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Multivariate analysis of extremely large
ToFSIMS imaging datasets by a rapid
PCA method

Peter J. Cumpson,* Naoko Sano, Ian W. Fletcher, Jose F. Portoles,
Mariela Bravo-Sanchez and Anders J. Barlow

Principal component analysis (PCA) and other multivariate analysis methods have been used increasingly to analyse and under-
stand depth profiles in X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and secondary ion mass spec-
trometry (SIMS). These methods have proved equally useful in fundamental studies as in applied work where speed of
interpretation is very valuable. Until now these methods have been difficult to apply to very large datasets such as spectra asso-
ciated with 2D images or 3D depth-profiles. Existing algorithms for computing PCA matrices have been either too slow or
demanded more memory than is available on desktop PCs. This often forces analysts to ‘bin’ spectra on much more coarse a grid
than they would like, perhaps even to unity mass bins even though much higher resolution is available, or select only part of an
image for PCA analysis, even though PCA of the full data would be preferred.
We apply the new ‘random vectors’ method of singular value decomposition proposed by Halko and co-authors to time-of-flight

(ToF)SIMS data for the first time. This increases the speed of calculation by a factor of several hundred,making PCA of these datasets
practical on desktop PCs for the first time. For large images or 3D depth profiles we have implemented a version of this algorithm
whichminimisesmemory needs, so that even datasets too large to store inmemory can be processed into PCA results on an ordinary
PC with a few gigabytes of memory in a few hours. We present results from ToFSIMS imaging of a citrate crystal and a basalt rock
sample, the largest of which is 134GB in file size corresponding to 67111mass values at each of 512×512 pixels. This was processed
into 100 PCA components in six hours on a conventional Windows desktop PC. © 2015 The Authors. Surface and Interface Analysis
published by John Wiley & Sons Ltd.
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Introduction

Principal component analysis (PCA)[1] is a powerful tool for surface

analysis data and hasmany applications. It can provide an overview

of exactly the type of complex data that modern surface analysis in-

struments produce. PCA can be used for revealing relations be-

tween spectra and spatial position, detecting outliers and finding

patterns in massive datasets that are otherwise impossible to study

by simply plotting one variable against another, amongst other ap-

plications. PCA has therefore been an important method of

analysing spectra and images in surface analysis for at least the last

25 years. There exist excellent examples[2–8] and analytical

reviews[9–13] of its use in the literature, applied to a range of

problems. At the core of PCA software is Singular Value De-

composition (SVD), a matrix algebra method for decomposing

spectra into orthogonal (i.e. independent) components.[14,15]

Consider the simple case of an image containing just four

pixels, as shown in Fig. 1. We have labelled these pixels a,

b, c and d. We think of pixels (such as those taken by a digital

camera for example) as containing intensity information, or

perhaps three numbers representing the intensity of red,

green and blue (RGB) light in a digital image. In Auger elec-

tron spectroscopy (AES), X-ray photoelectron spectroscopy

(XPS) or ToFSIMS we may have a complete spectrum at each

pixel, with perhaps somewhere between n= 100 and

n = 100 000 numbers rather than just three RGB values. Each

pixel therefore contains a complete spectrum for a range of

electron energy (AES and XPS) or mass-to-charge ratio

(ToFSIMS).

Singular Value Decomposition (SVD) is often described in linear

algebra or numerical analysis texts whereby we can express a ma-

trix as

A ¼ U S VT (1)

Or, equivalently, in tableau form showing the elements of these

matrices;
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(2)

where U and V are unitary matrices (rows and columns orthonor-

mal) and S is zero everywhere except along its leading diagonal.

SVD is therefore a generalisation of matrix eigenvalue decomposi-

tion. Many pieces of software are available that, given the data ma-

trix A, will return the matrices U, S and V.

The really valuable function of SVD is to break the data into three

parts, each of which is much easier to understand;

1. The component parts of the spectra present—these compo-

nents are separated-out into different columns in the Vmatrix

2. How important each of those components is (organised in

decreasing order of importance in the S matrix)

3. Where in the image each of those components comes from

(separated out into different columns in the U matrix).

Therefore while there are plenty of cases in which PCA can be

troublesome because of the assumption that the image is made

up of a linear combination of spectra (almost never rigorously

the case), nevertheless the value of PCA in elucidating compo-

nents in a massive amount of data is compelling. Plotting-out

the component spectra and the origin of those components

within the image can be extremely helpful in understanding sur-

face chemistry.

We should always remember that not all images have an under-

lying linear relationship suitable for linear multivariate analysis such

as this. For example, recently we developed[16] MAFI—Multivariate

Auger Feature Imaging—in order to image the graphite-like versus

diamond-like coordination in novel carbon-based materials, where

the carbon Auger feature changes in a nonlinear way as bonding

changes from sp2 to sp3.

The capability of modern personal computers is extremely good,

so that carrying-out PCA calculations is very quick and easy for

small-to-moderate data sets. For example we used SVD in the anal-

ysis of Angle-Resolved XPS[17] data to overcome ill-conditioning.[18]

Because the calculation is so rapid, at NEXUS we perform PCA of

sputter depth-profile datasets routinely as one step in understand-

ing the information present, even if the results of this multivariate

analysis may not appear in the final publication. However thematri-

ces involved in Angle-Resolved XPS or XPS sputter depth-profiling

at a single position are much smaller than those that arise from

2D or 3D imaging. For example, an XPS or AES spectrum con-

taining perhaps 1000 channels and repeated for perhaps 30

levels of a depth-profile leads to a data matrix of 30 × 1000

elements. SVD is easy and quick for a data matrix of this size.

By comparison, modern XPS and SIMS instruments can pro-

duce 2D images (or 3D depth-profiles) in which a spectrum

is associated with each pixel (or voxel). This leads to enor-

mous datasets, especially in SIMS, where the spectra them-

selves are larger, and the high lateral resolution of SIMS

means the density of pixels (or voxels) may be very high over

a similar area of interest. Even in XPS though, the size of 2D

and 3D data generated occasionally makes PCA difficult or

impractical to apply to the whole dataset by existing

methods.

Internally the computer algorithms that are used to solve the

SVD problem are complex, and some of them have run-time and

memory requirements for processing large imaging spectroscopy

datasets that is far beyond what is available even on supercom-

puters. The computationally intensive step is SVD, and the time re-

quired scales much more rapidly than the size of the matrix A, so

that doubling the number of pixels in an image much more than

doubles the calculation time. For imaging datasets in XPS this

means calculation times in the range days to weeks, whereas for

3D SIMS data generated by existing state-of-the-art instruments

the SVD calculation would be from months to years on a desktop

PC using these conventional algorithms, even if enough memory

were available. Therefore, while some examples of excellent results

from PCA of images exist in the literature (often ‘binning’ data at

low resolution with no other aim than reducing the computational

workload) the community is now in a position where PCA applied

to depth profiles is routine and valuable, while PCA applied to 2D

images (or 3D depth-profiles) is rare but potentially very useful in-

deed. Some acceleration should be possible by moving to high

performance computers or use of Graphical Processor Units (GPUs)

to speed-up existing algorithms, but these have not been adopted

widely. ToFSIMS datasets are often extremely ‘sparse’ in the sense

of containing many zeros, and some attempts have been made to

use this to accelerate the calculation.[19] The purpose of this paper

is to investigate how to do SVD (and therefore PCA) in a reasonable

time with a typical personal computer for some of the largest data

sets being generated by modern surface analysis instruments. In

the remainder of this paper we do this by;

(a) Applying a new SVD algorithm (not previously used in sur-

face analysis) to increase the speed of PCA calculation by

several orders of magnitude,

(b) Overcoming the memory limit in a typical PC using a variant

of the above algorithm that allows most of the data to re-

main on hard disc during the calculation, so that it is fetched

in pieces for processing. This takes longer (sometimes sev-

eral hours) but allows PCA to be applied to extremely large

images on small computers.

Methods (a) and (b) allow us to apply PCA to moderate and

large ToFSIMS datasets respectively in a reasonable time

(between and few seconds and 12h or so) on a conventional

Windows personal computer.

We do not attempt in this work to take advantage of sparseness,

as this adds some complexity to the algorithms involved and can

preclude some types of pre-processing of ToFSIMS data, though

in the future it may be possible to combine these approaches.

Figure 1. The mass spectrum acquired at each pixel becomes a row of the
‘datamatrix’ for multivariate analysis. The datamatrix therefore has the same
number of rows as pixels in the image, and the same number of columns as
mass values in the spectra.

Extremely large ToFSIMS imaging by rapid PCA
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Requirements of surface analysis

We can identify three key requirements of an algorithm suitable for

surface analysis imaging applications;

1. It should be fast for images containing a large number of

pixels and having large spectra in those pixels

2. The memory requirements should be within those available

on easily-accessible PCs,

3. It should be capable of decomposing low-rank data matrices,

i.e. we believe that the spectra in the image are made-up of a

small number of factors, almost certainly below 100, and cer-

tainly a very small number compared to the total number of

pixels.

Note that there is an extensive literature and recommendations

on data pre-processing required in XPS and ToFSIMS, which may in-

clude normalisation, mean-centering and Poisson distribution vari-

ance correction.[20] While numerically quick and easy it is not the

purpose of this paper to examine them, as they do not affect the pri-

mary issue which is the scale of spectral imaging data. The issues

of pre-processing are the same whatever SVD or PCA algorithm

is used, and whether the data matrix has 102 elements or 1010.

However because the choice of preprocessing method depends

on the application, and there are publications that discuss

Figure 3. (a) Total ion ToFSIMS image, in positive ion mode, of a sodium
citrate crystal. The field of view is 1mm×1mm. Also shown is (b), an optical
image of a similar but not the same crystal. These crystals are typically
around 0.5 to 1.0mm in size. This figure is in colour in the online version.

Figure 4. (a) Positive ion spectrum of sodium citrate. (b) Positive ion
spectrum of the substrate (double sided tape).

Figure 2. Calculation times recorded for PCA of complete 64 × 64 pixel
images having increasing spectra associated with each pixel. Calculations
were performed with three different algorithms in two common numerical
analysis packages (Octave and Matlab), (a) Octave xGESVD, (b) Octave
xGESSD, (c) Matlab xGESVD, (d) Octave, our implementation of Halko
et al.’s algorithm (RV1), (e) Matlab, our implementation of Halko et al.’s
algorithm (RV1).

P. J. Cumpson et al.
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preprocessing of surface analytical data in depth,[21,22] it will not

be considered here.

Four SVD algorithms

We will not describe the details of any SVD algorithms here,

but from the point of view of the criteria set out above it is

worthwhile highlighting the properties of different classes of

algorithm for performing exactly the same SVD function. We

list these below in the historical order in which they were de-

veloped; we will not explain the terminology and acronyms

here, which are included simply to facilitate the reader in

looking-up the details of how they work if required. Properly

used, each of these algorithms delivers the same results

except for small truncation and rounding errors intrinsic to

numerical computation, though the time taken and memory

required during the calculation can be very different. We will

use the terminology of LAPACK[23] in describing them, as this

is probably the most widely used numerical subroutine

library.

1. Householder reduction to bidiagonal form, followed by QR

and shifts[24,25] to eliminate off-diagonal elements. This is im-

plemented in the routine xGESVD in LAPACK. This type of SVD

algorithm has been used extensively since the time of its first

description in the literature by Golub, Kahan and Reinsch in

the period 1965 to 1970.

2. A divide and conquer algorithm[26] (implemented in the rou-

tine xGESDD in LAPACK). This is faster for very large matrices

than algorithm 1 (so is closer to what we need for surface an-

alytical imaging), but uses more memory. This was described

in the literature around 1995 and added to major linear alge-

bra libraries in the late 1990s (e.g. LAPACK V3.0 in 1999).

3. A ‘Random vectors’ version of the block Lanczos method be-

cause of Halko et al.,[27] and developed as part of his PhD

work.[28] This is a very newmethod, appearing in the literature

around 2010/2011. Variants of the algorithm are still appearing

in the primary numerical analysis literature. Thismethodworks

well for extremely large data matrices, requires that the data

matrix be of low rank (an assumption PCA practitioners always

mustmake in any case) and is much faster than algorithm 1 or

2 in this limit. We will call this algorithm ‘RV1’

Figure 5. PCA results of sodium citrate. The size of each image component is 1mm×1mm, 256 × 256 pixels.

Extremely large ToFSIMS imaging by rapid PCA
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4. An ‘out-of-core’ variant of algorithm 3 has been demon-

strated that greatly reduces memory requirements too. This

is achieved by organising the numerical steps involved effi-

ciently so that the data matrix is operated-upon in pieces,

and therefore the whole data matrix need not be in memory

at any one time. We will call this algorithm ‘RV2’

RV1 is themost rapid of these algorithms for large image PCA, but

relies on enough computer memory being available to hold the PCA

data matrix in memory. RV2 is slower because it allows most of the

PCA data matrix to reside on disc, loading successive segments of

this data matrix into memory for processing. Although slower, RV2

can process very large datamatrices, and is quite capable of process-

ing the largest ToFSIMS datasets on an ordinary PC. The largest

dataset we have so far processed in this way occupies 134GB when

uncompressed, and this processing took only around 6h.

Methods 1 and 2 (xGESVD and xGESDD) are widely used, and

these are the algorithms inside the commonly used software such

as Matlab and Octave that perform SVD (and which are therefore

inside much PCA software). A good detailed comparison of the first

two algorithms can be found in the work of Cline and Dhillon.[29] An

excellent, though rather old, animated illustration of how the

Golub–Kahan–Reinsch algorithm works is available on Youtube.[30]

No built-in function for RV1 or RV2 exists in Matlab or Octave.

Yet algorithm RV1 and RV2 offer the prospect of extending SVD

(and hence PCA and other multivariate methods that depend

on it) to a much wider range of problems in the very near future,

in the same revolutionary way that the Fast Fourier Transform

(FFT) extended the use of Fourier methods in digital signal pro-

cessing in the period 1965 to 1980. XPS and SIMS instruments

are now so efficient at providing spectra that one of the clear

bottlenecks in delivering results to our collaborators at NEXUS

is the analysis of these huge datasets. We have therefore, from

scratch, implemented algorithms RV1 and RV2 based on the pub-

lications of Halko et al. as software within a MATLAB (and Octave)

desktop PC environment, and we now have considerable experi-

ence of applying these methods to XPS and SIMS data. Similar

methods have previously been applied to MALDI and IR

Figure 6. PCA results of the Ontong Java Plateau basalt. The field of view in each component is 1.6mm×1.6mm, 416 × 416 pixels. This region of interest was
taken from a larger tiled image, and a horizontal and vertical tile boundary can be seen, particularly in components 1 and 4. Component 4 is an instrumental
artefact as described in the text. This figure is in colour in the online version.

P. J. Cumpson et al.
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imaging,[31] and to ICR-MS spectrum data,[32] but we believe this

is the first report of application of them to SIMS.

Time taken by RV1 compared to earlier
algorithms

In Fig. 2 we compare calculation times for a relatively small but use-

ful model problem of a 64×64 pixel image having an increasing

size of spectrum associated with each pixel. This logarithmic plot in-

dicates roughly power-law dependence of calculation time on the

number of values in each spectrum. All calculations in this paper, in-

cluding these, were performed on a Dell Precision T1700 desktop

PC with 16GB of memory and an Intel Xeon E3-1271 CPU, running

64-bit Microsoft Windows 7. Matlab R2014a was used for most of

the work, but we also used the portable version of Octave version

3.8.2. No conclusions should be drawn from this work about the rel-

ative speed of Matlab compared to Octave, because the ‘portable’

version of Octave does not give a fair comparison, instead it is the

trend in calculation time as the spectrum size increases that is im-

portant, and this trend is very similar within both the Octave and

Matlab platforms. Figure 2 does, however, show strong differences

in speed between the available algorithms.

From Fig. 2 we can see that, especially for large spectra, the dif-

ferent algorithms available for calculating the SVD of the same ma-

trix differ widely in their speed. In order of increasing speed for

large matrices these are, (a) Octave xGESVD, (b) Octave xGESSD,

(c) Matlab xGESVD, (d) Our implementation of Halko et al.’s algo-

rithm (RV1) in Octave and (e) Our implementation of Halko

et al.’s algorithm (RV1) in MATLAB. For images or datasets larger

than those in Fig. 2, only Halko et al.’s algorithm is sufficiently fast

for regular and routine use. In general waiting 20 s for a result (as in

the longest calculation in Fig. 1(c)) is not a problem. Figure 1(e) of-

fers the same result in about 0.1 s, a modest time saving. However,

extrapolating Fig. 1(c) and Fig. 1(e) to larger problems—perhaps

512×512 pixels each with 60 000 mass values or more, is only re-

ally practical for the Halko et al. algorithm (which we have called

RV1). Those of us that have tried to perform PCA on large datasets

in the past, and found PCA to be impractically slow or demanding

of memory can now reconsider. Halko et al.’s algorithms RV1 and

RV2 remove these problems.

A numerical test-bed for applying new SVD
methods to ToFSIMS images

We have developed our own code implementing both algorithms

RV1 and RV2 as Matlab functions. We have integrated our code

for RV1 as an option within the commercial MIA Toolbox and PLS

Toolbox packages,[33] which provide an excellent graphical user in-

terface for imaging multivariate analysis, and many tried-and-

tested data pre-processing options. This new PCA option leads to

a great reduction in calculation time in practical problems; however

it is limited to cases in which the data is small enough to be held in

memory, as required by RV1. By comparison RV2 has no such limit

on the size of the data, but it would be difficult to take advantage of

this ‘out of core’ version of Halko et al.’s algorithmwithout rewriting

a large fraction of the pre-processing code in these toolboxes so as

to avoid having to have the entire image data simultaneously in

memory. Therefore we have taken the approach of verifying the

analysis of smaller images (typically 256x256 pixels and below) in

the MIA toolbox but we have written specialised MATLAB code to

apply to larger problems using the RV2 ‘out of core’ method. We

shall now examine the results of applying RV1 and RV2 to examples

of large ToFSIMS datasets.

Results of applying RV1: sodium citrate crystal

Figure 3(a) shows a total ion image for a small crystal of sodium

citrate acquired using an Ionoptika J105 imaging ToFSIMS instru-

ment (Ionoptika Ltd, Southampton, UK) and C60 primary ions at

40 keV. The crystal was mounted on double-sided tape, with

some of this tape being visible on the left hand side of the im-

age. Figure 3(b) is an optical microscope image of a similar (but

not identical) sodium citrate crystal from the same sample.

Figures 4(a) and 4(b) show positive ion SIMS spectra from the cit-

rate crystal and tape respectively. A selection of results of apply-

ing RV1 to these images is shown in Fig. 5. In order to reduce the

size of the data matrix to allow it to be held in memory for RV1

we have chosen to process a smaller region of interest (ROI) and

narrower mass range than the originally recorded data contained,

specifically a mass range from 100 to 200 amu. This is a mild

form of ‘peak picking’. This mass range seemed on inspection

to contain the most useful information. No binning of mass

values was done. The results show features not easily visible

without PCA, such as a square region of damage visible within

the 8th and 10th components because of an earlier rastered im-

age in the same instrument. The 10th component shows topo-

graphical features of the mounting tape on the left of the image.

Figure 7. PCA analysis of the entire sodium citrate ToFSIMS image using
the RV2 algorithm shows (in the 11

th
component) small chemically distinct

regions at the surface of the otherwise relatively homogeneous sodium
citrate crystal. The field of view is 1mm× 1mm. The inset expanded
region shows the enormous level of detail present in these RV2 data,
making full use of the lateral resolution of the instrument.

Extremely large ToFSIMS imaging by rapid PCA
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Results of applying RV1: organic inclusions in
basalt

Basalts from the Ontong Java Plateau possess easily distinguish-
able tube-like alteration textures that appear to be of biological
in origin, but the unambiguous presence of molecular bio-
markers or their digenetic products to date has yet to be fully
confirmed. TofSIMS could be an extremely useful tool in the
identification of these biomarkers. Figure 6 shows PCA results
from applying algorithm RV1 to an edited area of an image ac-
quired using 40-keV argon cluster ion as primaries in the
Ionoptika J105, with a primary spot-size of around 3μm. Fissures
containing organic material are clear in components 1 and 2.
Component 4, however, shows a purely instrumental effect unre-
lated to the chemistry of the surface. We believe this to be

because of small temperature variations induced by the air-
conditioning system causing expansion and contraction of the
time-of-flight analyser. The J105 is not especially sensitive to
such changes compared to other ToFSIMS instruments, but the
laboratory was in the process of rearranging the air-conditioning
system at the time of these measurements.

Results of applying RV2

We applied RV2 to the entire basalt dataset of 512×512 pixels (a

2 × 2 tiled image of 256×256 pixels in each image) each pixel

having a spectrum of 67111 mass values. This took 6 h to process

using RV2, and displayed similar results to those shown in Fig. 6

that took a few minutes to process using RV1. Applying RV2 to

the sodium citrate image (taking about three hours) however pro-

duced more of a surprise. Figure 7 shows that the 11th component

image indicates many small, chemically distinct features on the

citrate crystal surface. Examination of the spectrum for this com-

ponent, shown in Fig. 8, indicated that these small spots are likely

to be NaCl, giving rise to peaks we attribute to Na3Cl2
+

(m/Z=138.91), Na4Cl3
+ (m/Z=196.86), Na5Cl4

+ (m/Z=256.82)

and Na7Cl6
+ (m/Z=372.24). To show that the full mass resolution

of the instrument is maintained by processing using RV2 we in-

set in Fig. 8 a high resolution expanded view around this last

peak. The presence of these NaCl crystals on the surface of the

citrate was a complete surprise and underlines the value of

performing PCA on the whole data (using RV2) rather than

editing the mass range and region of interest so as to reduce

the size of the problem to fit in computer memory as required

by previous methods.

Finally we should note that the design of the J105 instrument

on which this work was performed is particularly suitable for mul-

tivariate analysis. In this design of ToFSIMS instrument the spec-

trometer and sample ionisation are separated so that the exact

timing of secondary ion formation has no effect on the mass

measured for that ion. Similar results should be possible on other

types of instrument with careful calibration.

Conclusions

We have implemented, tested and verified two algorithms for

PCA on large ToFSIMS (and other surface analysis) images. Algo-

rithm RV1 is much faster than other algorithms, but may require

some editing or binning of ToFSIMS data sets to enable them to

fit in memory for processing. By comparison, RV2 is able to pro-

cess ToFSIMS images of unlimited size (in fact limited only by the

size of disc storage, typically several terrabytes in new desktop

PCs). RV2 is necessarily slower, but still we find quite practical

to include in the analysis of ToFSIMS images, because the longest

processing time was still only around 6h on a very ordinary desk-

top PC. These algorithms free us from the need to ‘bin’ mass

spectra to lower resolution than they were acquired, and in the

case of one sample (the sodium citrate crystal) showed the unex-

pected presence of NaCl crystals that would have been time-

consuming and tedious to find by manually plotting the data in

different ways.

We plan to make the MATLAB software described in this paper

available from the NEXUS website (www.ncl.ac.uk/nexus) shortly

after the SIMS XX conference this year. If any reader would like

a copy of the software before then, please contact the corre-

sponding author.

Figure 8. Basis spectrum (sometimes called ‘Loadings’) arising from the
11

th
component of the RV2 processed data corresponding to the image in

Fig. 7. This (and the inset expanded regions) shows the full mass
resolution of the instrument, with no binning needed.
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