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Abstract The second reprocessing of all GPS data gath-1

ered by the Analysis Centers of IGS was conducted in late2

2013 using the latest models and methodologies. Improved3

models of antenna phase center variations and solar radia-4

tion pressure in JPL’s reanalysis are expected to significantly5

reduce errors. In an earlier work, JPL estimates of position6

time series, termed first reprocessing campaign, were exam-7

ined in terms of their spatial and temporal correlation, power8

spectra, and draconitic signal. Similar analyses are applied9

to GPS time series at 89 and 66 sites of the second reanal-10

ysis with the time span of 7 and 21 years, respectively, to11

study possible improvements. Our results indicate that the12

spatial correlations are reduced on average by a factor of 1.25.13

While the white and flicker noise amplitudes for all compo-14

nents are reduced by 29–56 %, the random walk amplitude is15

enlarged. The white, flicker, and random walk noise amount16

to rate errors of, respectively, 0.01, 0.12, and 0.09 mm/yr17

in the horizontal and 0.04, 0.41 and 0.3 mm/yr in the verti-18

cal. Signals reported previously, such as those with periods19

of 13.63, 14.76, 5.5, and 351.4/n for n = 1, 2, . . ., 8 days,20

are identified in multivariate spectra of both data sets. The21

oscillation of the draconitic signal is reduced by factors of22

1.87, 1.87, and 1.68 in the east, north and up components,23
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respectively. Two other signals with Chandlerian period and 24

a period of 380 days can also be detected. 25

Keywords GPS position time series · JPL second reprocess- 26

ing campaign · Multivariate noise assessment · Multivariate 27

power spectrum 28

1 Introduction 29

Continuous global positioning system (CGPS) time series 30

have been widely used to study several geophysical phenom- 31

ena (Segall and Davis 1997). These studies include inferring 32

motion of the Earth’s surface due to plate tectonics (Thatcher 33

2003; Argus et al. 2010; Kreemer et al. 2014), post-glacial 34

rebound (Johansson et al. 2002; King et al. 2010; Peltier et al. 35

2015), and hydrological loading (van Dam et al. 2001; Rajner 36

and Liwosz 2012; Argus et al. 2014). Moreover, strain accu- 37

mulation (Argus et al. 2005; d’Alessio et al. 2005; Serpelloni 38

et al. 2005; Craig and Calais 2014), sea-level variation (Wöp- 39

pelmann et al. 2007), volcanic deformation (Bonforte and 40

Puglisi 2006; Cervelli et al. 2006), and subsidence studies 41

(Lü et al. 2008; Bock et al. 2012) can be conducted. 42

To effectively apply GPS time series to geophysical phe- 43

nomena, appropriate functional and stochastic models are 44

required. The functional model takes into consideration the 45

deterministic effects—a linear trend, offsets, and potential 46

periodicities—to name a few. The stochastic model identi- 47

fies and determines the remaining unmodeled effects—white 48

noise and power-law noise for instance. Deterministic effects, 49

if left undetected in the functional model, may mistakenly 50

mimic flicker noise and random walk noise (Williams et al. 51

2004; Amiri-Simkooei et al. 2007). 52

A proper stochastic model provides the best linear unbi- 53

ased estimator (BLUE) of unknown parameters. It can also 54
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provide a realistic description of the parameters’ precision.55

The parameter estimation in a stochastic model is referred56

to as variance component estimation (VCE). VCE can be57

conducted using various methods. The least-squares vari-58

ance component estimation (LS-VCE), which was originally59

developed by Teunissen (1988), is used in the present contri-60

bution. For its geodetic and geophysical applications, we may61

refer to Amiri-Simkooei et al. (2007, 2009, 2013), Amiri-62

Simkooei (2007, 2009, 2013a, b), and Khodabandeh et al.63

(2012).64

Proper analysis of GPS time series is a prerequisite for65

an appropriate geophysical interpretation. The VCE method66

based on the maximum likelihood estimation (MLE) has67

also been widely used to assess the noise structure of GPS68

time series. The differences between LS-VCE and MLE are69

explained by Amiri-Simkooei et al. (2007). Zhang et al.70

(1997) used MLE and found that the noise structure is a com-71

bination of white noise and flicker noise. Similar results have72

been drawn by Bock et al. (2000), Calais (1999), Langbein73

and Bock (2004), Mao et al. (1999), Williams et al. (2004).74

The presence of random walk noise or a combination of other75

noise components has been acknowledged by several schol-76

ars including Johnson and Agnew (2000), King and Williams77

(2009), Langbein (2008, 2012), Langbein and Bock (2004).78

Cross-correlation among different series is an important79

issue. Errors in satellite orbits, Earth orientation parameters,80

and errors in daily and long-term geodetic reference frame81

are causes of regionally correlated errors (Wdowinski et al.82

1997). Moreover, large-scale atmosphere errors, receiver and83

satellite antenna phase center variations (Dong et al. 2006),84

and atmospheric and hydrospheric water loading effects (van85

Dam et al. 2001) are also candidates for common-mode errors86

(CMEs). Williams et al. (2004) found that in the regional GPS87

solutions in which CMEs have been removed, the noise is88

significantly lower compared to the global solutions. CMEs89

can be estimated with regional spatial filtering methods. We90

refer to the stacking approach, which was first utilized by91

Wdowinski et al. (1997). Nikolaidis (2002) removed CMEs92

from daily GPS solutions by computing the daily weighted93

mean of residual noise from a few regional fiducial stations.94

Teferle et al. (2002) deployed a filtering technique to reduce95

the annual signal effect on site velocity estimates using a96

network of 9 stations. Teferle et al. (2006) used the weighted97

stacking method (WSM) to remove CMEs through analy-98

sis of a network consisting 6 permanent stations. Using the99

WSM, Bogusz et al. (2015) calculated CMEs for the ASG-100

EUPOS permanent stations.101

As the regional networks expands, the magnitude of102

daily CMEs is reduced (Márquez-Azúa and DeMets 2003),103

and hence the application of the WSM becomes limited.104

Dong et al. (2006) presented a spatiotemporal filtering105

method based on principal component analysis (PCA) and106

Karhunen–Loeve expansion. Unlike the WSM, this method107

allows data to reveal the spatial distribution of CMEs by dis- 108

regarding the assumption of spatially uniform distribution of 109

these errors. Because the stations we utilized are globally 110

distributed, the concept of CMEs has lost its meaning (Dong 111

et al. 2006). The cross-correlation (i.e. spatial correlation) 112

among time series is thus investigated (see Williams et al. 113

2004; Amiri-Simkooei 2009). 114

The GPS draconitic year (351.4 days) is the revolution 115

period of the GPS constellation in inertial space with respect 116

to the Sun. Harmonics of this periodic pattern have been 117

observed in GPS-derived geodetic products. Ray et al. (2008) 118

analyzed the time series of 167 IGS stations using the stacked 119

Lomb–Scargle periodogram. They identified up to the sixth 120

harmonic of GPS draconitic year in the east, north, and up 121

components. Collilieux et al. (2007) found significant sig- 122

nals near the frequencies 2.08, 3.12, and 4.16 cpy in the 123

up component. Amiri-Simkooei et al. (2007) computed the 124

stacked least squares power spectra of 71 permanent GPS 125

stations. They identified up to the eighth harmonic of the 126

GPS draconitic signal. Amiri-Simkooei (2013a) identified 127

ten harmonics of the draconitic signal by calculating the mul- 128

tivariate least-squares power spectrum of 350 permanent GPS 129

stations. For more information on the harmonics of the GPS 130

draconitic signal, we refer to the studies of King and Watson 131

(2010), Rodriguez-Solano et al. (2012, 2014), Ostini (2012) 132

and Santamaría-Gómez et al. (2011). 133

2 Second reprocessing campaign strategies 134

In 2008, the Analysis Centers (ACs) of the international 135

GNSS service (IGS) initiated the reprocessing of the all GPS 136

data gathered by the IGS global network since 1994 employ- 137

ing the latest methods upon that time in an entirely consistent 138

manner. This was the first reprocessing campaign, and it was 139

anticipated that as further analysis and improvements were 140

made, undoubtedly, more reprocessing campaigns will be 141

required. Thus, the 2nd reanalysis of all IGS data using the 142

improved methods begun by the late 2013. Table 1 compares 143

different aspects of the two processing campaigns. 144

Also, there are other modifications and changes in the 145

models used within the 2nd reanalysis, which are explained 146

in “Appendix 1”. 147

The new models used within the second reanalysis along 148

with the studies conducted by Hugentobler et al. (2009) and 149

Rodriguez-Solano et al. (2012), who emphasized the orbit 150

mismodeling deficiencies and their effects on peculiar signals 151

observed in GPS-derived products, motivated us to study the 152

reprocessed daily position time series. We have suspected 153

that since these models have been incorporated within the 154

new reprocessing campaign, it is highly likely to observe sig- 155

nificant improvements. Improvements expected include the 156

reduction in the range of variations of the periodic pattern of 157
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Table 1 Setup of the first and second reanalysis campaign

Campaign First reprocessing Second reprocessing

Duration 1994–2007 1994–2014

Reference frame IGS05 (Aligned to ITRF2005) IGb08 (Aligned to ITRF2008)

IERS convention IERS 2003 IERS 2010

Antenna calibration IGS05 ANTEX (absolute calibration) IGS08 ANTEX (absolute calibration)

GPS draconitic year, the amplitude of different noise com-158

ponents, the spatial correlation of GPS position time series159

(Rodriguez-Solano et al. 2012). Rebischung et al. (2016)160

have recently shown that the noise characteristics of GPS161

position time series for JPL second reprocessing deviate from162

the common white plus flicker noise toward an only flicker163

background noise.164

This contribution is a follow-up to the work carried out165

by Amiri-Simkooei (2013a) in which the daily position of166

many permanent GPS stations was analyzed. In the present167

contribution, the daily position time series of 66 and 89 per-168

manent GPS stations of the length 21 and 7 years are derived169

from the 2nd reprocessing campaign (Fig. 1). They are170

referred to as data set #1 and data set #2, respectively, which171

are freely available in ftp://sideshow.jpl.nasa.gov/pub/JPL_172

GPS_Timeseries/repro2011b/post/point/. The time series173

with 89 GPS stations (data set #2) are also derived from the174

1st reprocessing campaign to make comparisons. Therefore,175

for the data set #2 we have two kinds of data (Repro1 and176

Repro2) with the same length, time span, and time instants.177

All formulas and methodologies, used in the subsequent178

sections, are based on those presented by Amiri-Simkooei179

(2013a) who used a multivariate time series analysis. This180

method is superior over univariate analysis because many181

weak signals and small noise amplitudes which cannot182

be detected in univariate analysis can be detected if we183

simultaneously analyze multiple time series. This holds, for184

example, when estimating the random walk amplitude, which185

has a high chance to be masked in the univariate analysis, but186

has a higher chance to be detected in the multivariate analy-187

sis. However, a drawback of this multivariate analysis is that188

it can only provide a kind of network-based random walk189

and hence such errors cannot necessarily be attributed to the190

individual time series. For further information, we may refer191

to Amiri-Simkooei (2013a).192

3 Results and discussion193

The multivariate method is used to study the GPS posi-194

tion time series of daily global solutions. These time series195

have been obtained using the precise point positioning (PPP)196

method in the GIPSY-OASIS software (Zumberge et al.197

1997). The process has been carried out in an analysis center 198

at JPL (Beutler et al. 1999). 199

Prior to the analysis, a multivariate offset detection method 200

was used to identify and remove offsets in the series (Hoseini- 201

Asl et al. 2013). Although the manual offset detection method 202

is still more reliable than the existing methods (see Gazeaux 203

et al. 2013), we used an automatic offset detection method 204

having a few characteristics. This method assumes similar 205

offsets in the three coordinate components. It also takes into 206

account appropriate functional and stochastic models. For 207

example, prior to offset detection, LS-VCE is applied to esti- 208

mate the white and flicker noise amplitudes. Comparing the 209

offset detection results with those in the JPL website indi- 210

cates that our method detects all offsets reported by JPL. In 211

addition, a few smaller offsets, which are likely due to other 212

causes like small earthquakes, have been detected. 213

The initial functional model consists of a linear trend along 214

with the three harmonics of the annual signal; the tri-annual 215

signal was included because the power spectrum showed 216

a signal near 122 days. Equation (8) in Amiri-Simkooei 217

(2013a) is utilized to obtain the multivariate power spectrum 218

(MPS) of multiple series. The analysis requires matrices � 219

and Q, which can be estimated using a multivariate method 220

(see Amiri-Simkooei 2009, algorithm in Fig. 1). The nonneg- 221

ative least-squares variance component estimation method 222

(NNLS-VCE) (Amiri-Simkooei 2016, algorithm in Fig. 1) 223

has been employed to avoid nonnegative variance factors for 224

white noise, flicker noise, and random walk noise. While the 225

matrix � explains the spatial correlation among the series, Q 226

considers the temporal correlation among observables within 227

each series. For the flicker noise, the Hosking structure intro- 228

duced by Williams (2003a) and Langbein (2004) has been 229

employed. 230

Multivariate analysis requires simultaneous time series. 231

This indicates that if there is a gap or outlier in a (couple of) 232

series, the observations of other series should be removed to 233

have simultaneous time instants for all series. However, if 234

the data were available in 95 % of the series (missed in 5 % 235

of the series), the observations for the gaps (missed) were 236

reconstructed using the above functional model, and then a 237

normally distributed noise based on the estimated stochastic 238

model was added to reconstruct the data. For the data set # 2, 239

89 GPS stations were analyzed. Therefore, the total number 240

of series is r = 267. Matrix �, which expresses the spatial 241
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Fig. 1 World distribution of 66 GPS stations with time span of 21 years (top: Repro2), 89 GPS stations with time span of 7 years (bottom: Repro1

and Repro2)

correlation, is of size 267 × 267. Matrix Q is of size m × m,242

where m is the number of observables in each series; for243

the multivariate analysis, m is identical for all time series.244

While the three 89 × 89 block diagonals of the � form the245

spatial correlation of each coordinate component (i.e. east-246

east (EE), north-north (NN), and up-up (UU)), the other three247

89 × 89 off-diagonals represent the cross-correlation of the248

components (i.e. between north-east (NE), north-up (NU),249

and east-up (EU)).250

The VCE methods can computationally be an expensive251

process. Some researchers have contributed to reduce the252

computational burden of the VCE methods. We may refer253

to excellent studies by Bos et al. (2008, 2012) in which the 254

computational burden of MLE is drastically reduced. One 255

feature of our multivariate noise assessment method is also 256

that its computational burden is similar to that of the univari- 257

ate analysis (see Amiri-Simkooei 2009). 258

3.1 Spatial correlation 259

GPS position time series have been shown to have a sig- 260

nificant spatial correlation (Williams et al. 2004; Amiri- 261

Simkooei 2009, 2013a). The spatial (cross) correlation 262

results for the data set with 89 GPS station are illustrated 263
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Fig. 2 Six kinds of spatial correlation estimated for position time series

with the time span of 7 years as a function of angular distance (deg);

(left) individual components NN, EE, and UU; (right) cross components

NE, NU, and EU. Indicated in the plots also mean correlation curves

for the second (blue) and first (black) reprocessing campaigns using a

moving average

in Fig. 2. Derived from �, this figure shows the spatial264

correlation among NN, EE, UU, NE, NU, and EU compo-265

nents. Significant spatial correlations for NN, EE, and UU266

are observed over an angular range of 0◦ to 30◦, implying the267

presence of regionally correlated errors. No effort has been268

put forward to reduce CMEs here, and thus, as expected, the269

spatial correlation among stations which are close to each270

other (about 3000 km apart) is significant. This spatial cor-271

relation directly propagates into the correlation between site272

velocities, and hence it should be taken into consideration in273

the covariance matrix of the site velocities (Williams et al.274

2004). Over larger distances, the correlations of individual275

components experience a significant decline, in agreement276

with the findings of Amiri-Simkooei (2013a) and Williams277

et al. (2004). This indicates that the CME noise is significant278

only over nearby stations. The component EE experiences279

higher correlations compared with the NN and UU compo-280

nents.281

The spatial cross-correlations between components (NE,282

NU, and EU) are negligible. The cross-correlation curve is283

less than 0.1 which is owing to a good GPS geometry stem-284

ming from simultaneous processing of all observations. To285

fairly compare the average spatial (cross) correlations derived 286

from the 1st and 2nd reprocessing campaign, the 1st repro- 287

cessing campaign time series for the data set with 89 stations 288

have been processed as well. The results are presented in 289

Table 2. The spatial correlations of individual components 290

have been reduced compared to those computed for the 291

Repro1 data except for the EE component, which shows a 292

(small) increase from 0.57 to 0.62 in the second reprocess- 293

ing. The reduction is the result of improvement in the models 294

used within the new campaign. It could also be due to an 295

improved alignment of the daily terrestrial frames, which 296

makes it difficult to separate it from the impact of new mod- 297

els used in the analysis. The spatial correlation matrix �, 298

estimated for the latest processing campaign, is to be taken 299

into consideration in the estimation of the multivariate power 300

spectrum. 301

In this contribution, we considered the correlation among 302

the east, north and up components. In principle, by applying 303

the error propagation law, these correlations can be prop- 304

agated into the coordinate differences of X, Y, and Z in an 305

earth-centered earth-fixed coordinate system using an appro- 306

priate coordinate transformation. 307
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3.2 Temporal correlation and noise assessment308

The amplitudes of white noise, flicker noise, and random309

walk noise can be obtained using matrices � and Q. Noise310

characteristics of GPS time series have been expressed as a311

combination of white plus spatially correlated flicker noise312

(Zhang et al. 1997; Mao et al. 1999; Calais 1999; Nikolaidis313

et al. 2001; Williams et al. 2004; Amiri-Simkooei et al. 2007,314

2009). The presence of random walk noise in GPS time series315

is due to monument instability (Williams et al. 2004) or the316

presence of nonlinear deformation behavior, for example in317

areas with active deformation or when the offsets remain in318

the data series (Williams 2003b). The presence of postseis-319

mic deformation or volcanic events could also increase the320

apparent amplitude of random walk noise. The reason for321

masking the (small) values of the random walk noise is the322

short time spans of the data series or the existence of domi-323

nant flicker noise (Williams et al. 2004).324

The amplitudes of white noise, flicker noise, and random325

walk noise can simply be provided from the Kronecker struc-326

Table 2 Average spatial correlation over the angular distance of 30◦

for the first and second reprocessing campaign using 89 GPS stations

Reprocessing campaign Correlation Cross-correlation

NN EE UU NE NU EU

1st (Repro 1) 0.73 0.57 0.55 0.05 0.07 0.08

2nd (Repro 2) 0.56 0.62 0.37 0.07 0.03 0.06

ture � ⊗ Q. The diagonal entries of the matrices sw�, s f � 327

and srw� represent the variances of white, flicker and random 328

walk noise for each series. To compare the amplitudes of the 329

three noise components for the two reprocessing campaigns, 330

the data sets with the time span of 7 years (89 GPS stations) 331

of the two campaigns have been processed. For the second 332

reanalysis, the time correlation results of these stations are 333

shown in Fig. 3. The average amplitudes of white, flicker, 334

and random walk noise components along with their esti- 335

mated standard deviations for both campaigns are presented 336

in Table 3. A few observations are highlighted. 337

• The amplitudes of all noise components of the vertical is 338

larger than those of the horizontal by a factor of 3, consis- 339

tent with the previously published results (Williams et al. 340

2004; Amiri-Simkooei 2013a; Dmitrieva et al. 2015). 341

• Amiri-Simkooei (2013a) published flicker noise vari- 342

ances for the repro1 series about 4 times smaller than 343

those reported here. Unfortunately, there was a mistake 344

in presenting flicker noise results in Amiri-Simkooei 345

(2013a). There, the unit was mistakenly mm/day1/4 (and 346

not mm/year1/4) for the flicker noise component. This 347

indicates that a scaling factor of
4
√

365.25 = 4.37 should 348

be applied to his flicker noise amplitudes. 349

• In contrast to the values obtained from the first reanalysis, 350

the noise amplitudes of the north and east components are 351

nearly identical in the second reanalysis. 352

Fig. 3 Estimated amplitudes of white (left), flicker (middle), and random walk (right) noise for the data set with the time span of 7 years; top frame

(north), middle frame (east), bottom frame (up)
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Table 3 Average amplitudes of white noise, flicker noise, and random walk noise along with their estimated standard deviations for permanent

GPS stations of 1st and 2nd processing campaigns

Processing campaign Second First

White noise (mm) N 1.24 ± 0.02 2.02 ± 0.03

E 1.20 ± 0.02 2.68 ± 0.04

U 4.06 ± 0.06 5.69 ± 0.09

Flicker noise (mm/year1/4) N 2.60 ± 0.04 4.39 ± 0.06

E 2.51 ± 0.04 5.80 ± 0.08

U 8.52 ± 0.13 12.33 ± 0.18

Random walk (mm/year1/2) N 0.24 ± 0.004 0

E 0.23 ± 0.004 0

U 0.79 ± 0.010 0

• The amplitudes of flicker and random walk noise over353

different stations are multiples of the white noise ampli-354

tudes. In reality, however, this should not indicate all355

stations contain random walk noise, because the esti-356

mated values are an average value (over all stations)357

due to the special structure used (see Amiri-Simkooei358

et al. 2013). Therefore, the multivariate approach imple-359

mented in the present contribution can resolve only a360

single network-wide random walk value rather than a361

station specific one.362

• When the values obtained from the latest reanalysis are363

compared to their older counterpart, the amplitudes of364

white and flicker noise of all components have been365

reduced by factors ranging from 1.40 to 2.33. This high-366

lights that the new models used in the second reanalysis367

have significantly reduced the amplitude of these two368

noise components.369

• While the amplitudes of both white and flicker noise have370

significantly reduced in this contribution, Rebischung371

et al. (2016) reported reduction in only white noise. This,372

however, was only speculated by explaining their power373

spectra and hence was not based on a real estimation of374

the noise amplitudes.375

• The random walk noise amplitudes estimated in the sec-376

ond reanalysis are substantially larger than those of the377

first campaign. This further confirms the findings of King378

and Williams (2009), Dmitrieva et al. (2015) and Amiri-379

Simkooei et al. (2013), who identified significant random380

walk noise in GPS time series. As a non-stationary noise381

process, the variance increases over time under a ran-382

dom walk process. The zero amplitude of random walk383

in the first reprocessing campaign is likely because this384

noise process is being masked (or underestimated) in the385

‘processing’ noise due to the lack of the new appropri-386

ate models and strategies used in the second reprocessing387

campaign.388

• To further support the statement of the previous point,389

we present the detrended data (i.e. the mean residuals)390

Fig. 4 Mean residuals (for the data set with the time span of 7 years)

of time series for north, east, and up components after removing a linear

trend, 3 harmonics of annual signal and 10 draconitic harmonics; (left)

first reprocessing campaign; (right) second reprocessing campaign

of all 89 stations for these two reprocessing campaigns 391

(Fig. 4). In contrast to the series derived from the first 392

reanalysis, the noise of the new time series has not sig- 393

nificantly changed over time as the latest models were 394

used in the second reprocessing. Having a uniform ‘pro- 395

cessing’ noise over time allows one to efficiently detect 396

the possible non-stationary random walk noise process 397

due to monument instability (see also Santamaría-Gómez 398

et al. 2011). 399

To estimate rate errors induced by white, flicker, and random 400

walk noise in the multivariate model, we employ a method 401

described in “Appendix 2”. Using Eqs. (7)–(9), the rate errors 402

of different noise structures have been estimated for the north, 403

east, and up components (Table 4); the rate errors are deter- 404

mined for the data set with the time span of 7 years. It is 405

observed that random walk rate error is larger than those of 406

white and flicker noise. These results are in good agreement
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Table 4 White flicker and random walk noise rate errors using three

types of formulas; left: this contribution with white (Q = sw Qw), flicker

(Q = sf Qf ) and random walk noise (Q = srw Qrw) and those obtained

using all noise components (Q = sw Qw + sf Qf + srw Qrw); middle:

Bos et al. (2008); right: Argus (2012)

Noise component Error rates (mm/year)

This contribution Bos et al. (2008) Argus (2012)

N E U N E U N E U

White 0.013 0.013 0.044 0.014 0.014 0.047 0.012 0.012 0.040

Flicker 0.126 0.121 0.412 0.152 0.147 0.500 0.136 0.131 0.445

Random walk 0.092 0.090 0.301 0.097 0.093 0.316 0.091 0.088 0.298

White + Flicker + Random walk 0.160 0.155 0.525 – – – – – –

In Argus (2012), the formula for the error in rate generated by white noise is missing a factor of
(

12
f

)
1
2

. The correct formula is σwh =
(

12
f

)
1
2 swh

T
3
2

.

In this table we use this corrected formula in the Argus (2012) column. The data set used consisted of 89 stations and 7 years of data (T = 7 years)

with equal sampling frequency

with those obtained using Eqs. (30)–(31) of Bos et al. (2008)407

(see Table 4). We may also employ Eqs. (1)–(3) of Argus408

(2012), originated from Williams (2003a) and Bos et al.409

(2012), to calculate the rate errors (substitute T = 7 years410

and f = 365). Rate errors determined by employing these411

equations are also shown in Table 4. The last row of Table 4412

presents the rate errors using the combination of all noise413

components.414

The (large) amplitude of the random walk compared to415

those reported by King and Williams (2009) and Dmitrieva416

et al. (2015) can be explained as follows. It has been shown417

that white and flicker noise have nearly identical spatial corre-418

lation (Amiri-Simkooei 2009). However, random walk noise419

does not show such a significant correlation because this420

noise depends on site-related effects such as monument insta-421

bility, etc. The Kronecker structure used in Amiri-Simkooei422

(2013a) will induce also significant spatial correlation for423

random walk. A sub-optimal stochastic model can bias (i.e.424

overestimates or underestimate) the estimated variance com-425

ponents (Amiri-Simkooei et al. 2009, see Eq. 33). This426

highlights again that the estimated random walk amplitudes427

of the multivariate analysis provide only a general indication428

of a single network-based random walk value.429

3.3 Multivariate power spectrum430

The multivariate power spectra (MPS), illustrated in431

Figs. 6, 7, 8 and the top frame of Fig. 5, are obtained using432

Eq. (8) of Amiri-Simkooei (2013a). The power spectrum433

would be flat if: (1) there were only white noise in the series,434

or, (2) the correct stochastic model � ⊗ Q were used. Both435

spectra shown in Fig. 5 are obtained when taking the tempo-436

ral correlation of the series (estimated Q) into consideration.437

The spectrum at the top is derived assuming the series are438

spatially correlated (correct � ⊗ Q), while the bottom frame439

Fig. 5 Multivariate least-squares power spectrum for the data set with

the time span of 7 years. Vertical axes are normalized with respect to

spectral values of bottom frame to provide the maximum power of one;

(top) full structure of � ⊗ Q is taken into consideration, and (bottom)

� is considered to be diagonal

is derived assuming that the spatial correlation is absent, i.e. 440

� = diag (σ11, . . . , σrr ) is a diagonal matrix. The bottom 441

frame is similar to the weighted power spectrum in the studies 442

of Amiri-Simkooei et al. (2007) and Ray et al. (2008, 2013), 443

but differs in that it is based on the correct Q, rather than sta- 444

tionery white noise. Therefore, in contrast to their spectra, 445

our spectra is nearly flat. This indicates that the matrix Q, 446

which compensates for the temporal correlation of the series, 447

affects the flatness of the spectrum, whereas the spatial corre- 448

lation (matrix �) affects the scale of the spectrum. Therefore, 449
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Multivariate analysis of GPS position time series of JPL second reprocessing campaign

Fig. 6 Multivariate least-squares power spectrum on all coordinate

components. Vertical axes are normalized to provide the maximum

power of one; (top frame) data set with the time span of 7 years, (bottom

frame) data set with the time span of 21 years

a mature stochastic model is crucial for the correct detection 450

of signals. When employing an immature stochastic model, 451

one takes the risk of not detecting peaks at higher frequencies 452

(see Fig. 5); cluster of periods between 5 and 6 days, present 453

in the top frame, are absent in the bottom frame. 454

The MPS in Fig. 6 shows signals with periods of 455

13.63 days (direct tides) and 14.76 days (direct 14.77 days 456

tide or 24-h alias of M2). These signals are also detected in 457

the MPS on individual components for both data sets (Fig. 7). 458

It can be seen that the former signal is sharper in the bottom 459

frame of Fig. 6 and the left frame of Fig. 7. The 14.76-day 460

signal was not clearly observed in the up component of the 461

data set with 66 stations. The signals detected for the east 462

and north components are in good agreements with those 463

reported by Ray et al. (2013). They, however, found that fort- 464

nightly signals are much less distinct in the up components. 465

Our observations show that this holds indeed only for the 466

14.76-day signal. 467

The vertical dashed lines in Figs. 5, 6, 7, 8 illustrate 468

harmonics of the GPS draconitic signal with the periods 469

of 351.4/N days (1.04N cpy) for N = 1, . . . , 8. The peaks 470

match nearly all of the frequencies. The aliasing signal can 471

contribute to parts of this draconitic signal. Errors in GPS 472

satellite orbit are considered to be the origin for the har- 473

monics because the GPS draconitic year is intrinsic to the 474

Fig. 7 Multivariate least-squares power spectrum analysis on individual components. Vertical axes are normalized to provide the maximum power

of one; (right frame) data set with the time span of 7 years, (left frame) data set with the time span of 21 years
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Fig. 8 Multivariate least-squares power spectrum after removing

Chandlerian, annual, semiannual, tri-annual, and 8 harmonics of GPS

draconitic year for the data set consisting 66 GPS stations (21 years of

data). Vertical axes are normalized to provide the maximum power of

one

satellite orbits, and hence they provide a mechanism for475

the generation of harmonic modulations. As an example,476

Rodriguez-Solano et al. (2011) slightly reduced the level477

of the sixth draconitic harmonic by taking earth albedo and478

thermal effects on GPS orbits into consideration. For more479

information, we refer to Ray et al. (2008), Tregoning and480

Watson (2009), King and Watson (2010), and Griffiths and481

Ray (2013). Amiri-Simkooei (2013a) shows that a similar482

behavior of the draconitic pattern at adjacent stations implies483

that the dominant draconitic effect is not likely dependent484

on the station-related local effects—multipath for instance.485

Because the GPS orbit modeling has been improved in latest486

reanalysis campaign using the new models for Earth radia-487

tion pressure and Earth albedo radiation, the reduction in the488

draconitic signal is expected. This issue will be considered489

later in Sect. 3.5.490

Amiri-Simkooei (2013a) found, contrary to expected, that491

the first draconitic harmonic in Figs. 5, 6, 7, 8 does not have492

the largest and sharpest peak, owing to leakage. According493

to the Rayleigh criterion (Godin 1972), in order to clearly494

distinguish between two signals with the periods of T1 and495

T2, the time spans of the series should be at least equal to496

T1T2
T2−T1

. Applying this formula to the annual and draconitic497

signals with the periods of 365.25 and 351.4 days, respec-498

tively, we find that the minimum length of the time series499

should be equal to 25.4 years. This holds only in theory, but500

in reality longer time series are required because the above501

signals are (much) messier that the pure sinusoidal waves.502

If the time series are not long enough, the annual signal is503

leaked into the draconitic signal and prohibits it from hav-504

ing the largest and sharpest peak. This is, however, not the505

case for the higher harmonics of this periodic pattern as the506

length of the time series exceeds that of the minimum time507

span required. A sharper peak of the first harmonic in the508

bottom frame of Fig. 6 and the left frame of Fig. 7 in which

longer data span (21 years) have been used verifies the above 509

statement. Compared to Amiri-Simkooei (2013a), the num- 510

ber of draconitic harmonics detected has been reduced from 511

10 to 8. 512

The multivariate analysis is applied both to the individual 513

components (Fig. 7) and simultaneously to the three compo- 514

nents (Fig. 6). Both spectra show a cluster of periods around 515

5.5 days. Using daily time series of 306 IGS stations, Ray 516

et al. (2013) detected a signal with this period in the north 517

and up residuals, but barely visible in the east residuals. We 518

also observe a cluster of periods around 2.75 days (likely the 519

second harmonics of 5.5 days) in the data set with 89 stations 520

(Fig. 6, top frame and Fig. 7, right), and to a lesser extent in 521

the data set with 66 stations (Fig. 6, bottom frame). These 522

findings are in agreement with those of Ray et al. (2013). We 523

do not offer an explanation for the origin of these two signals. 524

Selle et al. (2014) reprocessed six stations in which a large 525

5.5 days feature has been found. They used the same orbit, 526

clock product and GIPSY software as the JPL GPS PPP time 527

series, but with a different processing strategy which results 528

in a significant reduction in the strength of the 5.5 days fea- 529

ture. Their result suggested that this signal is both station 530

dependent and probably related to parts of PPP processing 531

strategy other than orbit and clock products or the GIPSY- 532

OASIS software. Therefore, further research is needed for 533

investigation into the origin of the 5.5 days feature in the JPL 534

time series. 535

Apart from the detected signals discussed earlier, a signal 536

with a period of 432.5 days referred to as Chandler wobble 537

period has been found (Fig. 6, bottom frame). The ampli- 538

tude of the Chandlerian signal (averaged over 66 stations) 539

for the east, north, and up components are 0.2, 0.2, and 540

0.4 mm, respectively (Table 5), and the maximum amplitude 541

of this signal for the up and east components reaches nearly 542

1.2 mm. Nikolaidis (2002) identified a signal with a period 543

of 439 ± 15 days in the power spectrum of the GPS posi- 544

tion time series residuals derived from the SOPAC network. 545

It was attributed to the unmodeled pole tide. Moreover, the 546

amplitude of the first Chandlerian harmonics obtained by 547

Bogusz and Klos (2016) was nearly 1 mm for the up com- 548

ponent. Collilieux et al. (2007) identified a broad range of 549

frequencies between 0.75 and 0.9 cpy in SLR height residu- 550

als from the ITRF2005 solution. The existence of this signal 551

may indicate mismodeling of the Chandler period and its 552

modulations (Bogusz and Klos 2016) on GPS time series. 553

As the minimum time span needed for the identification of 554

Chenlerian signal is 12 years, the signal has not been detected 555

in the data set with the time span of 7 years. The Chandlerian 556

signal, which is likely related to International Earth Rota- 557

tion Service’s (IERS) pole tide model (Wahr 1985; King and 558

Watson 2014), has not been reported in any of the IGS AC 559

stacked spectra (including JPL) by Rebischung et al. (2016). 560
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Multivariate analysis of GPS position time series of JPL second reprocessing campaign

Table 5 The mean and maximum range of variations of the 3 annual

harmonics, the 3 draconitic harmonics separately, the 8 draconitic har-

monics, the Chandlerian signal and the signal with a period of 383 days

for the north, east and up components of the data set with 66 permanent

GPS stations of the second reprocessing campaign

Signal Mean range (mm) Maximum range (mm)

N E U N E U

Annual 0.8 1.0 2.4 2.0 2.1 5.3

Semiannual 0.3 0.2 1.1 0.7 0.6 1.9

Tri-annual 0.1 0.1 0.3 0.4 0.3 0.7

Draconitic 0.3 0.4 0.7 0.7 0.9 2.7

Semi-draconitic 0.3 0.4 0.9 0.6 0.8 1.7

Tri-draconitic 0.2 0.1 0.4 0.4 0.3 1.2

All 8 draconitic 0.8 0.9 2.0 1.5 1.5 3.7

Chandlerian 0.2 0.2 0.4 0.5 1.2 1.2

383 days 0.3 0.3 0.6 1.0 0.7 3.0

We would intuitively expect the spectrum not to show any561

peak around the annual signal if we were to remove 8 harmon-562

ics of the GPS draconitic year signal and the first harmonic of563

the Chandler wobble in addition to 3 harmonics of the annual564

signal. To examine our hypothesis, these signals are added565

to the functional model and the noise assessment was car-566

ried out and the correct matrices � ⊗ Q were estimated. The567

spectral values were then computed. Figure 8 shows the MPS568

for 66 stations after removing the signals mentioned above.569

Although the spectral values of 8 harmonics of the draconitic570

signals have been reduced compared to the bottom frame of571

Fig. 6, they are not totally removed. This indicates that the572

draconitic pattern is not completely of periodic nature. More-573

over, a signal with a period of around 380 days has been574

detected, which was not previously observed. This signal is575

statistically significant because its spectral value (i.e. 412.56)576

is much larger than the critical value of χ2
0.99,2×66 = 172.71.577

We do not have an explanation for this. But it may correspond578

to the findings of Griffiths and Ray (2013), who computed the579

Doodson number 165.545 with the period of 23.9379816 h580

aliases into the period of 385.98 days when the 1-day sam-581

pling is used. As expected, this signal has not been observed582

in the data set with the time span of 7 years as the mini-583

mum length of the time series required for distinguishing584

between this signal and draconitic is 12.7 years (to clearly585

detect this signal and the annual signal at least 25.7 years586

of data is needed). The variations of the signal observed for587

the east, north, and up components of the 66 GPS stations588

are 0.3, 0.3, and 0.6 mm, respectively (Table 5). The varia-589

tion of this signal is larger than those of the Chandlerian,590

tri-annual, and the third draconitic harmonics. The maxi-591

mum variations of this signal for the up components is larger592

than those of the first draconitic and the semiannual signal593

(Table 5).594

3.4 Draconitic periodic pattern 595

This section investigates the GPS draconitic year signal. Fol- 596

lowing Amiri-Simkooei (2013a), in the linear model y = Ax , 597

one can partition A and x as [A1 A2] and
[

xT
1 xT

2

]t
, respec- 598

tively, where x1 is the unknown parameters of linear term 599

plus annual, semiannual, and tri-annual signals and x2 is the 600

unknowns of the 8 harmonics of draconitic year signal. Using 601

y2 = A2x2, one can investigate the signal estimated for the 602

draconitic signal. Assume we have r time series. All esti- 603

mated y2 vectors of individual time series can be collected 604

in an m ×r matrix Y2 = A2 X2, where m is number of obser- 605

vations in the time series. 606

An investigation on Y2 (for the data set consisting 89 GPS 607

stations with the time span of 7 years) indicates that the mean 608

range of variations of the draconitic signal reaches −1.91– 609

1.91 , −1.75-1.73 and −4.72–4.72 mm for the north, east, 610

and up components, respectively. They are the amplitudes 611

(average of all minima and maxima over all GPS stations) 612

of the draconitic signal. Compared to the first reprocessing 613

campaign, the mean range of variations for the north, east, 614

and up components are reduced by factors of 1.87, 1.87, and 615

1.68, respectively. 616

This reduction stems from the combined effect of the new 617

models used. As an example, Rodriguez-Solano et al. (2012) 618

found that the inclusion of the Earth radiation pressure model 619

causes a change in the north component position estimates 620

at a submillimeter level. The effect of their proposed method 621

has a main frequency of around six cpy, and hence a reduc- 622

tion of 38 % occurs by applying this model. Within the latest 623

reprocessing campaign, the UT1 libration effect has been 624

considered, which can result in the reduction in the ranges of 625

variations. 626

To clearly observe the harmonics of the draconitic signal, 627

the 3 harmonics of the annual signal have been considered 628

in the initial functional model. That is, the functional model 629

consists of 8 columns (2 columns for the linear regression 630

and 2 columns for each annual harmonics). To compare the 631

relative oscillations of the annual and draconitic signal, we 632

have analyzed the original data without considering the 3 633

annual harmonics. The investigation has been done on the 634

time series with the time span of 21 years as in the time series 635

with the time span of 7 years it is not possible to analyze both 636

annual and draconitic signal (due to the shortness of the time 637

series). The results are presented in Table 5. 638

The mean annual variations of the north, east, and up com- 639

ponents are larger than those of the draconitic by factors 640

ranging from 2.5 to 3.4. The maximum annual variations are 641

larger than those of the semiannual by a factor ranging from 642

2.78 to 3.5. The annual oscillation is due to exchange of ice, 643

snow, water, and atmosphere, mainly between the northern 644

and southern hemispheres (Blewitt et al. 2001). 645
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For further investigation of this phenomenon, two kinds646

of results are presented in the subsequent subsections.647

3.4.1 Visual inspection648

We now investigate the possible draconitic peak reduction in649

the data derived from the 2nd reprocessing campaign. The650

data sets analyzed consist of 89 GPS stations with the time651

span of 7 years acquired from the first and second reprocess-652

ing campaigns. Using Eq. (8) of Amiri-Simkooei (2013a), the653

MPS is obtained (Fig. 9). The first, fourth, sixth, and eight654

draconitic peaks have been reduced by less than 15 %. The655

third draconitic harmonic experienced a significant reduc-656

tion; it has been nearly halved. The reduction in the second657

and fifth draconitic peaks was nearly 25 %. It can thus be658

concluded that using new models within the second repro-659

cessing campaign resulted in the reduction in the draconitic660

peaks.661

To investigate the behavior of the draconitic signal on dif-662

ferent GPS stations, we use visual inspection. Figures 10663

and 11 represent typical examples on the nature of the664

draconitic signal for two nearby and two faraway GPS perma-665

nent stations, respectively. As expected (see Amiri-Simkooei666

2013a), this signal is of similar pattern for nearby stations667

(<10 km) (Fig. 10, compare red or black curves for each668

component of stations CIT1 and OXYC). However, for two 669

faraway stations (>10, 000 km), this statement does not hold 670

true (Fig. 11). The effect is thus location dependent, which 671

originates from the CMEs. But, they are not likely station 672

dependent, and hence multipath cannot be the main source. 673

As expected, this periodic pattern for the 2nd reprocessing 674

campaign (black curve) has been reduced compared to that 675

for the first reprocessing campaign (red curve). 676

3.4.2 Correlation analysis 677

The behavior of this periodic pattern can be investigated using 678

the correlation analysis. For this purpose, first we form a 679

zero-mean time series by using all sinusoidal functions of 680

the draconitic signal over one full cycle and collect them in 681

the matrix Y of order m×r . The spatial correlation induced by 682

the matrix Y can be obtained using Y T Y
m

. Figure 12 presents 683

the results for the data sets with 89 stations. The spatial 684

correlation induced by the draconitic signal is significant 685

over the angular distance ranging from 0◦ to 20◦ (2000 km). 686

This is in agreement with the findings of Amiri-Simkooei 687

(2013a). Therefore, this also indicates that this periodic 688

pattern has still common-mode signatures for the adjacent 689

stations. 690

Fig. 9 Multivariate least-squares power spectrum for the data set with the time span of 7 years for first reprocessing (red) and second reprocessing

(blue) campaign. Vertical axes are normalized with respect to the spectral values of the first reprocessing campaign (dashed red) to have the

maximum power of one
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Multivariate analysis of GPS position time series of JPL second reprocessing campaign

Fig. 10 Effect of periodic pattern of first reprocessing (red) and second

reprocessing (black) campaign estimated for a typical example in which

stations are close to each other. CIT1 is the site at California Institute of

Technology. OXYC is the site at Occidental College. OXYC and CIT1

are 7 Km apart. The red and black points denote the residual time series

after subtracting liner regression terms plus 3 harmonics of the annual

signal for first and second reprocessing campaigns, respectively. The

dashed red and solid black lines denote the draconitic signal estimated

for the first and second reprocessing campaigns, respectively

Fig. 11 Effect of periodic pattern of first reprocessing (red) and second

reprocessing (black) campaign estimated for a typical example (CHIL

versus ALIC) in which stations are far from each other. CHIL is the

site at San Gabriel Mountains, US. ALIC is the site at Alice Springs,

Australia. The two sites are 13,000 Km apart. The red and black points

denote the residual time series after subtracting liner regression terms

plus 3 harmonics of the annual signal for first and second reprocessing

campaigns, respectively. The dashed red and solid black lines denote

the draconitic signal estimated for the first and second reprocessing

campaigns, respectively
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3.5 Geodetic and geophysical impact of new time series691

This contribution showed improvement on both the func-692

tional and stochastic models of GPS position time series of693

the second reprocessing campaign. Parts of geodetic and geo-694

physical impacts of these improvements are highlighted as695

follows:696

• There is research ongoing in the field of Earth’s elastic697

deformation response to ocean tidal loading (OTL) using698

kinematic GPS observations. Martens et al. (2016) esti-699

mated GPS positions at 5-min intervals using PPP. They700

studied the dominant astronomical tidal constituents and701

computed the OTL-induced surface displacements of702

each component. Such kinematic GPS processing can703

have many other geophysical applications. Precise deter-704

mination of Love numbers, as dimensionless parameters705

characterizing the elastic deformation of Earth due to706

body forces and loads, is considered to be another appli-707

cation. Therefore, as a direct effect of the new time series,708

one would expect further improvements in the realization709

of such geophysical applications.710

• GPS position time series have been widely used to study711

various geophysical phenomena such as plate tectonics,712

crustal deformation, post-glacial rebound, surface subsi-713

dence, and sea-level change (Thatcher 2003; Argus et al.714

2010; Kreemer et al. 2014; Johansson et al. 2002; King715

et al. 2010; Peltier et al. 2015; Wöppelmann et al. 2007;716

Lü et al. 2008; Bock et al. 2012). Long-term homo-717

geneous time series reanalysis using the new methods718

and strategies will directly affect all such phenomena—719

site velocities along with their uncertainties for instance.720

Reduction in noise components and the GPS draconitic721

effect allows other signals to be detected (for exam-722

ple signals with periods of 432.5 and 380 days). More723

appropriate geophysical interpretation can thus directly724

be expected, although many of the above references use725

position time series with CME filtering and hence such726

signals can be attenuated relative to the “global” solutions727

discussed in this paper.728

• Strain analysis using permanent GPS networks requires729

proper analysis of time series in which all functional730

effects are taken into consideration and all stochastic731

effects are captured using an appropriate noise model. To732

investigate the effect of the normalized strain parameters733

on geophysical interpretation, we may recall the statistics734

theory on the significance of the estimated parameters. To735

have a statistically significant parameter, one has to com-736

pare the parameter with its standard deviation. Flicker737

noise is the main contributor to make these parameters738

insignificant (Razeghi et al. 2015). Reduction in flicker739

noise has thus a direct impact on the significance of the740

deformation parameters.741

Fig. 12 Spatial correlation originated from draconitic signal of three

coordinate components (north, east, and up) for the data set with the

time span of 7 years

• Reduction in colored noise, their spatial correlation, and 742

the GPS draconitic signal have significant benefits on the 743

realization of International Terrestrial Reference Frame 744

(ITRF). These improvements will significantly affect the 745

estimation of the parameters of interest and their uncer- 746

tainty (Altamimi and Collilieux 2009). They indicated 747

that “IGS is undertaking a great effort of reprocessing the 748

entire time span of the GPS observations with the aim to 749

produce a long-term homogeneous time series. Prelimi- 750

nary analysis of some reprocessed solutions indicates a 751

high performance of these solutions which will play a 752

significant role in the next ITRF release”. This came true 753

based on the results presented in this contribution. 754

4 Conclusions 755

This contribution compared the results of the processing 756

the data derived from the first and second reanalysis cam- 757

paigns to identify the areas of improvement and/or possible 758

degradation. Daily position time series of 89 (7 years) and 759

66 (21 years) permanent GPS stations, obtained from the 760

JPL second reprocessing campaign, were analyzed. The 761

former data sets were also derived from the first reprocess- 762

ing campaign to compare the possible improvements in the 763

most realistic manner. Spatial and temporal correlations and 764

MPS were obtained using the formulas and methodologies 765

presented by Amiri-Simkooei (2013a). The following con- 766

clusions are drawn: 767
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• Although the time series of the second reprocessing cam-768

paign showed reduction in the spatial correlation among769

the series by a factor of 1.25, it is nevertheless significant.770

The spatial cross-correlation also decreases; it is less than771

0.1 for the three coordinate components.772

• The amplitudes of white noise and flicker noise are773

reduced by factors ranging from 1.40 to 2.33. The random774

walk amplitudes are higher than the zero values deter-775

mined for the first reanalysis campaign. This is likely776

due to the new time series benefiting from a kind of777

uniform ‘processing’ noise over time, while the noise778

of the older series is reduced with time. As a result of779

the revised analysis techniques, the random walk noise780

has been detected. Further, white and flicker noise have781

significantly reduced resulting in better detection of the782

random walk noise amplitude. For the 89 permanent GPS783

stations with 7 years of data, white noise, flicker noise,784

and random walk noise rate errors are 0.01, 0.12, and785

0.09 mm/yr, respectively, for the horizontal component.786

The vertical rate errors are larger than those of the hori-787

zontal by the factors ranging from 3.33 to 4.788

• Unlike the results derived from the first reprocessing cam-789

paign, the noise amplitude of the north component equals790

that of the east. This is attributed to incorporating the new791

model for the tropospheric delay and to taking the higher-792

order ionospheric terms into consideration, which likely793

improves ambiguity resolution.794

• Both MPS applied to the three components and to the795

individual components clearly show signals with periods796

of 13.63 and 14.76 days. In addition, the spectra show a797

cluster of periods around 5.5 days. A cluster of periods798

around 2.75 days has been identified in the data set with799

89 (7 years) and 66 (21 years) GPS stations. Regarding the800

signals with lower frequencies, a significant signal with801

period of around 351.4 days (up to its eighth harmon-802

ics) is detected. This closely follows the GPS draconitic803

year. Two other signals with periods of nearly 432.5 and804

380 days have been found. While the period of the former805

signal equals the well-known Chandler period, the latter806

signal is not known.807

• The mean range of variations (max and min) of the dra-808

conitic pattern for the series derived from the second809

reprocessing campaign shows a reduction of 46, 46 and810

41% for the north, east, and up components, respectively,811

compared to those of the first campaign. This significant812

reduction can be a direct corollary of the improved mod-813

els in the new campaign. While the first, fourth, sixth,814

and eight draconitic peaks have been reduced by less815

than 15 %, the third draconitic harmonic has been nearly816

halved. The reduction in the second and fifth draconitic817

peaks was nearly 25 %.818

• Two independent measures of visual inspection and cor-819

relation analysis were used to investigate the nature of820

the draconitic pattern. While the effect of the draconitic 821

signal is of similar pattern for nearby stations (Fig. 10), 822

it differs significantly for distant stations (Fig. 11). The 823

periodic pattern was reduced in the second reanalysis 824

campaign. 825

• A similar behavior for the spatial correlation of the 826

time series (Fig. 2) and the periodic pattern (Fig. 12) 827

is observed. This indicates that although new models and 828

methodologies in the latest reanalysis have reduced the 829

spatial correlation among the series to an extent, the dra- 830

conitic pattern is still an error source inducing spatial 831

correlation to the time series. 832

• There are three factors that may prevent random walk to 833

be detected. The first is the dominance of flicker noise, 834

which masks random walk noise (Williams et al. 2004). 835

Flicker noise has been significantly reduced in the sec- 836

ond reprocessing. The second factor is the small length 837

of the time series. For some stations, however, there are 838

currently more than two decades of data. A few pre- 839

liminary tests confirm significant random walk noise on 840

longer time series. 3) The third factor originates from our 841

observation in this contribution, which states that second 842

reprocessing has not only reduced noise but also it shows 843

a kind of uniform processing noise over time (see Fig. 4). 844

These three factors thus indicate that random walk noise 845

can in principle be the subject of the intensive research 846

in future GPS position time series analysis. 847
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5 Appendix 1: models employed within the second 857

IGS reanalysis campaign 858

5.1 Yaw attitude variations 859

Inconsistent yaw attitude models affects the precision of the 860

IGS combined clock solutions (Hesselbarth and Wanninger 861

2008). Therefore, the reliability of the IGS combined clocks 862

is impaired. To diminish the effect of the eclipsing satellites 863

on the IGS clock solutions, consistent modeling of attitude 864

changes is needed (Ray 2009). Distortions in the orientation 865

of the eclipsing satellites follow a simplified yaw attitude 866

model for Block II/IIA and Block IIR satellites (see Kouba 867

2009a). Attitude behavior of the Block IIF-1 (launched on 868

May 27, 2010) spacecraft during the eclipse has been studied 869
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by Dilssner (2010). In addition, with complete modernization870

of the GLONASS satellites, ACs should include GLONASS871

observations as well. An appropriate yaw attitude modeling872

of these satellites may follow the model proposed by Dilssner873

et al. (2011).874

5.2 Modeling of orbit dynamics875

Urschl et al. (2007) observed anomalous pattern in the plot876

of GPS-SLR residuals which they attributed to the GPS orbit877

mismodeling. This anomalous pattern (particularly, the GPS878

draconitic year signal) was also identified in the geocenter Z-879

component (Hugentobler et al. 2006) and GPS position time880

series (Ray et al. 2008).881

One of the potential sources for GNSS orbit mismodel-882

ing is the deficiencies in the Earth radiation pressure (ERP)883

model. Not all IGS ACs are yet modeling ERP. Utilizing a884

model for Earth radiation, proposed by Rodriguez-Solano885

et al. (2012), results in the reduction in root mean square886

(RMS) of orbit’s height component by about 1–2 cm and887

smaller perturbations of other components related to the888

orbit. Rodriguez-Solano et al. (2012) showed that the model889

can compensate the SLR residual bias observed.890

The GPS orbit perturbations due to ERP depend on the891

relative position of Sun, Earth, and satellite. Parts of the892

observed periodic patterns in GPS time series may stem893

from failure to correctly model ERP (Rodriguez-Solano et al.894

2012). They found that the inclusion of the ERP model results895

in the reduction in the sixth draconitic signal for the north896

component at a submillimeter level (equal to reduction of897

around 38%). Ray (2009) also suggested taking ERP into898

consideration. Hence, the model proposed by Rodriguez-899

Solano et al. (2011) has been used within the IGS in the900

operational reprocessing.901

Earth albedo radiation (EAR) is another source for orbit902

modeling deficiencies. This radiation consists of both visible903

reflected light and infrared emitted radiation. Most AC con-904

tributors have not taken into account the effect of EAR. The905

albedo acceleration may have a significant effect on the orbit906

of GPS satellites (a mean reduction in the orbit radial compo-907

nent by 1–2 cm) (Hugentobler et al. 2009). They concluded908

that for the high-precision GPS orbit determination, EAR and909

antenna thrust should be taken into consideration. However,910

regarding the spectra of geocenter and position time series,911

no significant impact has been observed when the model for912

EAR was used (Hugentobler et al. 2009). This indicates that913

there could be still unmodeled effects on the GPS orbit which914

can be larger than the albedo radiation.915

5.3 Geopotential field916

In terms of the geopotential model, a new model referred to917

as EGM2008 has been defined (see Ray 2009). EGM2008918

exhibits significant improvements compared to its previous 919

counterpart EGM96, thanks to the availability of CHAMP 920

and most importantly GRACE data in the 2000s. Compared 921

to EGM96, used for the 1st processing campaign, EGM2008 922

has been modified in the following aspects: 923

1. Its degree and order have been increased by a factor of 6. 924

2. Updated value for secular rate of low-degree coefficients. 925

3. A new model for the mean pole trajectory was proposed. 926

4. Model for geopotential ocean tide has been updated for 927

FES2004. 928

5. A new ocean pole tide model has been introduced. 929

For more information, the reader is referred to IERS 2010 930

conventions (Petit and Luzum 2010). 931

5.4 Tidal effects 932

Tidal effects are categorized to the following two contribu- 933

tions. (1) Tidal displacement of station positions; (2) Tidal 934

EOP variations. For the former, within the new processing 935

campaign, a new model which is introduced for the mean pole 936

trajectory IERS 2010 (Petit and Luzum 2010) has been used 937

for the pole tide correction. Moreover, model for ocean pole 938

tide loading presented by Desai (2002) should be used. For 939

the latter, the Earth rotation axial component in terms of UT1 940

contains small diurnal and subdiurnal signals. Thus, the tidal 941

gravitation effect on those features of Earth’s mass distribu- 942

tion results in the astronomical precession-nutation of Earth 943

rotation (Brzeziński 2008). A minor part of the astronomical 944

variations, called libration, is a result of the tidal gravitation 945

effect on the non-zonal terms of geopotential (Brzeziński 946

2008). In case of UT1, the perturbation is semidiurnal with 947

total amplitude up to 75 µas. Brzeziński and Capitaine (2009) 948

studied the subdiurnal libration in UT1. They derived a solu- 949

tion for the structural model of the Earth composing of 950

an elastic mantle and a liquid core not coupling to each 951

other. 952

A key expectation in tidal EOP variations modeling com- 953

pared to the 1st reprocessing campaign is the addition of the 954

UT1 libration effect introduced by Brzeziński and Capitaine 955

(2009). It is noted that the maximum effect of UT1 libra- 956

tion is about 105 µas, or 13 mm at GPS altitude. It probably 957

severely aliases into the orbit parameters. 958

5.5 Tropospheric propagation delay 959

In the second reprocessing, a new slant delay model (GPT2) 960

was suggested. It improves its older models GPT/GMF with 961

refined horizontal resolution, enhanced temporal coverage, 962

and increased vertical resolution (37 isobaric levels com- 963

pared to 23 ones utilized for GPT/GMF) (Lagler et al. 964

2013). In addition to mean value, a0, and annual amplitude, 965
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A, estimated using the least-squares method in GPT/GMF,966

semiannual harmonics are incorporated within GPT2. This967

better accounts for regions with very rainy or dry peri-968

ods. As for the temperature reduction, in contrast to the969

GPT/GMF in which a constant −6.5 ◦C/km was assumed,970

mean, annual, and semiannual variations of temperature lapse971

rate are determined each grid point in GPT2. Regarding972

the pressure reduction, unlike the GPT/GMF which utilizes973

an exponential formula based on the standard atmosphere,974

GPT2 deploys an exponential formula based on virtual tem-975

perature (Lagler et al. 2013). The improved performance976

of GPT2 compared to the previous model GPT/GMF has977

been examined by Lagler et al. (2013). They have recom-978

mended to replace GPT/GMF with GPT2 as an empirical979

model.980

Because of the partial compensation of the atmospheric981

loading by mismodeling the zenith hydrostatic delays (ZHDs)982

(Kouba 2009b), GPT-derived ZHDs give rise to a better983

station height repeatability compared to ECMWF ZHDs if984

atmospheric loading is not corrected for (Steigenberger et al.985

2009). On the other hand, if one needs to examine the coor-986

dinates time series to reveal atmospheric loading signals,987

application of ZHDs derived from numerical weather models988

is a key element.989

5.6 Higher-order ionospheric terms990

A linear combination of multi-frequency observations allows991

for taking into consideration the first-order ∼ 1
f 2 ionospheric992

term (Hofmann-Wellenhof et al. 2008). The first-order iono-993

spheric delay is in the order of 1 to 50 meters, which depends994

on the satellite elevation, ionospheric activities, local time,995

season and solar cycle (Kedar et al. 2003). The higher-order996

ionospheric terms, which are in the order of submillimeters997

to several centimeters, are usually neglected. Kedar et al.998

(2003) stated that the effect of second-order ionospheric term999

introduced by Bassiri and Hajj (1993) can likely improve the1000

position repeatability and reduce the small biases in geocen-1001

ter estimates. Fritsche et al. (2005) and Hernández-Pajares1002

et al. (2007) showed that the second-order ionospheric term1003

affects the geocenter Z-component estimates. Fritsche et al.1004

(2005) processed the double difference phase observation of a1005

global network and compared solutions with and without the1006

higher-order ionospheric terms. They concluded that apply-1007

ing these higher terms will became a standard part of precise1008

GPS applications. IERS 2010 conventions (Petit and Luzum1009

2010) suggested that while the first- and second-order iono-1010

spheric terms are to be considered for GNSS applications,1011

the third order is at the limited significance and the fourth1012

order can be neglected.1013

5.7 Analysis constraints 1014

Ferland (2010) found that high-frequency smoothing may be 1015

due to unremovable continuity constraints for some ACs. Ray 1016

(2009) suggested that, for the 2nd reprocessing campaign, 1017

ACs constraints and procedures should be reconsidered 1018

from the following aspects: (1) Reviewing the necessity of 1019

applying constraints, (2) Paying particular attention to the 1020

constraint on the orbit and UT1/LOD, (3) Elimination and 1021

minimization of the constraints as many as possible, and (4) 1022

Better understanding of the impacts of constrains retained 1023

is necessary. Accordingly, in the IGS2008 recommendations 1024

(http://igs.org/overview/pubs/IGSWorkshop2008/), all ACs 1025

should report their a-priori constraints. Although remov- 1026

able constraints are acceptable, unconstrained solutions are 1027

preferred. Inner constraints (origin, orientation, scale) are 1028

acceptable. 1029

6 Appendix 2: rate errors in multivariate model 1030

Having r time series available, a multivariate linear model is 1031

of the form (Koch 1999) 1032

E (vec (Y )) = (Ir ⊗ A) vec (X) , D (vec (Y )) = Qvec(Y ) 1033

(1) 1034

where vec is the vector operator and ⊗ is the Kronecker prod- 1035

uct. Ir is the identity matrix of size r . X and Y are the matrices 1036

of the sizes n × r and m × r collecting unknown parame- 1037

ters and observations from r number of series, respectively. 1038

A and Qvec(Y ) are, respectively, the functional and stochas- 1039

tic models describing all deterministic effects and statistical 1040

characteristics of the observables. E indicates the expectation 1041

operator, and D is the dispersion operator. 1042

The following structure for the stochastic model, referred 1043

to as the more practical model, is used (Amiri-Simkooei 1044

2009) 1045

D (vec (Y )) = � ⊗ Q = � ⊗
∑p

k=1
sk Qk (2) 1046

where Qk’s are the known cofactor matrices of size m × m. 1047

The matrix � and the unknown factors sk are to be estimated 1048

using LS-VCE. 1049

The least-squares estimate of X reads then (Koch 1999) 1050

X̂ =
(

AT Q−1 A
)−1

AT Q−1Y (3) 1051

The covariance matrix of the nr -vector vec
(

X̂
)

is 1052

Q
vec

(

X̂
) = � ⊗

(

AT Q−1 A
)−1

= � ⊗ N−1 (4) 1053
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where N = AT Q−1 A is the normal matrix. Here, we assume1054

that the functional model contains two columns for the linear1055

regression terms plus two columns for each of the annual,1056

semiannual, and tri-annual signal. A is thus of size m ×8. Its1057

i th row at the time instant ti is1058

[

1 ti cos 2π ti sin 2π ti cos 4π ti sin 4π ti cos 6π ti sin 6π ti
]

1059

(5)1060

Therefore, the unknown parameters are the intercept, rate,1061

and amplitudes of the annual, semiannual, and tri-annual sig-1062

nals. The covariance matrix of the slopes (for all series) is1063

given as Qr = � × (N−1)22, where (N−1)22 is the second1064

diagonal element of N−1. It is further assumed that Q matrix1065

has the form1066

Q = sw I + sf Qf + srw Qrw (6)1067

where sw, sf , srw are the white, flicker, and random walk1068

noise amplitudes, respectively. Qf and Qrw are the flicker and1069

random walk noise cofactor matrices, respectively. LS-VCE1070

has been employed to estimate sw, sf , srw, and �. As the three1071

coordinate components of all stations have been processed1072

simultaneously,� is of the size r×r . Its corresponding, north,1073

east, and up components are referred to as �N , �E , and �U ,1074

respectively (block diagonals). To compute the white, flicker,1075

and random walk noise rate errors for the east components,1076

matrix Q in Eq. (4) is substituted with Qw = sw I , Qf = sf Qf1077

or Qrw = srw Qrw, respectively. Matrices Nw, Nf , Nrw are1078

then obtained. The rate errors of the east component read1079

σw
r =

√

diag
(

�E N−1
w (2, 2)

)

(7)1080

σ f
r =

√

diag
(

�E N−1
f (2, 2)

)

(8)1081

σ rw
r =

√

diag
(

�E N−1
rw (2, 2)

)

(9)1082

where σw
r , σ f

r and σ rw
r are the vector of rate errors for the east1083

component of all stations. Their mean indicate the average1084

error rates over all stations. The corresponding values for the1085

north and up components can accordingly be obtained.1086
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