
ABSTRACT

In a context of growing interest in breeding more 
resilient animals, a non-invasive indicator of resilience 
would be very valuable. We hypothesized that the 
time-course of concentrations of several milk metabo-
lites through a short-term underfeeding challenge could 
reflect the variation of resilience mechanisms to such a 
challenge. We submitted 138 one-year-old primiparous 
goats, selected for extreme functional longevity, i.e., 
productive longevity corrected for milk yield (60 low 
longevity line goats (Low_LGV), and 78 high longev-
ity line goats (High_LGV)), to a 2-d underfeeding 
challenge during early lactation. We measured the con-
centration of 13 milk metabolites and the activity of 
1 enzyme during pre-challenge, challenge and recovery 
periods. Functional PCA summarized the trends of milk 
metabolite concentration over time efficiently without 
preliminary assumptions concerning the shapes of the 
curves. We first ran a supervised prediction of the lon-
gevity line of the goats based on the milk metabolite 
curves. The partial least square analysis could not pre-
dict the longevity line accurately. We thus decided to 
explore the large overall variability of milk metabolite 
curves with an unsupervised clustering. The large year 
x facility effect on the metabolites concentrations was 
pre-corrected for. This resulted in 3 clusters of goats 
defined by different metabolic responses to underfeed-
ing. The cluster that showed higher BOHB, cholesterol, 
and triacylglycerols increase during the underfeeding 
challenge was associated with poorer survival compared 
with the other 2 clusters (P = 0.009). These results 
suggest that multivariate analysis of non-invasive milk 

measures show potential for deriving new resilience 
phenotypes.
Key Words: resilience, milk metabolites, multivariate 
modelling, dairy goats

INTRODUCTION

Today, there is growing interest in selecting for re-
silience, as livestock are expected to face increasingly 
harsh environmental and climatic conditions. Animal 
resilience is defined as the ability to overcome short-
term environmental disturbances and quickly return to 
its pre-disturbance state (Colditz and Hine, 2016). In 
this context, resilience can be seen as an underlying 
component of longevity since it corresponds to the abil-
ity to cope with and recover from challenges to allow 
the animal to carry on its productive life (Friggens et 
al., 2017; Scheffer et al., 2018). Longevity corresponds 
to true longevity (all culling reasons) and functional 
longevity that includes all culling reasons, except 
productivity (Sasaki, 2013). Several studies estimated 
heritability of functional longevity to be around 10% in 
cattle and goats (Castañeda-Bustos et al., 2017; Nayeri 
et al., 2017; Palhière et al., 2018). Ithurbide et al. 
(2022) showed that selection on functional longevity in 
a commercial population of dairy goats translated into 
significant differences in longevity and resilience related 
traits such as better mammary health and lower body 
fat mobilization during the beginning of the first lacta-
tion for goats selected for longer functional longevity. 
Selection seems to be possible; however, improvements 
are expected to be slow due to low heritability. This 
low heritability could be explained by the fact that 
longevity is a multifactorial trait, i.e., there are other 
factors than resilience contributing to longevity, and 
that strong genetic x environmental interactions can be 
involved (Tsartsianidou et al., 2021). Thus, there is a 
need to find more direct resilience indicators. Being less 
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multifactorial, more direct resilience indicators could 
have a higher heritability than functional longevity, 
and allow a more efficient selection and for instance 
select animals for longevity at an early stage of produc-
tive life.

We hypothesized that the metabolic response to 
short-term feed restriction could provide information 
about some genetic characteristics of goat resilience. 
The objective of this study is to explore the existence 
of underlying resilience components within the time-
course of 13 milk metabolites and 1 enzyme activity 
during an underfeeding challenge imposed to goats of 
2 divergent lines of goats for functional longevity. We 
propose a new statistical approach to model and ex-
plore multivariate longitudinal data.

MATERIALS AND METHODS

The experiment was carried out in agreement with 
French National Regulations for the humane care and 
use of animals for research purposes. Animals were bred 
at 2 experimental INRAE Farms: P3R Bourges (UE0332, 
La Sapinière, Osmoy, France, license to carry out animal 
experiments: C18–174–01) and Experimental Installa-
tion, UMR MoSAR (Route de la Ferme, Thiverval-Gri-
gnon, France) close to Paris license to carry out animal 
experiments: A 78 615 1002). This article followed the 
STROBE vet guidelines (O’Connor et al., 2016). All 
procedures performed on animals were approved by the 
Ethics Committee on Animal Experimentation and the 
French Ministry of Higher Education, Research and 
Innovation (APAFIS#8613–2017012013585646 V4 and 
APAFIS#24314–2019120915403741).

Animals

Following the method developed by (Palhière et al., 
2018) and described by Ithurbide et al. (2022), we cre-
ated 2 functional longevity lines of Alpine goats. Since 
2017, we have run the genetic evaluation for functional 
longevity over 8,787 alpine artificial insemination (AI) 
bucks based on the productive longevity of their daugh-

ters (time difference between first kidding and culling) 
corrected for milk yield. We selected the 16 bucks who 
had the highest EBV and the 19 bucks who had the 
lowest EBV among the whole AI bucks population to 
find the low longevity line (Low_LGV) and high lon-
gevity line (High_LGV), respectively. From 2019 to 
2022, 138 goats were bred: 60 Low_LGV goats and 78 
High_LGV goats. Among them, 69 were bred in the IN-
RAE P3R Bourges facility and 69 in the INRAE Paris 
facility (Table 1). Within each facility, Low_LGV and 
High_LGV goats were housed in common pens.

Farm management and animal monitoring in P3R 
Bourges facility are described in Ithurbide et al. (2022). 
Briefly, goats were not culled for milk production rea-
sons, which allows a clean assessment of functional lon-
gevity. For farm management reasons, low producing 
goats could not be kept on farm in the Paris facility. 
Thus, survival data were not available in the latter 
facility. Weight, chest size and height were measured 
every month in both facilities during the first year of 
life. The milk yield (MY), milk fat content (MFC), 
milk protein content (MPC) and somatic cells score 
(SCS) were measured every month during lactation. 
Moreover, the EBV of the goats sires for functional 
longevity, MY, MFC, MPC and SCS were estimated 
and provided from the national genetic evaluation pro-
cedure.

Underfeeding challenge

A total of 138 one-year-old primiparous dairy goats 
were exposed to a 2-d underfeeding challenge during 
early lactation (35.5 d in milk (DIM) ± 5.6 SD). The 
design of the underfeeding challenge followed the proto-
col described in detail in Friggens et al. (2016); briefly, 
the challenge consisted of a 2-d, straw only feeding. 
Milk samples were collected for the 4 d pre-challenge, 
throughout the challenge period, and for 4 d following 
the challenge. From parturition and for 2 weeks post-
challenge animals received a standard lactation diet. 
At P3R Bourges, the goats received a ration based on 
lucerne hay offered in collective troughs, complemented 
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Table 1. Distribution of the 138 goats within the 2 divergent lines selected on high longevity (High_LGV) 
or low longevity (Low_LGV) bred at INRAE facilities of P3R Bourges and Mosar Paris that underwent the 
underfeeding challenge during early lactation (36.7 DIM ± 6.2 SD)

 

Year of the underfeeding challenge / INRAE facility

Total
2020 / 

P3R Bourges
2021 / 

P3R Bourges 2021 / Paris 2022 / Paris

Low_LGV 15 14 17 14 60
High_LGV 18 22 17 21 78
Total 33 36 34 35 138
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with concentrate that was dispensed by automatic con-
centrate feeders and in the milking parlor. At Paris, 
the lactation diet was offered as a TMR containing on 
a DM basis: 20% concentrate, 24% hay, 29% Lucerne, 
27% beet pulp, and 1% mineral and vitamin supplement 
(as described by Gindri et al., 2023). Forage and water 
were offered ad libitum. All goats were milked twice a 
day.During pre-challenge, challenge and recovery peri-
ods respectively 3, 2, and 4 milk samples were collected 
during morning milking. Fixed standard volume were 
taken after mixing the total production in the milking 
jar. The concentrations of 13 milk metabolites and 1 
enzyme were measured: glucose-6-phosphate (Glu6P), 
glucose (Glu), galactose (Gal), β-hydroxy-butyrate 
(BOHB), isocitrate, glutamate, NH2 groups, lac-
tate dehydrogenase (LDH), urea, choline, malate, 
urate, triacylglycerols (TAG), cholesterol (Chol). 
Each goat had 13 milk metabolites and 1 enzyme 
curves with data points at days −7, −4, −1, 0, 1, 2, 3, 
4, 5 and 6 for Bourges and every day from day −4 to 
12 in the Paris facility. Day 0 being the last morning 
milking before the underfeeding challenge that started 
the same day.

Milk urea was analyzed with a FIAstar 5000 Ana-
lyzer (Foss Tecator AB, Höganäs, Sweden) using flow 
injection analysis (Nielsen et al., 2005). Enzymatic-
fluorometric methods were used to analyze TAG and 
minor milk constituents: LDH activity (Larsen, 2005), 
BOHB (Larsen and Nielsen, 2005), urate (Larsen and 
Moyes, 2010), TAG (Larsen et al., 2011), Chol (Lars-
en, 2012), isocitrate (Larsen, 2014), Glu and Glu6P 
(Larsen, 2015). Gal in milk was analyzed by an analog 
procedure to Glu, using b-galactose dehydrogenase (EC 
1.1.1.48) to start the fluorometric determination. More-
over, weight, MY, milk composition (MFC, MPC) and 
udder health indicator (SCS) were measured the same 
days as the milk samples in both facilities.

Statistical Analysis

Fitting of the individual milk metabolite curves 
All statistical analysis were done in the R statistical en-
vironment (https:​/​/​www​.r​-project​.org/​). To model the 
individual metabolite concentration curves we used the 
functional data analysis smoothing method described 
by Ramsay and Silverman (2005). We used a spline 
interpolation, i.e., a piece-wise interpolation that joins 
several low degree polynomial functions at knots (pre-
determined time points along the time-series of data). 
We used natural cubic splines: i.e., a piece-wise cubic 
polynomial that is a continuous when differentiated 
twice, fixing a minimum degree of the polynomial at 5. 
The degree of smoothing of the spline was controlled by 
a roughness penalty.

Three goats exhibited outlier metabolic trajectories 
with BOHB concentrations in milk above 3 SD. The 
recordings of these goats were excluded. In addition, 10 
implausible data points were excluded from the analy-
sis (10 out of 27594 data points). None of these points 
belonged to the underfeeding period (d 0 to 2) and each 
belonged to different goats and metabolite curve. As 
such, removing these points did not distort the general 
shape of the curves. Figure 1 shows the smoothed 
curves of the 13 milk metabolites and 1 enzyme from 
one randomly selected goat.

Correction for the year x facility effect with 
functional regression To minimize the impact of 
non-genetic factors, such as the global environment, on 
the metabolic response to the underfeeding challenge, 
we accounted for the facility x year effect by running a 
functional regression analysis:

	 Xi(t) = β0(t) + β1(t) × Year_i + ξi(t), 

where Xi(t) was the milk metabolite curve for the ith 
goat, β0(t) was the intercept function, β1(t) was a func-
tion of time corresponding to the regression coefficient 
associated with the year-facility effect, Year_i was a 
dummy variable corresponding to the year-facility of 
study of the ith goat and ξi(t) was the residual term. 
Using a functional regression coefficient allows a correc-
tion of the year-facility effect. The corrected individual 
curves were then estimated as:

	 Xi_correct(t) = β0(t) + ξi(t). 

Figure 2. sets out a summary of the milk metabolite 
curves modeling steps and shows smoothed curves of 
isocitrate milk concentration before and after correc-
tion for year-facility effect. Note that, at Paris, ani-
mals were reared from weaning until mid-gestation on 
2 different diets but these were balanced and equally 
distributed between years, they were also equally dis-
tributed between clusters in the present analyses, and 
consequently were ignored.

Functional Principal Component Analysis We 
characterized milk metabolite curves upon challenge 
using a functional PCA (FPCA) for each year-facility-
corrected milk metabolite (Yao et al., 2005) using the 
R package “FDA.” Functional PCA is a statistical 
method for investigating the dominant modes of varia-
tion of a functional data set. It allows the time related 
variation to be captured in a small number of principal 
components (see Figure 2). In other words, FPCA de-
composes a set of random function Xj(t) from the j-th 
metabolite in the following representation:

Ithurbide et al.: MILK METABOLITE PROFILES AS A RESILIENCE INDICATOR
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where ωjk’s are orthogonal functions across k knots, i.e., 
the functional principal components (FPCs) that are 
common to all goats, and γjk’s are the FPC scores that 
characterize individual curves.

The first step to this decomposition was to estimate 
the functional principal components ωjk. Let Cj(s,t) be 
the covariance function of Xj(t), and it corresponds to 
a self-adjoint and positive semi-definite operator Cj:​
L2(τ)→L2(τ) The FPC ωjk(t)’s satisfy the following 
eigen equation:

	 Cjωjk = ρjkωjk,

where ρjk’s are the eigenvalues of Cj and Cj gives the 
following integral transform:

	 C C s t s dsj jk j jkω ω= ( ) ( )∫ , .
Ä

To obtain the FPCs, we could solve the eigen equations 
for k = 1,...,K for a fixed K. Equivalently, the solution 
fits the maximization problem of:

	 maxQ0(ωjk) = max⟨ ωjk,Cj ωjk⟩,

subject to the constraints of ||ωjk|| = 1 and ⟨ωjk,ωjk′⟩ = 0 
for k′ < k. Given a set of observed trajectories x1,...,xn 
we have the observed covariance function:
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Figure 1. The smoothed curves of 13 milk metabolites and 1 enzyme from one randomly selected goat. Day 0 corresponds to the beginning 
of the 2 d underfeeding challenge. Points correspond to observed values. The 13 milk metabolites and 1 enzyme are: glucose-6-phosphate (Glu6P, 
microM), glucose (Glu, microM), galactose (Gal, microM), β-hydroxy-butyrate (BOHB, microM), isocitrate (microM), glutamate (microM), 
NH2 (glutamate micro equivalent), lactate dehydrogenase (LDH, UI), urea (mM), choline (mM), malate (microM), urate (microM), triacylglyc-
erols (TAG, mM), cholesterol (Chol, microM). The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at 
INRAE facilities of P3R Bourges and Mosar Paris.
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with its associated operator ˆ .Cj  For obtaining estimates 
ω̂jk, we solve the maximization or eigen equation prob-
lem by replacing C(s,t) with its empirical version ˆ .C st( )

The second step was the calculation of the individual 
FPC scores as the projections of Xj(t) onto the FPCs 
through the inner product:

	 γ ω ω
τ

jk Xj jk Xj t jk t dt= = ( ) ( )∫,   .
 

We chose the minimum number of components that 
explained at least 90% of the variability. A small num-
ber of FPC scores thus characterized each individual 
milk metabolite curve. The Figure 2.4. represents the 
3 FPCs for isocitrate and the corresponding scores for 
one given goat. Note that by construction, the mean 
values of the FPC equals 0. The 1st FPC plot was posi-
tive across the whole period of time, increasing slightly 
during challenge. The chosen goat has a negative 1st 
score for isocitrate (1isocitrate), indicating that this 
goat has a low overall isocitrate concentration. The 
individual curve plotted in Figure 2.3 confirms that. 
Likewise, we can interpret the negative 2isocitrate score 
value as a high isocitrate concentration compared with 
pre challenge and recovery concentration, and the nega-
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Figure 2. Scheme showing the different stages of analysis of one milk metabolite curves data set (here isocitrate is shown as example). In 
the raw curves plot (1), smoothed curves plot (2), and curves corrected for year x facility effect (3) each red line correspond to one goat. The 
bold blue line corresponds to one randomly chosen goat. The functional principal components of the fPCA for isocitrate are plot in 4.1. and the 
corresponding scores for the randomly chosen goat are shown in 4.2. The fPC scores of the 13 milk metabolites and 1 enzyme are then used to 
predict the longevity line of the goats with a sPLS DA (5.A) and classify the goats within clusters with the same overall metabolic response to 
underfeeding challenge (5.B).
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tive 3isocitrate as a low post-challenge / pre-challenge 
concentration ratio compared with other goats.

Prediction of the longevity lines of goats based 
on the metabolite curves model. For the supervised 
clustering we used Sparse Partial Least Square Dis-
criminant Analysis (sPLS-DA) to evaluate the ability 
of milk metabolite curves to distinguish the longevity 
lines of the 138 goats. This is a linear multivariate model 
which performs classification tasks and is able to pre-
dict the class of new samples (R package “MixOmics,” 
Lê Cao et al., 2011). The method integrated a con-
tinuous data matrix comprising the individual FPCs 
of the 13 milk metabolites and 1 enzyme and enzyme 
and a categorical outcome variable: the line of the goat 
(High_LGV versus Low_LGV). sPLS-DA seeks the 
components that best separate the sample groups, and 
also selects variables that best discriminate between 
groups using lasso penalization. We chose the number 
of components using cross validation on a non-sparse 
model (comprising all variables) and then tuned the 
number of variables to select on each component using 
lasso selection. We assessed the final performance of the 
model using a 5-fold cross validation.

Unsupervised clustering of the milk metabolite 
curves.

Hierarchical Clustering We ran an unsupervised 
hierarchical clustering on all the FPCs (Dash et al., 
2003, R package “FactoMineR”), to define the different 
types of metabolic responses to the underfeeding chal-
lenge for each goat, and independently of the longevity 
line. First, a 5-dimensions PCA was run on the FPCs. 
The PCA hierarchical clustering starts by treating each 
goat as a separate cluster. Then, it recursively executes 
the following steps: (1) identify the 2 closest clusters; 
(2) merge the 2 closest clusters. This process continues 
until all the clusters are merged together. The final 
number of clusters was automatically chosen based on 
the inertia gain, i.e., finding a minimum number of 
clusters allowing a low intra-cluster variability and a 
high inter-cluster variability.

To easily understand the differences between clus-
ters we compared the milk metabolite curves between 
clusters using a permutation test (Ramsay and Silver-
man, 2005; Sirski, 2012). The test begins by taking the 
absolute value of a t-test-type statistic at each point 
along the curve:

	 F t
X t X t

Xi t X t Xi t X t
i i

( ) =
( )− ( )





( )− ( ) + ( )− ( )
∑ ∑

1 1

1 1 2 2

²

[ ² [ 
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Then it uses a permutation test to assess significance, 
by randomly reordering the curves and recalculating 
the test statistic with the new groups of curves. We 
used the default setting of 200 random reorderings. One 
main advantage of the permutation test is that, unlike 
parametric tests, it does not assume theoretical prob-
ability distributions.

Data used to compare clusters The R package 
‘survival’ was used to compare lifespan between the 
clusters of goats resulting from the unsupervised clus-
tering. Survival analysis was performed using a Cox 
model (Cox, 1972). Because of the lack of survival data 
in Paris data set, the survival analysis was thus run 
over a sub data set of the 3 clusters, excluding the Paris 
data.

Analysis of variance tests were used to compare the 
following data. Weight, chest size and height at the 
withers were measured at 6 mo old. The estimated 
breeding values of the sires of the goats for functional 
longevity and milk performances were also compared 
between clusters. The weight and milk performance 
curves (milk yield (MY), milk fat content (MFC), milk 
protein content (MPC), ratio of fat content to protein 
content (F:P ratio), and somatic cell score (SCS)) 
during the underfeeding challenge were compared be-
tween clusters following the exact same methodology as 
the milk metabolite curves: spline interpolation, correc-
tion for year x site effect and permutation test.

RESULTS

Modeling of the individual milk metabolite curves 
with functional PCA

The smoothed curves of the 13 milk metabolites and 
1 enzyme of one randomly selected goat are presented 
in the Figure 1, and Table 2 shows the distribution 
of the milk metabolite concentrations during the whole 
period of sampling among the 138 goats. After smooth-
ing, the general shape of the curve was preserved and 
the bounce that occurred during the challenge was cor-
rectly fitted. Linear regression correctly corrected for 
the year-facility effect, leading to similar mean curves 
per year-facility for each metabolite. Between 2 and 4 
functional components were necessary to explain 90% 
of variation for each metabolite. The interpretation of 
those principal components should be made as follows 
(Figure 2): using the isocitrate components as an ex-
ample, the first component (PC1) of isocitrate roughly 
corresponds to a flat line over the whole period, a goat 
with a higher than average milk isocitrate concentration 
over the whole period will have a proportionally high 
score FPCs on this component. The second component 
(PC2) shows a positive flat line before challenge and a 

Ithurbide et al.: MILK METABOLITE PROFILES AS A RESILIENCE INDICATOR
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shift to negative value during the challenge: a goat with 
higher than average concentration of isocitrate before 
challenge and a lower than average concentration post-
challenge will get a high score on this component. In 
total 48 FPCs were attributed to each goat to charac-
terize the variation of the 13 milk metabolites and 1 
enzyme through the underfeeding challenge. The FPCs 
were then used to compare the milk metabolite varia-
tions between lines.

Supervised clustering to compare the milk 
metabolite curves between the 2 longevity lines of 
goats

The optimal number of components in the sPLS-DA 
to discriminate the 2 longevity lines of goats was 1. The 
lasso penalization selected 13 variables for this com-
ponent (Figure 3). Chief among these were Gal (3rd 
fPCA component), glutamate and urea (respectively 
1st and 2nd fPCA component). The balanced error rate 
(i.e., the percentage of misclassifications) estimated 
overall for the model was 49.5%. It was 61.3% and 
37.7% respectively for Low_LGV and High_LGV lines. 
Thus, the milk metabolite curves during an underfeed-
ing challenge could not predict the longevity line of 
the goats coming from the 4 year-sites of experiment. 
However, if the analysis was run on P3R Bourges and 

Paris separately, the balanced error (BER) rate was 
respectively 44 and 37%. Figure 3 shows the contribu-
tions of the selected fPCscores to the prediction of the 
longevity line within Paris and P3R Bourges data sets. 
When the analysis was made on each of the 4 year-
facilities separately, the BER ranged from 30% (Paris 
2022) to 39% (P3R Bourges 2021).

Unsupervised clustering on the milk metabolite 
curves

Description of the clusters. The correlation circle 
of the PCA applied on the 48 FPCs of the 138 goats 
is shown in Figure 4A. Three clusters were identified: 
cluster 1, 2 and 3 respectively gathered 36, 53 and 49 
goats (Figure 4B). Distribution of goats from the 4 
year-facility combinations did not differ along clusters 
nor between longevity lines and the number of kids per 
kidding (P > 0.70). The mean milk metabolite curves 
per cluster and permutation test result are shown in 
Figure 5. The permutation test over the milk metabo-
lites curves between clusters indicates which milk me-
tabolites were significantly different between clusters. 
The metabolite curves that were significantly different 
between clusters are: BOHB, Chol, choline, Glu, Glu6P, 
glutamate, LDH, malate, NH2, TAG (permutation test, 
5% critical value). Except for TAG and Chol, the dif-
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Table 2. Concentrations of 13 milk metabolites and 1 enzyme collected during 10 morning milkings among 
138 goats that underwent an underfeeding challenge during early lactation: 2 samples were taken during 
underfeeding challenge of 2 d, 4 before and 4 after. The 138 goats belonged to 2 divergent lines selected on high 
longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris

 

Pre-challenge 
n = 552 samples

 

Challenge 
n = 276 samples

 

Post-challenge 
n = 552 samples

Mean (SD) Mean (SD) Mean (SD)

BOHB (microM) 27.3 (±8.8) 39.8 (±25.1) 25.0 (±7.5)
Chol (microM) 192.0 (±74.4) 480.9 (±192.7) 258.6 (±144.3)
Choline (mM) 1.5 (±0.9) 3.3 (±1.3) 1.5 (±1.0)
Gal (microM) 65.9 (±22.4) 86.5 (±36.2) 66.3 (±29.9)
Glu (microM) 226.8 (±120.6) 117.2 (±57.2) 269.8 (±161.1)
Glu6P (microM) 60.8 (±19.0) 40.9 (±20.9) 55.6 (±20.7)
Glutamate (microM) 250.0 (±95.3) 103.3 (±43.3) 283.2 (±157.8)
Isocitrate (microM) 162.2 (±45.5) 239.3 (±76.5) 118.7 (±42.2)
LDH (UI) 10.2 (±4.7) 45.5 (±27.8) 13.9 (±14.0)
Malate (microM) 98.0 (±51.2) 38.0 (±20.5) 78.6 (±34.1)
NH2 (glutamate micro eqv) 1687.1 (±377.1) 1356.5 (±300.6) 1893.5 (±414.9)
TAG (mM) 44.7 (±15.5) 83.6 (±31.3) 44.4 (±20.6)
Urate (microM) 58.9 (±31.7) 116.5 (±70.7) 76.2 (±57.7)
Urea (mM) 6.7 (±3.7) 6.5 (±2.1) 4.8 (±3.1)
MY (kg) 3.1 (±0.5) 1.7 (±0.6) 2.5 (±0.6)
MFC (g/kg) 40.5 (±6.2) 65.9 (±15.5) 38.7 (±10.7)
MPC (g/kg) 33.2 (±2.5) 34.8 (±3.9) 32.8 (±2.8)
F:P ratio 1.3 (±0.2) 1.9 (±0.4) 1.2 (±0.3)
SCS 4.9 (±1.8) 5.6 (±3.0) 6.1 (±1.8)

Glucose-6-phosphate (Glu6P), glucose (Glu), galactose (Gal), β-hydroxy-butyrate (BOHB), isocitrate, gluta-
mate, NH2, urea, choline, malate, urate, triacylglycerols (TAG), cholesterol (Chol) and lactate dehydrogenase 
enzyme (LDH). Milk performance: daily milk yield (MY), ratio of fat content to protein content (F:P ratio), 
fat content (MFC), protein content (MPC), somatic cells score (SCS).
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ferences were significant only after the beginning of the 
feed restriction. For Chol and TAG the values were 
significantly higher for cluster 2 before day (−2).

Cluster 1 was mainly characterized by lower Glu, ma-
late and glutamate during the recovery period, higher 
Gal and Chol during the recovery period, higher BOHB, 
TAG and choline during challenge and lower NH2 and 
Glu6P during challenge and early recovery. The cluster 
2 was mainly characterized by lower TAG, Choline, 
BOHB, LDH and Chol during challenge. The cluster 3 
was mainly intermediate between clusters 1 and 2 with 
the exception of a higher LDH during challenge.

Comparison of resilience related features be-
tween clusters. The Kaplan–Meier survival curves 
of the 3 clusters are displayed in Figure 6. The Cox 
analysis shows poorer survival of goats belonging to the 
cluster 1 relative to both clusters 2 and 3 (P = 0.04, 
hazard ratio = 2.63 and P = 0.02, hazard ratio = 3.70 
respectively, Table 3). Note that a Cox analysis com-
paring cluster 1 relative to the rest of the goats (i.e., 
cluster 2 and 3 merged) shows a more significant effect 
(hazard ratio = 2.97, P = 0.009). Table 4 presents 
ANOVA results between clusters. No significant differ-
ence could be seen in sire’s EBV (longevity, milk yield, 
milk components and SCS), morphology at 6 mo old 
and days in milk at the beginning of the challenge (P 
> 0.05). Figure 7 shows the mean curves of the milk 
performance and weight within the 3 clusters through 
a 2-d underfeeding challenge. Cluster 1 showed higher 
F:P ratio and MFC, during and after challenge, as well 

as higher MPC during challenge and higher SCS after 
challenge (permutation test, 5% critical value).

DISCUSSION

Context

This study presents an innovative design using lon-
gevity lines exposed to a short-term challenge with 
repeated measures of multiple milk metabolites. We 
hypothesized that the metabolic responses to a short-
term feeding restriction would characterize a resilience 
mechanism that has an impact on goat survival within 
herd. Repeated measurements over time were of great 
value in understanding the temporal aspect of resilience 
(Döring et al., 2015). Moreover, animal resilience is a 
complex trait as it involves many interconnected physi-
ological regulations and metabolic pathways. Novel 
data analysis methods of 13 milk metabolites and 1 
enzyme concentrations over time allowed us to both 
grasp the time varying aspect of the process and some 
of its complexity. Several studies report the modeling 
of a physiological response to short-term perturbation 
(Sadoul et al., 2015; Friggens et al., 2016). Those mod-
els made strong assumptions concerning the shape of 
the curves to decipher the different components of the 
reaction (pre-challenge baseline, response, recovery). 
To deal with the complexity of the metabolic pathways 
that we explored, and reduce the number of assump-
tions made a priori, we used spline interpolations as 
they were flexible and do not make a priori assump-
tions regarding curve shapes. Both the sparsity of the 
time points and the heterogeneity of variance between 
days (a sharp difference occurred during the 2 d of 
underfeeding challenge) made it difficult to settle on a 
proper roughness penalty that would be strong enough 
to prevent boundary effects and flexible enough to 
capture the bounce during challenge. That is why we 
used natural cubic splines, fixing a minimum degree of 
the polynomial at 5. The natural cubic spline is con-
siderably ‘stiffer’ than a polynomial in the sense that 
it has less tendency to oscillate between data points. 
Imposing a minimum complexity via the natural cu-
bic spline allowed both a small boundary effect and 
a good fitting of the sharp increases and decreases 
during the underfeeding challenge. Moreover, Friggens 
et al. (2016) showed an interesting variability in the 
reaction to the challenge but also strong correlation 
between the pre-supposed components of the reaction 
suggesting redundancy among them. This is why we 
decided to use FPCA which allowed an efficient di-
mension reduction since each principal component is 
orthogonal to the others, avoiding any redundancy. In 
a sense, one can see FPCA as an alternative piecewise 
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Figure 3. Loading plot from the sPLS-DA to discriminate the 2 
lines selected on functional longevity, based on 13 milk metabolites 
and 1 enzyme curves through a 2-d underfeeding challenge run sepa-
rately on goats from P3R Bourges facility (left, n = 69) and Paris 
facility (right, n = 69). Colors indicate the longevity line in which 
the median is maximum for each fPCscore: red = Low_LGV, blue = 
High_LGV. Variable names indicate the fPCscore of the metabolite 
that was selected.
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modeling since the individual curves can be estimated 
as the linear combination of the functional principal 
components weighted by the FPC scores (Figure 2), 
but with automatically optimized components rather 
than pre-supposed components.

Findings of supervised clustering

The prediction of the longevity line of goats by the 
sPLS-DA was associated with a 49.5% error rate, show-
ing that no discrimination of the genetic line was pos-
sible by this approach. There may be several explana-
tions for this high error rate. First, as previously stated, 
the selection for functional longevity might lead to a 
large intra-line variability i.e., many factors affecting 
the longevity could be selected. Ithurbide et al. (2022) 
showed that the high longevity line of goats had higher 
body weight and lower fat to protein ratio in milk at 
the beginning of the first lactation, suggesting that the 
better survival of the High_LGV line was linked with 
lower body fat mobilisation. However, the nature of 2 
d underfeeding challenge we imposed in the present 
study does not exactly mimic the challenges that can 
be naturally undergone during the beginning of the first 
lactation. The differences in the metabolic reaction to 
the early lactation-related energy deficit and a nega-
tive energy balance induced by feed restriction have 
been investigated in dairy cows (Gross and Bruckmaier, 
2015).

Moreover, functional longevity is a complex trait, 
and selection for better longevity can result in animals 
with different kind of resilience or robustness mecha-

nism (resilience or resistance to diseases for example). 
The present study only explored one aspect of the resil-
ience: the energy metabolism. This diversity of the pos-
sible underlying components of longevity reduces the 
statistical power of the analysis (some goats could be 
considered High_LGV because they have good genetic 
value for disease resilience despite low energy metabo-
lism resilience).

Despite the finding that the 2-d underfeeding chal-
lenge we used was shown to induce acute metabolic and 
production deviations (Friggens et al., 2016), resilience 
and longevity may reflect a broader range of (short- 
and long-term) coping mechanisms to a diversity of 
challenges such as heat waves, behavioral stress, infec-
tious diseases. We found a large batch effect between 
the 4 year x facility combinations of the study. That 
finding is corroborated by several studies that showed 
large farm to farm variability in either the proportion 
of variance explained or in the panel of dynamic fea-
tures which best predicted resilience (Adriaens et al., 
2020; Krogh et al., 2020; Poppe et al., 2020). We chose 
to apply a linear functional regression to deal with this 
batch effect. This functional linear regression relied on 
the hypothesis that the difference we observe between 
years was not due to resilience related differences. This 
correction was necessary to run an unsupervised clus-
tering, but not for the sPLS DA. We decided to present 
the result of the sPLS DA based on FPCA over the 
milk metabolite curves corrected for year-facility effect 
to compare the conclusions of the 2 approaches based 
on the same FPC scores. However, the sPLS DA based 
on the non-corrected curves did not result in better 
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Figure 4. Hierarchical clustering on PCA of the 138 goats described with 48 functional Principal Component scores (FPCs) of 13 milk me-
tabolites and 1 enzyme curves through a 2-d underfeeding challenge. The 138 goats belonged to 2 divergent lines selected on high longevity or 
low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris. A- Correlation circle of the PCA applied on the 48 FPCs of the 138 
goats. B- Individual plot of the PCA. The colours correspond to the 3 clusters determined by the hierarchical clustering.
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Figure 5. Mean curves of the milk 13 milk metabolites and 1 enzyme within the 3 clusters identified by unsupervised clustering in 138 goat 
through a 2-d underfeeding challenge. These curves are corrected for the year x facility effect with a functional linear regression. The red area 
indicates the time period during which the variables are significantly different between clusters (permutation test, 5% critical value).
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prediction (results not shown). The prediction run sep-
arately on the 2 years of experiments in Paris and the 
2 years in Bourges showed better results (respectively 
37 and 44% BER). This suggests a possible interaction 
between the longevity line and the environment, as well 
as the importance to further study those effects. The 
housing and the staff differed between the 2 facilities. 
As explained in the materials and methods section, the 
diets were different between facilities. Feed quality can 
also vary between years due to the prevailing weather, 
and other factors. The 2 farms had performance levels 
similar to commercial farms, as described in Ithurbide 
et al. (2022).

The previous points highlighted that, even if the 
selection for functional longevity implied differences 
for several resilience traits (Ithurbide et al., 2022), 
it did not result in 2 strictly different metabolic re-
sponses to the underfeeding challenge but rather to a 
large variability of response that overlapped between 
the 2 longevity lines of goats. This led us to explore 
the diversity of responses to the challenge without any 
preliminary hypothesis on the level of resilience of the 
goats, i.e., without taking into account line, through 
the unsupervised clustering of the metabolic responses 
to the underfeeding challenge.

Findings of unsupervised clustering

The unsupervised clustering based on the fPCscores 
of all the 13 metabolites and the activity of 1 enzyme 
was a powerful method to explore the diversity of 
metabolism responses to underfeeding. This analysis 
defined 3 clusters of metabolic response to the under-
feeding challenge. The survival of goats of cluster 1 was 
lower than cluster 2 and 3, with an estimated hazard 
ration equal to 2.97 (P = 0.009) i.e., at any age of life, 
a goat from the cluster 1 had 2.97 times more risk of 
being culled than other goats (cox model analysis). It 
should be noted that survival records were only avail-
able for goats in the Bourges facility.

Interestingly, the cluster that was associated with the 
lowest survival (cluster 1) had the highest milk TAG, 
Choline, Chol and BOHB concentrations during chal-
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Figure 6. Plot of Kaplan–Meier curve showing survival against 
time in 69 goats of the 3 clusters identified by unsupervised clustering. 
The unsupervised clustering defined 3 overall metabolic responses to 
a 2-d underfeeding challenge based on milk metabolite curves. The 69 
goats belonged to 2 divergent lines selected on high longevity or low 
longevity bred at INRAE facilities of P3R Bourges. The cox model 
analysis showed significantly poorer survival of the cluster 1 over clus-
ter 2 and 3 (* P < 0.05).

Table 3. Hazard ratios (HR) with 95% lower and upper CI from Cox 
hazard model for culling data in 69 goats of the 3 clusters identified by 
unsupervised clustering. The unsupervised clustering defined 3 overall 
metabolic responses to a 2-d underfeeding challenge based on milk 
metabolite curves. The 69 goats belonged to 2 divergent lines selected 
on high longevity or low longevity bred at INRAE facilities of P3R 
Bourges

Risk factor HR CI P-value

Cluster 1 vs 2 2.63 1.07 6.25 0.04
Cluster 1 vs 3 3.70 1.25 11.11 0.02
Cluster 2 vs 3 0.70 0.24 2.06 —

Table 4. The ANOVA testing (LSMEANS) for the difference between the 3 clusters identified by unsupervised 
clustering in 138 goats through a 2-d underfeeding challenge. The ANOVA included the year x site effect. The 
138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of 
P3R Bourges and Mosar Paris

  Number of records cluster 1 cluster 2 cluster 3 p_value

EBVsire for functional longevity (days) 124 −1.82 23.59 6.30 —
EBVsire _MPC (g/L) 124 0.50 0.02 0.39 —
EBVsire _MFC (g/L) 124 −0.04 0.00 0.13 —
EBVsire _SCS 124 100.7 100.6 98.4 —
EBVsire _MY (kg) 124 15.06 14.43 4.75 —
Weight_6mo (kg) 137 34.0 33.0 33.8 —
Chest_6mo (cm) 136 71.4 71.2 71.0 —
Height_6mo (cm) 137 66.2 66.7 66.7 —
DIM (days) 138 34.7 35.8 35.9 —

Estimated breeding values of the goats’ fathers for functional longevity (EBVsire for functional longevity), milk 
protein content (EBVsire _MPC), milk fat content (EBVsire _MFC), somatic cells score (EBVsire _SCS) and milk 
yield (EBVsire _MY). Morphology at 6 mo of age: weight (Weight_6mo), chest size (Chest_6mo), height at the 
withers (height_6mo). Days in milk at the beginning of the challenge (DIM).
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lenge and recovery periods (Figure 6). Milk Chol and 
Choline are shown to be associated with milk TAG (Bil-
la et al., 2020). Increased milk fat content and BOHB 
during the underfeeding challenge suggests higher body 
fat mobilization in cluster 1 (Bjerre-Harpøth et al., 
2012; Pires et al., 2022). A possible interpretation is 
that a high body fat mobilization during short-term 
feed restriction is linked with lower resilience mecha-
nism. This was confirmed by the higher F:P ratio and 
higher MFC of the cluster 1 during challenge (Figure 
7). Interestingly Ithurbide et al. (2022) showed that 
Low_LGV goats had higher F:P ratio during early lac-
tation, indicating a link between resilience and body fat 
mobilization.

Cluster 1 was also defined by lower Glu and Glu6P 
during the recovery period and from the beginning 
of challenge respectively. Milk G6P is synthetized in 

the mammary gland from Glu and is a precursor for 
NADPH via the pentose phosphate pathway that pro-
vides reduction equivalents for preventing oxidative 
stress and also for reductive biosyntheses (Garnsworthy 
et al., 2006). Several studies report an increased G6P 
milk concentration during feed restriction (Chaiyabutr 
et al., 1981; Faulkner and Peaker, 1982; Larsen et al., 
2016; Billa et al., 2020). Zachut et al. (2016) suggested 
that the increase in milk Glu6P concentrations observed 
at the onset of lactation may be due to activation of 
the pentose phosphate pathway in mammary epithelial 
cells. The Glu6P increase would meet the NADPH 
requirements for the attenuation of cellular oxidative 
stress during periods of increased fatty acids oxidation. 
The lower Glu6P among cluster 1 goats might indicate 
a lower ability to mitigate oxidative stress. Surprisingly, 
cluster 1 also presented higher Gal concentration dur-
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Figure 7. Mean curves of the milk performance and weight within the 3 clusters identified by unsupervised clustering in 138 goat through 
a 2-d underfeeding challenge: daily milk yield (MY), ratio of fat content to protein content (F:P), fat content (MFC), protein content (MPC), 
somatic cells score (SCS) and weight (Weight). These curves are corrected for the year x facility effect with a functional linear regression. The 
red area indicates the time period during which the variables are significantly different between clusters (permutation test, 5% critical value). 
The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris.
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ing the recovery period. Similarly to Glu6P, Gal is syn-
thetized in the mammary gland from Glu. That might 
indicate that Glu is preferably used for Gal synthesis 
rather than Glu6P among cluster 1 animals, which 
might increase oxidative stress. Interestingly, Ben Ab-
delkrim et al. (2023) found that Glu and BOHB milk 
concentrations were part of the most informative milk 
components for determining membership of clusters 
of milk metabolite curves through a 2 d underfeeding 
challenge in late lactating dairy goats.

The glutamate, malate and NH2 decrease during 
challenge tended to be greater in cluster 1 with a slower 
increase during recovery. Overall, cluster 1 corresponds 
to goats that have stronger modifications of milk me-
tabolite concentrations during challenge. The idea that 
a better resilience is associated with smaller metabolic 
variations is explored in several articles. For example 
lower variation and autocorrelation of the daily milk 
yield (Poppe et al., 2020) or the relative height of the 
milk yield maximum compared with the milk yield in 
late lactation (Arnal et al., 2019). The comparison of 
the milk composition and SCS between clusters showed 
that cluster 1 had significantly higher SCS during the 
recovery period. Milk SCS in goats is an indicator of 
inflammation and bacterial mastitis (Paape et al., 
2001; Luengo et al., 2004; Moroni et al., 2005). Interest-
ingly cluster 1 also showed higher LDH concentration 
around d 4 after the beginning of the challenge. En-
dogenous LDH in milk originates mainly from somatic 
cells, leucocytes and invading microorganisms (Larsen, 
2005) and is an indicator of inflammation (Krogh et 
al., 2020). Increased LDH during feed restriction could 
be partly explained by cell damage of mammary tissue 
during the challenge period and was also reported in 
Ben Abdelkrim et al. (2023). Inflammation imposes a 
metabolic burden, because it requires glucose and other 
limiting nutrients in ruminants, and may explain de-
creased concentrations of glucogenic milk metabolites 
concomitant with increased SCS in cluster 1 (Bouvier-
Muller et al.,. 2016; Kvidera et al., 2017). Our study 
suggests that the goats of the cluster 1 were character-
ized by lower resilience mechanisms, related both to 
energy metabolism and the inflammatory system.

CONCLUSION

This study presented the curves of 13 milk metabo-
lites and 1 enzyme through an underfeeding challenge 
among 138 early lactating primiparous goats selected 
for extreme functional longevity. A novel functional 
PCA approach was used to model the milk metabolites 
curves, allowing to address the dynamic and multifac-
torial patterns of the responses. The approach did not 
discriminate the 2 longevity lines, highlighting a large 

variability within lines. Unsupervised clustering of such 
profiling however showed distinct metabolite curves 
associated with length of productive life in the flock. 
Moreover, we found that Cholesterol, Glu6P, Glu, TAG 
and BOHB were the most discriminating metabolites 
for the cluster. These results confirm that multivariate 
analysis of non-invasive milk measures shows potential 
for deriving new resilience phenotypes.
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