a particularly interest­
ing example, Darroch & Mosimann (49) study shape directly in a reanalysis 
of Anderson's  classic data set for measurements of the flowers of three 
species of iris ,  originally analyzed by R. A. Fisher. The species are well 
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Table 3 Objectives and limitations of the 12 multivariate procedures used most commonly in ecology and 

systematics, with references. 

Procedure 

I .  Multiple Regression 

(MR) 

2 .  Multivariate Analysis of 

Variance 

(MANOVA) 

3. Linear Discriminant Function 

Analysis 

(LDFA) 

Objectives and Limitations 

Objectives: 

I .  To predict one variable (Y, response variable) from others (X's,  

explanatory variables) 
2. To investigate the association of an X variable with the Y 

variable in the presence of other variables 

3. If causal models are appropriate (usually with experiments) , to 

investigate cause and effect 

Limitations: 

I .  Good predictability alone does not allow inference of causation. 

2. Prediction should be carried out only in situations similar to 

those in which the model was derived. 

3. Stepwise regression is usually inappropriate. 

4. The procedure considers only linear functions of those X vari­
ables analyzed. 

5. The procedure is intended for continuous Y variables whose 

values are independent; errors should be normal and sampling 

random for statistical inference. 

References: 4, 1 39, 1 50, 2 1 5  

Objective: 

I .  To test for differences among two or more groups of objects 

according to the means of all the variables (attributes); mainly 

an inferential method 
Limitation: 

I .  The procedure is intended for continuous, multivariate normal 
data; each vector of observations must be independent. 

References: 8 5 ,  89, 109, 128,  148 

Objectives: 

I .  To describe muItigroup situations; finds linear combinations of 

variables (attributes) with maximal ability to discriminate 

groups of objects; when used to reduce the dimensions of data, 

called canonical variates analysis 

2. A linear discriminant function (equation) can be used to classify 
current observations or to allocate new observations to the 
groups 

Limitations: 

I .  The procedure is intended mainly for continuous data; it is 

inefficient for data not well summarized by variances and 

covariances.  
2. With linear discriminant functions, the researcher assumes 

equal variance-covariance matrices (identical orientation and 

size of concentration ellipses). 
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Table 3 (Continued) 

Procedure 

4. Principal Components Analysis 
(PCA) 

5. Principal Coordinates Analysis 
(PCO) 

6. Factor Analysis 
(FA) 

Objectives and Limitations 

3.  Only linear combinations of the variables are considered, so tt 
analysis will not discover nonlinear combinations. 

4. Groups must be defined a priori . 
References: 89, 1 09, 148, 220 

Objectives: 

1 .  To describe a matrix of data consisting of objects and attributt 
by reducing its dimensions, usually for graphical display; to fir 
uncorrelated linear combinations of the original variables (aUI 
butes) with maximal variance 

2. To suggest new combined variables for further study 
Limitations (see text): 

I .  The procedure is intended mainly for continuous data; it 
inefficient for data not well summarized by variances ar 
co variances . 

2. The procedure considers only linear combinations of the val 
ables, so it will not discover nonlinear combinat::ons. 

References: 53,  89, 109,  148,  159 

Objective: 

I .  To describe the data by reducing the dimensions of a distant 
matrix among objects, usually for graphical display; 
generalization of PCA in which non-Euclidean distances may t 
used 

Limitatiuns: 

I .  Results depend on the distance measure chosen. 
2. The procedure produces a new coordinate system but cann 

indicate combinations of variables (attributes) , because only tl 
distance matrix among objects is used. 

References: 53, 1 48, 1 59 

Objectives: 

I .  To reproduce a correlation matrix among original variables t 
hypothesizing the existence of one or more underlying facto 

2 .  To discover underlying structure in a data set by intc!rpreting tl 
factors 

Limitations: 

I .  Exploratory factor analysis methods are so unstnuctured th 
interpretations are subjective. 

2. The procedure is inefficient for data not well summarized I 
correlations, so it is nut ideal for nonlinear relaiionships 
categorical data. 

References: 54, 89, 109, 1 48 
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Procedure Objectives and Limitations 

7. Canonical Correlation 

(CANCOR) 

8 .  Multiple Logistic Regression 
(MLR) 

9.  Loglinear Models 
(LOGL) 

10 .  Correspondence Analysis 
(COA) 

Objective: 

I .  To analyze the correlation between two groups of variables 
(attributes) about the same set of objects simultaneously, rather 
than calculating pairwise correlations 

Limitation: 

I .  The procedure is inefficient for data nut well summarized by 
correlations or linear combinations, so not ideal for nonlinear 
relationships or categorical data. 

References: 54, 89, 109, 1 48 

Objectives: 

I .  To model a dichotomous (0, I )  variable (Y, response variable) 
as a function of other categorical or continuous variables (X's,  
explanatory variables), which may be categorical or continuous 

2. To investigate the association of an X variable with the Y 
variable in the presence of other X variables 

3. If causal models are appropriate (usually with experiments) , to 
investigate cause and effect 

4. To serve as an alternative to two group l inear discriminant 
function analysis when the variables are categorical or otherwise 
not appropriate for DFA 

Limitations: 

1 .  Good predictability alone does not allow inference of causation. 
2. Stepwise logistic regression is usually inappropriate. 
3. The procedure considers only linear functions of those X vari­

ables analyzed. 
4. Prediction should be carried out only in situations similar to 

those in which the model was estimated. 
References: 64, 148 

Objective: 

I .  To investigate the joint relationships among categorical vari-
ables 

Limitations: 

1 .  Variables must be categorical or made to be categorical. 
2 .  When there are response and explanatory variables, techniques 

like logistic regression may be more appropriate. 
References: 64, 148 

Objectives: 

I .  To describe data consisting of counts by reducing the number of 
dimensions, usually for graphical display 

2. To suggest new combined variables for further study 
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Table 3 (Continued) 

Procedure Objectives and Limitations 

I I .  Nonmetric Multidimensional 

Scaling 
(NMDS) 

1 2 .  Cluster Analysis 
(CLUS) 

Limitations: 

I .  The procedure is inefficient for data that are not counts becaus 
they will not be well described by chi square dis-tances. 

2. The procedure is not suitable for nonlinear data; it will ne 
discover nonlinear relationships. 

References: 8 1 ,  1 20, 1 59 

Objective: 

1 .  To describe data by reducing the number of dimensions, usuall 
for graphical display; to discover nonlinear relationships 

Limitation: 

I .  The procedure uses rank order information only. 
References: 53, 54, 1 1 6, 148 

Objectives: 

I .  To classify groups of objects judged to be similar a(;cording to 

distance or similarity measure 
2. To reduce consideration of n objects to g (g less than n) group 

of objects 
Limitations: 

I .  Results depend on the distance measure chosen. 
2. Results depend on the algorithm chosen for forming clusters 

References: 53,  54, 75, 1 48 ,  1 59 

discriminated by shape alone. Although these methods were developed for 
morphometric studies, they are applicable in other situations (e . g. 22). We 
think that authors who have objected to the direct use of ratios in morphomet­
ric studies (3, 9-1 1, 1 01, 160, 1 64 ,  1 99) have been overlooking some 
powerful techniques for the direct study of shape and its covariation with size. 

CONCLUSIONS 

Ecologists and systematists need multivariate analysis to study the joinlt 
relationships of variables. That the methods are primarily descriptive in nature 
is not necessarily a disadvantage. Statistical inference may be possible, but" 
as with univariate analysis, without experiments even the most insightfull 
applications can only hint at roles, processes, causes, influences, and strat-· 
egies. When experiments are not feasible, quasiexperimental designs, which 
involve paired comparisons or time-series analysis, may be able to provide 
weak inferences about causes. As with univariate work, statistical inference. 
( tests and p-values) should be reported only if a probability sample is taken 
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from a well-defined larger population and if assumptions of the methods are 
met. Interpretations of multivariate analyses should be restricted to the joint 
relationships of variables, and stepwise procedures should be avoided. 

We did not expect our review to have such a negative flavor, but we are 
forced to agree in part with the criticism that multivariate methods have 
opened a Pandora's  box. The problem is at least partly attributable to a history 
of cavalier applications and interpretations .  We do not think that the methods 
are a panacea for data analysts , but we believe that sensitive applications 
combined with focus on natural biological units, modelling, and an ex­
perimental approach to the analysis of causes would be a step forward. In 
morphometries , few workers are taking advantage of some precise mathema­
tical methods for the definition of size and shape and their covariation. 
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