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Metagenomics is a primary tool for the description of microbial and viral communities.

The sheer magnitude of the data generated in each metagenome makes identifying key

differences in the function and taxonomy between communities difficult to elucidate.

Here we discuss the application of seven different data mining and statistical analyses

by comparing and contrasting the metabolic functions of 212 microbial metagenomes

within and between 10 environments. Not all approaches are appropriate for all ques-

tions, and researchers should decide which approach addresses their questions.This work

demonstrated the use of each approach: for example, random forests provided a robust

and enlightening description of both the clustering of metagenomes and the metabolic

processes that were important in separating microbial communities from different envi-

ronments. All analyses identified that the presence of phage genes within the microbial

community was a predictor of whether the microbial community was host-associated or

free-living. Several analyses identified the subtle differences that occur with environments,

such as those seen in different regions of the marine environment.

Keywords: metagenomics, statistics, microbiology, random forest, canonical discriminant analysis, principal

component analysis

INTRODUCTION

Vast communities of microbes occupy every environment, con-

suming and producing compounds that shape the local geochem-

istry. Over the last several years sequence based approaches have

been developed for the large-scale analysis of microbial com-

munities. This technique, typically called metagenomics, involves

extracting and sequencing the DNA en masse, and then using high

performance computational analysis to associate function to each

sequence. Annotation of a metagenome is conducted by compar-

ing the sample DNA to that available in various databases, such

as NCBI, SEED, MG-RAST, or COG (Wooley et al., 2010). The

number of sequences similar to each protein is identified; there-

fore a metagenome provides information on the taxonomic make

up and metabolic potential of a microbial community.

Most of the focus in metagenomics has been on single envi-

ronments such as coral atolls (Wegley et al., 2007; Dinsdale et al.,
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2008b), cow intestines (Brulc et al., 2009), ocean water (Angly

et al., 2006), and microbialites (Breitbart et al., 2009). Early work

compared extremely different environments, like soil microbes

compared to water microbes (Tringe et al., 2005). More recently,

the Human Microbiome Project has expanded our understanding

of the microbes inhabiting our own bodies, comparing samples

from the same site among and between individuals (Kurokawa

et al., 2007; Turnbaugh et al., 2007, 2009). These studies reflect

the dynamic and expanding field of metagenomics which has

been reviewed elsewhere (Wooley et al., 2010). Previously, we

demonstrated that analysis of functional diversity in metagenomes

could differentiate the microbial processes occurring in multiple

environments (Dinsdale et al., 2008a). That study utilized the

only publicly available metagenomes at that time: 45 microbial

samples and 42 viral samples. The raw DNA sequences were com-

pared to the SEED subsystems (Overbeek et al., 2005), and the

normalized proportion of sequences in each subsystem in each

metagenome were used as the input. That provided a raw data

set with 23 response variables and 87 observations (45 microbial

metagenomes and 42 viral metagenomes) or samples. In that first

study, a canonical discriminant analysis (CDA) was used on a low

number of samples from highly disparate environments. In this

analysis, we describe a wider range of statistical analyses and use

a larger sample size, to describe the abilities of metagenomes to

describe the metabolic profile of microbial communities.

Even though metagenomics provides a complete analysis of the

microbial activity, the results are complicated to interpret because

a typical output is a list of BLAST matches to many thousands

of proteins. Some programs for testing significance levels between

metagenomes have been written and most use bootstrapping to

avoid problems associated with the low number of replicates

(Rodriguez-Brito et al., 2006; Parks and Beiko, 2010). Web based

sites are being created which enable researchers to conduct statis-

tical analysis, with no explanation of the suitability of the analysis

(Arndt et al., 2012). The most common question biologists pose

when conducting a metagenomic analysis is how the microbial

community taxa or metabolic potential vary between sampling

locations or time points. To answer this question requires the

analysis and visualization of large amounts of multivariate data.

To date, a few statistical tests are routinely used, including princi-

pal component analysis (PCA), multidimensional scaling (MDS),

and CDA, similar to more traditional analyses of microbial com-

munities and genomic data where PCA dominates the analyses

(Ramette, 2007).

There are many statistical tools that can be used to explore mul-

tivariate data as provided by metagenomes. Here we provide an

overview of seven different statistical techniques, out of the many

that could be used, to compare and contrast metagenomes from

different environments. In particular, we focus on tools for the

classification and visualization of metagenomic data. In this work,

we are concerned with how metabolic potential of the microbial

community varies within and between environments.

It is important to realize that the statistical tests used will

depend on the question the researcher is exploring. Not every sta-

tistical test should be used for every analysis, but several analyses

can be used in combination to answer the same research ques-

tion. For example, random forests are a robust analysis, but do

not provide a good visualization of the data. Therefore, we com-

bine random forest analysis with either MDS or CDA to visualize

the outcome of the random forest. In this work, we have focused

on clustering and visualization to show how metagenomes vary

between and within environments and identify the metabolic

processes that are important in driving the separations. A detailed

analysis of the relationship between multivariate analyses can be

found in Ramette (2007). Here we take a metagenomes centric

view and briefly introduce each statistical method, and describe

its ability to separate metagenomes across environmental space.

The analysis recapitulated the discriminating power of metage-

nomics to identify differences in functional potential both between

and within environments. A unique metabolic signature repre-

sented each environmental microbial community: for example,

the abundance of phage proteins was the major discriminator

between host-associated microbial environments and free-living

microbes. Subtle differences between open and coastal marine

environments were associated with differences in the abundance

of photosynthetic proteins. Cofactors, vitamins, and stress related

proteins were consistently found in higher abundance in environ-

ments where the conditions for microbial survival were potentially

unstable, such as hydrothermal springs. Each of these differ-

ences provides a clue for detailed microbiological analysis of

communities.

MATERIALS AND METHODS

At the time of analysis, 212 metagenomes were selected from the

set of publicly available data1. They were classified into 10 differ-

ent environments depending on the description provided by the

researcher that collected the samples (Table A1 in Appendix). The

metagenomes spanned a range of sequencing technologies, and

most environments were represented by two or more sequencing

technologies (Figure 1). The sample descriptions were provided

as a geographical coordinate or a verbal description (e.g., coral

reef water), these were translated into the environmental ontology,

EnvO (Smith et al., 2006). EnvO environments were: saline evapo-

ration pond; mat community; hydrothermal springs; human asso-

ciated; other terrestrial animal associated; freshwater; and marine.

Because of the abundance of samples from saline hydrographic

features from the ocean (for example, Global Ocean Survey data),

these samples were further sub-divided into four groups: open

ocean, coastal water, deep water, and coral-reef water associated

samples. The descriptions of metagenomes were mostly a geo-

graphic location, which would place the sample in a clear habitat

type; a description of host, e.g., human or animal type; or a verbal

description of the habitat, e.g., hydrothermal springs. There is an

unfortunate lack of auxiliary data, e.g., measurements of salinity,

pH, temperature, that could be used to separate the samples along

a gradient. As more environmental measurements are collected at

the time of metagenome sampling, the two data types (environ-

mental and genomic) can be analyzed simultaneously to provide

direct evidence of how microbial communities differ across envi-

ronmental gradients and some of the statistics that we present will

useful for these analysis.

1http://edwards.sdsu.edu/mymgdb/

Frontiers in Genetics | Statistical Genetics and Methodology April 2013 | Volume 4 | Article 41 | 2

http://edwards.sdsu.edu/mymgdb/
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Dinsdale et al. Multivariate analysis of functional metagenomes

FIGURE 1 | A comparison of the sequence length and number of sequences across the environmental groups.

Publicly available metagenomes were selected from the Edwards

Lab metagenome database (see text footnote 1) (Table A1 in

Appendix). All samples were annotated using the real-time k-mers

based annotation system using a 10-amino acid word size and a

requirement for at least two words per protein2. Real-time metage-

nomics: uses signature k-mers to identify the functions encoded in

the metagenome sample (Edwards et al., 2012). The k-mers based

approach allows all of the samples to be annotated against the same

core database, and for the annotations to be updated whenever

required. The k-mers based annotation provides the number of

sequences for each function, subsystem, and two level hierarchies

in the subsystems ontology (Henry et al., 2011). This system works

by comparing the DNA to previously annotated DNA housed in

a range of databases which identifies a gene or subsystem that

shows similarity. The gene is then grouped with other genes that

contribute to a metabolic pathway. The pathways are grouped

with pathways that are associated with similar metabolic func-

tions to make the top hieratical metabolic function. For example,

a sequence may be similar to Alanine racemase, which is used in

Alanine Biosynthesis, which is one of the pathways in Amino acid

metabolism; therefore in this case the microbial community would

have a sequence in the Amino acid metabolism subsystem. The

counts for each metabolic process are totaled and normalized by

the total number of sequences that show similarity to any subsys-

tem. Therefore the analyses used the percent of sequences in each

metabolic or functional group as the data; the metabolic group is

the response variable and the metagenomes as the observations.

The 27 functional hierarchies used in the analysis were: Amino

2http://edwards.sdsu.edu/rtmg

Acids and Derivatives; Carbohydrates; Cell Division and Cell Cycle;

Cell Wall and Capsule; Cofactors,Vitamins,Prosthetic Groups,and

Pigments; DNA Metabolism; Dormancy and Sporulation; Fatty

Acids, Lipids, and Isoprenoids; Membrane Transport; Metabolism

of Aromatic Compounds; Miscellaneous; Motility and Chemo-

taxis; Nitrogen Metabolism; Nucleosides and Nucleotides; Phages,

Prophages, and Transposable Elements; Phosphorus Metabolism;

Photosynthesis; Plasmids; Potassium Metabolism; Protein Metab-

olism; Regulation and Cell Signaling; Respiration; RNA Metabo-

lism; Secondary Metabolism; Stress Response; Sulfur Metabolism;

Virulence (Aziz et al., 2008).

Common statistical techniques were used to explore the rela-

tionship between the metagenomes, environments, and subsys-

tems (Figure 2). The two key questions addressed were: (i) do

metagenomes have a metabolic signature for each environment

and (ii) what are the important metabolic processes driving that

signature? Clustering analysis is useful for grouping objects into

categories based on their dissimilarities and work well when there

is discontinuities in the samples, i.e., they are collected from

distinct environments, rather than where continuous differences

are expected, i.e., they are collected along a single environmen-

tal gradient. In general, statistical methods can be divided into

two broad categories: supervised techniques and unsupervised

techniques. Supervised techniques require that the samples be sep-

arated into predetermined groups before the analysis begins, and

those groups are used as part of the analytical methods. In this case,

the metagenome samples were grouped according to the environ-

ment where the sample was collected. In contrast, unsupervised

techniques do not require a priori knowledge of the group sepa-

rations, but the groups are generated by the statistical technique.

In the all cases, we compare the resultant groups to the original
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FIGURE 2 | A diagram of the relationship between the seven statistical methods evaluated.

sampled environment to determine the discriminating power of

the analysis.

When categorizing data, many statistical methods are prone to

over-fitting the data – reading more into the data than is really

there. To reduce the problem of over-fitting the size of the data

sets should be increased, groups should be of similar size and the

number of groups should be less that the number of variables.

Sample size considerations are particularly relevant to metage-

nomic data analysis, due to the nature of the data. There are

thousands of proteins identified in each metagenome, but at the

time of analysis there were <300 publicly available samples, mean-

ing that there were many less samples than potential variables.

Combining the proteins into functional groupings reduces the

number of variables to be less than the number of samples avail-

able (subsystems were used here, but other groups like COGs,

KOGs, or PFAMs are also widely used for metagenome analy-

sis (Reyes et al., 2010). The subsystem approach is standardized

and identifies all the proteins that are within a metabolic group.

We used BLAST to identify how many sequences are similar to

each protein. The data consisted of 10 classifications (the environ-

ments), 27 response variables (the functional metabolic groups),

and 212 observations (the metagenomes). As the number of pub-

licly available metagenomes increases the number of metabolic

groups could be increased. We compared the outcome of the seven

statistical analysis with the detailed methods are discussed below,

and further discussion and source code for all of these opera-

tions are provided in the online accompanying material3. A brief

summary of each method is given in the results.

3http://dinsdalelab.sdsu.edu/metag.stats/

K -MEANS CLUSTERING

K -means clustering is an unsupervised method which aims to clas-

sify observations into K groups, for a choice of K. This approach

partitions observations into clusters in order to minimize the

sum of squared distances from each observation to the mean of

its assigned group. The function that is minimized is called the

objective function describe in Eq. 1:

obj (µ1, . . . , µk) =

n
∑

i=1

min
µ1,...,µk

∥

∥

∥x(i) − µk

∥

∥

∥ (1)

where x(i) is an observation, µ1, . . ., µk are the means, and k

is such that
∥

∥x(i) − µk

∥

∥ is minimal. The result is K clusters

where each observation belongs to the cluster with the closest

mean.

The K -means algorithm starts by randomly selecting µ1, . . .,

µk and placing all observations into groups based on minimizing

the objective function using Euclidean distance. The group means

are then recalculated using the observations in each cluster and

replace the previous means, µ1, . . ., µk. The algorithm is repeated

until additional runs no longer modify the group means or the

partitioning of observations.

An alternative method of choosing K, uses silhouettes (Mar-

den, 2008), which test how well an observation fits into the cluster

it has been partitioned into rather than the next nearest cluster.

Silhouettes give a good indication of how spread out groups are

from each other. Let a (i) =
∥

∥x(i) − µk

∥

∥ and b (i) =
∥

∥x(i) − µl

∥

∥

where x(i) is an observation in group k and l is the group with

the next closest mean (Marden, 2008). A silhouette is then defined

in Eq. 2:
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silhouette (i) =
a (i) − b (i)

max {a (i) , b (i) }
(2)

Ideally, each observation is much closer to the mean of its group

than to the mean of any other group. In this case, the silhouette

would be close to 1. Similar to the sum of squares plot, one must

be careful about choosing a minimal K which has a large aver-

age silhouette width, though silhouette graphs frequently suggest

a clear K to select.

CROSS-VALIDATION OF CLASSIFICATION TREE

To cross validate a tree, the data set is divided into k randomly

selected groups of near equal size. A large tree is built using the

data points in only k − 1 groups and pruned to give a sequence

of subtrees. The tree and subtrees are used to predict the classes

of the remaining data points, and these predictions are compared

against the actual classes of those data points. The misclassification

rate and the cross-validated deviance estimate are computed for

each tree, and the process is repeated for each group. This k-fold

cross-validation procedure (Shi and Horvath, 2006) is typically

repeated many times, so that different subsets are selected in each

trial. The misclassification and deviance values for each tree size

are averaged over there petitions, and the subtree that minimized

the standard error in the misclassification rate or the lowest average

deviance is selected. Trees constructed using cross-validation tools

are typically less susceptible to over-fitting than other forms of

classification. K -fold cross-validation is particularly appropriate

for metagenomic data where there may be few samples in some of

the environmental groups and as many samples as possible should

be used to identify the right tree.

SUPERVISED RANDOM FOREST OUT OF BAGGING DESCRIPTION

Sampling the data with replacement generates a new dataset to

grow each tree in the forest – a process called bagging (bootstrap

aggregating ). The metagenomes that are chosen at least once dur-

ing the sampling process are considered in-bag for the resulting

tree, while the remaining metagenomes are considered out-of-bag

(OOB). Upon mature growth of the forest, each metagenome will

be OOB for a subset of the trees: that subset is used to predict

the class of the metagenome. If the predicted class does not match

the original given class, the OOB error is increased. A low OOB

error means the forest is a strong predictor of the environments

that the metagenomes come from. Misclassifications contributing

to the OOB errors are displayed in a confusion matrix. The rows

in the confusion matrix represent the classes of the metagenomes

and the columns represent the classes predicted by the subsets of

the trees for which each metagenome was OOB. Each class error,

weighted for class size, contributes to the single OOB error. The

OOB error and a confusion matrix are used to judge the misclassi-

fication error and clarify where the errors occur, while the variable

importance measure allows for identifying which variables are best

at discriminating among groups.

MEAN DECREASING ACCURACY AND GINI IN SUPERVISED RANDOM

FOREST

There are several approaches that work in conjunction with ran-

dom forests to estimates the importance of variables in separating

the data into groups. One uses the mean decrease in accuracy

that a variable causes is determined during the OOB error cal-

culation phase. The values of a particular variable are randomly

permuted among the set of OOB metagenomes. Then the OOB

error is computed again. The more the accuracy of the random

forest decreases due to the permutation of values of this variable,

the more important the variable is deemed.

The mean decrease in Gini is a measure of how a variable con-

tributes to the homogeneity of nodes and leaves in the Random

Forest. Let pmgi be the proportion of samples of group gi in node

m. Let gc be the most plural group in node m. The Gini index of

node mGm is defined in Eq. 3:

Gm = 1 −
∑

i∈g

p2
mgi

(3)

The Gini index is a measure of the purity of the node, with

smaller values indicating a purer node and thus a lesser likelihood

of misclassification (Brieiman et al., 1984). Tree generating algo-

rithms may use this index as their likelihood to pick which variable

to split on. Each time a particular variable is used to split a node,

the Gini indexes for the child nodes are calculated and compared

to that of the original node. When node m is split into mr and ml,

there is a probability pmr of samples going into the child node mr

and pml
of going into ml. The decrease (Brieiman et al., 1984) in

Gini is defined in Eq. 4:

Dm = Gm − pmr Gmr − pml
Gml

(4)

The calculated decrease is added to the mean decrease Gini

for the splitting variable and normalized at the end. The greater

the mean decrease Gini of a variable, the purer the nodes splitting.

Each time a particular variable is used to split a node, the Gini coef-

ficients for the child nodes are calculated and compared to that of

the original node. The Gini coefficient is a measure of homogene-

ity from 0 (homogenous) to 1 (heterogenous). The decreases in

Gini are summed for each variable and normalized at the end of

the calculation. Variables that split nodes into nodes with higher

purity have a higher decrease in Gini coefficient.

MULTIDIMENSIONAL SCALING

Multidimensional scaling is a visualization technique. Its goal is

similar to PCA (see below). MDS takes for its input an n × n dis-

similarity matrix S for n metagenomes, constructed by some other

statistical technique, such as random forest. Then the algorithm

looks for an embedding of the data points into some lower (such

as 2 or 3) dimensional space that preserves the dissimilarity dis-

tances as much as possible. This embedding can then be plotted to

visualize the clusters and their distances. There are various algo-

rithms to do this, and they are rather involved. Some try to match

the original distances in the embedding as well as it can. Others try

to preserve the original ordering of the distances, i.e., the farther

apart two samples were originally; the farther apart their images

will be under the embedding.

LINEAR DISCRIMINANT ANALYSIS

For a data set with predetermined groups, linear discriminant

analysis (LDA) constructs a classification criterion which can be
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used for predicting group membership of new data. LDA finds

linear combinations of variables that best separate the groups, and

chooses hyperplanes perpendicular to these vectors to split the

data into two groups.

Let X be a data set with defined groups 1, . . ., n. For each group

j, there exists a corresponding conditional distribution describe

in Eq. 5.

X (i) |G (i) = j ∼ fj (5)

Furthermore, let πj represent the proportion of X that is con-

tained in group j. To perform a LDA on X, we assume that each

fj is normally distributed with an equal covariance matrix Σ, but

with possibly different means µj. Using maximum likelihood esti-

mation theory, the linear discriminant functions can be derived

in Eq. 6:

gj (x) = log
(

πj

)

+ xΣ−1µT
j −

1

2
µjΣ

−1µT
j (6)

Note that πj ,µj , and Σ are unknown parameters for our groups’

conditional distributions, so we estimate them using our sample

data X in an intuitive manner. Suppose X has N data points and

group j has nj points contained in it. Then we estimate πj by

π̂j =
n_j
N , and µj by µ̂j =

nj
∑

i=1

Xi
nj

. Let Sj be the sample covariance

matrix for group j calculated from X. Also Σ̂j , is taken to be 1/n

of the pooled covariance matrix of X. Consequently, Σ̂j = Σ̂k

for all k ∈ {1, . . ., n}. Therefore, let Σ̂ = Σ̂1 = Σ̂2 = . . . = Σ̂k .

With our population parameters estimated from our sample data

X, the linear discriminant functions from Eq. 6 becomes described

in Eq. 7:

gj (x) = log
(

π̂j

)

+ xΣ̂−1µ̂T
j −

1

2
µ̂jΣ̂

−1µ̂T
j (7)

Note that (5) is a linear function since log
(

π̂j

)

− 1
2 µ̂jΣ̂

−1µ̂T
j

is a constant.

These gj’s from (5) are our classifying functions. Since for a

point x we sought to maximize πjfj, our classification criterion is

assign x to group j if gj(x) > gk(x) for all k 6=j.

With the classification criterion, decision boundaries between

groups can be found. The decision boundaries are where the

discriminant functions intersect. That is, the decision boundary

between groups j and k is {x :gj(x) = gk(x)}. Therefore, the lin-

ear discriminant functions split the data space into regions. Each

region corresponds to a specific group and the decision boundaries

separate the regions.

The original derivation of LDA (Fisher, 1936), the classifier did

not start with the multivariate normal distribution. Instead, he

sought the linear combination of variables that maximized the

ratio of the separation of the class means to the within group

variance. The pooled covariance is used in his derivation, which

assumes the covariance of the groups is equal. Even though our

motivation and derivation are different we still end up with Fisher’s

coefficients (Venables and Ripley, 2002).

To judge how well a given LDA acts as a classifier for new data,

leave one out cross-validation can be can be used and is imple-

mented in the Statistical Package R (2009). Let X be a data set with

m data points, and with groups 1, . . ., n. For an LDA carried out on

X, leave one out cross-validation removes one observation, x(i), at

a time from X, performs an LDA on the reduced data set, and then

uses this new LDA to classify x(i). Since the group membership of

x(i) is already known, we can check if the quasi-LDA for X classi-

fies x(i) correctly or not. For every observation in X, the procedure

of leaving one out, and classifying with a new LDA is performed.

The number of p of misclassifications is found. The proportion

p/m is an estimate for the probability of the LDA carried out on X

misclassifying a new observation.

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is a dimension reduction technique.

It uses orthonormal linear combinations of the variables of the

data, called principal components, to capture most of the vari-

ance in a few dimensions. The idea is to choose the first principal

component so that it has maximal variance, and each successive

principal component so that it absorbs as much of the remain-

ing variance as possible. The number of principal components

of a dataset is equal to the number of variables, but most of the

variance is concentrated in the first few.

Given an n × q data matrix Y with corresponding q × q covari-

ance matrix S, the q × 1 principal component vectors ν1,. . ., νn are

described in Eq. 8:

〈

νi , νj

〉

max
=0, 1≤j<i

∥

∥νi SνT
i

∥

∥

‖νi‖=1 (8)

Since S is a symmetric matrix, the spectral theorem shows that

all of its eigenvalues are real and that it has an orthonormal basis

of eigenvectors (Marden, 2011). Hence it follows that the principal

components of Y are the eigenvectors of S ordered by decreasing

eigenvalues.

The principal components of Y capture all of the variance of

the variables. PCA is an effective tool when the first few principal

components account for most of the variance. In practice, being

able to capture over 95% of the variance in the first two principal

components is not unusual. Then the data can be plotted along the

first two or three principal components to visualize clustering. If

the first few principal components fail to account for most of the

variance, it indicates that the data is inherently multidimensional.

CANONICAL DISCRIMINANT ANALYSIS

Canonical discriminant analysis centers on the construction of

canonical components to explain the variance between classes.

For a data set with variables (ν1, ν2, . . . , νk), these canoni-

cal components are linear combinations of the form shown in

Eqs 9 and 10:

Can1 = â1ν1 + â2ν2 + . . . + âkνk (9)

Can2 = b̂1ν1 + b̂2ν2 + . . . + b̂kνk (10)
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For two-dimensional visualization it is necessary to project the

variable vectors v1 and v2, onto the canonical component axes

Can1 and Can2 (Marden, 2011). The projections of the variables

maintain the relationship between their coefficient variables. That

is shown in Eq. 11:

ai

bi
=

âi

b̂i

and
ai

bj
=

âi

b̂j

(11)

The amount of the inter-class variance that is explained by each

component is indicated in parentheses along each axis. The vec-

tors can be rescaled to obtain the clearest visualization, but they

must maintain the ratio of their lengths as this is proportional to

their importance. Each sample is plotted according to its canonical

scores. Let x be a sample, such that x = (x1, x2, . . ., xk) from a data

set whose first canonical components are C1 and C2, such that the

coefficients of C1 are (a1, a2, . . ., ak) and those of C2 are (b1, b2,

. . ., bk). Then we compute using Eq. 12:

xC = x





|

C1

|

|

C2

|



 = (x1, x2, . . . , xk)











a1

a2

...

ak

b1

b2

...

bk











= (C1 (x) C2 (x)) (12)

The canonical scores of a sample x are (C1(x), C2(x)), which

describe its position in the 2-dimensional space defined by the

first two canonical components. The mean scores and confidence

intervals of the means can also be plotted.

The choice of group was determined by the minimal Maha-

lanobis distance. The Mahalanobis measure is a scale-invariant

distance measure based on correlation. The distance of a multi-

variate vector x = (x1, x2, . . ., xk) from a group with mean µ = (µ1,

µ2, . . ., µn) and covariance matrix S is defined in Eq. 13:

DM (x) =

√

(x − µ) S−1(x − µ)T (13)

More intuitively, consider the ellipsoid that best represents the

group’s probability density. The Mahalanobis distance is simply

the distance of the sample point from the center of mass, divided

by the spread (width of the ellipsoid) in the direction of the sample

vector (Marden, 2011).

RESULTS

OVERVIEW

We begin by assessing the clustering of the metagenomes and test

whether the clusters chosen to reflect the environmental signals

are statistically supported (K -means, decision trees, and random

forests). We then move on to methods to explore and visualize the

underlying structure of the data (MDS, linear discriminant, prin-

cipal components, and CDA). An outline of the statistical methods

tested is shown in Figure 2. Obviously statistical analysis is not a

linear process, and many of the techniques were influenced by the

results from previous (or subsequent) analyses. Although this dis-

cussion attempts to maintain a linear structure for readability, that

is not always possible or appropriate. Often the researcher will have

a specific biological question and a single specific statistical analysis

will be appropriate. A combination of statistical tests can provide

better visualization of the data. For example random forests are

good at recognizing important variables and how the observations

are divided or classified, but do not provide data visualization

tools. Therefore, we used a random forest analysis to provide the

clustering and a MDS plot to visualize the data.

K -MEANS CLUSTERING

The most straightforward method to cluster data is by grouping

into related sets. K -means clustering aims to classify observations

into K groups by partitioning observations into clusters in order

to minimize the sum of squared distances from each observa-

tion to the mean of its assigned group. The K -means algorithm

starts by randomly selecting a specified number of means and

groups observations by assigning each one to the mean it is closest

to in distance. The group means are then recalculated using the

observations, replacing the previous means. The observations are

reassigned to a group based on the distance between the value and

the mean of the group. The algorithm iterates until the groups

stabilize. The algorithm will converge to a local minimum, but

not necessarily to a global minimum, therefore it is necessary to

initialize and run the analysis many times.

Varying the number of groups (K ) will result in different results

from the K -means algorithm. The sum of squares of distances in

general decreases as K increases, because there are more groups

in which to assign observations. Selecting K with the smallest

sum of squares will over-fit the data. In fact, when K is the

number of observations, each observation will form a group by

itself and the sum of squares will be 0; but this does not give

any useful information about the data. A plot of the sum of

squares versus values of K is useful for determining an optimal

value of K (Figure 3A). K is often selected where the plot has an

“elbow.”However, with metagenomic data, the plot often appeared

rounded (Figure 3A), therefore, we optimized using silhouettes

(Rousseeuw, 1987) instead. The silhouette of an observation is the

difference between its distances from the closest of the K-means

and the second closest, divided by its distance from the second

closest mean. In the best possible case, the observation is close

to its own mean and not very close to the second best mean,

i.e., its silhouette is close to 1. The set of all silhouettes (one for

each observation) for K from 1 to 10 is shown in Figure 3B. For

each value of K we calculate the average silhouette width, and

use K that optimizes the width of the silhouettes. We found a

maximum at K = 6, with another smaller optimal width at K = 10

(Figure 3C).

The K -means algorithm was most useful for identifying out-

liers, which could be checked visually and removed as required.

Using K = 6 groups, identified two broad categories, (1) the

aquatic group cluster and (2) the human, terrestrial animal asso-

ciated and mat community cluster (Table 1), but the remaining

four groups were small and consisted of samples that were poten-

tial outliers. The advantage of the K -means approach was that it

showed broad patterns in the metagenomic data. If the researcher

did not know how many groups were in the dataset, this analy-

sis would be a good place to start the analysis. The disadvantage

was that it does not provide any information about which meta-

bolic processes were driving the broad scale separations in the

metagenomes.

www.frontiersin.org April 2013 | Volume 4 | Article 41 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Dinsdale et al. Multivariate analysis of functional metagenomes

FIGURE 3 | (A) The sums of squares and K -value used to identify

the number of groups that the samples should be split into. No clear

elbow was evident; therefore silhouette plots were used to examine

the data. (B) A silhouette plot showing how it creates metagenomic

groups in the data. The most favorable grouping number is where

the average silhouette width is nearest to one. (C) The variation of

average silhouette width and K. There is a peak at K = 6 and an

uptick at K = 10.

CLASSIFICATION TREES

A supervised decision tree constructs a classification tree by iden-

tifying variables and decision rules that best distinguish between

predefined classes (supervised). If the response variable is con-

tinuous, instead of predefined classes, a regression tree can be

constructed which predicts the average value of the response vari-

able. Either of these trees is suitable for metagenomic data, but

since we were interested in separating the data by environment

we used classification trees. Trees are invariant under monotonic

transformations of the response variables, because constructing a

tree uses binary partitions of the data and thus most variable scal-

ing is unnecessary (De’ath and Fabricius, 2000; De’ath, 2002). This

feature is particularly important, because a mixture of data can be

included in the analysis, e.g., the percent of sequences similar to

a metabolic process or the pH where the metagenome was col-

lected. Combining genomic and environmental data will be useful

in future analyses.

The construction of a supervised tree minimizes the mixing

of the different predefined classes within a leaf (called the node

impurity). At each branching point, the algorithm chooses a single

variable and a value that splits the node minimizing the impu-

rity. (There are several ways to measure impurity, as described in

the methods) In general, trees are a balance between classifica-

tion strength and model complexity with the goal of maximizing
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Table 1 |The samples present in each of the clusters identified by the

K -means analysis with K = 6. This was chosen because the silhouette

analysis suggested that six clusters were the most appropriate (Figure 3).

There were 33 human, 9 terrestrial animal, 10 mat community, 42 open

water, 20 reef water, 60 coastal water, 5 deep water, 7 fresh water, 15

hypersaline, and 6 hot spring samples in total.

Cluster Number of

metagenomes

Original metagenome

classification

1 52 31 Human

5 Terrestrial animals

6 Mat community

Water samples:

4 Open marine

3 Coral reef

2 Coastal marine

1 Fresh

2 1 1 Coral reef water sample

3 1 1 Coral reef water sample

4 3 1 Human

1 Fresh water

1 Coral reef water

5 149 4 Mat

4 Terrestrial animals

1 Human

Water samples:

56 Coastal marine

5 Deep marine

15 Solar evaporation ponds

6 Hydrothermal spring

38 Open mainre

13 Coral reef

7 Freshwater

6 6 Water samples:

2 Coastal marine

3 Freshwater

1 Coral reef

prediction strength and minimizing over-fitting. Often a large tree

is grown that over-fits the data, and pruning and cross-validation

are used to select the most appropriate sub-tree of that original

tree (Brieiman et al., 1984).

Unlike K -means clustering, decision tree classification provides

information about the variables that drive the separation. The best

classification tree using all the variables was determined by 500

runs of 10-fold cross-validation (Table 2). The cross-validation

identified three trees that gave similarly low values, the 6, 8, and

9-leafed tree. These were visually inspected to see which tree gave

information without being over-fitted and this was the 9-leafed

tree. This classification tree (Figure 4) demonstrated that phage

proteins separated the host-associated microbial communities and

the majority of free-living communities. In particular, and as has

been shown before (Oliver et al., 2009; Reyes et al., 2010), the host-

associated communities and some microbial communities from

the fresh water and hypersaline environments characteristically

had more phage proteins.

Table 2 |Tree size and average deviance from a series of tree

cross-validation experiments.

Tree size Average CV deviance

1 152.014

2 122.432

3 102.636

4 99.642

6 92.762

8 92.970

9 92.812

14 95.848

16 98.342

17 98.622

FIGURE 4 | A classification tree showing the separation of

metagenomes from different environments based on the abundance

of the subsystems in each environment. The abundances are normalized

as described in the methods. The tree has been pruned to only show the

eight most important variables.

Harsh environments (such as hypersaline aquatic environ-

ments) had more cofactors, vitamins, and pigments. Within the

marine realm, the coastal and deep water samples had, as expected,

fewer photosynthetic proteins than the open water samples, but

the photosynthetic potential of the reefs was mixed (Dinsdale

et al., 2008a). Photosynthetic potential also aided the identifica-

tion of stratification in the mat microbial communities by depth,

a separation that was supported by metabolism that occurs in

microaerobic or anoxic conditions. The major advantages of clas-

sification trees are the ability to use any continuous variable type,

fast calculation time, good visualization, and the ability to calculate

misclassification rate. The use of classification tree in association

with environmental data in the future will be able to show the

interactions between the environmental and genomic characteris-

tics. The disadvantage is the tendency for over-fitting the trees and

the lack of stability: small changes in the data, such as adding one

more sample, can yield dramatically different results.
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RANDOM FORESTS

The random forest (Brieiman, 2001) technique aims to overcome

the limitations of the classification tree by generating a large

ensemble of trees from a random subset of the data and a ran-

dom selection of the variables. The resulting ensemble of trees

(the random forest) is then used with a majority-voting approach

to decide which metagenomes belong to which groups. The com-

putation is not excessive: a random forest with 1000 trees trained

on 212 metagenome datasets was computed in a few seconds. The

speed of calculation and bootstrapping nature of random forests,

may pave the way for calculations across all proteins in all envi-

ronments, thus reducing the amount of grouping conducted on

the data. The random forest is typically used to classify the data

into predefined groups (a supervised random forest). A subset of

the data and variables is used to generate the trees, and thus the

approach can predict the environment to which a metagenome

belongs. The random forest does not produce branching rules like

a single classification tree because the trees in the random forest

all differ from one another. Instead, the most parsimonious tree

is calculated using bagging (Table A1 in Appendix). In addition

to bagging, the RF generates a measure of the importance of each

variable, calculated by either the mean decrease in accuracy or the

mean decrease in the Gini (Figure 5). These two values indicate

which variables contributed the most to generating strong trees

and can be used in other visualization analyses such as MDS or

CDA as described below.

In an unsupervised random forest, the metagenomic data is

classified without a priori class specifications. Therefore, unsu-

pervised random forests remove researcher bias. Synthetic classes

are generated randomly and the forest of trees is grown. Similar

metagenomes will end up in the same leaves of trees due to the

tree branching process, and the proximity of two metagenomes is

measured by the number of times they appear on the same leaf.

The proximity is normalized so that a metagenome has proxim-

ity of one with itself and 1-proximity is a dissimilarity measure

(Shi and Horvath, 2006). The strength of the clustering detected

this way may be measured by a “partitioning around the medoids”

(PAM) analysis (Marden, 2011). Conceptually similar to the K -

means clustering, PAM picks K metagenomes called medoids, and

creates clusters by assigning each metagenome to the group rep-

resented by its closest medoid. The algorithm looks for whichever

K metagenomes minimize the sum of the distances between all

metagenomes and their assigned medoids.

Overall, the photosynthesis and phage groups were the most

important response variables in separating the data sets, and in

the mean decreasing accuracy plot a break occurred between

these two variables and the remaining variables, suggesting that

just these two measures could be used to grossly classify the

metagenomes (Figure 5). The next break appeared after the eighth

variable. These eight variables were thus chosen for the CDA

analysis described below. The misclassification rate of the ran-

dom forest analysis was 31% (Table 3) and these misclassifications

occurred because metagenomes from the various marine environ-

ments were mixed. The marine environment categories of open

ocean, coastal waters, coral reef, and deep ocean, share many meta-

bolic features and therefore these metagenomes were placed into

categories different than their a priori group assignment. This

FIGURE 5 | Variable importance determined by the random forest

analysis using mean decrease in (A) Accuracy and (B) Gini.

suggests subtle variation in metabolic processes that are occurring

in the microbial communities from each environment that should

be investigated in the future.

The advantages of the random forest are that it is a rapid clas-

sification technique that is less susceptible to over-fitting data and

can be run in a bootstrap fashion. In addition, the random forest

provides a measure of the importance of each variable that can be

used in other analyses. These advantages of random forests mean

that the metagenomes could be analyzed on the gene level, rather

than the higher subsystem level. The disadvantage is that because

each forest is an ensemble of trees, identifying individual classifi-

cation decisions is not possible, which is why we plotted the data

using a MDS.
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Table 3 |The group that each metagenome was assigned to by the random forest analysis.

Initial classification Classification from the random forest

Mixed

marine

Deep marine

water

Coastal

marine

Open

marine

Hydrothermal

spring water

Terrestrial

animals

Human

associated

Fresh

water

Saline evaporation

ponds

Freshwater 3 1 1

Open marine 6 1 1 31 2

Hydrothermal spring

water

1 5

Coastal marine 6 1 43 8 2

Terrestrial animal 5 cows 2 mice 3 mice 1 fish

Human associated 1 1 32

Mat community 4 1 4

Deep marine water 4 1

Coral reef water 4 1 15

Saline evaporation

ponds

4 1 9

Total 29 8 47 44 8 8 36 10 11

MULTIDIMENSIONAL SCALING

Multidimensional scaling is a visualization tool that directly scales

objects based on either similarity or dissimilarity matrices (Quinn

and Keough, 2002). MDS projects the proximity measures of

the metagenomes as determined by other techniques to a lower-

dimensional space (e.g., 2-dimensional space for plotting on xy-

axis). For the random forests, the similarity was measured as the

number of times two metagenomes appeared on the same leaf in

the trees (proximity), and is represented by the distance between

two samples on the MDS plot. The MDS plots are colored either

by the five PAM groupings from the random forest (Figure 6A),

or the 10 predefined environments (Figure 6B). In this analysis,

the visualization highlights the separation of the microbes from

human/animal hosts from other samples along the first dimension

and the separation of the aquatic and mat communities along the

second dimension.

It is important to note that MDS is a visualization tech-

nique that takes its input from other classification or clustering

approaches. MDS is useful for showing which metagenomes have

similar features, because metagenomes that are positioned closer

together will be more similar to each other than those farther apart

on the plot.

LINEAR DISCRIMINANT ANALYSIS

Linear discriminant analysis is a supervised statistical technique

that aims to separate the data into groups based on hyperplanes

and describe the differences between groups by a linear clas-

sification criterion that identifies decision boundaries between

groups.

The LDA over all 27 metabolic variables separated the data

(Figure 7) and showed that the human and terrestrial animal

associated metagenomes separated from a cluster consisting of

all of the aquatic samples except the hypersaline community. The

mat samples separated distinctly from the other clusters. A leave

one out cross-validation showed that the LDA misclassified 36%

of the samples. Most of the misclassified samples were from the

aquatic metagenomes that are difficult to separate (as discussed

below). Even though it is likely that the data does not meet all

the requirements for an LDA, including the assumption of equal

population group covariance, a linear function of the variables is

still able to separate the groups. We derive the linear discriminant

functions assuming the data is normally distributed for simplicity,

but this is not necessary. The advantages of LDA are the ability

to both visualize the data and obtain a statistically robust classi-

fication, but the disadvantage includes the assumption of equal

population covariance.

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is one of the most widely used sta-

tistical analyses for genomics data because it is a straightforward,

robust data reduction technique that is trivial to apply to large data

sets. PCA selects linear combinations of the variables sorted so that

each combination accounts for as much of the sample variance as

possible, while being orthogonal to the previous combinations.

These combinations of the variables are called the principal com-

ponents. The goal of PCA is to explain as much of the variance as

possible in the first few components, and thus reduce the complex-

ity of the data by combining related variables. We began with the

eight most important variables identified by the random forest,

and used PCA to reduce these to a two-dimensional plot. Figure 8

shows a PCA plot of the first two principal components of the data

set, and shows the directionality of the importance of each variable.
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FIGURE 6 | Multiple dimensional scale plots of the distances calculated

from the unsupervised random forest. The distances are the number of

times the samples appear on the same leaf of the tree, and the MDS has

scaled them so that they plot projects those distances into two dimensions.

Colored by (A) the five PAM groupings suggested by the random forest

(see text); or (B) the original environments the samples came from.

The data was positioned on a plane which was influenced by a

high percent of sequences associated with DNA metabolism, cell

division, and amino acid metabolism in one direction, and viru-

lence and RNA metabolism in the other, with cofactor metabolism

important in both directions. The metagenomes did not separate

particularly well with this analysis, however human and terrestrial

animal associated samples clustered above aquatic samples. The

first two dimensions of the PCA did not provide good resolution

of the nuances within an environment, explaining only 38% of the

FIGURE 7 | Linear discriminant analysis showing the position of the

metagenomes in two-dimensional space from the 10 environments.

FIGURE 8 | Principal component analysis of the 212 metagenomes

using the top eight variables identified from the random forest

analysis. The samples are colored and shaped by the environment where

they came from. The samples are largely aligned on a 45˚ plane from

virulence-DNA metabolism to amino acids-cofactors.

variance. This suggests that a large number of components were

needed to explain the variance in our data and highlights a prob-

lem with PCA: it is not able to reduce the complexity of the data
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if the variables are not correlated. The lack of correlation in the

variables can be seen in Figure 8, because the metabolic processes

are facing in different directions around the graph. There is no

grouping of any of the 8 metabolic processes shown. We did get

better resolution with PCA on certain subsets of the data for exam-

ple, using some of the organism-associated metagenomes. In this

case the first two principal components accounted for 79% of the

variance. We did not include those graphs in this paper.

The advantages of the PCA are that it reduces the complex-

ity of the data, especially if many of the variables are correlated,

and it provides a mechanism for visualizing higher-dimensionality

data. The disadvantages of the PCA are that it does not classify the

metagenomes into groups and if the variables are not correlated it

is unable to reduce the dimensionality of the data.

CANONICAL DISCRIMINANT ANALYSIS

Canonical Discriminant Analysis is another approach to reduce

the dimensionality of the data, similar to PCA and LDA. However,

in addition to visualizing the data, CDA can be used to classify

the data into pre-assigned groups. Like the PCA, CDA searches for

linear combinations of variables that explain the data. Like a super-

vised random forest, CDA can be used to explore the variables

responsible for differentiating between groups.

CDA identifies variation between groups by identifying the

linear combination of variables that has the maximum multiple

correlations with the groups. The second component is the linear

combination that has the highest possible multiple correlations

within the groups and is uncorrelated with the first component.

The process is repeated using all the data, and providing one fewer

components than variables. A fundamental difference between

PCA and CDA is the covariance matrix: in the former the covari-

ance matrix displays the variance between individual samples,

while in the latter it displays the variance between groups. As

with the PCA, we explored the effect of the eight most impor-

tant response variables on the separation of the 212 metagenomes

using CDA (Figure 9) and found the mediods of the groups

and vectors that demonstrate the directionality of the impor-

tance of each variable. The length of the vector in the plot is

proportional to the importance of that variable in separating

the data.

The CDA showed that the host-associated microbial commu-

nities were separated from the other environments by the abun-

dance of sequences similar to phage and dormancy proteins. The

harsh hydrothermal springs were again associated with the need

for cofactors. The photosynthetic potential separated the coastal

and open water metagenomes. Membrane transport, protein and

nitrogen metabolism were also important in separating the aquatic

from host-associated metagenomes. The analysis explained a large

amount of the variance (91%) showing the importance of a key

set of metabolic processes in each environment. However, the mis-

classification rate of the CDA was 39.7%. Once again the largest

misclassification occurred between the metagenomes collected

from the four marine environments (Table 4).

The advantages of the CDA are that it combines the dimension-

ality reduction of the PCA with the classification of the random

forest or K -means approaches. The disadvantages of the CDA

are that the metagenomes are placed into predefined groups and

FIGURE 9 | Canonical discriminant analysis of the 212 metagenomes

using the top eight variables identified from the random forest

analysis. The plot shows the separation in the host-associated microbial

communities and the free-living communities. The analysis explained 91%

of the variance, suggesting that metagenomes can be discriminated by the

metabolic potential. Lines depict the h-plot of important metabolic

processes and the points are the centroid or mean for the 10 environments.

thus are subject to observer bias, and CDA is prone to over-fitting

because the canonical components are linear combinations that

best separate the groups.

DISCUSSION

Metagenomic data provides a wealth of information about the

functional potential of microbial communities, but the vastness

of the data makes it difficult to discern patterns and important

discriminators. A range of clustering, classification and visualiz-

ing techniques were applied to analyze metagenomic data, and

demonstrated the ability of the metabolic profiles to describe

the difference between environments. The results show that a

mixture of methods provides an effective analysis of the data:

K -means was used to identify outliers, random forests to iden-

tify the most important variables, and either a classification tree

or CDA to test the relevance of the environment to genomic

content.

The data generation processes could cause differences in the

classification or separation of the data. However the samples came

from multiple sources, each of which employed a range of iso-

lation, purification, and sequencing techniques. There was no

evidence of clustering of samples prepared or sequenced in a spe-

cific manner, suggesting that the sampling technique per se is not

driving the separation of the data.

The analyses separated the microbial samples into three broad

groups (based on the environments from where they were iso-

lated): the human and animal associated samples, the microbial

mats, and the aquatic samples. There was a clear difference between

environments. For example, human associated and aquatic sam-

ples were clearly separated by all of the techniques. However,

samples from a similar environment were often misclassified. For

example, the coastal and open water metagenomes were difficult
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Table 4 |The misclassification table generated by the canonical discriminant analysis.

Coastal

marine

water

Deep

marine

water

Fresh

water

Human Solar

evaporative

ponds

Mat

community

Open

marine

water

Coral

reef

water

Hydrothermal

spring

Terrestrial

animal

Class

error

Coastal marine water 9.820 0.000 0.301 0.391 0.000 0.226 0.962 0.009 0.127 0.160 0.181

Deep marine water 0.990 0.004 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.995

Freshwater 0.816 0.000 0.433 0.231 0.000 0.235 0.081 0.028 0.160 0.075 0.783

Human 0.000 0.000 0.207 6.268 0.000 0.457 0.014 0.051 0.000 0.000 0.104

Solar evaporative ponds 1.231 0.000 0.000 0.000 1.485 0.000 0.283 0.000 0.000 0.000 0.504

Mat community 0.382 0.000 0.000 0.004 0.000 1.613 0.000 0.000 0.000 0.000 0.193

Open marine water 4.377 0.009 0.033 0.448 0.169 0.349 2.410 0.169 0.014 0.018 0.698

Coral reef 1.509 0.009 0.283 0.429 0.000 0.226 1.117 0.235 0.023 0.377 0.994

Hydrothermal spring 0.047 0.000 0.000 0.000 0.000 0.000 0.113 0.004 0.834 0.000 0.165

Terrestrial animal 0.287 0.000 0.108 1.193 0.000 0.216 0.000 0.000 0.000 0.193 0.903

to classify. More sampling and more thorough description of the

environmental parameters will clarify the classification of these

samples.

The combination of random forests and CDA demonstrated

that phage activity is a major separator of host-associated micro-

bial communities and free-living or environmental microbial com-

munities, suggesting that the phages are playing different ecolog-

ical roles within each environment. In free-living microbial com-

munities, phages are major predators and generally show similar

diversity to their hosts. In host-associated microbial communities,

phages are more diverse suggesting that they may provide specific

genes to increase host survival (Reyes et al., 2010). The mat com-

munities separated from both the animal associated metagenomes

and the aquatic samples by the vitamin and cofactor metabolism,

suggesting a role for secondary metabolism associated with growth

in extreme environments. The dominant metabolism that sepa-

rated the aquatic samples was photosynthesis. Not surprisingly,

samples from deep in the ocean, and some of the impacted reef

sites,do not have many photosynthetic genes,while photosynthetic

genes abound on unaffected reefs and in surface waters of the open

ocean. Although only the one or two most abundant phenotypes

in each sample were described here, the statistical analysis reveals

less obvious separations among the data, and unraveling the role

of microbes in the global geobiology is an important goal for

post-metagenomic studies.

In summary, we hope that the statistical tools described here

will help microbial ecologists broaden the range of statistical

tools that are used in metagenomic data and help them parse

out the important and interesting nuances that separate different

environments.
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APPENDIX

Table A1 | Metagenomes used in the analysis.

Environment Genome ID Genome name Project Num. of

sequences

Total

length (bp)

Coastal water 4441143 GS009 – Coastal Block Island, NY – USA Global ocean sampling 79,303 84,327,514

Coastal water 4441144 GS010 – Coastal Cape May, NJ – USA Global ocean sampling 78,304 82,424,426

Coastal water 4441148 GS117b – Coastal Indian Ocean – St. Anne Island,

Seychelles

Global ocean sampling 50,609 54,752,102

Coastal water 4441152 GS004 – Coastal Outside Halifax, Nova

Scotia – Canada

Global ocean sampling 52,959 56,922,096

Coastal water 4441153 GS007 – Coastal Northern Gulf of Maine – Canada Global ocean sampling 50,980 55,430,960

Coastal water 4441579 GS002 – Coastal Gulf of Maine – Canada Global ocean sampling 121,590 128,761,768

Coastal water 4441580 GS003 – Coastal Browns Bank, Gulf of

Maine – Canada

Global ocean sampling 61,605 66,907,344

Coastal water 4441581 GS005 – Embayment Bedford Basin, Nova Scotia

Canada

Global ocean sampling 61,131 65,983,125

Coastal water 4441582 GS006 – Estuary – Bay of Fundy, Nova Scotia – Canada Global ocean sampling 59,679 64,615,563

Coastal water 4441583 GS008 – Coastal Newport Harbor, RI – USA Global ocean sampling 129,655 137,725,898

Coastal water 4441584 GS012 – Estuary Chesapeake Bay, MD – USA Global ocean sampling 126,162 136,081,077

Coastal water 4441585 GS013 – Coastal – Off Nags Head, NC – USA Global ocean sampling 138,033 149,007,574

Coastal water 4441586 GS015 – Coastal – Caribbean Sea – Off Key West,

FL – USA

Global ocean sampling 127,362 138,034,062

Coastal water 4441589 GS019 – Coastal – Northeast of Colon – Panama Global ocean sampling 135,325 146,413,090

Coastal water 4441591 GS021 – Coastal – Gulf of Panama – Panama Global ocean sampling 131,798 143,454,700

Coastal water 4441595 GS027 – Coastal – Devil’s Crown, Floreana

Island – Ecuador

Global ocean sampling 222,080 237,326,008

Coastal water 4441596 GS029 – Coastal – North James Bay, Santigo

Island – Ecuador

Global ocean sampling 131,529 143,822,814

Coastal water 4441596 GS028 – Coastal Floreana Ecuador Global ocean sampling 189,052 205,008,796

Coastal water 4441597 GS030 – Warm Seep Upwelling, Fernandina Island Global ocean sampling 436,401 461,671,889

Coastal water 4441598 GS032 – Mangrove – Mangrove on Isabella

Island – Ecuador

Global ocean sampling 148,018 153,341,974

Coastal water 4441600 GS034 – Coastal – North Seamore Island – Ecuador Global ocean sampling 134,347 142,199,308

Coastal water 4441601 GS035 – Coastal – Wolf Island – Ecuador Global ocean sampling 140,814 151,840,270

Coastal water 4441602 GS036 – Coastal – Cabo Marshall, Isabella

Island – Ecuador

Global ocean sampling 77,538 85,757,477

Coastal water 4441605 GS049 – Coastal – Moorea, Outside Cooks Bay – Fr.

Polynesia

Global ocean sampling 92,501 94,424,378

Coastal water 4441613 GS117a – Coastal St. Anne Island, Seychelles Global ocean sampling 346,952 339,868,195

Coastal water 4441618 GS149 – Harbor – West coast Zanzibar Tanzania Global ocean sampling 110,984 111,178,553

Coastal water 4441658 GS011 – Estuary Delaware Bay, NJ – USA Global ocean sampling 124,435 133,251,132

(Continued)

Frontiers in Genetics | Statistical Genetics and Methodology April 2013 | Volume 4 | Article 41 | 16

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Dinsdale et al. Multivariate analysis of functional metagenomes

Table A1 | Continued

Environment Genome ID Genome name Project Num. of

sequences

Total

length (bp)

Coastal water 4441659 GS014 – Coastal South of Charleston, SC – USA Global ocean sampling 128,885 139,914,998

Coastal water 4441660 GS016 – Coastal Sea Gulf of Mexico – USA Global ocean sampling 127,122 137,479,949

Coastal water 4441662 GS030 – Warm Seep – Roca Redonda – Ecuador Global ocean sampling 359,152 391,694,924

Coastal water 4440358 DMSP21SeawaterMic200511 Marine manipulated 41,461 3,882,661

Coastal water 4440359 VAN11SeawaterMic200511 Marine manipulated 29,104 2,710,130

Coastal water 4440360 DMSP2SeawaterMic200511 Marine manipulated 50,313 4,813,851

Coastal water 4440361 VAN21SeawaterMic200511 Marine manipulated 40,480 3,867,992

Coastal water 4440362 DMSP11SeawaterMic200511 Marine manipulated 44,246 4,202,321

Coastal water 4440363 VAN2SeawaterMic200511 Marine manipulated 33,773 3,269,294

Coastal water 4440364 DMSP1SeawaterMic200511 Marine manipulated 54,848 5,279,589

Coastal water 4440365 VAN1SeawaterMic200511 Marine manipulated 12,446 1,190,841

Coastal water 4443688 BBAY01 Botany bay

metagenomic

71,068 75,802,328

Coastal water 4443689 BBAY02 Botany bay

metagenomic

13,512 13,814,160

Coastal water 4443691 BBAY04 Botany bay

metagenomic

14,708 15,408,753

Coastal water 4443693 BBAY15 Botany bay

metagenomic

182,393 177,136,646

Coastal water 4443702 SRS000294 Coastal waters

plymouth

204,693 46,327,791

Coastal water 4443703 SRS000295 Coastal waters

plymouth

130,806 30,141,333

Coastal water 4443704 SRS000296 Coastal waters

plymouth

326,310 56,526,614

Coastal water 4443706 SRS000299 Coastal waters

plymouth

154,069 35,762,224

Coastal water 4443707 SRS000298 Coastal waters

plymouth

126,086 29,082,158

Coastal water 4443708 SRS000300 Coastal waters

Plymouth

35,712 7,909,745

Coastal water 4443709 SRS000301 Coastal waters

plymouth

99,488 22,554,197

Coastal water 4443711 SRS000536_2 Marine synechococcus

experiment

333,462 34,334,174

Coastal water 4443712 mb2000jd298_2 Monterey bay microbial

study

194,144 46,983,239

Coastal water 4443713 mb2000jd298_1 Monterey bay microbial

study

217,549 51,966,974

(Continued)
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Table A1 | Continued

Environment Genome ID Genome name Project Num. of

sequences

Total

length (bp)

Coastal water 4443714 mb2001jd115_1 Monterey bay microbial

study

186,172 44,189,510

Coastal water 4443715 mb2001jd115_2 Monterey bay microbial

study

173,161 40,680,713

Coastal water 4443718 SRS000238 Sapelo island

metagenome

49,524 4,719,520

Coastal water 4443719 SRS000239 Sapelo island

metagenome

46,421 4,361,030

Coastal water 4443720 SRS000240 Sapelo island

metagenome

44,317 4,209,153

Coastal water 4443721 SRS000242 Sapelo island

metagenome

9,967 933,470

Coastal water 4443722 SRS000241 Sapelo island

metagenome

41,537 3,890,082

Coastal water 4443724 SRS000243 Sapelo island

metagenome

30,673 2,940,585

Deep water 4441025 Mediterranean Bathypelagic Habitat Mediterranean

bathypelagic habitat

9,047 7,202,361

Deep water 4441041 HOT/ALOHA – Below Base of Euphotic Zone 200m Hot/aloha 8,276 7,829,627

Deep water 4441056 HOT/ALOHA – Deep Abyss 4000m Hot/aloha 11,223 11,028,802

Deep water 4441057 HOT/ALOHA – Well Below Upper Mesopelagic 500m Hot/aloha 9,017 8,764,614

Deep water 4441062 HOT/ALOHA – Core of Dissolved Oxygen Minimum

Layer 770m

Hot/aloha 11,478 11,811,596

Deep water 4441590 GS020 – Fresh Water – Panama Canal – Lake

Gatun – Panama

Global ocean sampling 296,355 315,151,139

Freshwater 4443679 AntarcticaAquatic_3 Antarctica aquatic

microbial

10,042 9,755,315

Freshwater 4443680 AntarcticaAquatic_2 Antarctica aquatic

microbial

9,672 9,622,231

Freshwater 4443681 AntarcticaAquatic_4 Antarctica aquatic

microbial

54,446 54,929,769

Freshwater 4443683 AntarcticaAquatic_1 Antarctica aquatic

microbial

100,085 101,310,476

Freshwater 4443684 AntarcticaAquatic_6 Antarctica aquatic

microbial

281,490 281,056,691

Freshwater 4443685 AntarcticaAquatic_7 Antarctica aquatic

microbial

28,481 28,413,296

Freshwater 4443687 AntarcticaAquatic_9 Antarctica aquatic

microbial

95,521 95,664,001

Freshwater 4440411 PrePondKentSTMic20060504 Freshwater from

aquaculture facility

44,094 4,428,989

(Continued)

Frontiers in Genetics | Statistical Genetics and Methodology April 2013 | Volume 4 | Article 41 | 18

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Dinsdale et al. Multivariate analysis of functional metagenomes

Table A1 | Continued

Environment Genome ID Genome name Project Num. of

sequences

Total

length (bp)

Freshwater 4440413 TilPondKentSTMic20060504 Freshwater from

aquaculture facility

63,978 6,484,135

Freshwater 4440422 TilPondKentSTMic200608 Freshwater from

aquaculture facility

67,612 6,932,903

Freshwater 4440440 TilPondKentSTMic200511 Freshwater from

aquaculture facility

381,076 38,804,235

Human

associated

4441092 Australian Phosphorus Removing (EBPR) Sludge Phosphorus removing

(ebpr) sludge

96,563 100,273,005

Human

associated

4441093 US Phosphorus Removing (EBPR) Sludge Phosphorus removing

(ebpr) sludge

127,953 120,938,054

Human

associated

4440453 TS1 Gut microbiome 217,386 51,708,794

Human

associated

4440454 TS2 Twin study 443,640 78,853,892

Human

associated

4440461 TS4 Twin study 414,754 95,003,113

Human

associated

4440462 TS5 Twin study 490,776 100,599,979

Human

associated

4440463 TS6 Twin study 535,763 118,207,161

Human

associated

4440595 TS3 Twin study 510,972 102,717,417

Human

associated

4440610 TS19 Twin study 498,880 82,117,565

Human

associated

4440611 TS20 Twin study 495,040 98,053,098

Human

associated

4440613 TS28 Twin study 302,780 101,434,082

Human

associated

4440614 TS49 Twin study 519,072 91,987,878

Human

associated

4440615 TS50 Twin study 549,700 111,999,603

Human

associated

4440616 TS29 Twin study 502,399 173,386,030

Human

associated

4440639 TS21 Twin study 413,772 88,786,017

Human

associated

4440640 TS51 Twin study 434,187 81,330,211

Human

associated

4440823 TS7 Twin study 555,853 134,889,015

Human

associated

4440824 TS8 Twin study 414,497 100,520,072

(Continued)
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Table A1 | Continued

Environment Genome ID Genome name Project Num. of

sequences

Total

length (bp)

Human

associated

4440825 TS30 Twin study 495,865 94,405,318

Human

associated

4440826 TS9 Twin study 499,499 124,768,172

Human

associated

4440939 human F1-S Human

feces – kurokawa

28,900 38,010,851

Human

associated

4440940 human F1-U Human

feces – kurokawa

16,539 24,369,492

Human

associated

4440941 human F1-T Human

feces – kurokawa

36,326 43,259,070

Human

associated

4440942 human F2-V Human

feces – kurokawa

36,455 45,906,118

Human

associated

4440943 human F2-W Human

feces – kurokawa

30,198 40,076,128

Human

associated

4440944 human F2-X Human

feces – kurokawa

31,237 39,071,077

Human

associated

4440945 human In-B Human

feces – kurokawa

9,958 14,499,070

Human

associated

4440946 human In-A Human

feces – kurokawa

20,226 29,296,224

Human

associated

4440947 human F2-Y Human

feces – kurokawa

35,177 45,480,292

Human

associated

4440948 human In-D Human

feces – kurokawa

37,296 46,397,089

Human

associated

4440949 human In-M Human

feces – kurokawa

16,164 25,941,797

Human

associated

4440950 human In-E Human

feces – kurokawa

20,532 27,208,886

Human

associated

4440951 human In-R Human

feces – kurokawa

34,797 43,473,860

Solar

evaporation

ponds

4441050 Marine NaCl-Saturated Brine Marine nacl-saturated

brine

2,947 2,380,900

Solar

evaporation

ponds

4441599 GS033 – Hypersaline Floreana Island – Ecuador Global ocean sampling 692,255 729,708,089

Solar

evaporation

ponds

4440324 LowSalternSDbayMic20051110 Solar saltern 49,074 4,632,200

Solar

evaporation

ponds

4440329 SaltonSeaMic20060823 Solar saltern 178,407 18,876,339
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Environment Genome ID Genome name Project Num. of

sequences

Total

length (bp)

Solar

evaporation

ponds

4440416 MedSalterSDbayMic20051128 Solar saltern 8,062 705,995

Solar

evaporation

ponds

4440419 HighSalternSDbayMic20051128 Solar saltern 35,446 3,711,295

Solar

evaporation

ponds

4440425 MedSalternSDbayMic20051116 Solar saltern 120,987 11,867,028

Solar

evaporation

ponds

4440426 LowSalternSDbayMic20051128 Solar saltern 34,296 3,453,306

Solar

evaporation

ponds

4440429 HighSalternSDbayMicB200407 Solar saltern 39,553 4,028,912

Solar

evaporation

ponds

4440430 HighSalternSDbayMicA200407 Solar saltern 78,524 7,982,909

Solar

evaporation

ponds

4440433 HighSalternSDbayMicC200407 Solar saltern 123,879 12,641,571

Solar

evaporation

ponds

4440434 MedSalternSDbayMic20051111 Solar saltern 23,261 2,323,241

Solar

evaporation

ponds

4440435 MedSalternSDbayMic20051110 Solar saltern 38,929 3,905,955

Solar

evaporation

ponds

4440437 LowSalternSDbayMic200407 Solar saltern 268,206 25,280,522

Solar

evaporation

ponds

4440438 HighSalternSDbayMicD200407 Solar saltern 340,725 34,806,789

Mat

community

4440963 Guerrero Negro 1–2 mm Hypersaline guerro

negro

11,562 7,469,278

Mat

community

4440964 Guerrero Negro 0–1 mm Hypersaline guerro

negro

12,213 8,596,197

Mat

community

4440965 Guerrero Negro 2–3 mm Hypersaline guerro

negro

12,407 8,286,254

Mat

community

4440966 Guerrero Negro 3–4 mm Hypersaline guerro

negro

12,821 8,214,974

Mat

community

4440967 Guerrero Negro 4–5 mm Hypersaline guerro

negro

15,652 9,803,688
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Mat

community

4440968 Guerrero Negro 10–22 mm Hypersaline guerro

negro

12,686 8,016,534

Mat

community

4440969 Guerrero Negro 5–6 mm Hypersaline guerro

negro

12,525 8,376,984

Mat

community

4440970 Guerrero Negro 6–10 mm Hypersaline guerro

negro

15,048 9,863,015

Mat

community

4440971 Guerrero Negro 22–34 mm Hypersaline guerro

negro

12,522 8,382,531

Mat

community

4440972 Guerrero Negro 34–49 mm Hypersaline guerro

negro

11,627 7,240,219

Open water 4441051 HOT/ALOHA – Upper Euphotic 10m Hot/aloha 7,837 7,482,115

Open water 4441055 HOT/ALOHA – Base of Chlorophyll Maximum 130m Hot/aloha 6,797 6,091,740

Open water 4441057 HOT/ALOHA – Upper Euphotic 70m Hot/aloha 10,992 10,828,356

Open water 4441125 GS040 – Open Ocean – Tropical South Pacific Global ocean sampling 736 772,365

Open water 4441126 GS041 – Open Ocean – Tropical South Pacific Global ocean sampling 678 739,958

Open water 4441127 GS042 – Open Ocean – Tropical South Pacific Global ocean sampling 699 788,466

Open water 4441128 GS043 – Open Ocean – Tropical South Pacific Global ocean sampling 711 789,468

Open water 4441129 GS044 – Open Ocean – Tropical South Pacific Global ocean sampling 678 714,813

Open water 4441130 GS045 – Open Ocean – Tropical South Pacific Global ocean sampling 730 796,793

Open water 4441131 GS046 – Open Ocean – Tropical South Pacific Global ocean sampling 626 683,240

Open water 4441134 GS110b – Open Ocean – Indian Ocean – Global ocean sampling 49,597 53,607,277

Open water 4441135 GS120 – Open Ocean – Indian Ocean – Madagascar Global ocean sampling 46,052 45,710,196

Open water 4441136 GS039 – Open Ocean – Tropical South Pacific Global ocean sampling 759 866,795

Open water 4441139 GS122b – Open Ocean Madagascar and South Africa Global ocean sampling 50,096 52,667,848

Open water 4441145 GS037 – Open Ocean – Eastern Tropical Pacific Global ocean sampling 65,670 68,651,473

Open water 4441146 GS047 – Open Ocean – Tropical South Pacific Global ocean sampling 66,023 68,340,256

Open water 4441147 GS112b – Open Ocean – Indian Ocean Global ocean sampling 52,118 55,638,894

Open water 4441149 GS116 – Open Ocean – Indian Ocean Global ocean sampling 60,932 64,223,447

Open water 4441150 GS115 – Open Ocean – Indian Ocean Global ocean sampling 61,020 64,230,062

Open water 4441151 GS119 – Open Ocean – Indian Ocean Global ocean sampling 60,987 65,055,874

Open water 4441155 GS109 – Open Ocean – Indian Ocean Global ocean sampling 59,813 62,752,349

Open water 4441156 GS111 – Open Ocean – Indian Ocean Global ocean sampling 59,080 62,072,289

Open water 4441570 GS000a – Open Ocean – Sargasso Sea Global ocean sampling 644,551 658,755,696

Open water 4441573 GS000b – Open Ocean – Sargasso Sea Global ocean sampling 317,180 321,026,307

Open water 4441574 GS000c – Open Ocean – Sargasso Sea Global ocean sampling 368,835 371,688,861

Open water 4441575 GS000d – Open Ocean – Sargasso Sea Global ocean sampling 332,240 335,939,509
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Environment Genome ID Genome name Project Num. of

sequences
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length (bp)

Open water 4441576 GS001a – Open Ocean – Sargasso Sea Global ocean sampling 142,352 143,316,448

Open water 4441577 GS001b – Open Ocean – Sargasso Sea Global ocean sampling 90,901 90,951,299

Open water 4441578 GS001c – Open Ocean – Sargasso Sea Global ocean sampling 92,351 92,688,958

Open water 4441587 GS017 – Open Ocean – Yucatan Channel – Mexico Global ocean sampling 257,581 281,259,325

Open water 4441588 GS018 – Open Ocean – Rosario Bank – Honduras Global ocean sampling 142,743 156,474,992

Open water 4441592 GS022 – Open Ocean – Eastern Tropical Pacific Global ocean sampling 121,662 131,079,270

Open water 4441594 GS026 – Open Ocean – Galapagos Islands Global ocean sampling 102,708 109,049,397

Open water 4441607 GS110a – Open Ocean – Indian Ocean Global ocean sampling 99,288 100,097,831

Open water 4441609 GS110a – Open Ocean – Indian Ocean Global ocean sampling 99,781 101,818,659

Open water 4441610 GS110a – Open Ocean – Indian Ocean Global ocean sampling 109,700 118,339,154

Open water 4441611 GS110a – Open Ocean – Indian Ocean Global ocean sampling 348,823 345,285,679

Open water 4441614 GS110a – Open Ocean – Indian Ocean Global ocean sampling 110,720 119,426,081

Open water 4441615 GS110a – Open Ocean – Indian Ocean Global ocean sampling 101,558 105,196,135

Open water 4441616 GS110a – Open Ocean – Indian Ocean Global ocean sampling 107,966 115,611,614

Open water 4441661 GS023 – Open Ocean – Eastern Tropical Pacific Global ocean sampling 133,051 143,626,589

Open water 4443740 TA_34838 Sargasso sea

bacterioplankton

94,851 16,575,969

Coral reef

water

4441121 GS050 – Coral Atoll – Tikehau Lagoon – Fr. Polynesia Global ocean sampling 715 755,429

Coral reef

water

4441133 GS108b – Lagoon Reef – Coccos Keeling, Inside

Lagoon – Australia

Global ocean sampling 49,595 53,530,124

Coral reef

water

4441139 GS108a – Lagoon Reef Coccos Keeling, Inside

Lagoon – Australia

Global ocean sampling 51,788 50,890,568

Coral reef

water

4441167 GS048b – Coral reef Moorea, Cooks Bay – Fr.

Polynesia

Global ocean sampling 47,692 50,969,448

Coral reef

water

4441593 GS025 – Fringing reef – Dirty Rock, Cocos

Island – Costa Rica

Global ocean sampling 120,671 129,781,299

Coral reef

water

4441603 GS048a – Coral reef – Moorea, Cooks Bay – Fr.

Polynesia

Global ocean sampling 90,515 92,813,604

Coral reef

water

4441604 GS051 – Coral reef Atoll – Rangirora Atoll – Fr.

Polynesia

Global ocean sampling 128,982 140,497,312

Coral reef

water

4441617 GS148 – Fringing Reef East coast Zanzibar Tanzania Global ocean sampling 107,741 107,616,215

Coral reef

water

4442642 King14LIMic20070829 Northern line islands 108029 31667620

Coral reef

water

4442643 King2LIMic20070817 Northern line islands 97767 37285824

Coral reef

water

4442647 Xmas16LIMic20070729 Northern line islands 53169 19900801
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Coral reef

water

4442648 Xmas29LIMic20070805 Northern line islands 111061 38238805

Coral reef

water

4442649 Xmas35LIMic20070808 Northern line islands 44544 15484390

Coral reef

water

4442650 Xmas6LIMic20070721 Northern line islands 118943 39280406

Coral reef

water

4442651 XmasLag1LIMic20070720 Northern line islands 60531 21801386

Coral reef

water

4442652 King7LIMic20070821 Northern line islands 181525 42145245

Coral reef

water

4442653 King8LIMic20070823 Northern line islands 119830 37606997

Coral reef

water

4440037 KingLIMic20050821 Northern line islands 188,445 19,753,735

Coral reef

water

4440039 PalmLIMic20050818 Northern line islands 289,723 30,795,962

Coral reef

water

4440041 XmasLIMic20050805 Northern line islands 227,542 23,693,344

Hydrothermal

spring

4442583 OCTOPUS Yellowstone national

park

22,272 22,557,192

Hydrothermal

spring

4443746 Mushroom springs MatCoreB Yellowstone national

park

2,708 2,713,791

Hydrothermal

spring

4443747 Mushroom springs MatCoreD Yellowstone national

park

320 325,932

Hydrothermal

spring

4443749 Octopus springs MatCoreF Yellowstone national

park

19,124 18,644,488

Hydrothermal

spring

4443750 Octopus springs MatCoreR Yellowstone national

park

1,266 1,328,730

Hydrothermal

spring

4443762 Mushroom springs MatCoreF Yellowstone national

park

6,521 6,493,181

Animal

associated

4441679 Cow rumen – 640F6 Cow rumen 264,849 26,644,817

Animal

associated

4441680 Cow rumen – 80F6 Cow rumen 178,713 18,153,371

Animal

associated

4441681 Cow rumen – 710F6 Cow rumen 345,317 35,115,534

Animal

associated

4441682 Cow rumen – Pooled Planktonic Cow rumen 236,830 24,016,021

Animal

associated

4440283 Chicken cecum A Fs-cap 294,682 30,657,259
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sequences

Total
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Animal

associated

4440284 Chicken cecum B Fs-cap 237,940 24,707,007

Animal

associated

4440463 Lean mouse cecumMic2005 Human

feces – turnbaugh

10,845 8,478,662

Animal

associated

4440464 Obese mouse cecumMic2005 Human

feces – turnbaugh

11,857 9,067,143

Animal

associated

4440056 FishMorGutKentSTMIC20060504 Fish stomach 60,311 5,956,666
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