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Abstract

An important limitation in MRI studies of early osteoarthritis is that measured MRI parameters
exhibit substantial overlap between different degrees of cartilage degradation. We investigated
whether multivariate support vector machine (SVM) analysis would permit improved tissue
characterization. Bovine nasal cartilage samples were subjected to pathomimetic degradation and
their T1, T2, magnetization transfer rate (km) and apparent diffusion coefficient (ADC) were
measured. SVM analysis performed using certain parameter combinations exhibited particularly
favorable classification properties. The areas under the ROC curve for detection of extensive and
mild degradation were 1.00 and 0.94, respectively, using the set (T1, km, ADC), compared to 0.97
and 0.60 using T1, the best univariate classifier. Further, a degradation probability for each
sample, derived from the SVM formalism using the parameter set (T1, km, ADC), demonstrated
much stronger correlations (r2 = 0.77 – 0.88) with direct measurements of tissue biochemical
components than did even the most well-performing individual MRI parameter, T1 (r2 = 0.53 –
0.64). These results, combined with our previous investigation of Gaussian cluster-based tissue
discrimination, indicate that the combinations (T1, km) and (T1, km, ADC) may emerge as
particularly useful for multivariate cartilage matrix characterization.
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Introduction

The development of noninvasive MRI approaches to the detection of early osteoarthritis and
to monitoring therapeutic response to interventions has been the subject of intense activity.
However, MRI exhibits limited sensitivity to cartilage pathology. As a result, even when a
statistically significant difference is observed in the mean values of a given parameter
between e.g. control and degraded cartilage, there generally remains a substantial degree of
overlap in the parameter values obtained for samples belonging to the two groups (1–3). The
situation is even more problematic when attempting to characterize degrees of degradation.
This results in a limited ability to classify tissue according to any single MRI parameter (2).

Multivariate discriminant analysis has to date seen limited application to MR studies of
tissue (4–7). Previously, we used Gaussian cluster analysis to categorize normal and
degraded cartilage in multidimensional MRI-parameter space, as well as to provide a metric
of degradation. In the present work, we extend this multiparametric perspective by applying
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a more flexible type of discriminant analysis, the support vector machine (SVM) formalism,
to categorize normal and degraded cartilage as well as to provide a scale of degradation
based on assignment probabilities. This approach also allows us to investigate the ability of
the SVM to predict macromolecular composition of the tissue.

SVM analysis defines those data points, known as support vectors, that are ultimately
correctly classified through the algorithm, but are least characteristic of the category they
belong to. These points define the classification decision hypersurface. The SVM is an
extension of linear discriminant analysis, and provides an extremely flexible framework for
classification, making minimal assumptions regarding the distribution of data points in
parameter space. Data points are segregated into groups with reduced parameter overlap
through use of a transformation based on a nonlinear kernel function. Further, the SVM can
be readily implemented in a space with dimensionality equal to the desired number of MRI
parameters to be used for characterization, and also provides a natural metric of degree of
degradation based on distance from the classification hypersurface in parameter space (8).

As in our previous work (6), we perform our experiments and analyses on bovine nasal
cartilage (BNC). BNC exhibits molecular and tissue characteristics similar to articular
cartilage, but is largely homogeneous and isotropic. A trypsin digestion protocol primarily
acting to deplete proteoglycan in the extracellular matrix (ECM) of cartilage was used to
model the osteoarthritic process, with a lengthy digestion period implemented to ensure
sample variation. The parameter spaces used for classification via the SVM were formed
from the common MRI outcome measures T1, T2, magnetization transfer rate (km) and
apparent diffusion coefficient (ADC).

ROC analysis is an established technique for evaluating the quality of a binary classification
test. We used this approach to define the quality of SVM-based discriminant analysis for the
detection of degraded cartilage and, for comparison, to characterize the quality of univariate
classifiers. These curves were constructed for both the extensive (24 hr) trypsin degradation
protocol implemented for the present study, as well as for samples previously prepared
under a much milder (6 hr) trypsin degradation protocol (6).

Finally, one of the goals of noninvasive MR analysis of tissue is to draw inferences
regarding macromolecular content; therefore, we quantified sulfated glycosaminoglycan
(sGAG), collagen and tissue hydration for each sample before and after extensive
degradation in order to investigate the predictive ability of SVM-based degradation
probabilities. Assignment probabilities to control or to degraded status were calculated using
a sigmoidal distance function specifying the separation between a given data point and the
decision hyperplane defined by the SVM algorithm (9). This was compared with a more
conventional univariate analysis based on the difference between a given MRI parameter for
a particular validation set sample and the mean of that parameter for a training set (2).

Methods

Sample Preparation

8-mm diameter bovine nasal cartilage (BNC) discs were excised from nasal septa of a
freshly slaughtered ~6 month-old calf (Green Village Packing, Green Village, NJ). A central
2.5-mm plug was removed from each disc and retained for biochemical tests. The discs with
central holes were threaded in groups of 5 or 6 onto a hollow glass tube, four of which were
inserted into a well of a susceptibility-matched four-well sample holder containing
Dulbecco’s phosphate-buffered saline (DPBS; Invitrogen, Grand Island, NY) at pH 7.5 ± 0.1
for initial MRI measurements (Fig. 1A). Following these measurements, cartilage
degradation was induced through addition of 1 mg/ml trypsin (Sigma-Aldrich, St. Louis,

Lin et al. Page 2

Magn Reson Med. Author manuscript; available in PMC 2013 June 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



MO) into the wells followed by incubation of the entire sample holder at 37 °C in a 5% CO2

atmosphere for 24 hrs, after which MRI measurements were repeated. A total of 36 BNC
discs samples harvested from a young bovine were imaged before and after trypsin
depletion.

MRI Measurements

Imaging was performed using a 9.4T/105-mm Bruker DMX spectrometer (Bruker Biospin
GmbH, Rheinstetten, Germany) equipped with a 30-mm proton birdcage resonator with
sample temperature maintained at 4.0 ± 0.1 °C through use of cold air from a vortex tube
(Exair, Cincinnati, OH) to reduce loss of proteoglycans. Images were acquired from 0.5-
mm-thick sagittal slices defined through the center of each of the 4 wells in the sample
holder, permitting all samples within a given well to be imaged simultaneously. T2 data
were measured using a 64-echo CPMG pulse sequence with TR/TE = 5 s/12.8 ms. A
progressive saturation spin-echo sequence with TE = 12.8 ms and TR varying
logarithmically from 100 ms to 15 s in 12 steps was employed to perform T1 mapping. The
sample configuration and a representative T1 image are shown in Fig. 1. MT data were
acquired using the same spin-echo sequence preceded by a 6 kHz off-resonance saturation
pulse with amplitude B1 = 12 μT and duration incremented from 0.1 to 4.6 s in 8 steps. This
offset frequency avoided direct saturation of bulk water, while the power level of 12 μT
produced a 180° rotation with a pulse length of 1 ms (10). Apparent diffusion coefficient
(ADC) was measured using a spin-echo sequence (TR = 5s) incorporating a pair of identical
gradient pulses of δ = 5 ms duration placed on either side of the 180° refocusing pulse, with
a constant interval of Δ =12.5 ms between the gradient pulse centers. The gradient strength
G was increased from 0 to 320 mT/m in 8 steps. Other parameters included NEX = 2, BW =
50 kHz, FOV = 4.0 × 1.5 cm (read × phase direction, corresponding to vertical × horizontal
orientation within the vertical-bore magnet), matrix size = 256 × 128 and resolution = 156 ×
117 μm. A region of interest (ROI) was selected to cover all of the pixels visualized within a
BNC disk for each image, as illustrated by the highlighted area in Fig. 1B. Averaged signal
intensities were computed independently within the ROI for every sample and then fit to
appropriate three-parameter monoexponential functions to determine T1, T2, km, and ADC
(2,10–12).

Biochemical analysis of BNC samples

sGAG and collagen contents for each BNC sample were quantified prior to degradation by
biochemical analysis of the removed central plug, and after degradation by analysis of the
remaining disc. Samples were weighed before and after overnight vacuum drying at room
temperature to determine water content. Tissue hydration was defined as the ratio of the
difference between each sample’s wet and dry weights to its wet weight. The vacuum dried
samples were then individually immersed in a solution of 1mg/ml proteinase K (Sigma-
Aldrich, St. Louis, MO) containing 50 mM Tris hydrochloride and 1 mM CaCl2 at pH 8.0,
digested in a 60 °C water bath overnight, and centrifuged at 14000 × g for 5 min. A sample
of each digest was removed to determine sGAG concentration using the dimethylmethylene
blue (DMMB) dye-binding assay (13). In addition, an aliquot of each digest was hydrolyzed
in 6N hydrochloric acid solution at 105 °C overnight and subsequently neutralized with
sodium hydroxide. Chloramine −T was then used to oxidize the free hydroxyproline in the
neutralized digest, followed by the colorimetric collagen assay to quantify hydroxyproline
concentration, from which collagen content was calculated assuming 14% abundance of
hydroxyproline in collagen (14).

Classification

Two datasets were analyzed to assess classification by the SVM algorithm. The first was the
group of 36 BNC samples prepared for the present investigation with MRI measurements
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performed pre- and post- 24-hour trypsin degradation as described above. The second
dataset, prepared for a previous investigation, consisted of 40 control samples and 40
samples subjected to a milder 6-hour trypsin degradation protocol. Again, MRI
measurements were performed before and after exposure to the enzyme (6). No biochemical
measurements of sGAG or collagen were available for this latter dataset.

In constructing the classification model, bias was reduced by randomly dividing the samples
into training sets and validation sets through 10-fold cross-validation (9). The averaged
training set and validation set results are reported. Two independent classification
approaches, through use of mean values and through use of the SVM algorithm, were
applied in order to evaluate the quality of the multivariate SVM approach as compared to
conventional classification. All analyses were performed using in-house designed scripts
written in Matlab 7.4 (The Mathworks Inc., Natick, MA) for the univariate approach and the
e1071 package, based on libsvm library, written in the R language for the multivariate SVM
approach (15,16).

Assignment probability based on arithmetic means of individual MRI parameters

Degradation probabilities were derived for each sample in the pre- and post- 24-hr trypsin
degradation dataset. For each step of the cross-validation, the arithmetic mean of a given
MRI parameter s was calculated for a training set consisting of 90% of the samples. Each
remaining sample j in the validation set was then assigned a pair of probabilities (Ppre, j,
Ppost, j), where Ppre, j + Ppost, j = 1, based on the difference, d, between the value of s for
sample j and the mean values of parameter s for the pre- and post-degraded groups, (sp̄re,
s̄post), in the training set. For sample values sj ∈ (Ppre, j, Ppost, j) the probabilities were
calculated according to (17):

(1)

For sample values outside the range (Ppre, j, Ppost, j), the pair of probabilities (Ppre, j, Ppost, j)
was defined as (1, 0) or (0,1), as appropriate. The same probability calculation was applied
to training set samples. These results, based on Eq. (1), were compared to assignment
probabilities derived from the SVM approach described below.

Assignment probability based on support vector machine analysis

The SVM algorithm as applied in this work is a generalization of linear discriminant
analysis for classification of two groups in a native feature space. In the case in which the
groups are linearly separable, the separating hyperplane can be described by the equation

(2)

where the first term is the inner product of parameter space coordinates X and a vector β,
defining the normal to the hyperplane, and where β0 is an intercept (9). The hyperplane,
which is optimal in the sense of maximizing the separation between the two groups, is found
through the method of Lagrange multipliers, with constraints yi (Xi · β+ β0) ≥ C, where yi is
the group label of the data point Xi and C defines the margin between the most difficult to
classify points, referred to as support vectors, with 2C = 2/||β|| (9).

While complete separation in the native feature space is in general not possible, the training
set data are transformed by a mapping function h(X) into a higher dimensional feature space
in which the maximal margin between the two groups can be determined by solving a linear
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convex optimization problem (9). This optimal hyperplane is then transformed to nonlinear
boundaries in the original parameter space defined by the solution function

(3)

where β, derived from the Lagrangian, is given by  (9). αi is a positive-
valued Lagrange multiplier satisfying αi < C. C serves as a regularization parameter that
represents the tradeoff between minimizing the error of classification (smaller values of C)
and maximizing the support vector margin (larger values of C). In accordance with the SVM
algorithm as implemented in the e1071 package, data points were transformed from their
original space, as defined by the MRI parameters selected to describe the samples, into a
higher dimensional feature space in which the optimal hyperplane as described above could
be determined by maximizing the Lagrangian dual function (9). This transformation was
achieved through use of a kernel function K (X, X′)= 〈h(X), h(X′)〉, implicitly defining an
inner product within the transformed feature space (18). We selected the widely-used
Gaussian radial basis function,

(4)

which introduces a single adjustable parameter, σ, defining its extent and curvature (19,20).
The values for σ and C were defined by implementing an exponentially-spaced grid search
to minimize the classification error over the ranges σ ∈ [2−3, 26] and C ∈ [2−2, 24] (15).
Finally, an estimate of the probability that a data point belongs to one of the two classes
defined by the SVM decision hypersurface in the input parameter space (or the hyperplane
in the transformed feature space) can be calculated from a sigmoidal function that equals 0.5
for a point on the decision hypersurface and approaches unity for the selected class for a
data point progressively more distant from the decision hypersurface (8,9):

(5)

Construction of ROC curves

Given assignment probabilities resulting from either univariate arithmetic means or
multivariate SVM analysis, the true positive rate (TP; sensitivity) and false positive rate (FP;
1 - specificity) depend upon a selected decision threshold. In our case, these were based on
assignment probabilities P. For a value P ranging between zero and unity, samples were
classified as degraded if their assignment probability to the degraded group was greater than
P. This permits construction of ROC curves defining false positives and negatives as a
function of the decision threshold. ROC curves were constructed in this manner for T1, the
best univariate classifier, as well as for the 11 available multivariate combinations of the
measured MRI parameters. The quality of a particular classifier was determined by the area
under its ROC curve (21).

SVM-based Matrix Composition Predictions

The ability to predict biochemical composition of degraded cartilage from individual MRI
outcome parameters was assessed by forming correlations between the components of
matrix composition (sGAG, collagen and hydration) and T1, T2, km and ADC. Similarly,
regression was used to construct correlations between biochemical outcomes and SVM-
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based degradation probabilities in order to determine whether this multiparametric approach
yielded more predictive relationships.

Statistical Analysis

Values of MRI parameters and biochemical content corresponding to the pre-and post-
degraded samples are reported as mean ± SD. The Anderson-Darling test was used to assess
normality of the data distribution for each parameter (22). The two-tailed paired Student’s t-
test was employed to determine the significance of the difference between the pre- and post-
degraded parameter values for normally distributed parameters, while significance for the
one parameter that did not satisfy the normality assumption, km, was tested using the
Wilcoxon signed rank test (23).

Results

Table 1 shows average biochemical and MRI parameter results. Treatment with trypsin
resulted in a statistically significant decrease in sGAG content per wet weight and a
concomitant increase in tissue hydration and in collagen concentration per wet weight. The
increase in collagen/ww follows from the extensive and preferential loss of PG, resulting
also in net loss of water. The substantial relative increase in collagen/ww follows from this
loss of PG and water, rather than from any absolute increase in collagen macromolecules.
Substantial and statistically significant increases in T1 and ADC, and a decrease in km,

accompanied these biochemical changes. There was also a statistically significant, though
small, increase in T2 with degradation.

We explored the correlation between the parameters that changed significantly between the
pre- and post-degraded data sets, and found that the correlations were not necessarily large.
For example, while the correlation coefficient for the relationship between T1 and km was r2

= 0.61, a smaller value of r2 = 0.42 was found for the correlation between T1 and ADC,
while km and ADC were essentially uncorrelated, with r2 = 0.10. Together, these results
indicate the lack of redundancy between these measurements, and are consistent with the
classification improvement that results from multivariate analysis.

An example of SVM analysis is shown in Fig. 2, in which BNC samples before and after
exposure to trypsin for 24 hours are represented in (T1, km, ADC) space. A single iteration
of the 10-fold cross-validation procedure is illustrated, with a decision hypersurface
constructed from the SVM algorithm using 90% of the samples and with classification
performed on the remaining 10%. The decision hypersurface is defined as the locus of points
on which samples would have an equal probability of being assigned to the pre-degradation
or trypsin-degraded groups. In this example, samples with a representation in parameter
space lying outside the hypersurface are assigned with a greater than 50% probability to pre-
degradation status, while samples within the hypersurface are assigned to the trypsin-
degraded class. In the example shown, there are no misclassifications.

An ROC curve permits evaluation of test characteristics over a range of binary classification
decision thresholds, with the area under the curve providing a measure of the ability of a
variable to discriminate between groups (21). The ROC curves presented in Fig. 3A for
training sets (with a portion expanded in Fig. 3B) and in Fig. 3C for validation sets
(expanded portion in Fig. 3D) indicate that classification according to particular MRI
parameter sets through multivariate SVM analysis generally resulted in an improvement
over classification by the best univariate classifiers, T1 and ADC. Quantitative results are
shown in Table 2, columns 2 and 3, in which areas under the ROC curves are presented. The
best parameter pair for classification was (T1, km), while the best triplet was (T1, km, ADC).
These were also the best or near-best parameter combinations for classification using
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Gaussian clustering (6). Similarly, T1 was found in both the present study as well as in our
previous work to be the best univariate classifier (6). We note that (T2, km), the worst
bivariate classifier with the SVM approach, performed less well than either T1 and ADC in
both the training and validation sets,. This was also the case for Gaussian clustering (6).

We further evaluated the performance of SVM analysis on mildly degraded cartilage
through use of data previously obtained on samples subjected to a substantially lesser degree
of trypsin digestion (6). These results are shown in Fig. 4 and Table 2, columns 4 and 5.
While, as expected, the areas under the ROC curves were generally smaller than for more
extensively degraded tissue, the best multivariate parameter sets, (T1, km) and (T1, km,
ADC), maintained excellent performance in both cases. In addition, they were markedly
superior to classification according to T1, which again emerged as the best uniparametric
classifier although exhibiting inferior performance in classifying mildly degraded as
compared to more extensively degraded samples.

A direct comparison of SVM and Gaussian-based clustering is shown in Table 3 for the data
set consisting of control and 6-hr trypsin treated BNC samples (6). Results are again based
on 100 realizations of random simple splits into training and validation sets. The results
using the SVM approach support the ROC analysis shown in Table 2. Improved
classification accuracy in the validation sets across various multivariate classifiers using the
SVM analysis is generally observed as compared to those using the Gaussian-based
approach for parameter spaces of the same dimension. However, an important observation is
that the Gaussian clustering approach exhibits little improvement with the addition of a third
classification parameter, while classification with the SVM exhibits substantial
improvement. This is consistent with the smaller decline in specificity and sensitivity
between training and validation sets in the SVM analysis than in the Gaussian-based
clustering analysis. Together, these points reflect the smaller degree of overfitting with the
SVM analysis.

Changes in MRI parameters are seen with enzymatic digestion; as noted, a central question
is the extent to which these parameter changes predict matrix characteristics. Fig. 5 provides
examples of relations between MRI parameters and tissue biochemical properties in the pre-
and post- 24-hr trypsin degradation group. In Figs. 5A – B, each sample’s sGAG/ww and
hydration values are plotted against its T1 value. T1, the best univariate classifier, was used
for this analysis since it also yielded the largest correlation coefficients for the illustrated
relationships. Relationships between each sample’s collagen/ww and T1 value were also
established and showed a significant positive linear correlation (r2 = 0.59). While not
artifactual, this highly counterintuitive result of a positive correlation illustrates the
importance of interpreting MR results in the context of the full set of biochemical changes in
tissue; because of the preferential and substantial loss of sGAG molecules in the samples,
degradation resulted in an increase in the relative measure of collagen, that is, collagen/ww,
although degradation would not result in an increase in the absolute amount of collagen in
the samples. This effect is highlighted by the strong negative (r2 = 0.91) correlation between
sGAG/ww and collagen/ww. Strong correlations were also obtained for ADC, the second-
best univariate classifier of training sets, as a predictive variable (data not shown). However,
consistent with previous findings, within-cluster correlations between T1 and biochemical
outcomes were not observed (24,25). This may be due to the more limited dynamic range of
these correlations, or to the limitations of univariate analysis in the setting of complex
biochemical changes, as noted above. As expected, km, which did not perform well as a
univariate classifier, showed markedly weaker correlations with sGAG and hydration (Fig.
5C – D). Although T2 changed significantly with degradation, it correlated relatively weakly
with tissue biochemistry (Fig. 5E – F). This suggests that cartilage T2 values are strongly
affected not only by overall biochemical content, but also by macromolecular structure (26).
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We constructed similar correlations using classification probabilities based on the SVM
formalism instead of individual MRI outcome measures. Probability was defined with
respect to degradation status, with a value of unity assigned to a sample with 100%
probability of belonging to the 24-hr-trypsin-degraded group, and a value of zero to a
sample with 100% probability of belonging to the pre-digestion group. Intermediate
probabilities were derived as described above, permitting assignment of a degree of
degradation to each sample. Fig. 6A – B shows the correlations between these assignment
probabilities as derived from SVM analysis of the best bivariate classifier, (T1, km), and
biochemical characteristics of the corresponding samples. As seen, the r2 values for these
correlations were on the order of 0.8 or greater, representing a marked improvement over the
results shown in Fig. 5A – B. Fig. 6C – D shows the corresponding results for the set (T1,
km, ADC), the best triplet classifier; improvement over the results for (T1, km) were at best
minimal. This is consistent with the marginal improvement in binary classification provided
by this triplet as compared to (T1, km), as seen in Table 2. Overall, assignment probabilities
obtained through multivariate MRI classifiers, with the exception of (T2, km), exhibited
higher correlations with biochemical characteristics than did the best univariate classifier,
T1.

Discussion

Our study was designed to evaluate the ability of SVM analysis to improve upon the
conventional uniparametric approach to cartilage characterization. We found that in fact the
sensitivity and specificity of binary classification was markedly improved by the SVM
approach, as was the ability to predict changes in matrix composition from observed
changes in MRI parameters.

In the univariate analysis performed in the present work, we found that T1 performed well in
terms of sensitivity and specificity with respect to cartilage degradation status. This was
consistent with our previous results (2,3,6). This sensitivity may be based at least in part to
the fact that we performed these studies at a field strength substantially greater than that
used in clinical studies (2,27), and T1, demonstrates a known increase with field strength.
However, an actual decrease in the dynamic range of T1 has been reported in a study of
brain (28). To our knowledge, there have been no previous studies of the classification
performance of MRI parameters at any field strength, so that classification dependence on
field strength remains speculative. This indicates a need for such formal assessment at
clinically-relevant field strengths. Finally, we note that the sensitivity of T1 to degradation
status may be due primarily to its sensitivity to tissue hydration rather than to changes in the
content of particular macromolecular species. Distinguishing between these two effects
would require a different experimental design from that employed in the present work.

Another departure of the present methodology from the clinical research setting is the fact
that these experiments were performed at 4° C in order to minimize sample degradation
during imaging. Because of the temperature dependence of relaxation times and ADC,
numerical values for data collected at, say, body temperature would differ from what we
have reported. Indeed, the manner and degree to which sample temperature affects our
specific results also remains speculative. However, while a change in the specifics of, for
example, the SVM-determined hypersurface is to be expected, the improvement in
classification accuracy through use of multivariate as compared to univariate analysis is
likely to be retained. These considerations further indicate the need for assessment of
multivariate methods in settings of different magnetic fields, temperatures, and pulse
sequences, as well as in application to other cartilage models such as osteoarthritis and
engineered tissue.
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Classification through multivariate discriminant analysis

Assessment of cartilage status through use of the arithmetic means of single MRI
parameters, which is, in effect, the conventional approach (29,30), demonstrates limited
sensitivity and specificity due to the substantial degree of overlap in MRI parameters
between groups (2,3,6). An important alternative is multivariate discriminant analysis,
which we have implemented in the present work through the SVM algorithm. The most
salient advantage of this is that it incorporates simultaneous knowledge of two or more
parameters. This fact, even in the original parameter space defined by the specified MRI
parameters, can provide a marked reduction in data overlap between groups. In addition, the
SVM incorporates a transformation of the original parameter space into a higher-
dimensional feature space in which class members can be more readily distinguished. We
implemented the SVM as a supervised learning approach, in which a discriminating model
was established based upon the known class memberships of training samples.

In SVM analysis, the transformation into the higher dimensional feature space in which
classification occurs permits a great deal of flexibility in constructing an optimal separating
hyperplane. To render the optimization problem more tractable, a kernel function is selected
that permits evaluation of inner products in feature space through evaluation of this kernel in
the original parameter space. This results in the computation of a linear decision
hypersurface in the transformed feature space which maps to a highly nonlinear surface in
the original parameter space (Fig. 2). We chose the commonly-used radial basis function as
a kernel function, with a value that depends only upon the normalized squared distance
between points. For a given support vector X, the individual weight of a point X is
proportional to e−||X−X′||/σ, with σ representing the width of the Gaussian function. A larger
value of σ results in a greater spread of non-negligible kernel values from the support vector
X′, exhibiting a smoother, and hence more generalizable, but possibly underfit decision
hypersurface defined by the training set (31,32). In contrast, a smaller value of σ results in a
more highly curved decision hypersurface with localized Gaussian densities centered around
support vectors, surrounded by regions of negligible values for the kernel function,
exhibiting a greater potential for overfitting (31,32). Similarly, a large value for the
regularization parameter C can lead to a larger number of support vectors and hence
overfitting, while a small C can result in underfitting (33). Fig. 2 shows an example of a
relatively large σ value, σ= 2, yielding a smooth decision hypersurface, but with the
potential for underfitting balanced by a large value of C = 16.

The accuracy of binary classification using the univariate procedure or the SVM procedure
was examined by constructing ROC curves, in which sensitivity and specificity are
displayed as a function of decision threshold. It is evident that classification performance
was greatly enhanced by the SVM as compared to the univariate approach in analyses of
both the extensively-degraded and the mildly-degraded samples. The poor classification
performance of any single MRI outcome measure is a direct consequence of the high degree
of overlap of parameter values for control and degraded tissue. The same consideration
applies to univariate fuzzy c-means clustering, which can also assign degrees of degradation
in the present context, in spite of this approach being less sensitive to extremes of data
values (2).

We used BNC in the present study, since it is much more spatially homogeneous and
isotropic than is articular cartilage while exhibiting essentially the same ultrastructural
characteristics (34). This permits sensitivity and specificity analysis to be performed on
individual samples while minimizing the complexity of variations of parameter values and
biochemical composition within them. Nevertheless, biologic variation, including the fact
that biochemical degradation also lacks complete consistency, results in a large dynamic
range in tissue properties and MRI parameter values. This, along with the imperfect
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correlation of MR outcomes with tissue biochemistry, also results in substantial overlap in
measured parameters between the intact and degraded sample groups (2). Thus, BNC is an
excellent model for establishing our formalism. However, there remains a great deal of
interest in assessment of cartilage, including degradation status, in the clinical research
setting. Further studies with articular cartilage will rely upon a pixel-by-pixel multivariate
analysis, resulting in a novel means of imaging cartilage degradation (35).

The greatly increased potential to distinguish between data points in different groups
through use of multivariate analysis indicates that the MRI parameters used as outcome
measures are sensitive to different aspects of tissue properties. In the present study, the SVM
approach applied to even the mild enzymatic degradation dataset of Ref. (6) exhibited
markedly improved classification accuracy. The emergence of (T1, km) and (T1, km, ADC)
as particularly robust classifiers is consistent with the results of our previous investigation of
multiparametric classification using Gaussian clusters (6). The consistency of this finding
indicates that these parameters may provide particularly non-redundant, complementary,
information about the biophysical status of cartilage matrix, regardless of analytic approach.
Comparing Table 2 of the present study with Tables 4 and 5 of Ref. (6), it is evident that the
SVM approach tended to result in a greater improvement over uniparametric classification
than did the Gaussian clustering approach.

As expected, and as indicated in Figs. 3 and 4, the areas under the ROC curves for training
set data were larger than those for validation set data, for any MRI parameter or multivariate
parameter combination. This was also the case for the Gaussian-model approach previously
described (Tables 4 and 5 of Ref. (6)). Although using a sampling method such as cross-
validation tends to minimize the problem of overfitting, this problem is also dependent upon
the distribution of data points in feature space and the analytic approach. In fact, as shown in
Table 3, SVM analysis exhibited a substantial advantage over Gaussian clustering (6).
Although training set classification accuracy for mildly-degraded samples was comparable
for the SVM and Gaussian clustering, the former exhibited better performance in the
validation set, indicating less model overfitting.

Relationship between measured MRI parameters and cartilage composition

Binary classification is clearly inadequate to describe the graded nature of cartilage
degradation. In addition, early detection of minimally-degraded tissue is of potential
importance in the development of therapeutic interventions which may be more efficacious
in early disease (36). To address these considerations, several previous studies have
correlated extracellular matrix components of cartilage with MRI parameter values (37–39).
Certain trends have been established, although with limited success.

As shown in Fig. 5, although significant changes were observed in each of the MRI
parameters measured (Table 1), the correlations with matrix components were highly
variable. The correlations with T1, the best univariate classifier, were very good, while
correlations with km and T2 were poor. The correlations with T1 were largely due to the
structure of the data, which exhibited two fairly distinct clusters of points due to the
extensive degradation protocol implemented.

Across the entire data set, T1 correlated well with both sGAG (r2 = 0.64) and hydration (r2 =
0.53); this is consistent with the relatively high correlation between sGAG and tissue
hydration (r2 = 0.68). It cannot be determined from these data whether T1 is specifically
dependent upon sGAG content or hydration; however, previous analysis indicated that T1

may be more highly dependent upon hydration (40). Alternatively, the negative correlation
of r2 = 0.53 between T1 and the overall macromolecular content, defined as 1 – hydration,
follows from Fig. 5B.

Lin et al. Page 10

Magn Reson Med. Author manuscript; available in PMC 2013 June 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



As noted, the correlation between T1, as well as the other univariate outcome measures, and
macromolecular content was much less robust within the rather restricted dynamic range
represented by the distinct clusters evident in each panel of Fig. 5. For example, T1 and
sGAG/ww were essentially uncorrelated, with r2 = 0.10 and r2 < 0.01, within the pre-and
post-degraded clusters in Fig. 5A, respectively. A similar result was obtained in the study
reported by Stikov et al., in which T1 demonstrated correlations with sGAG/ww only when
both upper and lower portions of plug samples from articular cartilage were analyzed
together (24). The work of Potter et al. showed strong correlation between T1 and sGAG,
while that of Irrechukwu et al. did not find such a correlation (37,41). These variable results
can be attributed to the fact that both the MRI and the biochemical measurements
necessarily exhibit measurement error, to the necessity for multivariate analysis, or to an
intrinsic lack of correspondence between these outcomes. The latter could reflect, for
example, the role of factors besides absolute macromolecular content in determining values
for MRI outcome measures. Such factors may include macromolecular structure and
crosslinking and interactions between macromolecular species.

The ability of MRI parameter combinations to predict changes in cartilage matrix caused by
pathomimetic enzymatic degradation has not been extensively studied. We addressed this
issue previously through fuzzy assignment to Gaussian clusters (6). In the present work,
using the more flexible SVM formalism, we defined a degradation probability for each
sample based on its sigmoidal distance from the decision hypersurface. Correlations of these
probabilities with tissue biochemistry are shown in Fig. 6. These multiparametric MRI-
derived probabilities were much more highly correlated with biochemical outcomes than
were the values of any individual MRI parameter. The improved reliability of these
probability values, as compared to individual MRI parameters, for predicting biochemical
status is directly reflected in the consolidation of the clusters representing non-degraded
versus degraded samples. It is of particular interest that the parameter combinations that best
reflected matrix component concentrations were the same as those that exhibited the best
binary classification accuracies.

In conclusion, conventional uniparametric MRI assessment of matrix status in degenerative
cartilage is limited by the overlap in parameter values between varying degrees of
degradation. This is based on the intrinsic physicochemical properties of the tissue and the
sensitivity of the measurement technique to these properties, and cannot be altered through
any statistical means. However, we have shown that multiparametric analysis using two or
more standard MRI outcome measures can result in greatly improved characterization of
cartilage matrix. The multivariate SVM-based discriminant analysis implemented in the
present work yielded classification accuracy in the validation sets similar to the accuracy in
the training sets, representing improved performance as compared with model-based
clustering (6). In addition, degradation probabilities derived from the SVM procedure
demonstrated markedly stronger correlations with biochemical measurements than did
individual MRI parameters. These results indicate the ability of multivariate analysis to
greatly augment MRI assessment of cartilage matrix status in basic science studies. This
approach, based entirely on conventional MRI protocols, may be of potential use in the
clinical research and clinical settings as well.
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Figure 1.
(A) Cross-sectional diagram of a single well of the 4-well sample holder for BNC samples.
The samples were spaced to permit contact with bath fluid on all external surfaces. (B) A T1

image of BNC samples used for delineation of ROIs, as indicated, within the 4-well sample
holder following 24-hr trypsin digestion.
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Figure 2.
Scatter plots of MRI measurements collected on pre- and post-24-hr enzymatically digested
BNC samples. A single trial of the 10-fold cross-validation is shown, with the division of the
full set of data points into a training set (empty symbols) and a validation set (filled
symbols) for classification. Each validation set data point was classified into the pre-
degraded class (◇ or ◆) or the post-degraded class (○ or ●) through the SVM model
established using the training set. Results were obtained with a Gaussian kernel, K(X, X′)=
e x−||pX−(X′||2/σ), with parameter values C = 16 and σ = 2 (see text) in (T1, km, ADC)
space. The contour surface shown indicates the decision hypersurface on which the
assignment probabilities to pre- and post-24-hr degraded classes are the same. Note that all
data points from the pre-degraded group are located outside the bowl-shaped hypersurface,
while all the post-degraded class points are inside the hypersurface; therefore, no
classification errors occur for this particular trial.
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Figure 3.
ROC curves for evaluating the quality of classification of BNC samples into pre- and
post-24-hr degradation groups, with the latter representing a high degree of degradation.
Classification was based on the SVM algorithm for the multivariate MRI classifiers and on
arithmetic means for the univariate MRI classifier. Each point on the ROC curves was
calculated from the averaged classification results for the training sets (Panels A and B) or
the validation sets (Panels C and D) in the 10-fold cross-validation. Panels B and D show
enlargements of the regions between 0 – 0.4 on the abscissa and between 0.6 – 1 on the
ordinate axes in Panels A and C, respectively. Twelve ROC curves corresponding to the
eleven multivariate MRI classifiers and the best univariate T1 classifier are illustrated in
each panel. The areas under the ROC curves for the validation sets are shown in Table 2.
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Figure 4.
ROC curves for evaluating the quality of classification of BNC samples into pre- and post-
mild trypsin degradation groups, using data from Ref. (6). The procedures for classification
and ROC curve construction were as described in Fig. 2, with areas under the ROC curves
shown in Table 2 as well.
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Figure 5.
Relationships between the biochemical content of BNC and corresponding MRI parameters
for control samples and samples following 24-hr trypsin degradation; n=36, with each
sample evaluated before (open circles) and after (filled circles) degradation. Panels A – B:
T1 vs. sGAG concentration per wet weight and tissue hydration. Panels C – D: km vs. sGAG
concentration per wet weight and tissue hydration. Panels E – F: T2 vs. sGAG concentration
per wet weight and tissue hydration.
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Figure 6.
Relationships between the biochemical content of pre- and post-24 hr trypsin-degraded BNC
samples and their corresponding classification probabilities for the validation sets of the 10-
fold cross-validation. Analysis was based on the two indicated MRI parameter
combinations, (T1, km) and (T1, km, ADC), as described in the text. Each plot contains data
from all 36 samples, before (open circles) and after degradation (filled circles). Panels A –
B: sGAG concentration per wet weight and tissue hydration vs. assignment probability
derived from the parameter set (T1, km). Panels C – D: sGAG concentration per wet weight
and tissue hydration vs. assignment probability derived from the parameter set (T1, km,
ADC).
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Table 1

Biochemical characteristics and MRI outcome measures of pre- and post- 24-hr trypsin-degraded bovine nasal
cartilage samples

Pre-degradation Post-degradation
p value

Paired t-test

sGAG (μg/wet mg) 74.23 ± 9.86 16.98 ± 2.57 < 0.001

Collagen (μg/wet mg) 76.43 ± 5.79 138.71 ± 9.86 < 0.001

H2O (%) 76.78 ± 4.36 88.94 ± 1.69 < 0.001

T1 (ms) 1278.1 ± 100.7 1544.2 ± 102.0 < 0.001

T2 (ms) 56.44 ± 11.10 58.97 ± 14.16 0.036

km (s−1) 0.63 ± 0.25 0.44 ± 0.11 *< 0.001

ADC (x 10−4 mm2/s) 10.06 ± 0.89 12.45 ± 0.81 < 0.001

N = 36 samples for each measurement, with each sample analyzed before and after degradation
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Table 2

Areas under the ROC curves for the validation sets

Parameter(s) used for deriving ROC
Extensive (24 hr) Degradation Mild (6 hr) Degradation

Training set Validation Set training set Validation set

T1 0.969 0.965 0.600 0.600

T2 0.538 0.434 0.513 0.465

km 0.541 0.535 0.512 0.438

ADC 0.965 0.975 0.580 0.567

(T1, T2) 0.976 0.950 0.742 0.718

(T1, km) 0.999 0.997 0.936 0.915

(T1, ADC) 0.999 0.995 0.734 0.715

(T2, km) 0.946 0.813 0.814 0.471

(T2, ADC) 0.970 0.971 0.791 0.673

(km, ADC) 0.999 0.985 0.838 0.704

(T1, T2, km) 0.999 0.995 0.963 0.932

(T1, T2, ADC) 0.995 0.989 0.849 0.711

(T1, km, ADC) 1.000 0.999 0.980 0.940

(T2, km, ADC) 0.970 0.965 0.901 0.657

(T1, T2, km, ADC) 0.998 0.995 0.984 0.913

Calculated areas under ROC curves shown in Fig. 3 (columns two and three) and Fig. 4 (columns four and five)
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