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ReseaRch Methods and RepoRting

Multivariate and network meta-analysis of multiple outcomes 
and multiple treatments: rationale, concepts, and examples
Richard D Riley,1 Dan Jackson,2 Georgia Salanti,3,4 Danielle L Burke,1 Malcolm Price,5  
Jamie Kirkham,6 Ian R White2,7

Organisations such as the National 
Institute for Health and Care Excellence 
require the synthesis of evidence from 
existing studies to inform their 
decisions—for example, about the best 
available treatments with respect to 
multiple efficacy and safety outcomes. 
However, relevant studies may not 
provide direct evidence about all the 
treatments or outcomes of interest. 
Multivariate and network meta-analysis 
methods provide a framework to 
address this, using correlated or 

indirect evidence from such studies 
alongside any direct evidence. In this 
article, the authors describe the key 
concepts and assumptions of these 
methods, outline how correlated and 
indirect evidence arises, and illustrate 
the contribution of such evidence in 
real clinical examples involving 
multiple outcomes and multiple 
treatments

Meta-analysis methods combine quantitative evidence 
from related studies to produce results based on a whole 
body of research. As such, meta-analyses are an integral 
part of evidence based medicine and clinical decision 
making—for example, to guide which treatment should 
be recommended for a particular condition. Most meta-
analyses are based on combining results (eg, treatment 
effect estimates) extracted from study publications or 
obtained directly from study authors. Unfortunately, 
relevant studies may not evaluate the same sets of 
treatments and outcomes, which create problems for 
meta-analysis. For example, in a meta-analysis of 28 
trials to compare eight thrombolytic treatments after 
acute myocardial infarction, it is unrealistic to expect 
every trial to compare all eight treatments1;in fact a 
different set of treatments was examined in each trial, 
with the maximum number of trials per treatment only 
eight.1 Similarly, relevant clinical outcomes may not 
always be available. For example, in a meta-analysis 
to summarise the prognostic effect of progesterone 
receptor status in endometrial cancer, four studies 
provided results for both cancer specific survival and 
progression-free survival, but other studies provided 
results for only cancer specific survival (two studies) or 
progression-free survival (11 studies).2

Studies that do not provide direct evidence about 
a particular outcome or treatment of interest are 
often excluded from a meta-analysis evaluating that 
outcome or treatment. This is unwelcome, especially 
if the participants are otherwise representative of the 
population, clinical settings, and condition of interest. 
Research studies require considerable costs and time 
and involve precious patient involvement, and simply 
discarding patients could be viewed as research 
waste.345 Statistical models for multivariate and 
network meta-analysis address this by simultaneously 
analysing multiple outcomes and multiple treatments, 
respectively. This allows more studies to contribute 
towards each outcome and treatment comparison. 
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Summary pointS
•   Meta-analysis methods combine quantitative evidence from related studies to 
produce results based on a whole body of research

•   Studies that do not provide direct evidence about a particular outcome or 
treatment comparison of interest are often discarded from a meta-analysis of 
that outcome or treatment comparison

•   Multivariate and network meta-analysis methods simultaneously analyse 
multiple outcomes and multiple treatments, respectively, which allows more 
studies to contribute towards each outcome and treatment comparison

•   Summary results for each outcome now depend on correlated results from 
other outcomes, and summary results for each treatment comparison now 
incorporate indirect evidence from related treatment comparisons, in addition 
to any direct evidence

•   This often leads to a gain in information, which can be quantified by the 
“borrowing of strength” statistic, BoS (the percentage reduction in the 
variance of a summary result that is due to correlated or indirect evidence)

•   Under a missing at random assumption, a multivariate meta-analysis of 
multiple outcomes is most beneficial when the outcomes are highly correlated 
and the percentage of studies with missing outcomes is large

•   Network meta-analyses gain information through a consistency assumption, 
which should be evaluated in each network where possible. There is usually 
low power to detect inconsistency, which arises when effect modifiers are 
systematically different in the subsets of trials providing direct and indirect 
evidence

•   Network meta-analysis allows multiple treatments to be compared and ranked 
based on their summary results. Focusing on the probability of being ranked 
first is, however, potentially misleading: a treatment ranked first may also have 
a high probability of being ranked last, and its benefit over other treatments 
may be of little clinical value

•   Novel network meta-analysis methods are emerging to use individual 
participant data, to evaluate dose, to incorporate “real world” evidence from 
observational studies, and to relax the consistency assumption by allowing 
summary inferences while accounting for inconsistency effects
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Furthermore, in addition to using direct evidence, 
the summary result for each outcome now depends 
on correlated results from related outcomes, and the 
summary result for each treatment comparison now 
incorporates indirect evidence from related treatment 
comparisons.6 7 The rationale is that by observing 
the related evidence we learn something about the 
missing direct evidence of interest and thus gain some 
information that is otherwise lost; a concept sometimes 
known statistically as “borrowing strength.”6 8

Multivariate and, in particular, network meta-
analyses are increasingly prevalent in clinical journals. 
For example, a review up to April 2015 identified 456 
network meta-analyses of randomised trials evaluating 
at least four different interventions.9 Only six of these 
456 were published before 2005, and 103 were 
published in 2014 alone, emphasising a dramatic 
increase in uptake in the past 10 years (fig 1). The BMJ 
has published more than any other journal (28; 6.1%). 
Methodology and tutorial articles about network meta-
analysis have also increased in number, from fewer 
than five in 2005 to more than 30 each year since 2012 
(fig 1).10

Here we explain the key concepts, methods, and 
assumptions of multivariate and network meta-
analysis, building on previous articles in The BMJ.11-13  
We begin by describing the use of correlated effects 
within a multivariate meta-analysis of multiple 
outcomes and then consider the use of indirect 
evidence within a network meta-analysis of multiple 
treatments. We also highlight two statistics (BoS and 
E) that summarise the extra information gained, 
and we consider key assumptions, challenges, and 
novel extensions. Real examples are embedded 
throughout.

Correlated effects and multivariate meta-analysis of 
multiple outcomes

Many clinical studies have more than one outcome 
variable; this is the norm rather than the exception. 
These variables are seldom independent and so 
each must carry some information about the others. 
If we can use this information, we should.

Bland 201114

Many clinical outcomes are correlated with each 
other, such as systolic and diastolic blood pressure in 
patients with hypertension, level of pain and nausea 
in patients with migraine, and disease-free and overall 
survival times in patients with cancer. Such correlation 
at the individual level will lead to correlation between 
effects at the population (study) level. For example, in 
a randomised trial of antihypertensive treatment, the 
estimated treatment effects for systolic and diastolic 
blood pressure are likely to be highly correlated. 
Similarly, in a cancer cohort study the estimated 
prognostic effects of a biomarker are likely to be 
highly correlated for disease-free survival and overall 
survival. Correlated effects also arise in many other 
situations, such as when there are multiple time 
points (longitudinal data),15 multiple biomarkers 
and genetic factors that are interrelated,16 multiple 
effect sizes corresponding to overlapping sets of 
adjustment factors,17 multiple measures of accuracy 
or performance (eg, in regard to a diagnostic test or 
prediction model),18 and multiple measures of the 
same construct (eg, scores from different pain scoring 
scales, or biomarker values from different laboratory 
measurement techniques19). In this article we broadly 
refer to these as multiple correlated outcomes.

As Bland notes,14 correlation among outcomes 
is potentially informative and worth using. A 
multivariate meta-analysis addresses this by analysing 
all correlated outcomes jointly. This is usually achieved 
by assuming multivariate normal distributions,7 20 and 
it generalises standard (univariate) meta-analysis 
methods described previously in The BMJ.12 Note 
that the outcomes are not amalgamated into a single 
outcome; the multivariate approach still produces a 
distinct summary result for each outcome. However, the 
correlation among the outcomes is now incorporated 
and this brings two major advantages compared with 
a univariate meta-analysis of each outcome separately. 
Firstly, the incorporation of correlation enables each 
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Fig 1 | Publication of network meta-analysis articles 
over time. (a): Applied articles reporting a systematic 
reviews using network meta-analysis to compare at least 
four treatments published between 2005 and 2014, as 
assessed by Petropoulou et al 2017.9 *Six were also 
published before 2005, and 43 were published in 2015 
up to April. (b): Methodological articles, tutorials, and 
articles with empirical evaluation of methods for network 
meta-analysis published between 2005 and 2014, as 
assessed by Efthimiou et al 201610 and available from 
www.zotero.org/groups/wp4_-_network_meta-analysis

http://www.zotero.org/groups/wp4_-_network_meta-analysis
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outcome’s summary result to make use of the data for 
vall outcomes. Secondly, studies that do not report all 
the outcomes of interest can now be included.21 This 
allows more studies and evidence to be included and 
consequently can lead to more precise conclusions 
(narrower confidence intervals). More technical details 

and software options are provided in supplementary 
material 1.22-25 We illustrate the key concepts through 
two examples.

Example 1: Prognostic effect of progesterone for 
cancer specific survival in endometrial cancer
In the endometrial cancer example, prognostic results 
for cancer specific survival are missing in 11 studies 
(1412 patients) that provide results for progression-
free survival. A traditional univariate meta-analysis 
for cancer specific survival simply discards these 11 
studies but they are retained in a multivariate analysis 
of progression-free survival and cancer specific 
survival, which uses their strong positive correlation 
(about 0.8). This leads to important differences in 
summary results, as shown for cancer specific survival 
in the forest plot of figure 2. The univariate meta-
analysis for cancer specific survival includes just the 
six studies with direct evidence and gives a summary 
hazard ratio of 0.61 (95% confidence interval 0.38 
to 1.00; I2=70%), with the confidence interval just 
crossing the value of no effect. The multivariate meta-
analysis includes 17 studies and gives a summary 
hazard ratio for cancer specific survival of 0.48 (0.29 
to 0.79), with a narrower confidence interval and 
stronger evidence that progesterone is prognostic for 
cancer specific survival. The latter result is also more 
similar to the prognostic effect for progression-free 
survival (summary hazard ratio 0.43, 95% confidence 
interval 0.26 to 0.71, from multivariate meta-analysis), 
as perhaps might be expected.

Example 2: Plasma fibrinogen concentration as a 
risk factor for cardiovascular disease
The Fibrinogen Studies Collaboration examine whether 
plasma fibrinogen concentration is an independent 
risk factor for cardiovascular disease using data from 
31 studies.17 All 31 studies allowed a partially adjusted 
hazard ratio to be obtained, where the hazard ratio for 
fibrinogen was adjusted for the same core set of known 
risk factors, including age, smoking, body mass index, 
and blood pressure. However, a more “fully” adjusted 
hazard ratio, additionally adjusted for cholesterol 
level, alcohol consumption, triglyceride levels, and 
diabetes, was only calculable in 14 studies. When the 
partially and fully adjusted estimates are plotted in 
these 14 studies, there is a strong positive correlation 
(almost 1, ie, a near perfect linear association) between 
them (fig 3).

A standard (univariate) random effects meta-analysis 
of the direct evidence from 14 trials gives a summary 
fully adjusted hazard ratio of 1.31 (95% confidence 
interval 1.22 to 1.42; I2=29%), which indicates that 
a 1 g/L increase in fibrinogen levels is associated, on 
average, with a 31% relative increase in the hazard 
of cardiovascular disease. However, a multivariate 
meta-analysis of partially and fully adjusted results 
incorporates information from all 31 studies, and thus 
an additional 17 studies (>70 000 patients), to utilise 
the large correlation (close to 1). This produces the 
same fully adjusted summary hazard ratio of 1.31, but 
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Univariate meta-analysis: Overall
Multivariate meta-analysis: Overall 
(BoS = 31.6%)
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Fig 2 | Forest plot for prognostic effect of progesterone on cancer specific survival 
in endometrial cancer, with summary results for univariate and multivariate meta-
analysis. The multivariate meta-analysis of cancer specific survival and progression-free 
survival used the approach of Riley et al to handle missing within study correlations, 
through restricted maximum likelihood estimation.26 Heterogeneity was similar in both 
univariate and multivariate meta-analyses (I2=70%)
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Fig 3 | Strong observed correlation (linear association) between the log hazard ratio 
estimates of the partially and “fully” adjusted effect of fibrinogen on the rate of 
cardiovascular disease. The size of each circle is proportional to the precision (inverse 
of the variance) of the fully adjusted log hazard ratio estimate (ie, larger circles indicate 
more precise study estimates). Hazard ratios were derived in each study separately from 
a Cox regression, indicating the effect of a 1 g/L increase in fibrinogen levels on the rate 
of cardiovascular disease
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gives a more precise confidence interval (1.25 to 1.38) 
owing to the extra information gained (see forest plot 
in supplementary material 2).

indirect evidence and network meta-analysis of 
multiple treatments
Let us now consider the evaluation of multiple 
treatments. A meta-analysis that evaluates a particular 
treatment comparison (eg, treatment A v treatment B) 
using only direct evidence is known as a pairwise 
meta-analysis. When the set of treatments differs 
across trials, this approach may greatly reduce the 
number of trials for each meta-analysis and makes it 
hard to formally compare more than two treatments. A 
network meta-analysis addresses this by synthesising 
all trials in the same analysis while utilising indirect 
evidence.22 27 28 Consider a simple network meta-
analysis of three treatments (A, B, and C) evaluated 
in previous randomised trials. Assume that the 
relative treatment effect (ie, the treatment contrast) 
of A versus B is of key interest and that some trials 
compare treatment A with B directly. However, there 
are also other trials of treatment A versus C and other 
trials of treatment B versus C, which provide no direct 
evidence of the benefit of treatment A versus B, as they 
did not examine both treatments. Indirect evidence of 
treatment A versus B can still be obtained from these 
trials under the so-called “consistency” assumption 
that, on average across all trials regardless of the 
treatments compared:

Treatment contrast of A v B=(treatment contrast of 
A v C)−(treatment contrast of B v C)

where treatment contrast is, for example, a log 
relative risk, log odds ratio, log hazard ratio, or mean 
difference. This relation will always hold exactly 
within any randomised trial where treatments A, B, 
and C are all examined. It is, however, plausible that it 
will also hold (on average) across those trials that only 
compare a reduced set of treatments, if the clinical and 
methodological characteristics (such as quality, length 
of follow-up, case mix) are similar in each subset 
(here, treatment A v B, A v C, and B v C trials). In this 
situation, the benefit of treatment A versus B can be 
inferred from the indirect evidence by comparing trials 
of just treatment A versus C with trials of just treatment 
B versus C, in addition to the direct evidence coming 
from trials of treatment A versus B (fig 4).

Under this consistency assumption there are different 
options for specifying a network meta-analysis model, 
depending on the type of data available. If there are 
only two treatments (ie, one treatment comparison) 
for each trial, then the simplest approach is a standard 
meta-regression, which models the treatment effect 
estimates across trials in relation to a reference 
treatment. The choice of reference treatment is 
arbitrary and makes no difference to the results of the 
meta-analysis. This can be extended to a multivariate 
meta-regression to accommodate trials with three or 
more groups (often called multi-arm trials).30 31 Rather 
than modelling treatment effect estimates directly, for 

a binary outcome it is more common to use a logistic 
regression framework to model the numbers and events 
available for each treatment group (arm) directly. 
Similarly, a linear regression or Poisson regression 
could be used to directly model continuous outcomes 
and rates in each group in each trial. When doing so 
it is important to maintain the randomisation and 
clustering of patients within trials30 and to incorporate 
random effects to allow for between trial heterogeneity 
in the magnitude of treatment effects.12 Supplementary 
material 1 gives more technical details (and software 
options28 32) for network meta-analysis, and a fuller 
statistical explanation is given elsewhere.30

After estimation of a network meta-analysis, a 
summary result is obtained for each treatment relative 
to the chosen reference treatment. Subsequently, other 
comparisons (treatment contrasts) are then derived 
using the consistency relation. For example, if C is 
the reference treatment in a network meta-analysis 
of a binary outcome, then the summary log odds 
ratio (logOR) for treatment A versus B is obtained by 
the difference in the summary logOR estimate for 
treatment A versus C and the summary logOR estimate 
for treatment B versus C. We now illustrate the key 
concepts through an example.

Example 3: Comparison of eight thrombolytic 
treatments after acute myocardial infarction
In the thrombolytics meta-analysis,1 the aim was 
to estimate the relative efficacy of eight competing 
treatments in reducing the odds of mortality by 30-35 
days; these treatments are labelled as A to H for brevity 
(see figure 5 for full names). A version of this dataset 
containing seven treatments was previously published 
in The BMJ by Caldwell et al,13 and our investigations 
extend this work.

With eight treatments there are 28 pairwise 
comparisons of potential interest; however, only 13 of 
these were directly reported in at least one trial. This 
is shown by the network of trials (fig 5), where each 

Direct evidence

A B

A B

C

A vs B trials

Indirect evidence

A vs C trials B vs C trials

Fig 4 | Visual representation of direct and indirect 
evidence toward the comparison of A versus B (adapted 
from Song et al 201129)
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node is a particular treatment and a line connects 
two nodes when at least one trial directly compares 
the two respective treatments. For example, a direct 
comparison of treatment C versus A is available in 
eight trials, whereas a direct comparison of treatment 
F versus A is only available in one trial. With such 
discrepancy in the amount of direct evidence 
available for each treatment and between each pair 
of treatments it is hugely problematic to compare the 
eight treatments using only standard (univariate) 
pairwise meta-analysis methods.

Therefore, using the number of patients and deaths 
by 30-35 days in each treatment group, we applied a 
network meta-analysis through a multivariate random 
effects meta-regression model to obtain the summary 
odds ratios for treatments B to H versus A and 
subsequently all other contrasts.28 31 This allowed all 
28 trials to be incorporated and all eight treatments to 
be compared simultaneously, utilising direct evidence 
and also indirect evidence propagated through the 
network via the consistency assumption. The choice 
of reference group does not change the results, which 
are displayed in figure 6 and supplementary material 
3. The indirect evidence has an important impact 
on some treatment comparisons. For example, the 
summary treatment effect of H versus B in the network 
meta-analysis of all 28 trials (odds ratio 1.19, 95% 
confidence interval 1.06 to 1.35) is substantially 
different from a standard pairwise meta-analysis of 

two trials (summary odds ratio 3.87, 95% confidence 
interval 1.74 to 8.58).

Ranking treatments
After a network meta-analysis it is helpful to rank 
treatments according to their effectiveness. This 
process usually, although not always,33 requires using 
simulation or resampling methods.28 31 34 Such methods 
use thousands of samples from the (approximate) 
distribution of summary treatment effects, to identify 
the percentage of samples (probability) that each 
treatment has the most (or least) beneficial effect. 
Panel A in figure 7 shows the probability that each 
thrombolytic treatment was ranked most effective out 
of all treatments, and similarly second, third, and so on 
down to the least effective. Treatment G has the highest 
probability (51.7%) of being the most effective at 
reducing the odds of mortality by 30-35 days, followed 
by treatments E (21.5%) and B (18.3%).

Focusing on the probability of being ranked first is 
potentially misleading: a treatment ranked first might 
also have a high probability of being ranked last,35 and 
its benefit over other treatments may be of little clinical 
value. In our example, treatment G has the highest 
probability of being most effective, but the summary 
effect for G is similar to that for treatments B and E, and 
their difference is unlikely to be clinically important. 
Furthermore, treatment G is also fourth most likely 
to be the least effective (14.4%), reflecting a large 
summary effect with a wide confidence interval. By 
contrast, treatments B, E, and F have low probability 
(close to 0%) of being least effective. Thus, a treatment 
may have the highest probability of being ranked first, 
when actually there is no strong evidence (beyond 
chance) that it is better than other available treatments. 
To illustrate this further, let us add to the thrombolytics 
network a hypothetical new drug, called Brexitocin, 
for which no direct or indirect evidence exists. Given 
the lack of evidence, Brexitocin essentially has a 50% 
chance of being the most effective treatment but also a 
50% chance of being the least effective.

To help address this, the mean rank and the Surface 
Under the Cumulative RAnking curve (SUCRA) are 
useful.36 37 The mean rank gives the average ranking 
place for each treatment. The SUCRA is the area under 
a line plot of the cumulative probability over ranks 
(from most effective to least effective) (panel B in 
fig 7) and is just the mean rank scaled to be between 
0 and 1. A similar measure is the P score.33 For the 
thrombolytic network (now excluding Brexitocin), 
treatments B and E have the best mean ranks (2.3 and 
2.6, respectively), followed by treatment G (3.0). Thus, 
although treatment G had the highest probability of 
being ranked first, based on the mean rank it is now 
in third place.

Quantifying the information gained from correlated or 
indirect evidence
Copas et al (personal communication, 2017) propose 
that, in comparison to a multivariate or network meta-
analysis with the same magnitude of between trial 
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Fig 5 | Network map of the direct comparisons 
available in the 28 trials examining the effect of eight 
thrombolytics (labelled A to H) on 30-35 day mortality 
in patients with acute myocardial infarction. Each 
node (circle) represents a different treatment, and its 
size is proportional to the number of trials in which it 
is directly examined. The width of the line joining two 
nodes is proportional to the number of trials that directly 
compare the two respective treatments (the number is 
also shown next to the line). Where no line directly joins 
two nodes (eg, treatments C and D), this indicates that 
no trial directly compared the two respective treatments. 
A=streptokinase; B=accelerated altepase; C=alteplase; 
D=streptokinase+alteplase; E=tenecteplase; 
F=reteplase; G=urokinase; H=anti-streptilase
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heterogeneity, a standard (univariate) meta-analysis 
of just the direct evidence is similar to throwing away 
100×(1−E)% of the available studies. The efficiency (E) 
is defined as the:

E= (variance of the summary result based on 
direct and related evidence)÷ 
(variance of the summary result based on only 
direct evidence)

where related evidence refers to either indirect or 
correlated evidence (or both) and the variance relates 
to the original scale of the meta-analysis (so typically 

the log relative risk, log odds ratio, log hazard ratio, 
or mean difference). For example, if E=0.9 then a 
standard meta-analysis is similar to throwing away 
10% of available studies and patients (and events).

Let us also define n as the number of available studies 
with direct evidence (ie, those that would contribute 
towards a standard meta-analysis). Then, the extra 
information gained towards a particular summary meta-
analysis result by using indirect or correlated evidence 
can be expressed as having found direct evidence from 
a specific number of extra studies of a similar size to 
the n trials (see equation 1 in figure 8). For example, if 
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Fig 6 | Extended forest plot showing the network meta-analysis results for all comparisons where direct evidence was 
available in at least one trial. Each square denotes the odds ratio estimate for that study, with the size of the square 
proportional to the number of patients in that study, and the corresponding horizontal line denotes the confidence 
interval. The centre of each diamond denotes the summary odds ratio from the network meta-analysis, and the width 
of the diamond provides its 95% confidence interval. BoS denotes the borrowing of strength statistic, which can range 
from 0% to 100%
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there are nine studies providing direct evidence about 
an outcome for a standard univariate meta-analysis and 
E=0.9, then the advantage of using a multivariate meta-
analysis is similar to finding direct evidence for that 
outcome from one further study (see equation 2 in figure 
8 for derivation). We thus gain the considerable time, 
effort, and money invested in about one research study.

Jackson et al also propose the borrowing of strength 
(BoS) statistic,8 which can be calculated for each 
summary result within a multivariate or network meta-
analysis (see equation 3 in figure 8).

BoS provides the percentage reduction in the variance 
of a summary result that arises from (is borrowed from) 
correlated or indirect evidence. An equivalent way of 
interpreting BoS is the percentage weight in the meta-
analysis that is given to the correlated or indirect 
evidence.8 For example, in a network meta-analysis, 
a BoS of 0% indicates that the summary result is 
based only on direct evidence, whereas a BoS of 100% 
indicates that it is based entirely on indirect evidence. 
Riley et al show how to derive percentage study weights 

for multi-parameter meta-analysis models, including 
network and multivariate meta-analysis.38

Application to the examples
In the fibrinogen example, the summary fully adjusted 
hazard ratio has a large BoS of 53%, indicating that 
the correlated evidence (from the partially adjusted 
results) contributes 53% of the total weight towards 
the summary result. The efficiency (E) is 0.47, and thus 
using the correlated evidence is equivalent to having 
found fully adjusted results from about 16 additional 
studies (see equation 4 in figure 8 for derivation).

In the progesterone example, BoS is 33% for cancer 
specific survival, indicating that using the results for 
progression-free survival reduces the variance of the 
summary log hazard ratio for cancer specific survival 
by 33%. This corresponds to an E of 0.67, and the 
information gained from the multivariate meta-
analysis can be considered similar to having found 
cancer specific survival results from an additional 
three studies (see equation 5 in figure 8 for derivation).
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For the thrombolytics meta-analysis, BoS is shown in 
figure 6 for each treatment comparison where there was 
direct evidence for at least one trial. The value is often 
large. For example, the BoS for treatment H versus B is 
97.8%, as there are only two trials with direct evidence. 
This is similar to finding direct evidence for treatment 
H versus B from an additional 89 trials (see equation 
6 in figure 8 for derivation) of similar size to those 
existing two trials. BoS is 0% for treatment E versus B, 
as there was no indirect evidence for this comparison 
(fig 6). For comparisons not shown in figure 6, such as 
treatment C versus B, BoS was 100% because there was 
no direct evidence. Supplementary material 3 shows 
the percentage weight (contribution) of each study.

Challenges and assumptions of multivariate or network 
meta-analysis
Our three examples show the potential value of 
multivariate and network meta-analysis, and other 
benefits are discussed elsewhere.152039 The approaches 
do, however, have limitations.

The benefits of a multivariate meta-analysis may 
be small

multivariate and univariate models generally give 
similar point estimates, although the multivariate 
models tend to give more precise estimates. It is 
unclear, however, how often this added precision 
will qualitatively change conclusions of systematic 
reviews
 Trikalinos et al 201440

This argument, based on empirical evidence,40 might 
be levelled at the fibrinogen example. Although 
there was considerable gain in precision from using 
multivariate meta-analysis (BoS=53%), fibrinogen was 
clearly identified as a risk factor for cardiovascular 
disease in both univariate and multivariate analyses, 
and thus conclusions did not change. A counterview is 
that this in itself is useful to know.

The potential importance of a multivariate meta-
analysis of multiple outcomes is greatest when BoS 
and E are large, which is more likely when:

•  the proportion of studies without direct evidence for 
an outcome of interest is large

•  results for other outcomes are available in studies 
where an outcome of interest is not reported

•  the magnitude of correlation among outcomes is 
large (eg, >0.5 or < −0.5), either within studies or 
between studies.

In our experience, BoS and E are usually greatest in 
a network meta-analysis of multiple treatments—that 
is, more information is usually gained about multiple 
treatments through the consistency assumption 
than is gained about multiple outcomes through 
correlation. A multivariate meta-analysis of multiple 
outcomes is best reserved for a set of highly correlated 
outcomes, as otherwise BoS and E are usually small. 
Such outcomes should be identified and specified in 
advance of analysis, such as using clinical judgment 
and statistical knowledge, so as to avoid data dredging 
across different sets of outcomes. A multivariate meta-
analysis of multiple outcomes is also best reserved for a 
situation with missing outcomes (at the study level), as 
anecdotal evidence suggests that BoS for an outcome is 
approximately bounded by the percentage of missing 
data for that outcome. For example, in the fibrinogen 
example the percentage of trials with a missing fully 
adjusted outcome is 55% (=100%×17/31), and thus 
the multivariate approach is flagged as worthwhile 
as BoS could be as high as 55% for the fully adjusted 
pooled result. As discussed, the actual BoS was 53% 
and thus close to 55%, owing to the near perfect 
correlation between partially and fully adjusted 
effects. In contrast, in situations with complete data or 
a low percentage of missing outcomes, BoS (and thus a 
multivariate meta-analysis) is unlikely to be important. 
Also, multivariate meta-analysis cannot handle trials 
that do not report any of the outcomes of interest. 
Therefore, although multivariate meta-analysis can 
reduce the impact of selective outcome reporting in 
published trials, it cannot reduce the impact of non-
publication of entire trials (publication bias).

If a formal comparison of correlated outcomes is 
of interest (eg, to estimate the difference between 
the treatment effects on systolic and diastolic blood 
pressure), then this should always be done in a 
multivariate framework regardless of the amount 
of missing data in order to account for correlations 
between outcomes and thus avoid erroneous 
confidence intervals and P values.41 Similarly, a 
network meta-analysis of multiple treatments is 
preferable even if all trials examine all treatments, as 
a single analysis framework is required for estimating 
and comparing the effects of each treatment.

Model specification and estimation is non-trivial
Even when BoS is anticipated to be large, challenges 
might remain.20 Multivariate and network meta-analysis 

Equation 1: n ×
(1 – E )

E

Equation 2: 9 × = 1(1 – 0.9)
0.9

Equation 4: 14 × ≈ 16(1 – 0.47)
0.47

Equation 5: 6 × ≈ 3(1 – 0.67)
0.67

Equation 6: 2 × ≈ 89(1 – 0.022)
0.022

Equation 3: BoS = 100 × (1 – E )

number of 
extra studies = 

number of 
extra studies = 

number of 
extra studies = 

number of 
extra studies = 

number of 
extra studies = 

Fig 8 | Equations used to produce figures in the text
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models are often complex, and achieving convergence 
(ie, reliable parameter estimates) may require simplifi-
cation (eg, common between study variance terms for 
each treatment contrast, multivariate normality assump-
tion), which may be open to debate.20 42 43 For example, 
in a multivariate meta-analysis of multiple outcomes, 
problems of convergence and estimation increase as the 
number of outcomes (and hence unknown parameters) 
increase, and so applications beyond two or three out-
comes are rare. Specifically, unless individual partici-
pant data are available44 there can be problems obtain-
ing and estimating correlations among outcomes45 46;  
possible solutions include a bayesian framework utilis-
ing prior distributions for unknown parameters to bring 
in external information.47-49

Benefits arise under assumptions
But borrowing strength builds weakness. It builds 
weakness in the borrower because it reinforces 
dependence on external factors to get things done
 Covey 200850

This quote relates to qualities needed for an 
effective leader, but it is pertinent here as well. The 
benefits of multivariate and network meta-analysis 
depend on missing study results being missing at 
random.51 We are assuming that the relations that 
we do observe in some trials are transferable to other 
trials where they are unobserved. For example, in 
a multivariate meta-analysis of multiple outcomes 
the observed linear association (correlation) of 
effects for pairs of outcomes (both within studies 
and between studies) is assumed to be transferable 
to other studies where only one of the outcomes 
is available. This relation is also used to justify 
surrogate outcomes52 but often receives criticism 
and debate therein.53 Missing not at random may be 
more appropriate when results are missing owing to 
selective outcome reporting54 or to selective choice 
of analyses.55 A multivariate approach may still 
reduce selective reporting biases in this situation,39 
although not completely.

In a network meta-analysis of multiple treatment 
comparisons, the missingness assumption is also 
known as transitivity56 57; it implies that the relative 
effects of three or more treatments observed directly 
in some trials would be the same in other trials where 
they are unobserved. Based on this, the consistency 
assumption then holds. When the direct and indirect 
evidence disagree, this is known as inconsistency 
(incoherence). A recent review by Veroniki et al found 
that about one in eight network meta-analyses show 
inconsistency as a whole,58 similar to an earlier 
review.29

How do we examine inconsistency between direct and 
indirect evidence?
Treatment effect modifiers relate to methodological 
or clinical characteristics of the trials that influence 
the magnitude of treatment effects, and these may 
include length of follow-up, outcome definitions, study 

quality (risk of bias), analysis and reporting standards 
(including risk of selective reporting), and the patient 
level characteristics.29 59-61 When such effect modifiers 
are systematically different in the subsets of trials 
providing direct and indirect evidence, this causes 
genuine inconsistency. Thus, before undertaking a 
network meta-analysis it is important to select only 
those trials relevant for the population of clinical 
interest and then to identify any systematic differences 
in those trials providing different comparisons. For 
example, in the thrombolytics network, are trials 
of treatment A versus C and treatment A versus H 
systematically different from trials of treatment C 
versus H in terms of potential effect modifiers?62 If so, 
inconsistency is likely and so a network meta-analysis 
approach is best avoided.

It may be difficult to gauge the potential for 
inconsistency in advance of a meta-analysis. 
Therefore, after any network meta-analysis the 
potential for inconsistency should be examined 
statistically, although unfortunately this is often not 
done.63 The consistency assumption can be examined 
for each treatment comparison where there is direct 
and indirect evidence (seen as a closed loop within the 
network plot)58 64 65: here the approach of separating 
indirect from direct evidence65 (sometimes called 
node splitting or side splitting) involves estimating 
the direct and indirect evidence and comparing 
the two. The consistency assumption can also be 
examined across the whole network using design-
by-treatment interaction models,31 66 which allow an 
overall significance test for inconsistency. If evidence 
of inconsistency is found, explanations should be 
sought—for example, whether inconsistency arises 
from particular studies with a different design 
or those at a higher risk of bias.56 The network 
models could then be extended to include suitable 
explanatory covariates or reduced to exclude certain 
studies.62 If inconsistency remains unexplained, 
then the inconsistency terms may instead be 
modelled as random effects with mean zero, thus 
enabling overall summary estimates allowing for 
unexplained inconsistency.67-69 Other approaches for 
modelling inconsistency have been proposed,64 and 
we anticipate further developments in this area over 
the coming years. Often, however, power is too low to 
detect genuine inconsistency.70

In the thrombolytics example, the separating 
indirect from direct evidence approach found no 
significant inconsistency except for treatment H 
versus B, visible in figure 6 as the discrepancy 
between study 22, study 23, and all studies under 
the subheading “H v B”. However, when we applied 
the design-by-treatment interaction model there was 
no evidence of overall inconsistency. If the treatment 
H versus B studies differed in design from the other 
studies then it might be reasonable to exclude 
them from the network, but otherwise an overall 
inconsistency model (with inconsistency terms 
included as random effects) may provide the best 
treatment comparisons.
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novel extensions and hot topics
Incorporation of both multiple treatments and 
multiple outcomes
Previous examples considered either multiple 
outcomes or multiple treatments. However, interest 
is growing in accommodating both together to 
help identify the best treatment across multiple 
clinically relevant outcomes.71-76 This is achievable 
but challenging owing to the extra complexity of the 
statistical models required. For example, Efthimiou 
et al72 performed a network meta-analysis of 68 
studies comparing 13 active anti-manic drugs and 
placebo for acute mania. Two primary outcomes of 
interest were efficacy (defined as the proportion 
of patients with at least a 50% reduction in manic 
symptoms from baseline to week 3) and acceptability 
(defined as the proportion of patients with treatment 
discontinuation before three weeks). These are 
likely to be negatively correlated (as patients often 
discontinue treatment owing to lack of efficacy), 
so the authors extended a network meta-analysis 
framework to jointly analyse these outcomes and 
account for their correlation (estimated to be about 
−0.5). This is especially important as 19 of the 
68 studies provided data on only one of the two 
outcomes. Compared with considering each outcome 
separately, this approach produces narrower 
confidence intervals for summary treatment effects 
and has an impact on the relative ranking of some 
of the treatments (see supplementary material 4). 
In particular, carbamazepine ranks as the most 
effective treatment in terms of response when 
considering outcomes separately, but falls to fourth 
place when accounting for correlation.

Accounting for dose and class
Standard network meta-analysis makes no allowance 
for similarities between treatments. When some 
treatments represent different doses of the same 
drug, network meta-analysis models may be extended 
to incorporate sensible dose-response relations.77 
Similarly, when the treatments can be grouped into 
multiple classes, network meta-analysis models may 
be extended to allow treatments in the same class to 
have more similar effects than treatments in different 
classes.78

Use of individual participant data
Network meta-analysis using aggregate (published) 
data is convenient, but sometimes published reports are 
inadequate for this purpose—for example, if outcome 
measures are differently defined or if interest lies in 
treatment effects within subgroups. In these cases 
it may be valuable to collect individual participant 
data.79 As such, methods for network meta-analysis 
of individual participant data are emerging.60 80-85  
A major advantage is that these allow the inclusion of 
covariates at participant level, which is important if 
these are effect modifiers that would otherwise cause 
inconsistency in the network.

Inclusion of real world evidence
Interest is growing in using real world evidence from 
non-randomised studies in order to corroborate 
findings from randomised trials and to increase the 
evidence being used towards decision making. Network 
meta-analysis methods are thus being extended for this 
purpose,86 and a recent overview is given by Efthimiou 
et al,87 who emphasise the importance of ensuring 
compatibility of the different pieces of evidence for 
each treatment comparison.

Cumulative network meta-analysis
Créquit et al88 show that the amount of randomised 
evidence covered by existing systematic reviews 
of competing second line treatments for advanced 
non-small cell lung cancer was always substantially 
incomplete, with 40% or more of treatments, 
treatment comparisons, and trials missing. To 
address this, they recommend a new paradigm “by 
switching: from a series of standard meta-analyses 
focused on specific treatments (many treatments 
being not considered) to a single network meta-
analysis covering all treatments; and from meta-
analyses performed at a given time and frequently 
out-of-date to a cumulative network meta-analysis 
systematically updated as soon as the results of a 
new trial become available.” The latter is referred to 
as a live cumulative network meta-analysis, and the 
various steps, advantages, and challenges of this 
approach warrant further consideration.88 A similar 
concept is the Framework for Adaptive MEta-analysis 
(FAME), which requires knowledge of ongoing 
trials and suggests timing meta-analysis updates to 
coincide with new publications.89

Quality assessment and reporting
Finally, we encourage quality assessment of 
network meta-analysis according to the guidelines 
of Salanti et al90 and clear reporting of results using 
the PRISMA-NMA guidelines.91 The latter may be 
enhanced by the presentation of percentage study 
weights according to recent proposals,8 38 to reveal 
the contribution of each study towards the summary 
treatment effects.

Conclusions
Statistical methods for multivariate and network meta-
analysis use correlated and indirect evidence alongside 
direct evidence, and here we have highlighted their 
advantages and challenges. Table 1 summarises the 
rationale, benefits, and potential pitfalls of the two 
approaches. Core outcome sets and data sharing 
will hopefully reduce the problem of missing direct 
evidence,61 79 92 but are unlikely to resolve it completely. 
Thus, to combine indirect and direct evidence in a 
coherent framework, we expect applications of, and 
methodology for, multivariate and network meta-
analysis to continue to grow in the coming years.9 93
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Table 1 | Summary of multivariate and network meta-analysis approaches
Question Multivariate meta-analysis of multiple outcomes Network meta-analysis of multiple treatment comparisons
What is the context? Primary research studies report different outcomes, and thus a sepa-

rate meta-analysis for each outcome will utilise different studies
Randomised trials evaluate different sets of treatments, and thus a sep-
arate (pairwise) meta-analysis for each treatment comparison (contrast) 
will utilise different studies

What is the rationale 
for the method?

•   To allow all outcomes and studies to be jointly synthesised in a 
single meta-analysis model

•   To account for the correlation among outcomes to gain more 
information

•   To enable all treatments and studies to be jointly synthesised in a 
single meta-analysis model

•   To allow indirect evidence (eg, about treatment A v B from trials of 
treatment A v C and B v C) to be incorporated

What are the benefits 
of the method?

•   Accounting for correlation enables the meta-analysis result of each 
outcome to utilise the data for all outcomes

•   This usually leads to more precise conclusions (narrower confidence 
intervals)

•   It may reduce the impact of selective outcome reporting

•   It provides a coherent meta-analysis framework for summarising and 
comparing (ranking) the effects of all treatments simultaneously

•   The incorporation of indirect evidence often leads to substantially 
more precise summary results (narrower confidence intervals) for each 
treatment comparison

When should the  
method be considered?

•   When multiple correlated outcomes are of interest, with large 
correlation among them (eg, > 0.5 or < −0.5) and a high percentage 
of trials with missing outcomes; or

•   When a formal comparison of the effects on different outcomes is 
needed

•   When a formal comparison of the effects of multiple treatments is 
required

•   When recommendations are needed about the best (or few best) 
treatments

What are the potential 
pitfalls of the method?

•   Obtaining and estimating within study and between study correla-
tions is often difficult

•   The information gained by utilising correlation is often small and 
may not change clinical conclusions

•   The method assumes outcomes are missing at random, which may 
not hold when there is selective outcome reporting

•   Simplifying assumptions may be needed to deal with a large num-
ber of unknown variance parameters

•   Indirect evidence arises through a consistency assumption—ie, the 
relative effects of ≥3 treatments observed directly in some trials are 
(on average) the same in other trials where they are unobserved. This 
assumption should be checked but there is usually low power to detect 
inconsistency

•   Ranking treatments can be misleading owing to imprecise summary 
results—eg, a treatment ranked first may also have a high probability of 
being ranked last

•   Simplifying assumptions may be needed to deal with a large number of 
unknown variance parameters
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