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The paper gives an introduction to theory and application of multivariate and semipara�

metric kernel smoothing� Multivariate nonparametric density estimation is an often used

pilot tool for examining the structure of data� Regression smoothing helps in investigating

the association between covariates and responses� We concentrate on kernel smoothing

using local polynomial �tting which includes the Nadaraya�Watson estimator� Some the�

ory on the asymptotic behavior and bandwidth selection is provided� In the applications

of the kernel technique� we focus on the semiparametric paradigm� In more detail we

describe the single index model �SIM	 and the generalized partial linear model �GPLM	�
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Nonparametric smoothing methods serve three essential needs in statistical data analysis�

First they provide a �exible analysis tool� often based on interactive graphical data rep�

resentation �Scott� 
��	� Second they help in constructing a model from observations�

for example by comparison with concurrent models �M�uller� 
���	� Third they provide

pilot estimators in adaptation problems� see Newey and Stoker �
���	� Here we present

the multivariate kernel smoother� examine the asymptotic properties of both density and

regression estimators� and review applications of this technique in semiparametric statis�

tics�

� Multidimensional Smoothing with Kernels

In this section we review kernel smoothing methods for density and regression function

estimation� Many ideas� in particular for asymptotics� bandwidth choice and graphical

representation� are similar for both purposes� We can however only introduce a small part

on the available material� In particular� for the regression case we restrict the presentation

on the random design case� For a more detailed presentation of the subject we refer to

the monographs by H�ardle �
���� 
��
	� Scott �
��	� Wand and Jones �
���	 and Fan

and Gijbels �
���	�

��� Multivariate Kernel Density Estimation

The goal of multivariate nonparametric density estimation is to approximate the probabil�

ity density function �pdf	 f�t	 � f�t�� � � � � tq	 of the random variables T � �T�� � � � � Tq	
T �

The multivariate kernel density estimator in the q�dimensional case is de�ned as

bfh�t	 � 


n

nX
i��




h� � � � hq
K
�
Ti� � t�

h�
� � � � �

Tiq � tq
hq

�
� �
	

K denoting a multivariate kernel function K � IRq � IR� Note� that �
	 assumes that the

bandwidth h is a vector of bandwidths h � �h�� � � � � hq	
T �

What form shall the multidimensional kernel function K�u	 � K�u�� � � � � uq	 take on�

The easiest solution is to use a multiplicative kernel

K�u	 � K�u�	� � � � �K�uq	 �	

with K denoting an univariate kernel function� For univariate kernels with support ��
� 
�
�as the Epanechnikov kernel K�u	 � �����
�u�	 I�juj � 
		 observations in a cube around

t are used to estimate the density at the point t� An alternative is to use a genuine

multivariate kernel function K�u	� as e�g� the multivariate Epanechnikov

K�u	 � �
� uTu	 I�uTu � 
	�

�



This type of multivariate kernels can be obtained from univariate by de�ning

K�u	 � K�kuk	� ��	

where kuk �
p
uTu denotes the Euclidean norm of the vector u� Note that we use � to

indicate that the appropriate constant has to be multiplied� Kernels of the form ��	 use

observations from a ball around t to estimate the pdf at t� This type of kernels is usually

called spherical or radialsymmetric since K�u	 has the same value for all u on a sphere

around zero� Figure 
 shows the contour lines from a bivariate product and a bivariate

radialsymmetric kernel on the left and right hand side� respectively�
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Figure 
� Contours from bivariate product �left	 and bivariate ra�
dialsymmetric �right	 Epanechnikov kernel�

Note that the kernel weights in Figure 
 correspond to equal bandwidth in each direc�

tion� i�e� h � �h�� h�	
T � �
� 
	T � When we use di�erent bandwidths� the observations

around t in the density estimate bfh�x	 will be used with di�erent weights in both dimen�

sions�

Another approach is to use a nonsingular� symmetric bandwidth matrixH� The general

form for the multivariate density estimator is then

bfH�t	 � 


n

nX
i��




det�H	
K
n
H���Ti � t	

o
�




n

nX
i��

KH �Ti � t	 � ��	

see Silverman �
���	 and Scott �
��	� Here we introduce the short notation

KH��	 � 


det�H	
K�H���	

analogously to Kh in the one�dimensional case� A bandwidth matrix includes all simpler

cases as special cases� An equal bandwidth h in all dimensions as in �
	 corresponds to

�



H � hIq where Iq denotes the q � q identity matrix� Di�erent bandwidths as in �
	 are

equivalent to H � diag�h�� � � � � hq	� the diagonal matrix with elements h�� � � � � hq�

What e�ect has the inclusion of o��diagonal elements� We will see that a good rule

of thumb is to use a bandwidth matrix proportional to b����� where b� is the covariance

matrix of the data� Hence� using such a bandwidth corresponds to a transformation of

the data� so that they have an identity covariance matrix� As a consequence we can use

bandwidth matrices to correct for correlation between the components of T � We have

plotted the contour curves of product and radialsymmetric Epanechnikov weights with

bandwidth matrix

H �

�� 
 ���

��� 


�A���

�

i�e� KH�u	 � K�H��u	� det�H	� in Figure �
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Figure � Contours from bivariate product �left	 and bivariate ra�
dialsymmetric �right	 Epanechnikov kernel� Bandwidth matrix�

In the following we will consider statistical properties as bias� variance� the issue of

bandwidth selection and applications for this estimator� We formulate all results for

estimators with bandwidth matrices and multivariate kernel function K�

����� Bias� Variance and Asymptotics

A consequence of the standard assumption on the non�negative kernel KZ
K�u	 du � 
 ��	

is that the estimate bfH is a density function� i�e�
R bfH�t	 dt � 
� The estimate is consistent

in any point t of continuity of f �

bfH�t	 � 


n

nX
i��

KH �Ti � t	 � f�t	 � op�
	� ��	

�



if n � 	� H � � and nH �	� see e�g� Ruppert and Wand �
���	� The derivation of

the mean squared error MSE and the mean integrated squared error MISE is analogous

to the one�dimensional case� We will sketch the asymptotic expansions and concentrate

on the asymptotic mean integrated squared error AMISE �

As usual� AMISE has a bias part AIB and a variance part AIV � The bias of bfH�t	 is
E bfH�t	� f�t	 and the integrated squared bias is

IB�H	 �
Z
fE bfH�t	� f�t	g� dt�

The asymptotic integrated squared bias AIB�H	 is the �rst order term of IB�H	� i�e�

IB�H	� AIB�H	

AIB�H	
� o�
	

as H� �� n�	 and nH�	� De�ne now the integrated variance

IV �H	 �
Z
Ef bfH�t	� E bfH�t	g� dt

and the asymptotic integrated variance IV accordingly to IB � Then the asymptotic mean

integrated squared error AMISE can be calculated as

AMISE �H	 � AIB�H	 � AIV �H	� ��	

A detailed derivation of the components of AMISE can be found in Scott �
��	 or Wand

and Jones �
���	 and the references therein� As in the univariate case we use a second

order Taylor expansion� Here and in the following we denote with rf the gradient and

with Hf the Hessian matrix of second order partial derivatives of a function �here f	�

Then the Taylor expansion of f��	 around t is

f�t� u	 � f�t	 � uTrf�t	 � 



uTHf �t	t� o�uTu	�

see Wand and Jones �
���� p� ��	� This leads to the expression

E bfH�t	 �
Z
KH�u� t	 f�u	 du �

Z
K�s	 f�t�Hs	 ds



Z
K�s	

�
f�t	 � sTHTrf �t	 � 



sTHTHf �t	Hs

�
ds� ��	

If we assume additionally to ��	 Z
uK�u	 du � �q� ��	Z
uuTK�u	 du � ���K	Iq� �
�	

then ��	 yields E bfH�t	� f�t	 
 �
�
���K	 trfHTHf �t	Hg� hence

AIB�H	 �



�
��
��K	

Z h
trfHTHf �t	Hg

i�
dt� �

	

�



As in univariate density estimation� the leading term of the variance part is the second

moment of the estimate� i�e�

Var
n bfH�t	o �




n

Z
fKH�u� t	g� du� 


n

n
E bfH�t	o�



Z 


n det�H	
K��s	 f�t�Hs	 ds



Z 


n det�H	
K��s	

n
f�t	 � sTHTrf �t	

o
ds


 


n det�H	
kKk�� f�t	� �
	

with kKk� denoting the q�dimensional L��norm of K� Hence

AIV �H	 �



n det�H	
kKk�� �
�	

and in summary we get the following AMISE formula for the multivariate kernel density

estimator

AMISE �H	 �



�
��
��K	

Z h
trfHTHf �t	Hg

i�
dt�




n det�H	
kKk��� �
�	

Let us now turn to the problem how to choose the AMISE optimal bandwidth� Again

this is the bandwidth which balances bias�variance tradeo� in AMISE � Denote h a scalar�

such that H � hH� and det�H�	 � 
� Then AMISE can be written as

AMISE �H	 �



�
h� ��

��K	
Z h

trfHT
�Hf �t	H�g

i�
dt�




nhq
kKk���

If we only allow changes in h the optimal orders for the smoothing parameter h and

AMISE are

h� � O�n������q�	� AMISE �h�H�	 � O�n������q�	�

Hence� this density estimator has a rather slow rate of convergence� especially if q is large�

If we consider H � hIq �the same bandwidth in all q dimensions	 and we �x the sample

size n� then the AMISE optimal bandwidth has to be considerably larger than in the

one�dimensional case to make sure that the estimate has reasonably small variability�

Some ideas of comparable sample sizes to reach the same quality of the density estimates

over di�erent dimensions can be found in Silverman �
���� p� ��	 and Scott and Wand

�
��
	� Moreover� the computational e�ort of this technique increases with the number

of dimensions q� Therefore� multidimensional density estimation is usually not practically

applied if q � ��

�



����� Bandwidth selection and Graphical Representation

The problem of an automatic� data�driven choice of the bandwidth H is of great impor�

tance in the multivariate case� In one or two dimensions we may choose an �appropriate�

bandwidth interactively by looking at the sequence of density estimates for di�erent band�

widths� But how can this be done in three� four or more dimensions� The problem of

graphical representation arises� which we address next�

Theoretically the bandwidth selection problem can be handled as in the one�dimensional

case� Typically� one searches for a global bandwidth H or a local bandwidth H�t	� Two

approaches are frequently used in both cases

� plug�in bandwidths� in particular �rule�of�thumb� bandwidths�

� resampling methods� in particular cross�validation and bootstrap�

We will introduce generalizations for Silverman�s rule�of�thumb and least squares cross�

validation to stress the analogy with the one�dimensional bandwidth selectors�

Rule�of�thumb Bandwidth Rule�of�thumb bandwidth selection provides a formula

arising from a reference distribution� Obviously� the pdf of a multivariate normal distri�

bution Nq����	 is a good candidate for a reference distribution in the multivariate case�

Suppose that the kernel K is Gaussian� i�e� the pdf of Nq��q� Iq	� Note that ���K	 � 


and kKk�� � �q��q�� in this case� Hence� from �
�	 and the fact thatZ
�trfHTHf �t	Hg�� dt � 


q���q�� det��	���

h
 tr�HT���H	� � ftr�HT���H	g�

i
we can easily derive rule�of�thumb formulae for di�erent assumptions on H and ��

In the simplest case� i�e� that we consider H and � to be diagonal matrices H �

diag�h�� � � � � hq	 and � � diag���
� � � � � � �

�
q 	� this leads to

ehj �

�
�

q � 

����q���

n����q����j� �
�	

Note that this formula coincides with Silverman�s rule�of�thumb in the case q � 
� see

Silverman �
���� p� ��	� Replacing the �j�s by estimates and noting the �rst factor is

always between ���� and 
����� we arrive at Scott�s rule

bhj � n����q���b�j� �
�	

see Scott �
��� p� 
�	�

�



It is di�cult to derive the rule�of�thumb for general H and �� However� �
�	 shows

that it might be a good idea to choose the bandwidth matrix H proportional to ����� In

this case we get as generalization of Scott�s rule

cH � n����q��� b����� �
�	

We remark that this rule is equivalent to apply a Mahalanobis transformation on the data

�to transform the estimated covariance matrix to identity	� then to compute the kernel

estimate with equal bandwidths h � n���q��� and �nally to retransform the estimated pdf

back to the original scale�

But before we go on with applications� let us consider what we can do� if we want

to use a kernel di�erent from the Gaussian� The idea of canonical kernels by Marron

and Nolan �
���	 can be easily extended to the multivariate case� Consider a kernel K
and all equivalent kernel functions K� � ���K����	 with � � �� Although that � is a

scalar� it is working on q�variates arguments of K� Now we have kK�k�� � ��qkKk�� and

���K�	 � �����K	� As in the one�dimensional case we choose � such that the bias�variance

tradeo� in AMISE �H�K�	 is independent of K�� This yields

��
��K��	 � kK��k�� � �� �

	 kKk��
��
��K	


���q���

�

�� again is called canonical bandwidth of the kernel K� Denote now KA a kernel function

with canonical bandwidth �A� and KB a kernel function with canonical bandwidth �B� �

Suppose we have used HA with kernel KA and we want to recompute the kernel density

estimate with kernel KB� Then it holds

AMISE �HA�KA	 
 AMISE �HB�KB	

if

HB �
�B�
�A�
HA� �
�	

which allows to adjust bandwidths for di�erent kernel as in the one�dimensional case�

Let us consider an example� Suppose we want to use the product Quartic kernel KQ

instead of the q�dimensional Gaussian KG which is faster in direct computation because

of its compact support on ��
� 
�� Which is the equivalent rule�of�thumb to �
�	 in this

case� Here we have �G� � f
��p�	gq��q��� and �Q� � ���� �q��q	���q��� which gives the

canonical bandwidths in Table 
 for dimensions q � 
� � � � � ��

The fourth column of Table 
 gives the factor which the rule�of�thumb bandwidth

matrix in �
�	 needs to be multiplied with to obtain the rule�of�thumb bandwidth for the

multiplicative Quartic kernel� Of course all rule�of�thumb bandwidths for other kernel

functions can be calculated in a similar way�

�



q �G� �Q� �Q� ��
G
�


 ������ ���� ���

 ������ 
��
�� �����

� ����
� 
����� �����

� ����

 
����� �����

� �����
 
���� ����

Table 
� Bandwidth adjusting factors for Gaussian and multiplica�
tive Quartic Kernel for di�erent dimensions q�

For a product kernel K holds ���K	 � ���K	 and kKk� � kKkq� when K denotes the

corresponding univariate kernel� A table of values ���K	� kKk�� can be found in H�ardle

�
��
� p���	 for example�

Principally� all plug�in methods for the one�dimensional kernel density estimation

can be extended to the multivariate case� See Wand and Jones �
���	 for details on

multivariate plug�in bandwidth selection�

Cross�validation As we mentioned before� the cross�validation method is fairly inde�

pendent of the special structure of the parameter or function estimate� Considering the

bandwidth choice problem� cross�validation techniques allow to adapt to a wider class of

density functions f than the rule�of�thumb approach� �Remember that the rule�of�thumb

bandwidth is optimal for the reference pdf� hence it may fail for multimodal densities for

instance�	

Recall� that in contrast to the rule�of�thumb approach� least squares cross�validation

for density estimation aims to estimate the ISE optimal bandwidth� Here we approximate

the integrated squared error

ISE �H	 �
Z
f bfH�t	� f�t	g� dt

�
Z bf �

H
�t	 dt� 

Z bfH�t	f�t	 dt� Z f ��t	 dt� �
�	

Apparently� this is the same formula as in the the one�dimensional case and with the

same arguments the last term of �
�	 can be ignored� The �rst term again can be easily

calculated from the data� Hence� only the second term of �
�	 is unknown and has to be

estimated� However� observe that
R bfH�t	f�t	 dt � E bfH�T 	� where the only new aspect

now is that T is q�dimensional� As in the one�dimensional case we estimate this term by

a leave�one�out estimator

d
E bfH�T 	 � 


n

nX
i��

bfH��i�Ti	

�



where bfH��i�t	 �



n� 


nX
i ��j�j��

KH�Tj � t	�

This yields the multivariate cross�validation criterion as a straightforward generalization

of CV in the one�dimensional case�

CV �H	 �



n� det�H	

nX
i��

nX
j��

K 	K
n
H���Tj � ti	

o
� 

n�n� 
	

nX
i��

nX
j��
j ��i

KH�Tj � Ti	�

The di�culty comes in by the fact that the bandwidth is now a q � q matrix H� In the

most general case� this means� we have to minimize over q�q�
	� parameters� Still� if we

assume H to be a diagonal matrix� this remains a q�dimensional optimization problem�

This holds as well for other cross�validation approaches� Multivariate resampling methods

for bandwidth selection are discussed in more detail in Sain� Baggerly and Scott �
���	�

Graphical Representation Consider now the problem to graphically display a multi�

variate density estimate� Assume �rst q � � Here we are still able to show the density

estimate in a ��dimensional plot� This is in particular useful if the estimated function

can be rotated on the computer screen interactively� For a two�dimensional presentation

a contour plot gives often more insight to the structure of the data�

In the following� we will use the credit data from Fahrmeir and Hamerle �
���	�

Fahrmeir and Tutz �
���	 for illustration� This data set consists of n � 
��� clients�

��� paid a credit back without problems� ��� did not� Among a number of categori�

cal variables �running account� previous credits� purpose� personal attributes etc�	 three

continuous variables are available� duration and amount of credit as well as age�

Figures �� � �upper panels	 display a two�dimensional density estimate

bfh�t	 � bfh�t�� t�	
for log�duration� log�amount and log�amount� log�age� respectively� We use the subscript

h to indicate that we used a diagonal bandwidth matrix H � diag�h�� h�	�

Additionally� Figures �� � �lower panels	 gives contour plots of these density estimates�

It is easily observed� that both distributions are rather symmetric� This is due to the

logarithmic transformation� In the duration direction a typical bimodal structure can be

recognized� This slightly reproduces in the amount direction� Obviously� both variables

are related with positive correlation�

Here� the bandwidth was chosen accordingly to the general  rule�of�thumb� �
�	�

which tends to oversmooth multimodal structures of the data� In fact� the durations of

credits are multiples of � months in most case� The two clear modes that we observe

are those for durations 
 and � months� In all applications of this paper we use the
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Quartic �Biweight	 product kernel� Recall that the the univariate Quartic kernel isK�u	 �

�������
� u�	�� I�juj � 
	�

For three�dimensional density estimates� it is always possible to hold one variable �xed

and to plot the density function only in dependence of the other variables� Alternatively�

we can again plot contours of the density estimate� which now mean three�dimensional

surfaces� Figure � shows this for the credit scoring variables� In the original version of

this plot� red� green and blue surfaces show the values of the density estimate at the levels

�in percent	 indicated on the right� Colors and the possibility to rotate the contours on

the computer screen eases the exploration of the data structures a lot� Of course� we are

restricted to two�dimensional plots here� However� one can clearly recognize the ellipsoidal

structure of the contour which indicates a relatively symmetric distribution�

��� Multivariate Kernel Regression

Multivariate nonparametric regression aims to estimate the functional relation between

a response variable Y and a multivariate explanatory variable T � i�e� the conditional

expectation

E�Y jT 	 � E �Y jT�� � � � � Tq	 � m�T 	� ��	


�



where as before T � �T�� � � � � Td	
T � The relation

E�Y jT 	 �
Z
yf�yjt	 dy �

R
yf�y� t	 dy

f�x	

leads by replacing the multivariate densities f�y� t	 by the kernel density estimate

bfh�H�y� t	 � 


n

nX
i��

Kh�Yi � y	KH�ti � t	

and f�t	 � fT �t	 by ��	 to the multivariate generalization of the Nadaraya�Watson esti�

mator�

cmH�t	 �
nP

i��
KH �Ti � t	Yi

nP
i��

KH �Ti � t	
� �
	

Hence� the multivariate kernel regression estimator is just a weighted sum of the observed

responses Yi� The denominator ensures that the weights sum up to 
� Depending on the

choice of the kernel� cmH�t	 is a weighted average of those Yi where Ti lies in a ball or cube

around t�

Note that the multivariate Nadaraya�Watson estimator is a local constant estimator�

i�e� the solution of

min
��

nX
i��

fYi � 
�g�KH�Ti � t	�

Replacing 
� by a polynomial in Ti�t yields a local polynomial kernel regression estimator�

This de�nition of local polynomial kernel regression is a straightforward generalization of

the univariate case� For details see Ruppert and Wand �
���	� Let us illustrate this with

the example of a local linear regression estimate� The minimization problem is here

min
�����

nX
i��

n
Yi � 
� � �Ti � t	T
�

o�KH�Ti � t	�

The solution of the problem can hence equivalently be written as

b
 � � b
�� b
T
� 	

T �
�
TTWT

���
TTWY �	

using the notations

T �

�BBB�

 �T� � t	T

���
���


 �Tn � t	T

�CCCA � Y �

�BBB�
Y�
���

Yn

�CCCA �

andW � diag �KH�T� � t	� � � � �KH�Tn � t		� In �	 b
� estimates the regression function

itself� whereas b
� estimates the partial derivatives w�r�t� the components T � In the

following we denote the multivariate local linear estimator as

cm��H�t	 � b
��t	� ��	


�



����� Bias� Variance and Asymptotics

The asymptotic conditional variance of the Nadaraya�Watson estimator cmH and the local

linear cm��H is identical and its derivation can be found in detail in Ruppert and Wand

�
���	�

Var fcmH�t	jT�� � � � � Tng � 


n det�H	
kKk��

���t	

f�t	
f
 � op�
	g� ��	

with ���t	 denoting the variance function in Var�Y jt	�
We sketch the derivation of the asymptotic conditional bias since we �nd remarkable

di�erences between both estimators� Denote M the second order Taylor expansion of

�m�T�	� � � � � m�Tn		
T � i�e�

M 
 m�t	

n � L�t	 �




Q�t	 � T

�� m�t	

rm�t	

�A�




Q�t	� ��	

with

L�t	 �

�BBB�
�T� � t	Trm�t	

���

�Tn � t	Trm�t	

�CCCA � Q�t	 �

�BBB�
�T� � t	THm�t	�T� � t	

���

�Tn � t	THm�t	�Tn � t	

�CCCA �
Additionally to ��	 it holds




n

nX
i��

KH�Ti � t	 �Ti � t	 � ���K	HHTrf�t	 � op�HH
T

d	�




n

nX
i��

KH�Ti � t	 �Ti � t	�Ti � t	T � ���K	f�t	HHTrf�t	 � op�HH
T 	�

see Ruppert and Wand �
���	� Therefore the denominator of the conditional asymp�

totic expectation of the Nadaraya�Watson estimator cmH is approximately f�t	� Using

E�YjT�� � � � � Tn	 � M and the Taylor expansion for M we have

E fcmHjT�� � � � � Tng

 ff�t	 � op�
	g��

�



n

nX
i��

KH�Ti � t	m�t	 �
nX
i��

KH�Ti � t	�Ti � t	Trm�t	

�
nX
i��

KH�Ti � t	�Ti � t	THm�t	�Ti � t	
�


 ff�t	g��

f�t	m�t	 � ���K	rmHHTrf � 



���K	f�t	 trfHTHm�t	Hg

�
�

This is summarized in the following theorem�

THEOREM �

The conditional asymptotic bias and variance of the multivariate Nadaraya�Watson kernel


�



regression estimator are

E fcmHjT�� � � � � Tng �m�t	 
 ���K	rm�t	
THHTrf�t	
f�t	

�




���K	 trfHTHm�t	Hg

Var fcmHjT�� � � � � Tng 
 


n det�H	
kKk��

���t	

f�t	

in the interior of the support of fT �

Recall the notation e� � �
� �� � � � � �	T for the �rst unit vector in IRd� Then we can

write the local linear estimator as

cm��H�t	 � eT�
�
TTWT

���
TTWY�

Now we have using �	 and ��	

E fcm��HjT�� � � � � Tng �m�t	

� eT�
�
TTWT

���
TTWT

���
�� m�t	

rm�t	

�A�




Q�t	

����m�t	

�




eT�
�
TTWT

���
TTWQ�t	

since eT� �m�t	�rm�t	T � � m�t	� Hence� the numerator of the asymptotic conditional bias

only depends on the quadratic term� This is one of the key points in asymptotics for local

polynomial estimators� If we would use local polynomials of order d and expand M up

to order d � 
� then only the term of order d � 
 would appear in the numerator of the

asymptotic conditional bias� Of course this to be paid with a more complicated structure

of the denominator�

THEOREM �

The conditional asymptotic bias and variance of the multivariate local linear regression

estimator are

E fcm��HjT�� � � � � Tng �m�t	 
 



���K	 trfHTHm�t	Hg

Var fcm��HjT�� � � � � Tng 
 


n det�H	
kKk��

���t	

f�t	

in the interior of the support of fT �

For all omitted details on the proof of Theorem  we refer again to Ruppert and Wand

�
���	� They also point out that the local linear estimate has same order conditional

bias in the interior as well as in the boundary of the support of fT � Fan� Gasser� Gij�

bels� Brockmann and Engel �
���	 point out that the multivariate local linear �t with

Epanechnikov kernel is a best linear estimator and has a minimax e�ciency of at least

����! among all estimators�


�



����� Bandwidth Selection and Practical Aspects

Principally� the methods to choose a smoothing parameter in nonparametric regression

are the same as in density estimation� Again� plug�in and resampling ideas are employed

for �nding a global bandwidth H or a local bandwidth H�t	�

For our presentation� we concentrate on the classical cross�validation bandwidth se�

lector� As a motivation� we introduce the residual sum of squares �RSS	 as a �naive	 way

to asses the goodness of �t

RSS�H	 � n��
nX

i��

fYi �cmH�Xi	g� � ��	

which is also called resubstitution estimate for the averaged squared error �ASE 	� Note�

that we concentrate on the Nadaraya�Watson estimator in the moment�

There is a problem with the RSS � Yi is used in cmH�Xi	 to predict itself� As a conse�

quence� ASE �H	 can be made arbitrarily small by letting H � � �in which case cmH is

an interpolation of the Yi�s	� This leads to the cross�validation function

CV �H	 � n��
nX

i��

fYi �cmH��i�Xi	g� � ��	

This function replaces cmH�Xi	 in ��	 with the leave�one�out�estimator

cmH��i�Xi	 �

P
j ��iKH�Xi �Xj	YjP
j ��iKH�Xi �Xj	

� ��	

and is equivalent to a di�erent approach� which multiplies each term in RSS �H	 by a

penalizing function that is correcting for the downward bias of the resubstitution estimate�

For the Nadaraya�Watson estimator

CV �H	 �



n

nX
i��

fYi �cmH��i�Xi	g�

�



n

nX
i��

fYi �cmH�Xi	g�
	
Yi �cmH��i�Xi	

Yi �cmH�Xi	


�
��	

and

Yi �cmH�Xi	

Yi �cmH��i�Xi	
�

P
j
KH�Xi �Xj	Yj � Yi

P
j
KH�Xi �Xj	P

j ��i
KH�Xi �Xj	Yj � Yi

P
j ��i

KH�Xi �Xj	
�
P
j ��i

KH�Xi �Xj	P
j
KH�Xi �Xj	

� 
� KH��	P
j
KH�Xi �Xj	

� ���	

Therefore the cross�validation approach is equivalent to the penalizing functions concept

and shares the same asymptotic properties� Note that ���	 is a function of the i�th


�



diagonal element of the smoother matrix� More precisely� cross�validation is equivalent

with generalized cross�validation �Craven and Wahba� 
���	 in this case� H�ardle� Hall

and Marron �
���	 show asymptotic optimality of the selected bandwidth� the rate of

convergence is slow though� An improved bandwidth selection is discussed in H�ardle�

Hall and Marron �
��	�

We want to remark that ��	 and ���	 also imply that the computation of CV �H	 needs

actually not more computational e�ort than the computation of mH�X�	� � � � � mH�Xn	�

However� the optimization over a matrix H might be cumbersome� hence diagonal band�

width matrices �or even H � hIq with appropriate standardization of the data	 are still

preferred in practice�

Before we consider cross�validation bandwidth selection in the local linear case� we

want to comment on the practical computation of the estimator� Principally� since multi�

variate kernel regression estimators can be expressed as local polynomial estimators� their

computation can be done by any statistical package that is able to run weighted least

squares regression� However� since we estimate a function� this weighted least squares

regression has to be performed in all observation points or on a grid of points in IRq�

Therefore� explicit formulae are useful�

We will give an formula for the multivariate local linear estimator in the following�

Consider for a �xed point t the sums

S� � S��t	 �
nX
i��

KH�Ti � t	

S� � S��t	 �
nX
i��

KH�Ti � t	�Ti � t	

S� � S��t	 �
nX
i��

KH�Ti � t	�Ti � t	�Ti � t	T

T� � T��t	 �
nX
i��

KH�Ti � t	Yi

T� � T��t	 �
nX
i��

KH�Ti � t	�Ti � t	Yi�

Note that S� and T� are q�variate vectors and that S� is a q � q matrix� Then for the

local linear estimate we can write

b
 �

�� S� ST
�

S� S�

�A���� T�
T�

�A � ��
	

For the regression function we need only the �rst component eT�
b
� Applying block�wise

matrix inversion we obtain

eT�

�� S� ST
�

S� S�

�A�� � �
S� � ST

� S��� S�
��� �� 
 � ST

� S���

�


�



and hence cm��H�t	 �
T� � ST

� S��� T�
S� � ST

� S��� S�
� ��	

The cross�validation criterion here is a weighted RSS as in ��	� If we denote the

leave�one�out estimator cm��H��i�t	 and de�ne its components accordingly� we observe

S���i � S� � KH��	� S���i � S�� S���i � S�
T���i � T� � YiKH��	� T���i � T��

This means cm��H��i�t	 �
T� � YiKH��	� ST

� S��� T�
S� � KH��	� ST

� S��� S�
which yields in analogy to ���	

Yi �cmH�Xi	

Yi �cmH��i�Xi	
� 
� KH��	

S� � ST
� S��� S�

� ���	

As in the Nadaraya�Watson case� ���	 is a function of the i�th diagonal element of the

smoother matrix� A summary of bandwidth selection methods other than cross�validation

can be found in particular in Fan and Gijbels �
���	� They also cover rule�of�thumb

approaches�
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Figure �� Two�dimensional Nadaraya�Watson Estimate�
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Recall that ��	 estimates the regression function only in one point t� To estimate

the regression plane we have to apply ��	 on a two�dimensional grid of points� The

WARPing technique �binning	 described in H�ardle and Scott �
��	 and applied to local

polynomial kernel regression by Fan and Marron �
���	� Fan and M�uller �
���	� can be

used to speed up calculations� See also Wand �
���	 for an analysis of fast computation

methods for multivariate kernel estimation�
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Figure �� Two�dimensional Local Linear Estimate�

Figures � and � show the bivariate Nadaraya�Watson and local linear estimate for

simulated data� The underlying curve is in fact an additive combination of a sine function

in the �rst and a linear function in the second argument� Note� that we have chosen the

same bandwidth in both estimates�

Of course� nonparametric kernel regression estimation is not limited to bivariate dis�

tributions� A practical issue is the graphical display for higher dimensional multivariate

functions� This was already considered when we discussed the graphical representation of

multivariate density estimates� The corresponding remarks apply here again� The general

problem in multivariate nonparametric estimation is the curse of dimensionality� Recall

that the nonparametric regression estimators are based on the idea of local �weighted	

averaging� In higher dimensions the observations are usually sparsely distributed for

reasonable sample sizes� and consequently estimators based on local averaging perform

unsatisfactorily in this situation�






Technically� one can explain this e�ect by looking at the AMISE again� Consider a

multivariate regression estimator with the same bandwidth h for all components� e�g� a

Nadaraya�Watson or local linear estimator with bandwidth matrix H � hIq� Here the

asymptotic MISE also depends on q�

AMISE �n� h	 �



nhq
C� � h�C��

where C� and C� are constants that neither depend on n nor h� If we derive the optimal

bandwidth we �nd that hopt � n������q� and hence the rate of convergence for AMISE is

n������q�� One can clearly see that the speed of convergence decreases dramatically for

higher dimensions q�

� Semiparametric Generalized Regression Models

As the name suggests� semiparametric models combine two elements� one of them to

be estimated nonparametrically� the other one requiring the estimation of a set of �nite

dimensional parameters� In this section we concentrate on single index and generalized

partial linear models�

Often a canonical partitioning of the explanatory variables exists� In particular� if

there are binary or discrete explanatory variables we keep them separate from the other

design variables� In the following we denote by T � �T�� � � � � Tq	
T a vector of continuous

explanatory variables and refer to X � �X�� � � � � Xp	
T as the discrete part of the variables�

Semiparametric generalized linear models are widely used in modeling binary choice�

i�e� in situations where the response variable has two alternatives� Recall the example

on credit scoring which was introduced previously� In the analysis of discrete response

variables one typically models the expected value of the response as a nonlinear monotone

function of a linear combination of the explanatory variables� Examples are probit or logit

models where the nonlinear �link	 function is the cumulative distribution function of a

normal respectively logistic distribution� see McCullagh and Nelder �
���	� Then the

so�called generalized linear model has the form

E �Y jX� T 	 � G�XT
 � T T�	� ���	

with a known monotone function G and an unknown parameters 
 and �� The model

���	 combines computational feasibility �especially for discrete covariates	 with good in�

terpretability of the  index� XT
 � T T� and therefore has found wide application in all

�elds of applied statistics� see e�g� Fahrmeir and Tutz �
���	� Maddala �
���	� However�

for some applications it may be argued that the assumption of ���	 is too restrictive





�Horowitz� 
���	� Indeed it may be not even clear if the relationship between the in�u�

ential variables and the response is monotone�

Several approaches have been proposed to generalize parametric regression models in

order to allow nonmonotone relationships between explanatory variables and the depen�

dent variable Y � We will focus on two classes of semiparametric models that have received

a lot of attention�

� Generalization of the known �parametric	 link function G to an unknown �nonpara�

metric	 link function g��	 yields the single index model �SIM	

E �Y jX� T 	 � g�XT
 � T T�	�

also called a one term projection pursuit model in statistics� Obviously� due to the

nonparametric character of the link function conventional parametric estimation

procedures can no longer be applied in this case� Instead� nonparametric estimators

will now be necessary� In this chapter we give an overview how this model can be

estimated using kernel methods�

� Generalization of the linear form XT
 � T T� to a partial linear form XT
 �m�T 	

yields the generalized partial linear model �GPLM	

E �Y jX� T 	 � G
n
XT
 �m�T 	

o
�

G denoting a known link function as in the GLM model� Here� the m��	 will be a
multivariate nonparametric function of the variable T �

In high dimensions of T the estimate of the nonparametric function m��	 faces

the same problems as the fully nonparametric multidimensional regression function

estimates� the curse of dimensionality and the practical problem of interpretability�

Hence it might be reasonable to think about a lower dimensional nonparametric

modelization of the nonparametric part� A possible alternative is the GPLM with

an additive structure in the nonparametric component� i�e� the generalized additive

model �GAM	�

E �Y jX� T 	 � G
n
XT
 �m��T�	 � � � ��md�Td	

o
�

Here� the mj��	 will be univariate nonparametric functions of the variables Tj�

Formally� we can summarize these generalizations as shown in Table � The last entry

in this table is empty because we do not know �yet	 of any literature which deals exactly

with this situation� Of course� there is a number of approaches which attempt to �ll this

gap� as e�g� neural networks� sliced inverse and projection pursuit regression�

�



components n link known unknown

linear GLM SIM

partial nonparametric GPLM

Table � Parametric � Semiparametric

��� Generalizing the link function� Single Index Models

Single index models derive their name from the economic term  index�� a summary of

di�erent variables into one number� Hence� if it is possible to summarize all information

in one single number this is to be called a single index� Meanwhile� there has been a

number of methods proposed do deal with these models� A straightforward semipara�

metric GLM extension is provided by Weisberg and Welsh �
���	� They estimated the

unknown link function and its derivative �for the Fisher scoring algorithm	 by an kernel

smoother� Ichimura �
���	 uses a similar idea within a least squares criterion� Klein and

Spady �
���	 show an asymptotic e�ciency result for a pseudo�likelihood binary choice

estimator�

All these three methods require optimization of a pseudo�likelihood of possibly com�

plicated structure� We present here an direct approach which avoids numerical iterations�

The estimation of the single index model

E �Y jX� T 	 � g�XT
 � T T�	 ���	

is carried out in two steps� First the coe�cients vectors 
� � are estimated� then using the

obtained index values XT
i
b
 � T T

i b� one can estimate g by usual univariate nonparametric

regression�

����� Average Derivative Estimation

Consider for a moment only the continuous part of the variables� T � �T�� � � � � Tq	
T �

Denote the regression function to estimate by m��	� i�e� E �Y jT 	 � m�T 	� The vector of

average derivatives is given by

� � E frm�T 	g � E
n
g��T T
	

o

� ���	

where rm�t	 is the vector of partial derivatives of m��	 and g� the derivative of g��	�
Looking at ���	 shows that � equals 
 up to scale� Hence� any estimate of � determines 


up to scale� The estimation of � can be carried out by means of several average derivative

estimation �ADE	 methods� We will concentrate on estimators based on the density

�



function of T � however a variety of other methods exist� For an overview see Stoker

�
��
	�

The key idea on ADE based on the density f��	 of T lies in  transferring� the derivative

of the regression function m on to the derivative of the density f � Consider

� � Efrm�T 	g �
Z
rm�t	f�t	 dt� ���	

Partial integration yields Efrm�T 	g � � R
m�t	rf �t	 dt if f�t	m�t	 � � is assumed for

ktk � 	� Hence by introducing the score vector

��t	 � rlog f�t	 � rf �t	
f�t	

���	

one arrives at

� � �
Z rf�t	

f�t	
f�t	m�t	 dt �

Z
��t	m�t	 f�t	 dt � Ef��T 	m�T 	g� ���	

Employing Ef��T 	m�T 	g � Ef��T 	Y g immediately allows to estimate � by the sample

analog b� � n��
nX
i��

b�H�Ti	Yi� ���	

where ��t	 is approximated by b�H�t	 � �f bfH�t	g�� ��� bfH�t	� � � � ��q bfH�t	�� Here� bfH�t	
is the multivariate kernel density estimator and j bfH�t	 are the partial derivatives of this

multivariate kernel density estimator �which are used for estimating the partial derivatives

of the density	

j bfH�t	 � 


n det�H	

nX
j��

jKH �t� Tj	 ��
	

Due to the sparseness of data in high dimensions� the use of bfH can also be problematic

since b�H might behave bad in regions of small density� Hence H�ardle and Stoker �
���	

propose to use the ADE estimator

b� � n��
nX
i��

b�H�Ti	Yi If bfH�Ti	 � bng� ��	

where If bfH�Ti	 � bng is an indicator that excludes too small density values� The trimming

bounds bn are chosen such that bn � � for n�	�

Regarding the sampling distribution of the estimator� b� H�ardle and Stoker �
���	 have

shown that p
n�b� � �	

L��
n��

N�����	�

where �� is the covariance matrix of ��T 	Y � frm�T 	� ��T 	m�T 	g� Note that b� achievesp
n�convergence� a rate that is typically achieved by parametric estimators�

�



The need for  trimming� the ADE is one of the problems associated with a random

denominator� Random denominators also complicate the derivation of the distributional

properties� These di�culties are overcome by density weighted average derivative esti�

mation �WADE	 of Powell� Stock and Stoker �
���	� Observe that the density weighted

average derivative shares the property of the �unweighted	 average derivative of being

proportional to the coe�cient vector 
 in index models�

� � E frm�T 	w�T 	g � E
n
g��T T
	w�T 	

o

� ���	

A  natural� weight function is given by the density f itself� Calculations similar to those

for the unweighted ADE give with w�t	 � f�t	

� �
Z
rm�t	 f ��t	 dt � �

Z
m�t	rf �t	 f�t	 dt

� �EfY rf �T 	g�

Thus one may estimate 
 up to scale by

b� � � 

n

nX
i��

Yi �� bfH�t	� � � � � q bfH�t		T � ���	

The WADE estimator de�ned in ���	 shares the desirable distributional features of the

ADE estimator �
p
n�consistency� asymptotic normality	 while not requiring any trimming

in practice�

Finally� an estimate for g��	 can be found by applying an univariate estimation method

to b�TTi and Yi� H�ardle and Stoker �
���	 showed for the Nadaraya�Watson estimator the

usual rate of convergence
p
nh� when h � n���
�

����� Including Discrete Explanatory Variables

By de�nition� derivatives can only be calculated if the variable under study is continuous�

Thus� the method of weighted or unweighted ADE fails when discrete variables X �

�X�� � � � � Xd	
T needs to be included into the model� Before giving a more general solution�

let us explain how the coe�cient of one dichotomous variable presents in the model� Recall

the SIM

E �Y jT�X	 � g�XT
 � T T�	

with T the continuous and X the discrete part of the covariates� In the simplest case� we

suppose that is X is binary� i�e� either X � 
 or X � �� Then� this model can be �split�

into two submodels

E �Y jT�X	 � g�T T�	 if X � �

E �Y jT�X	 � g�T T� � 
	 if X � 
�

�



These are in fact two models to be estimated� one for X � � and one for X � 
� Note

that � alone could be estimated from the �rst equation only�

Theoretically� the same Ti can be associated with either Xi � � yielding an index

value of �TTi or with Xi � 
 leading to an index value of �TTi � 
� Thus the di�erence

between the two indices is exactly 
� In practice �nding these horizontal di�erences will

be rather di�cult� A common approach parts from the observation that the integral dif�

ference between the two link functions also equals 
� A very simple estimator is proposed

in Korostelev and M�uller �
���	� Essentially� the coe�cient of the binary explanatory

variable can be estimated by b
 � bJ ��� � bJ ���

with bJ ��� �
n�X
i��

�T �T
���
i�� � T

���
i 	Y

���
i � bJ ��� �

n�X
i��

�T �T
���
i�� � T

���
i 	Y

���
i �

where the superscripts ��� and ��� denote the observations coming from the subsamples

according to Xi � � and Xi � 
� The estimator is in the simplest case of a binary Y

variable
p
n�consistent and can be improved for e�ciency by a one�step estimator� see

Korostelev and M�uller �
���	�

Horowitz and H�ardle �
���	 extend this approach to multivariate multi�categorical X

and arbitrary range of Y � Again� this approach is based on a split of the whole sample

into subsamples according to the categories of X� Consider the thresholded link function

eg � co I�g � co	 � g I�co � g � c�	 � c� I�g � c�	�

Denote x�k� a possible realization of X� then the integrated link function conditional on

x�k� is

J �k� �
Z v�

vo

eg�v � 
Tx�k�	 dv�

Now compare the integrated link functions for all X�categories x�k� �k � 
� � � � �M	 to the

�rst X�category x���� It holds

J �k� � J ��� � �c� � c�	
n
x�k� � x���

o

�

hence with

"J �

�BB�
J ��� � J ���

� � �
J �M� � J ���

�CCA � "x �

�BB�
x��� � x���

� � �
x�M� � x���

�CCA
one gets "J � �c� � c�	"x 
� This yields �nally


 � �c� � co	
���"xT"x	��"xT"J ���	

�



to determine 
� The estimation of 
 is based on replacing J �k� in �� by

bJ �k� �
Z v�

vo

beg�v � 
Tx�k�	 dv

with beg a nonparametric estimate of the thresholded link function eg� This estimator

is obtained by a univariate regression of the estimated  continuous� indices b�TT �k�
i on

Y
�k�
i � Horowitz and H�ardle �
���	 show that using a

p
n�consistent estimate b� and a

Nadaraya�Watson estimator beg the estimated coe�cient b
 is itself
p
n�consistent and has

an asymptotic normal distribution�

��� Generalizing the index� Generalized Partial Linear Models

An alternative way to incorporate an nonmonotone dependence of the response on the

continuous variables is given by a generalized partial linear model �GPLM	

E�Y jX� T 	 � GfXT
 �m�T 	g� ���	

where 
 � �
�� � � � � 
p	
T is a �nite dimensional parameter and m��	 is a smooth function�

These models allow a nonparametric inclusion of a part of the explanatory variables� In

practice this might be only those continuous variables which have most in�uence on the

dependent variable Y � In this section we will deal with the GPLM in general and shortly

with generalized partial linear partial additive models �GAM	�

Estimators for 
 and m��	 have been proposed by Severini and Wong �
��	� Severini

and Staniswalis �
���	 and Hunsberger �
���	� Carroll� Fan� Gijbels and Wand �
���	

proposed an extension to generalized partial linear single index model �GPLSIM	 which

uses a single index model instead of the fully nonparametric function m��	�

����� Semiparametric Maximum Likelihood

We sketch the approach of Severini and Wong �
��	 and Severini and Staniswalis �
���	

which use two di�erent likelihood functions for the estimation of the parametric and

semiparametric components� The estimation of model ���	 is computationally feasible by

the idea that an estimate b
 can be found for known m� and an estimate cm can be found

for known 
� De�ne

� � E�Y jX� T 	 � Gf
TX �m�T 	g
��V ��	 � Var�Y jX� T 	

and denote by ���� y	 the individual log�likelihood or quasi�likelihood function �if the

distribution of Y does not belong to an exponential family	�

�



The  parametric� likelihood function

L�
	 �
nX
i��

�
h
GfXT

i 
 �m��Ti	� Yig
i

���	

is used to obtain b
� A  smoothed� or  local� likelihood

LS��	 �
nX
i��

KH�t� Ti	 �
n
G�XT

i 
 � �� Yi	
o

���	

is optimized to estimate the smooth functionm��t	 � � at point t� Note that the use of this

smoothed likelihood function leads to the equivalent of the Nadaraya�Watson estimatorcmH in ordinary regression� To obtain a local polynomial estimator of the nonparametric

part m��	 we need to incorporate polynomial terms into the smoothed likelihood� In the

local linear case we would use

LS���� ��	 �
nX
i��

KH�t� Ti	 �
h
GfXT

i 
 � �� � �Ti � t	T��� Yig
i

���	

and get m��t	 � �� at point t� Analogous to local linear regression �� points to the

gradient of m��	 in t�

The computational algorithm consists in searching maxima of both likelihoods simulta�

neously� We stay in the framework of an Nadaraya�Watson type estimation ofm� Severini

and Staniswalis �
���	 show that the resulting estimator b
 is
p
n�consistent and asymp�

totically normal� and that estimators cm � cmb� are consistent in supremum norm� Note

that m is estimated as a function of the parametric component 
 which yields an asymp�

totically e�cient estimate b
 �Severini and Wong� 
��	� The possible scale parameter �

can be estimated by

b�� � 


n

nX
i��

�Yi � b�i	��V �b�i	� ���	

where b�i � Gf b
TXi �cm�Ti	g�
The algorithm which we will present here corresponds to that proposed in Severini and

Staniswalis �
���	 for some special cases of link function and distributions of Y � In order

to avoid boundary e�ects� one can use a weight function in the convergence criterion or

trimming in the estimation of 
 as in Severini and Staniswalis �
���	�

De�ne �j�
	 � cm��tj	 and �i�u	 � �f�G�u	� Yig� For example� in a binary response

model we have �i�u	 � Yi logG�u	 � �
 � Yi	 logf
 � G�u	g� In the following� ��
i and

���
i denote the derivatives of �i�u	 with respect to u� The maximization of the smoothed

quasi�likelihood ���	 requires to solve

� �
nX
i��

��
ifXT

i 
 � �j�
	gKH�Ti � Tj	� ��
	

�



In some models �in particular for identity and exponential link functions G	 equation ��
	

can be solved explicitly for �j�
	� Di�erentiation of ��
	 leads to an estimate for ��j as a

function of 


��j�
	 �
� nP

i��
���i fXT

i 
 � �j�
	gKH�Ti � Tj	Xi

nP
i��

���i fXT
i 
 � �j�
	gKH�Ti � Tj	

� ��	

For 
 we have to solve

� �
nX
i��

��ifXT
i 
 � �i�
	g fXi � ��i�
	g� ���	

Equations ��
	����	 imply the following iterative Newton�Raphson type algorithm to �ndb
 and cm�tj	 � b�j�
	� j � 
� � � � � n�

� initialization

Di�erent strategies to obtain start values are possible�

� Start with b
���� b����j from the parametric �GLM	 �t� Higher order polynomial

terms in T may be included to allow for a nonlinear function b����j �

� Alternatively� it is possible to use b
��� � � and as in GLM b����j � G��f�Yj �
Y 	�g �but b����j � G��f�Yj � ���	��m� 
	g for binomial responses	�

� Severini and Staniswalis �
���	 propose to start with b
��� � � and b����j �

G���Yj	 �with an adjustment for binomial responses	�

� updating step for �j�
	 � m��Tj	

The function �j�
	 is updated by

b��k���j � b��k�j �
nP

i��
��i�X

T
i
b
�k� � b��k�j 	KH�Ti � Tj	

nP
i��

���i �X
T
i
b
�k� � b��k�j 	KH�Ti � Tj	

�

� updating step for 


The parameter 
 is updated by

b
�k��� � b
�k� � B��
nX

i��

��i�X
T
i
b
�k� � b��k���i 	fX�k�

i

with a Hessian type matrix

B �
nX
i��

���i �X
T
i
b
�k� � b��k���i 	 fX�k�

i
fX�k�T
i

and

fX�k�
j � Xj �

nP
i��

���i �X
T
i
b
�k� � b��k���j 	KH�Ti � Tj	Xi

nP
i��

���i �X
T
i
b
�k� � b��k���j 	KH�Ti � Tj	

�

��



As an alternative� the functions ���
i �u	 can be replaced by their expectations �w�r�t� to Y 	

to obtain a Fisher scoring type procedure�

����� Practical Application

Let us illustrate the semiparametric estimation with the previously introduced credit

scoring example� �Fahrmeir and Tutz� 
���� Fahrmeir and Hamerle� 
���	� Recall that

the data set consists of n � 
��� clients� among which ��� paid a credit back without

problems and ��� did not� We de�ne the binary variable Y with value 
 for those who

paid back and � if not� The data set contains observations from three continuous variables

�duration and amount of credit� age of client	 and 
� discrete variables� The interest

consists in �nding how explanatory variables are related to credit worthiness�

Coe�� �t�value	 Coe�� �t�value	 Coe�� �t�value	

const� ������ ��
���	 ���� ����
�	 � �

duration ��
�� ������	 ��� ������	 ���� �����	

amount ���� ������	 ���� � ���	 � �

amount squared � � ������ �����	 � �

age ����� � 
���	 
��
� � 
���	 � �

age squared � � �
�� ������	 � �

� � � � � � � � � � � � � � � � � � � � �

Linear �logit	 Quadratic �logit	 Part� Linear

Table �� Logit coe�cients and GPLM coe�cients �t�values in
parenthesis	� n � 
���� h� � h� � ��� for GPLM� Credit data
Fahrmeir and Hamerle �
���	�

In the following statistical analysis we took logarithms of amount and age and trans�

formed all explanatory variables linearly to the interval ��� 
�� A parametric logit model

leads to the parameter estimates listed in Table �� We omit the parameter estimates for

the discrete explanatory variables� The in�uence of duration is highly signi�cant� Amount

and age have no signi�cant coe�cients if we include them linearly� We will see that the

insigni�cant coe�cients are a sign for a more complex structured in�uence� at least in the

amount direction�

In a next step we �tted a generalized partially linear model according to the algorithm

presented above� Here� the in�uence of amount and age has been �tted nonparametri�

cally� Figure � shows the two�variate estimate cm �using a bandwidth h � ��� in both

dimensions	 in the upper panel� A scatterplot of amount versus age is given in the lower

panel of Figure ��

�




X

0.0 0.2
0.4 0.6

0.8 1.0

Y

0.0

0.2

0.4

0.6

0.8

1.0

Z

-1.8

-1.5

-1.2

-0.9

-0.6

  X: amount

  Y: age

  Z: m(amount,age), h=0.4

Influence: amount & age
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Figure �� Two�dimensional nonparametric function of amount and
age in GPLM �upper panel	� h� � h� � ���� Scatterplot of of
amount and age �lower panel	� Credit data� n � 
��� Fahrmeir
and Hamerle �
���	�
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It is di�cult to check cm graphically for signi�cant deviances from linearity� The high

values of cm are caused by only a few observations �as can be seen from the scatterplot	�

For a closer inspection of cm Figure � shows a contour plot of cm� It reveals that we have

more nonlinear in�uence in the amount than in the age direction� For comparison we also

�tted a GPLM where only amount is included in the nonparametric way� Figure 
� show

the resulting nonparametric estimates for di�erent bandwidth �h � ��� � � � � ���	�
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Contours: amount & age

Figure �� Contours for function of amount and age in GPLM� h� �
h� � ���� Credit data� n � 
��� Fahrmeir and Hamerle �
���	�

Since the question of an optimal bandwidth selection is still open for generalized partial

linear models� we have carried out the analysis for di�erent bandwidths� The nonparamet�

ric estimates cm for the di�erent bandwidths are obviously nonlinear functions� However�

it is di�cult to judge whether a nonparametric estimate gives a signi�cant improvement�

In general� it cannot be excluded that the di�erence between the nonparametric and the

linear �t may be caused by boundary and bias problems of cm� Additionally� some of the

other �discrete	 covariables have a quite dominant in�uence on credit worthiness�

H�ardle� Mammen and M�uller �
���	 proposed a procedure for testing GLM versus

GPLM� We applied this test using and computed critical values from the approximative

normal distribution� Table � shows the observed signi�cance levels for rejection� The

decision of the test depends obviously on the bandwidth� As H�ardle� Mammen and

M�uller �
���	 point out� this is due to a slow convergence of the test statistic towards its

��
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Figure 
�� Nonparametric function of amount only in GPLM� h �
��� �thick line	� h � ��� h � ���� h � ���� Credit data� n � 
���
Fahrmeir and Hamerle �
���	�

limiting normal distribution and can be  repaired� by applying a bootstrap version of the

test� We omit the details here�

h ��
 �� ��� ��� ��� ���

amount only ����
 ����
 ����
 ���� ���� �

amount and age � ����
 ����
 ���� ��� ����

Table �� Observed signi�cance levels for linearity test� Credit data�
Fahrmeir and Hamerle �
���	�

We see from Table � that linearity is clearly rejected for bandwidths ��
 to ��� for the

univariate nonparametric component �amount only	 and �� to ��� for the bivariate non�

parametric component �amount and age	� Including only age with an nonlinear in�uence

shows no signi�cant test result� This is in accordance with the parametric inclusion of

quadratic terms in age� Obviously� the joint nonlinear e�ect of both amount and age is

mainly determined by amount�

For higher dimensions in T the possible nonlinearities in ���	 cannot anymore be graph�

ically displayed and face the above mentioned problems �interpretability	� An additive

��



structured partial linear index may be considered� This is considered in Hastie and Tib�

shirani �
���	 on basis of the back�tting algorithm� A variant based on the integration

method introduced by Linton and Nielsen �
���	 is currently under development� see

H�ardle� Huet� Mammen and Sperlich �
���	�
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