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Abstract. Today, many processes at the Earth’s surface are constantly monitored by multiple data streams.

These observations have become central to advancing our understanding of vegetation dynamics in response

to climate or land use change. Another set of important applications is monitoring effects of extreme climatic

events, other disturbances such as fires, or abrupt land transitions. One important methodological question is

how to reliably detect anomalies in an automated and generic way within multivariate data streams, which typ-

ically vary seasonally and are interconnected across variables. Although many algorithms have been proposed

for detecting anomalies in multivariate data, only a few have been investigated in the context of Earth system

science applications. In this study, we systematically combine and compare feature extraction and anomaly de-

tection algorithms for detecting anomalous events. Our aim is to identify suitable workflows for automatically

detecting anomalous patterns in multivariate Earth system data streams. We rely on artificial data that mimic

typical properties and anomalies in multivariate spatiotemporal Earth observations like sudden changes in basic

characteristics of time series such as the sample mean, the variance, changes in the cycle amplitude, and trends.

This artificial experiment is needed as there is no “gold standard” for the identification of anomalies in real

Earth observations. Our results show that a well-chosen feature extraction step (e.g., subtracting seasonal cy-

cles, or dimensionality reduction) is more important than the choice of a particular anomaly detection algorithm.

Nevertheless, we identify three detection algorithms (k-nearest neighbors mean distance, kernel density estima-

tion, a recurrence approach) and their combinations (ensembles) that outperform other multivariate approaches

as well as univariate extreme-event detection methods. Our results therefore provide an effective workflow to

automatically detect anomalies in Earth system science data.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

The Earth system can be conceptualized as a system of highly

interconnected subsystems (e.g., atmosphere, biosphere, hy-

drosphere, lithosphere). Each of these subsystems can be

monitored and characterized by multiple variables. Techno-

logical progress over the past decades has led to a boost in

satellite technologies (Pfeifer et al., 2011; Nagendra et al.,

2013) as well as ground station development and routine

monitoring (Baldocchi et al., 2001; Dorigo et al., 2011; Ciais

et al., 2014). Additionally, advanced computational methods

efficiently integrate remote sensing and in situ information to

routinely derive novel data products (e.g., Beer et al., 2010;

Jung et al., 2011; Tramontana et al., 2016). One key scien-

tific challenge is co-interpreting these multiple views of the

Earth system, in particular to address the impacts of changes

in the climate system, the land use system, and other trans-

formations.

Of particular importance is the analysis of extreme events

like droughts, fires, heat waves, or floods, which are expected

to change in a future climate (Kharin et al., 2013). One mat-

ter of concern is changes in hydrometeorological extremes

that may translate into anomalies in vegetation dynamics, or

extremes in vegetation dynamics that might result from slight

changes in climatological conditions or human intervention

and that can have severe consequences for vegetation and

the carbon cycle (Easterling et al., 2000; Meehl and Tebaldi,

2004; Seneviratne et al., 2012; Reichstein et al., 2013). Apart

from natural events, one also aims to detect events that are

a direct consequence of human interference, e.g., detecting

deforestation activities is required to assess the compliance

with laws or agreements on forest conservation and climate

change.

The flood of observational data is accompanied by a sim-

ilar increase in data from Earth system models (Overpeck

et al., 2011). As large numbers of data are difficult to han-

dle and to translate into quantities of human interest, it can

be easy to overlook events of particular importance. For ex-

ample, using a simple semiautomatic detection scheme to

identify abrupt climate shifts in simulations of future climate,

Drijfhout et al. (2015) found a number of abrupt events that

had previously been overlooked in simulations.

In observations, anomalous events are often detected us-

ing extreme event detection methods suitable for univari-

ate data streams (e.g., Alexander et al., 2006; Rahmstorf

and Coumou, 2011; Zhou et al., 2011; Donat et al., 2013;

Lehmann et al., 2015). Univariate extreme event detection

can also be used to infer knowledge about underlying drivers

of extremes (Zscheischler et al., 2014a); it is particularly

valid when the variable of interest is either of specific im-

portance or integrates a wide array of relevant processes.

However, some information might only be inferred when

taking the multivariate combination of several data streams

into account (Vicente-Serrano et al., 2010; Seneviratne et al.,

2012; Fischer, 2013; Zscheischler et al., 2015). For instance,

a significant fraction of events of carbon extremes in Europe

is not associated with univariate climate extremes (Zscheis-

chler et al., 2014b). Earth observations (EOs) are multivari-

ate and naturally characterized by strong dependencies and

correlations in space, time, and across dimensions (Leonard

et al., 2013). We assume that any suitable anomaly detection

algorithm needs to consider these data properties. By con-

sidering multivariate constellations for anomaly detection, it

might become possible to gain further information, i.e., about

anomalies that cannot be detected with univariate extreme

event detection methods (for a review of approaches see, e.g.,

Ghil et al., 2011).

Multivariate approaches in geoscience make use of

anomalies occurring simultaneously in multiple data streams,

often referred to as coincidences or co-exceedances (e.g.,

Donges et al., 2011b; Rammig et al., 2015; Zscheischler

et al., 2015; Donges et al., 2016; Guanche et al., 2016; Sieg-

mund et al., 2016). An alternative is the copula approach

introduced to the field by Schoelzel and Friedrichs (2008)

and Durante and Salvadori (2010). However, the copula ap-

proach is limited so far to two or three simultaneous data

streams (Mikosch, 2006), which makes it unsuitable for high-

dimensional data as used in this paper.

Interestingly, there are multiple industrial applications that

likewise require anomaly detection. In this context, anomaly

detection has become a standard procedure in the wake of

Harold Hotelling’s publication of the T 2 control chart in

1947 (Hotelling, 1947; Lowry and Woodall, 1992). Con-

sider, for instance, several sensors observing some industrial

production chain. These (potentially correlated) sensor data

streams can be monitored with a statistical process control

(SPC) algorithm (Lim et al., 2014; Ge et al., 2013; Lowry and

Montgomery, 1995). The basic idea is to raise an alarm as

soon as an anomaly according to the SPC is detected, mean-

ing that the production chain is out of control. Despite the ob-

vious analogy, the ideas of SPC are largely unknown in the

geoscience community to the best of our knowledge. Con-

ceptually, the industrial application is equivalent to the idea

of monitoring environmental variables. However, data dif-

fer. EOs exhibit strong (potentially nonlinear) dependencies

among the variables; seasonal cycles are typically present in

both temporal mean and variance. The variables may also

encode dynamic feedbacks and abrupt transitions. EOs are

possibly more strongly corrupted by noise compared to in-

dustrial applications. Furthermore, industrial applications are

typically less affected by low-frequency variability than EOs.

The most problematic aspect when considering SPC con-

cepts in Earth system sciences is, however, defining states

of normality.

The objective of this study is to provide an overview

and comparison of anomaly detection algorithms and their

combination with feature extraction techniques for identify-

ing multivariate anomalies in EOs. Spatiotemporal EOs are

therefore stored in the Earth system data cube, which is a

four-dimensional array of latitudes, longitudes, time, and dif-
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ferent measurement variables. To detect multivariate anoma-

lies in EOs, we define an anomaly to be any consecutive spa-

tiotemporal part of the data cube that differs with respect to

the mean, the variance, the amplitude of the seasonal cycle,

or trends from the normal rest of the data cube. We adapt al-

gorithms from SPC and novelty detection. The study is struc-

tured as follows: first, we create a series of artificial Earth

system data cubes that try to mimic a series of real world fea-

tures (in terms of multiple variables, seasonal cycles, and cor-

relation structure, etc.). We are aware that these artificial data

cubes are not real simulations of Earth system data cubes.

However, relying on artificial data in this paper is motivated

by the fact that a meaningful quantitative evaluation of unsu-

pervised anomaly detection algorithms and feature extraction

techniques in real Earth observation data is difficult due to the

lack of ground-truth data (Zimek et al., 2012). Second, we

use these artificial data to evaluate the capability of different

algorithms to detect multivariate anomalous events, includ-

ing compound events (e.g., events in which none of the single

variables are extreme, but their joint distribution is anoma-

lous and might lead to an extreme impact) (Seneviratne et al.,

2012; Leonard et al., 2013). Specifically, we evaluate the per-

formance of the algorithms in detecting multivariate changes

in the mean (comparable to an extreme event), the amplitude

of the annual cycle, the variance, and the onset of trends. Us-

ing the artificial dataset as a test bed we apply various feature

extraction schemes (Sect. 3.1), several detection algorithms

(Sect. 3.2), and combinations of detection algorithms (en-

sembles, Sect. 3.4) to compare their performance in identify-

ing anomalous events (Sect. 3.3). From this comparison we

select suitable combinations of feature extraction (Sect. 4.1)

and a few algorithms (Sect. 4.2) as well as ensembles of al-

gorithms (Sect. 4.3) as the best ones applicable to EOs, in-

cluding suggestions for their specific usage (Sect. 5).

2 Experimental setup

2.1 Generation principle of the artificial data

Ground truth for detecting anomalies in multivariate data is

rare, in particular for detecting anomalies in real EOs. Thus,

we generate artificial data that represent common properties

of EOs, including anomalies. In particular, we focus on the

existence of seasonality, correlations among variables, and

non-Gaussian distributions. Data generation assumes that

each subsystem of the Earth has uncorrelated intrinsic prop-

erties, i.e., it is dominated by a few independent compo-

nents. Consequently, generating these independent compo-

nents (which cannot directly be monitored) is the first step.

We then derive variables that contain elements of all inde-

pendent components and correspond to the observable mea-

surements as a set of correlated variables (Fig. 1).

More precisely, as a basic version we create three inde-

pendent components for the artificial data, each consisting

of a signal (Gaussian, SD = 1.0) that includes seasonality in

Figure 1. Combination of three independent component cubes to

derive 10 correlated variables X as observable measurements. The

anomalous event is propagated into some variables of X.

some cases (Sect. 2.2). Anomalous events are induced in one

of the independent components for which we track the ex-

act spatiotemporal location. These three independent com-

ponents are then weighted with randomly generated linear

(or nonlinear, Sect. 2.3) weights to create a set of 10 corre-

lated variables, which represent the artificial data cube, i.e.,

try to mimic observable measurements. We add some addi-

tional measurement noise (Gaussian, SD = 0.3) to the data

cube. For more technical details of this generation scheme

we refer the reader to the Appendix A.

Our standard data cube Xti,j ,lat,lon,var encompasses ti,j =

1, . . .,T time steps (T = 300) corresponding to a 6.5-year

time series of satellite images in 8-day intervals, lat =

1, . . ., LAT latitudes (LAT = 50), lon = 1, . . .,LON longi-

tudes (LON = 50), and var = 1, . . .VAR data streams, or vari-

ables (VAR = 10).

2.2 Generating anomalous events

Anomalous events are introduced in the independent compo-

nents only and then propagated from the independent com-

ponent to some of the variables in the data cube with ran-

dom weights. The anomalies are contiguous in space and

time. The center of the anomaly is assigned randomly. The

challenge is to detect the propagated anomaly through the

unsupervised algorithms, i.e., without using the information

about the spatiotemporal location of the anomaly. With this

data cube generation scheme, we can generate anomalies by

controlling the type of the anomalous event (event type), the

magnitude of the anomalous event, and the spatiotemporal

location.

We create four data cubes using the following temporary

event types:

a. a shift in the baseline, i.e., shift of the running mean of

a time series (BaseShift) (Fig. 2a). This event type is

closely related to extremes in real world EOs.

b. an onset of a trend in the time series (TrendOnset)

(Fig. 2b).

c. a change in the amplitude of the mean seasonal cycle

of a time series (MSCChange) (Fig. 2c), which might
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Figure 2. Visualization of the four different event types (a–d) with two variables along time ti,j = 1, . . .,T (T = 300). The two variables

contain an anomalous event (red shape) that is propagated through the underlying independent components with randomly drawn weights

within the generation process of the variables. For illustration purposes two variables are shown for one specific magnitude of the anomaly.

The artificial data farm encompasses 10 variables and anomalous events of 20 different magnitudes ranging from very subtle to exceptionally

high changes.

happen in the real world carbon cycle as a response to

combined drought–heat waves (Ciais et al., 2005).

d. a change in the variance of the time series (Vari-

anceChange) (Fig. 2d), e.g., in temperature (Hunting-

ford et al., 2013).

2.3 Additional data properties

Apart from the basic data cubes, we want to test the in-

fluence of certain data properties on the anomaly detection

algorithm. In order to do so, we create data cubes, each

with one added data property, i.e., we increase the num-

ber of independent components (MoreIndepComponents) or

use a squared dependency among independent components

(NonLinearDep) instead of a linear one. Furthermore, typi-

cal EO variables are often driven by extrinsic forcings, i.e.,

the Earth’s solar system orbit, rotation, and axis tilt. Thus, we

add a seasonal cycle modifying the signal (SeasonalCycle).

In a global context, the mean is rarely constant; we therefore

introduce a linear latitudinal trend into the baseline (Latitu-

dinalGradient). In the basic case, the signal of our indepen-

dent components follows a Gaussian distribution. In the more

complicated versions, we also implement alternative scenar-

ios with Laplacian (doubly exponentially) distributed signals

(LaplacianNoise) and signals that exhibit spatiotemporal cor-

relation with red noise (CorrelatedNoise). Signal-to-noise ra-

tio is 0.3 in the basic version, one additional data property in-

creases the signal-to-noise ratio to 1.0 (NoiseIncrease). Also,

the shape and duration of anomalous events differ. We dou-

ble (LongExtremes) or reduce the temporal duration of the

anomalous events (ShortExtremes) and change the spatial

shape from rectangular to randomly affecting neighboring

grid cells (RandomWalkExtreme).

2.4 Experiment design

Each data cube with a specific type of the event is generated

20 times, each time with a different magnitude of the anoma-

lous event (Appendix A). We introduce 10 spatially contigu-

ous anomalous events into the independent components, with

a spatial extent of 20 latitude and longitude steps each. Each

event has a temporal extent of five time steps (which would

be equivalent to 40 consecutive anomalous days in a 6.5-year

record). Our total number of anomalies equals about 3 % of

the total data cube, which we consider to be a realistic sce-

nario (comparable to Zscheischler et al., 2014a), for example.

Some latitudes and longitudes do not exhibit any anomaly by

design. The algorithms (Sect. 3.2) are expected to be able to

deal with parts of the data cube that do not exhibit anomalies

at all, as this is also very likely to happen for applications in

real EOs.

Our experiment comprises 36 different event-type combi-

nations of data properties, each repeated 20 times with vary-

ing event magnitudes (Appendix A). The entire set of artifi-

cial data cubes consists of 720 data cubes, corresponding to

≈ 87 GB of data 1.

1Code to reproduce the data farm is provided in the Data Avail-

ability section.
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Figure 3. Data processing for detecting multivariate anomalies. We

extract relevant features from each artificial data cube before apply-

ing the detection algorithms. The detection algorithms output some

anomaly score, which we evaluate against the known extent of the

event using the area under the curve (AUC). Feature extraction ele-

ments on the right-hand side are understood as options and can be

combined with each other.

3 Workflows to detect anomalies

The idea of this study is to elaborate workflows that contain

both data preprocessing via feature extraction and algorithms

for the detection of anomalous events (Fig. 3). In the follow-

ing we introduce these two elements separately and explain

the performance evaluation strategy afterwards.

3.1 Feature extraction

Feature extraction is a process to derive information from

the data and condense it into nonredundant characteristic pat-

terns. This may facilitate data interpretation (van der Maaten,

2009). In our study the aim is to maximize the detection of

anomalous events by providing relevant features. Feature ex-

traction is often an element of data preprocessing. A very

simple form of feature extraction could be to subtract the

mean seasonal cycle. We consider the anomaly time series

to be the extracted feature in this case. Here, we concentrated

mainly on feature extraction methods that are used in the con-

text of classical multivariate SPC (Lowry and Montgomery,

1995), data-based process monitoring in industry (Ge et al.,

2013), and univariate extreme event detection. The following

feature extraction methods are used in this study:

Subtracting the median seasonal cycle (sMSC) is one way

to deseasonalize time series. Deseasonalization may be in-

strumental in detecting anomalous events across different

seasons. The remaining part of the time series is often re-

ferred to as anomalies in the climatological sense. These

anomalies are used here as an input feature. Please note,

that the climatological anomalies are only the difference be-

tween the mean behavior and thus are not to be mixed up

with anomalies (strange or rare regions in the data, closely

related to extreme events) as detected through the (multivari-

ate) anomaly detection algorithms (Sect. 3.2).

Computing the moving window variance (mwVAR) is a

popular technique for detecting trends in the variance in uni-

variate time series (e.g., Huntingford et al., 2013). We choose

a window size of 10 and compute the variance in the running

window along the time series of each variable. We use the

estimates of the mwVAR time series as a feature to detect

multivariate anomalies in the variance.

Time delay embedding (TDE) increases the feature vector

Y t with time-delayed vectors (Y t = (Xt −0τ,Xt −1τ,Xt −

(m − 1)τ )) to include temporal context information. In the

univariate case, this approach ideally creates an image of

the attractor of a dynamical system (Takens, 1980). In high-

dimensional multivariate data applications it is used to in-

clude information of the dynamics in the feature vector (e.g.,

Koçak et al., 2004; Ge et al., 2013; Smets et al., 2009). Crit-

ical hyperparameters are the time delay τ and the number of

dimensions m. We fix m to 3 (corresponding to the number of

independent components within the data farm creation) and

τ to 6, which is a compromise between the typical choice of

the first zero crossing of the temporal autocorrelation func-

tion or the first local minimum of the mutual information

(Webber Jr. and Marwan, 2015) (here: 11.5 corresponding

to one-quarter of the annual cycle with 46 time steps) and an

accurate temporal detection (requires small τ ).

Principal component analysis (PCA) is a data rotation,

used to find an orthogonal (uncorrelated) subspace of the data

of nPC ≤ VAR variables (Von Storch and Zwiers, 2001). We

choose nPC such that at least 95 % of the variance in the orig-

inal data cube is explained. By assuming a homogeneous co-

variance structure within the entire data cube, we perform the

PCA globally, i.e., with the same rotation matrix for all grid

cells. The combination of TDE and PCA is sometimes re-

ferred to as dynamic PCA when considering subsequent lags

in the time series (Lee et al., 2004).

Independent component analysis (ICA) can be regarded

as a nonlinear alternative to PCA; it has become a standard

technique of data-based process monitoring. We use one ICA

variant that tries to separate different sources of data by max-

imizing the negentropy, a measure of non-Gaussianity of the

data (Hyväringen and Oja, 2000)2. We apply ICA globally

to each data cube. The hyperparameter is the number of in-

dependent components (sources). We choose the number of

independent components to be equal to nPC (see PCA) for

consistency reasons (Majeed and Avison, 2014).

Exponentially weighted moving average (EWMA) is one

way of reducing the noise of the time series and taking tem-

poral information into account. It is common in the context

of classical multivariate SPC to detect only “significant” out-

liers (Lowry and Woodall, 1992). The multivariate feature

time series Y is computed recursively as

Y ti = λXti + (1 − λ)Y ti−1
. (1)

2We use the fastICA algorithm implemented in the ju-

lia package MultivariateStats.jl (https://github.com/JuliaStats/

MultivariateStats.jl).
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The hyperparameter λ determines the degree of exponen-

tial weighting between 1 (no weighting) and zero (common

choice 0.1 ≤ λ ≤ 0.3; Santos-Fernández, 2013). We stay in

this range with λ = 0.15.

There is of course a multitude of alternative approaches

available in the literature, but we focus on the previously

summarized ones as they are widely used and efficiently im-

plemented. Furthermore, different feature extraction meth-

ods can also be combined (Fig. 3). As the number of pos-

sible combinations is considerably large, we focus here on

dimensionality reduction techniques (ICA, PCA) combined

with some EWMA to reduce the noise level afterwards. De-

pending on the event type and data properties, additionally

removing seasonality (sMSC) or including the variance mw-

VAR seems to be straightforward. Information about the

dynamics (TDE) can be included before applying dimen-

sionality reduction techniques to keep the dimensionality

of the system as low as possible. In the following, combi-

nations are noted in the order in which they were applied

(e.g., PCA_EWMA means first applying PCA, then applying

EWMA to the PCA features). In some cases this might lead

to non-commutative combinations, especially for nonlinear

feature extraction techniques (ICA, TDE).

3.2 Anomaly detection algorithms

We use several detection algorithms that we implemented

in the Julia package MultivariateAnomalies (https://github.

com/milanflach/MultivariateAnomalies.jl). Some anomaly

detection algorithms require the estimation of parameters

(details are given below for each algorithm separately). In

that case we fix the model parameters for the entire data cube.

We estimate model parameters (σ , ε, Q, µ; see below) and

train the models themselves (support vector data description,

kernel Null Foley–Sammon Transform, KNFST; see below)

based on a random subsample of 5000 data points obtained

from the entire data cube. To account for variability in the

model parameter estimation, we resample three times. More

resampling is not affordable due to high computational costs

of processing the large number of data cubes. However, very

little random variability is observed with this sample size for

the best algorithms. Thus, we consider a resampling of three

times to be sufficient for a first attempt to account for vari-

ability in the parameterization. The following algorithms are

investigated for anomaly detection.

Univariate approach (UNIV) is a simple approach to de-

fine extremes in univariate data by identifying all points

above (or below) a certain quantile. This so-called “peak-

over-threshold” approach can be transferred to deal with mul-

tiple univariate data streams. In this case, one would con-

sider a data point to be extreme if one or several of the

univariate variables are above (or below) a certain quantile

threshold of the marginal distributions of each single vari-

able. (here: globally) (e.g., Ledford and Tawn, 1996; Bae

et al., 2003; Donges et al., 2016). Applications of the so-

called co-occurrence or coincidence analysis can be found in

Donges et al. (2011b), Rammig et al. (2015), Zscheischler

et al. (2015), Guanche et al. (2016), and Siegmund et al.

(2016). For comparing the algorithms, we are interested in

the information that at least one variable is above a certain

threshold. We compute this information for different thresh-

olds (in terms of quantiles of the marginal distributions be-

tween 0.0 and 1.0, accuracy 0.01) to get a score, i.e., a rank-

ing of the extremeness of the data points.

Hotelling’s T 2 (T 2) computes the squared Mahalanobis

distance of each data point Xt to its temporal mean µ

weighted with the covariance matrix Q (Hotelling, 1947):

(Xt − µ)′Q−1(Xt − µ). (2)

A crucial prerequisite is the estimation of the covariance

matrix Q, which is estimated from the random subsam-

ple of 5000 data points. Combining the feature extraction

EWMA with T 2 equals the traditional multivariate exponen-

tial weighted moving average (Lowry and Woodall, 1992;

Lowry and Montgomery, 1995).

Apart from computing weighted distances to the mean

(like T 2), it is also possible to compute pairwise Euclidean

distances in variable space d(Xti ,Xtj ) between vectors Xti

and Xtj of time steps ti and tj for all possible time steps

ti, tj = 1. . .T . The resulting matrix D with Dij = d(Xti ,Xtj )

is often referred to as distance matrix or dissimilarity matrix.

For real world data, variables have to be standardized with

care before computing the distance matrix (Sect. 5). How-

ever, in the artificial data used the variables are already com-

parable by construction; thus, standardization is not needed.

The following algorithms are based on pairwise distances.

K-nearest neighbors (KNNs) can be used for anomaly de-

tection by considering the mean distance to the k-nearest

neighbors (k-nearest neighbors Gamma, KNN-Gamma) and

the length of the mean of the vectors pointing from Xti to its

k-nearest neighbors (k-nearest neighbors Delta, KNN-Delta)

(Harmeling et al., 2006; Ramaswamy et al., 2000). With the

latter approach KNN-Delta also considers the direction of the

neighbors, i.e., has higher values in case its nearest neigh-

bors are pointing in one direction, which is in contrast to the

directionless distance of KNN-Gamma. We fix the hyperpa-

rameter k at 10 after carefully trying different choices for

k without seeing major effects on preliminary results. Fur-

thermore, we exclude trivial temporal autocorrelations by ex-

cluding five neighboring time steps (abs(ti − tj ) ≥ 5) to also

be nearest neighbors.

Recurrences (REC). Within the framework of the theory

of nonlinear dynamical systems, each state of a dynamical

system will revisit a particular region in its phase space, if

waiting for a sufficiently long time (Poincaré, 1890). These

dynamics can be visualized in the recurrence plot and are

quantified with several metrics usually referred to as recur-

rence quantification analysis (Marwan et al., 2007). It seems

straightforward to use the concept of recurrence analysis to

detect states in a dynamical system that are considered to be
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rare or unusual. Faranda and Vaienti (2013) used the concept

of recurrences and combined it with extreme value theory.

We want to use a more general approach without binning the

time series. We count the number of observations ζ falling

into a certain ε ball in a system of multiple variables, con-

densed by their distance d(Xti ,Xtj ):

ζ (Xti ) =

T∑

j=1

8(ε − d(Xti ,Xtj )). (3)

8(z) is the Heaviside function, coding the distances to binary

values (8(z) = 0 if z < 0, 8(z) = 1 otherwise). An ε hyper-

ball containing only few recurrent observations is considered

to be rare in comparison to the majority of ζ values. We com-

pute 1−ζ ·T −1 to get anomaly scores, which are more likely

to be an anomaly for high score values. ζ · T −1 is known as

local recurrence rate or degree density in recurrence analy-

sis (Marwan et al., 2007; Donner et al., 2010) (Donges et al.,

2012). ε is the crucial hyperparameter, defining the radius of

the ball. Typical choices of ε in recurrence analysis are quan-

tiles of the distribution of elements of the distance matrix,

e.g., 5 or 10 % (Donges et al., 2011a; Flach et al., 2016). As

we are not interested in small-scale variations in REC, but

more in major anomalies we estimate ε as median of the dis-

tance matrices in the random subsample. This choice turned

out to be the optimal choice (in terms of maximizing the area

under the curve, AUC; Sect. 3.3) for ε in a small simulation,

varying the thresholds between the 5 and 95 % quantiles of

the element of the distance matrix (Supplement Fig. S1). We

exclude five neighboring time steps to be counted as recur-

rences (similar to KNN). KNN has similarities to REC, as

one could also choose a data-adaptive k such that ζ = k.

The distance matrix D can be transformed into a kernel

matrix K = exp(−0.5 ·D ·σ−2), i.e., by computing pairwise

dissimilarities using Gaussian kernels centered on each data

point.

Kernel density estimation (KDE) is a standard technique

for estimating densities based on column means of the kernel

matrix K (Parzen, 1962). The bandwidth σ of the kernel is

a hyperparameter. We estimate σ by using the median of the

temporal distance matrix on the random subsample, which

is a common choice (Schölkopf and Smola, 2001; Schölkopf

et al., 2015).

Support vector data description (SVDD) models the distri-

bution of the training data with an enclosing hypersphere in a

high-dimensional kernel feature space (Tax and Duin, 2004).

As usual a kernel matrix of the random subsample is used

for training. Although being a rather simple data description,

a hypersphere in the kernel feature space can result in com-

plex nonlinear decision boundaries in the original space of

predictor variables if a nonlinear kernel function is used. In

addition to the σ hyperparameter of the kernel function (see

KDE), the SVDD approach has a parameter called outlier ra-

tio ν (fixed to 0.2). The outlier ratio ν controls the number

of training samples that can be located outside of the hyper-

sphere to prevent overfitting. As anomaly score for testing,

its distance to the center of the hypersphere in the kernel fea-

ture space is computed. Testing requires pairwise similarities

between test and training samples. For performance reasons

in terms of computation time, we used the implementation

by (Chang and Lin, 2013) of the one-class support vector

machine (Schölkopf et al., 2001), which is an alternative for-

mulation that leads to identical data descriptions as SVDD in

our setup.

kernel Null Foley–Sammon Transform (KNFST) maps the

training data into a so-called null space, in which the train-

ing samples have zero variance, i.e., all training samples are

mapped to the same point called the target value (Bodesheim

et al., 2013). Nonlinearity is incorporated by using a kernel

matrix containing pairwise similarities of the training sam-

ples (training on the random subsample as for SVDD). Since

all training samples are represented by a single target value in

the one-dimensional null space, the anomaly score of a test

sample is the absolute difference between its projection in

the null space and this target value. The projection of the test

sample requires pairwise similarities to the training samples.

Compared to SVDD no parameters need to be tuned except

for σ of the kernel function that is fixed to the same values

for all kernel methods.

3.3 Ranking of the workflows

Given the large number of potential combinations of fea-

ture extraction and anomaly detection algorithms, we need

an objective criterion to compare the performances of the

numerous possible workflows. We use the area under the re-

ceiver operator characteristics curve (AUC) as our measure

of detection skill for a specific event type (Fawcett, 2006).

The AUC is based on the fraction of events that are cor-

rectly detected (true positives) and the fraction of detections

among all non-events (false positives), for all possible de-

cision thresholds that could be applied to scores produced

by the algorithms. AUC values of 0.5 would be achieved by

random detection, and values below 0.5 indicate that a lower

score is more likely assigned to (true) anomalies than to non-

anomalies.

For each data cube with a given event magnitude and event

type we compute the AUC for each data property, feature

extraction, and algorithm combination. This leads to an en-

tire catalogue of possible combinations, namely 1.27×105 (4

event types, 20 event magnitudes, 11 data properties, 18 fea-

ture extraction combinations, 8 algorithms). The number of

combinations strongly requires simplification to infer knowl-

edge about which combination is advisable to use. Hence,

we focus on events of magnitudes typically detected in real

world data i.e., deviations from the mean (extremes) larger

than 2 SD (e.g., temperature extremes in Hansen et al., 2012),

a relative increase or decrease in the mean annual cycle am-

plitude of 25 % (which might happen in the carbon cycle af-

ter combined drought and heat waves (Ciais et al., 2005) or in
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the Arctic due to abrupt sea ice losses (Bintanja and van der

Linden, 2013; Bathiany et al., 2016), for example) or an in-

crease in the signal variance of 25 % (e.g., in temperature;

Huntingford et al., 2013).

One way of summarizing the results of such a large num-

ber of combinations is treating the AUC values as the out-

comes of an experiment in which the different design deci-

sions (e.g., feature extraction techniques, anomaly detection

algorithms) are the experimental factors. As a control treat-

ment we introduce the simplest possible approach to detect-

ing the anomaly: UNIV approach on the selected event type,

without any further data properties (e.g., short extremes or

increased measurement noise) on the event type and without

prior feature extraction. In order to assess the (averaged) ef-

fect of each experimental factor, we fit a linear mixed-effect

model (Pinheiro et al., 2016) to the AUC data (fixed effects:

data properties, feature extraction, anomaly detection algo-

rithms; random effect: magnitude of the event). This model’s

coefficients express the overall effect of a factor level with

respect to the control while averaging over all other exper-

imental factors. They are considered to be significant for

p < 0.01.

Additionally, we compute the resampling variation in

parameter estimation of the anomaly detection algorithms

(RVP) as mean difference of the maximum AUC and min-

imum AUC for each resampling i = 1. . .3 (Sect. 3.2).

RVPalgorithm = mean(max(AUCcomp, feat, magn, event,i)

− min(AUCcomp, feat, magn, event,i)) (4)

3.4 Ensembles of anomaly detection algorithms

Summarizing the output of several anomaly detection algo-

rithms is one way to create more robust results (Thompson,

1977). For better comparability of the algorithms’ outputs,

we rank them by computing the percentiles of the algorithm

scores. These are then aggregated into ensemble scores by

computing the minimum (consensus voting), the mean (bal-

anced voting), or the maximum (risky voting) of the scores of

selected well-performing algorithms (e.g., Aggarwal, 2012;

Zimek et al., 2013).

4 Results and discussion

In the following, we present the performance of the work-

flows in subsections corresponding to feature extraction tech-

niques (Sect. 4.1), anomaly detection algorithms (Sect. 4.2),

and ensembles of detection algorithms (Sect. 4.3). Specifi-

cally, we present the AUC difference to the UNIV control,

i.e., the output of the linear mixed-effect model on the ex-

perimental factors feature extraction and detection algorithm

(Fig. 4). The corresponding tables present the estimates as

well as the RVP (Tables 1, 2). Apart from the model the full

range of AUC values with respect to different event magni-

tudes, data properties, and event types is presented in Ap-

pendix B, Fig. B1.

4.1 Feature extraction techniques

Feature extraction techniques are often more important than

the detection algorithm itself (Fig. 4). However, we find that

choosing a suitable feature extraction technique largely de-

pends on the event type of interest. Therefore, the feature

extraction techniques are presented for different event types

separately.

BaseShift Shifts in the baseline are simulated to mimic ex-

treme events. Increasing the magnitude (in terms of

standard deviations) of a BaseShift makes it easier to de-

tect the event (Fig. B1). Dimensionality reduction (via

PCA or ICA) is a crucial feature extraction technique

step as it derives meaningful uncorrelated subsets of the

data (Fig. 4a). The combination of dimensionality re-

duction with some temporal smoothing (EWMA) does

not exhibit better overall performance (Fig. 4a) as it

fails for ShortExtremes due to oversmoothing. Never-

theless, EWMA can improve the detection rate for spe-

cial cases, i.e., long events (LongExtremes) and high

signal-to-noise ratios (NoiseIncrease) (Fig. B1).

TrendOnset Results look very similar to those of Base-

Shift, except that temporal smoothing with EWMA has

a stronger positive effect than for BaseShift. This may

be related to the fact that events for TrendOnset are

longer than those for BaseShift. Since the algorithms

used in this work are not specifically designed to detect

the onset of linear trends, we speculate that their capa-

bility to detect such anomalies may be related to their

ability to detect base shifts. While algorithms specifi-

cally designed to detect changes in trends (e.g., Forkel

et al., 2013)) were not included in our work due to our

focus on more generic types of anomalies, such special-

ized algorithms may perform better for this particular

class of anomaly.

MSCChange In the detection of MSCChange, most feature

extraction algorithms showed some skill in the detec-

tion of an amplitude increase, while only a subset of

these also succeeded in detecting decreases in ampli-

tude (Fig. B1). We focus on the latter ones, which have

one step in common: they subtract the median seasonal

cycle before applying the detection algorithm (sMSC)

(Fig. 4c). In line with the results for TrendOnset and

BaseShift, temporal smoothing in combination with di-

mensionality reduction improves detection by a large

margin (PCA_sMSC_EWMA). Furthermore, account-

ing for temporal dynamics with a TDE is even more

suitable (TDE_PCA_sMSC_EWMA).
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Figure 4. AUC difference with respect to the UNIV control in the experimental factors feature extraction and detection algorithm for the

event types (a–d).

VarianceChange The algorithms used are hardly able to de-

tect any decrease in variance (Fig. B1). This may be

due to an overwriting of the decrease in signal vari-

ance with the independent noise since we are using a

signal-to-noise ratio of 0.3. Thus, we exclude a decrease

in the variance from the evaluation of the detection al-

gorithms compared to the control. The detection of an

increase in the variance can be improved by a combina-

tion of dimensionality reduction and variance in a mov-

ing window (PCA_mwVAR) (Fig. 4d). Using the vari-

ance in a moving window is a popular approach (Hunt-

ingford et al., 2013) although it has to be applied with

care when used in conjunction with normalization pro-

cedures (Sippel et al., 2015).

SeasonalCycle Seasonality occurs in most EOs. Not ac-

counting for the seasonal cycle has a negative impact

on the AUC (Appendix B, Fig. B2a, b, d). However,

if we subtract the median cycle within the feature ex-

traction step (PCA_sMSC_EWMA; Fig. 4a, b, d), we

can almost account for the negative AUC impact of the

seasonal cycle, as in our experimental setting anoma-

lous events do occur independently of seasonality. How-

ever, depending on the research question, independence

of seasonality might not always be the case: some EOs

may depend on vegetation activity, for example, which

results in a strong dependence on seasonality.

4.2 Performance of multivariate anomaly detection

algorithms

In contrast to the investigated combinations of feature extrac-

tion methods, we can identify three of the tested algorithms

performing on average almost equally well for most event

types given a suitable feature extraction as discussed before

(Sect. 4.1).
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Table 1. Average AUC difference of the anomaly detection algorithms from the UNIV control for each event type.

KNFST SVDD T 2 KNN-Delta KNN-Gamma KDE REC

BaseShift −0.017 −0.069 0.013 0.006 0.032 0.024 0.024

TrendOnset 0.001 −0.015 0.014 −0.052 0.003 0.084 0.068

MSCChange −0.023 −0.072 −0.023 −0.019 0.007 0.039 0.029

VarianceChange −0.007 −0.027 0.003 0.012 0.018 0.022 0.019

Mean −0.012 −0.046 0.002 −0.013 0.015 0.042 0.035

RVP 0.007 0.111 0.003 0.000 0.001

KDE and REC These techniques exhibit overall the high-

est AUC and lowest RVP (Table 1). Their estimated

mean differences are rather small since REC can be con-

sidered as a binary form of the KDE. As REC uses a

threshold ε for defining the hyperball of recurrences,

the results can exhibit slightly higher AUC than KDE

(Fig. S1). However, with REC the caveat is that the pa-

rameter ε is not necessarily optimally chosen.

KNN In most of the cases, KNN-Gamma performance is

better than the UNIV control, but only as good as the

UNIV control for detecting TrendOnset. This may be

due to the fact that for TrendOnset, the mean distance

to the KNN does not change, unless considering a very

large number of KNN values or excluding a large frac-

tion of temporally near data points to be within the

KNN. When excluding TrendOnset, the mean perfor-

mance increases to 0.019, which is comparable to KDE

and REC. In addition, we observe even superior perfor-

mance of KNN-Gamma compared to KDE and REC for

difficult data properties (e.g., MoreIndepComponents,

CorrelatedNoise; Fig. S2). In contrast, KNN-Delta does

not yield high AUC, probably because we do not con-

struct anomalies in the data cube explicitly with a direc-

tion that is accounted for by KNN-Delta (mean length

of the vectors to its KNN). The finding that simple algo-

rithms like KNN-Gamma (or KDE, T 2) are very com-

petitive, if not favorable algorithms, is in line with re-

sults of Harmeling et al. (2006), Killourhy and Maxion

(2009), and Ding et al. (2014) for various data sets.

KNFST and SVDD These techniques perform on average

worse than or equally as well as UNIV. Also, the RVP

is highest among the algorithms (Table 1). It has al-

ready been reported that SVDD can exhibit remarkable

fluctuations in the results for sample sizes smaller than

1000 data points (Ding et al., 2014). However, we use

5000 points for training. Thus, we suggest that the fluc-

tuations are due to the fact that SVDD and KNFST

use a training set that is chosen at random and may it-

self contain anomalies. In the current setting the size

of the training sample (5000) is rather small compared

to the spatiotemporal size of the data cube (750 000),

and it does not seem to be sufficient to train these algo-

rithms on the data cube. Increased sample sizes, how-

ever, would heavily increase memory demand and com-

puting time, rendering kernel algorithms computation-

ally inapplicable. Furthermore, Ding et al. (2014) shows

that the sample size has a remarkable effect for SVDD

(better performance for lager sample sizes). However,

even with very large sample sizes SVDD still performs

worse than KNN in the setting of Ding et al. Train-

ing and testing SVDD on each pixel does also not im-

prove the results as the number of anomalies differs be-

tween different pixels in our setting. Training and test-

ing SVDD on each pixel assumes the same number of

anomalies in each pixel (constant outlier ratio assumed

by the fixed ν parameter), which is contrary to the gen-

eration of the artificial data farm.

We explicitly do not want to state that KNFST and

SVDD are generally worse algorithms, i.e., they are just

not built for these massive numbers of data. KNFST

and SVDD outperform other algorithms in very differ-

ent settings (novelty detection in images) (Bodesheim

et al., 2013).

T2 exhibits good performance for detecting starting trends

and shifts in the mean. However, it also exhibits the

third largest RVP (Table 1), indicating that the estima-

tion of the covariance matrix may be sensitive to ran-

dom variation in the data. Nevertheless, the RVP is

still far better than for SVDD. The robust estimation

of the mean and covariance matrix might be a diffi-

cult task (Smetek and Bauer, 2007; Rousseeuw and Hu-

bert, 2011) for which rather complex algorithms like

the (fast) minimum determinant covariance estimator,

which are closely related to T 2, have been proposed

(Rousseeuw and Van Driessen, 1990). Furthermore, T 2

assumes a multivariate Gaussian distribution and linear

dependencies among the variables. Thus, it is not prefer-

able for the data properties NonLinearDep and Correlat-

edNoise unless combined with a nonlinear feature ex-

traction technique like ICA (Fig. B1).
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Figure 5. The residual time series obtained by subtracting the median seasonal cycle from (a) the fraction of absorbed photosynthetic

radiation (fPAR) and (b) gross primary productivity (GPP) at northern latitudes exhibit heteroscedastic patterns.

4.3 Ensembles

The selection of algorithms for computing the ensemble is

a compromise between accurate detection of and diversity

amongst the selected algorithms (Zimek et al., 2013). We se-

lect the four best algorithms (KDE, REC, KNN-Gamma, T 2;

referred to together as 4b) and the three best distance-based

algorithms (KDE, REC, KNN-Gamma; referred to together

as 3d) for computing their ensembles. We assume that this

choice accounts for accuracy (best algorithms selected) as

well as for diversity (different algorithms selected).

Overall, ensemble building improves the anomaly detec-

tion rate. The mean AUC of each of the ensemble members

(3d: +0.030, 4b: +0.023) is lower than the AUC of the en-

semble, regardless of whether the maximum or the mean is

used for ensemble aggregation. Minimum aggregation of en-

semble members, however, performs worse than the individ-

ual ensemble members REC and KDE. Using the maximum

or mean yields consistently higher AUC than using the min-

imum (Table 2). The superior performance of the maximum

choice compared to the minimum indicates that single al-

gorithms overlook more often anomalous events than rais-

ing false alarm. Nevertheless, the maximum has the caveat

that even a single algorithm may cause a false alarm (Zimek

et al., 2013), e.g., due to a poor parameterization or inade-

quate assumptions about properties of the data. Thus, a more

balanced voting procedure like the mean is the preferable

choice and more stable with respect to possible error sources.

Among the mean ensembles, the 3d or 4b ensembles perform

equally well (0.041 vs. 0.039 ± 0.001 overall) (Table 2).

4.4 Limitations

High dimensionality The utility of distance-based outlier

detection algorithms as used in this paper is often ques-

tioned in the context of high-dimensional data (Zimek

et al., 2012). The “curse of dimensionality” states that

the difference between near and far distances diminishes

with increasing dimensionality. However, Zimek et al.

(2012) showed in the case of KNN that the contrary is

true for outliers with fixed magnitude in otherwise un-

correlated data. Dimensionality reduction as crucial fea-

ture extraction transforms the data into a few (ideally)

meaningful and uncorrelated variables. Thus, the find-

ings of Zimek et al. (2012) provide strong arguments for

applying dimensionality reduction on correlated data.

We anticipate that their findings are the reason of the

superior performance of dimensionality reduction here.

Heuristic choices Within the parameterization process, sev-

eral heuristic choices are made. We exclude five time

steps to be counted as recurrences or k-nearest neigh-

bors. We fix several parameters, e.g., the number of

nearest neighbors is fixed to 10. Also, other parame-

ter choices are rather heuristic (e.g., σ ), although com-

monly used. The artificial data farm’s intrinsic dimen-

sion is 3 as it was created from three independent com-

ponents. Therefore, the embedding dimension m is fixed

accordingly, although it can be inferred based on the

data by determining the number of false nearest neigh-

bors (Kennel et al., 1992; Hegger et al., 1999). The

signal-to-noise ratio of our artificial data farm is 0.3.

Furthermore, the choice of the data properties might

influence the results for each event type, as the stan-

dard deviation of AUC values over all data properties

(0.05) is rather large, compared to the average AUC gain

of the three best algorithms with respect to the control

(+0.03). However, the ordering of the algorithms is also

important to derive rankings of algorithms (Hornik and

Meyer, 2007). By choosing different subsets of the data

properties, we observe that the three best algorithms

(KDE, REC, KNN-Gamma) are on top, independently

of the chosen data property. Therefore, the data proper-

ties might have an influence on the AUC values them-

selves, but not on the choice of the top three candidates.

5 Remarks on applications for real Earth

observations

Our version of the artificial data farm was generated to test

different algorithms for their capability to deal with typical

properties of EO data. The workflows were chosen to be as

generic as possible, and therefore their application to real

data with slightly different properties should be made as easy

as possible. Nevertheless, several points have to be consid-

ered, when applying the algorithms to real EOs.
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Table 2. AUC difference of the ensembles of anomaly detection algorithms to the UNIV control. Ensembles are computed out of the four

best algorithms (4b, KDE, REC, KNN-Gamma, T 2) and the three best distance-based algorithms (3d, KDE, REC, KNN-Gamma).

3d max 3d mean 3d min 4b max 4b mean 4b min

BaseShift 0.042 0.037 0.033 0.042 0.038 0.030

TrendOnset 0.059 0.058 0.033 0.060 0.056 0.020

MSCChange 0.033 0.040 0.032 0.033 0.037 0.017

VarianceChange 0.027 0.027 0.025 0.023 0.026 0.022

Mean 0.040 0.041 0.031 0.039 0.039 0.022

RVP 0.001 0.001 0.001 0.001 0.001 0.001

A typical preprocessing of EOs is to center variables to

zero mean and standardize to unit variance (also known as

z transformation). A standardization of this kind is of key

importance in global EOs. Real multivariate observations of-

ten have different physical units or ranges, which have to

be made comparable before analyzing. However, standard-

ization has to be applied with care. Differences between the

mean and variance between geographically distinct or even

adjacent grid cells as well as seasonal cycles might corrupt

any further analysis. We recommend subtracting the median

seasonal cycle before standardization. The median is pre-

ferred over the mean as mean seasonal cycles are affected by

changes in the amplitude of the cycle. Standardization can

be applied globally (i.e., with global spatiotemporal mean

and variance), regionally (i.e., with spatiotemporal mean and

variance in subregions of the globe), or locally (i.e., with

temporal mean and variance in each grid cell). Global stan-

dardization might be more robust than local but detects only

anomalies in high-variance regions. Local standardization as-

sumes that the number of extreme anomalies is equal in each

grid cell, which is a rather strong assumption. Thus, a re-

gional standardization is favorable in regions with similar

mean and variance.

Especially variables presenting a signal from the biosphere

are known to exhibit heteroscedasticity, e.g., the variance

during growing season is substantially larger than during

the rest of the year (Fig. 5). Atmospheric variables in high

latitudes also show higher variability during the cold sea-

son, e.g., temperature variability might be higher over ice

(cold season) than over open water (warm season) (Hansen

et al., 2012). Specifically for global applications, using es-

timates of variance or standard deviation locally (in each

grid cell) leads to an underestimation of the variance during

growing season and thus to an overestimation of anomalies

due to standardization, especially in the northern latitudes

(Guanche et al., 2016). Thus, we recommend accounting for

the heteroscedastic pattern by adjusting the variance during

the growing season within similar regions. We also recom-

mend this kind of adjustment for the covariance matrix used,

e.g., in T 2 or PCA as well as for the parameterization of KDE

or REC.

Furthermore, anomalies are also overestimated when us-

ing a reference period for the estimation of the variance (Sip-

pel et al., 2015). However, with 300 observations in 8-day

intervals, as used in this study, this issue is expected to be

less pronounced than for fewer observations as it scales with

the length of the time series. Nevertheless, we rather recom-

mend using estimates of the variance of the entire time series

or correcting for the overestimation in the out-of-reference

period as shown in Sippel et al. (2015).

Regarding the parameterization process of the algorithms,

we use fixed parameters for σ , ε, k, ν, mean vector, and co-

variance matrix globally on the entire artificial data cube.

Local parameterization assumes the same number of anoma-

lies in each region, which is neither suitable for the artificial

data by construction nor for real global data. Thus, we rec-

ommend parameterizing globally or within similar regions.

Classification of the Earth into similar regions and applying

multivariate extreme detection in each region will be the sub-

ject of future research.

6 Conclusions

Our aim is to identify suitable methods for detecting anoma-

lies in highly multivariate, correlated, and seasonally varying

data streams as they are common in Earth system science.

In particular, we are interested in detecting shifts in mean

(extremes), changes in the amplitude of the seasonal cycle,

temporal changes in the variance, and onsets of trends. We

test a wide range of workflows (i.e., combining feature ex-

traction techniques and anomaly detection algorithms). All

experiments are based on artificial data, designed to mimic

real world Earth observations.

We can show that, on average over different anomaly

types and data properties, three multivariate anomaly detec-

tion algorithms (KDE, REC, KNN-Gamma) outperform uni-

variate extreme event detection as well as other multivari-

ate approaches (mean AUC compared to univariate control:

+0.030). Additional slight improvement can be achieved by

combining the best algorithms into ensembles using an ag-

gregation by averaging score quantiles (+0.041). In contrast,

the tested machine-learning algorithms (SVDD −0.05, KN-

FST −0.01) may fail due to overfitting to the training sample.
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However, we also find for the considered type of events

that including a suitable feature extraction technique in the

detection workflow is often more important than the choice

of the event detection algorithm itself. However, we find

that the feature extraction has to be explicitly designed for

the event type of interest, i.e., time delay embedding (for

detecting changes in the cycle amplitude) and exponential

weighted moving average (for detecting trends and long ex-

tremes and removing uncorrelated noise in the signal) in-

creases the detection rate of the anomalous events. Includ-

ing features of the variance within a moving window works

partly for detecting increases in the variance but fails to de-

tect a decrease in the variance due to the relatively high ob-

servational noise level. In general, if the data comprise sea-

sonality, subtracting them and using the remaining time se-

ries as the input feature is essential. Furthermore, we im-

prove the detection rate of multivariate anomalies in highly

correlated data streams by adding a dimensionality reduction

method to the workflow (in line with results of Zimek et al.,

2012).

The proposed workflows are capable of dealing with com-

mon properties of Earth observations like seasonality, non-

linear dependencies, and (to a certain degree) non-Gaussian

distributions and noise. Nevertheless, they have to be applied

with care to Earth observations, i.e., standardization issues

along with strong heteroscedastic patterns (e.g., in biosphere

variables of northern latitudes) may lead to an overestima-

tion of anomalies. Future work will explore the potential of

the identified workflows in rediscovering known and poten-

tially unknown extremes as well as other anomalies in a set

of real Earth system science data streams. We anticipate that

an automated application of our workflows might enable the

establishment of automated Earth system process control in

a very generic manner.

Data availability. The artificial data farm can be created af-

ter cloning in https://github.com/CAB-LAB/DataFarm. Genera-

tion is done with the following command within the program-

ming language Julia, version 0.4, using SurrogateCube, Surrogate

Cube.DataFarm.makeDataFarm(300,50,50,PathToFolder).
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Appendix A: Technical details on generating the

artificial data

Within the generation process, we assume that the signal S

is additive to the baseline B. The baseline might represent

reoccurring patterns like seasonality or a constant mean. In

addition, binary event parameters evt,lat,lon are introduced,

which allow for switching the anomaly on (evt,lat,lon 6= 0)

and off (evt,lat,lon = 0) (normality). The event type and mag-

nitude of the event is controlled separately by a parameter for

the baseline (kb), the signal (ks), and a mean-shift parameter

(km) scaled with the standard deviation of the data (SD).

2t,lat,lon = Bt,lat,lon · 2(kb·evt,lat,lon) + St,lat,lon · 2(ks·evt,lat,lon)

+ km · evt,lat,lon · SD (A1)

For a basic version, three independent components

2t,lat,lon,var are created with the signal consisting of Gaussian

noise (SD = 1). Each component represents intrinsic proper-

ties of the Earth system. Furthermore, we assume that prop-

erties of the Earth system 2t,lat,lon are not measured directly

but indirectly via a set of correlated variables, i.e., represent-

ing patterns of these intrinsic properties. Hence, these vari-

ables propagate anomalous events that occur in one indepen-

dent component. This set of correlated variables Xvar is cre-

ated by weighting the intrinsic properties 2var with randomly

drawn linear (or nonlinear) weights wj plus additional mea-

surement noise ǫ (Gaussian, SD = 0.3) added to each vari-

able.

Xvar =

j=3∑

j=1

wj · 2j + ǫ (A2)

Table A1. Parameter settings for the generation of the artificial data farm. Details are given for each event type and data property (in brackets).

Basic (Data property) BaseShift VarianceChange MSCChange TrendOnset

Independent comp. 2 3 (MoreIndepComponents) 3 (6) 3 (6) 3 (6) 3 (6)

Dependency (2) Linear (w) (NonLinearDep squ) w (squ) w (squ) w (sq) w (sq)

Baseline B Const. = c (SeasonalCycle s, Lati-

tudinalGradient lg))

c (s, lg) c (s, lg) s (lg) c (s, lg)

Signal S Gaussian g (LaplacianNoise l, Cor-

relatedNoise r)

g (l, r) g (l, r) g (l, r) g (l, r)

Variables VAR 10 10 10 10 10

Noise ǫ 0.3 (NoiseIncrease) 0.3 (1) 0.3 (1) 0.3 (1) 0.3 (1)

Events

Event number 10 (ShortExtremes,

LongExtremes)

10 (50, 5) 10 (50, 5) 1 1

Spatial extent 1000 1000 1000 4 1000

Temporal extent 5 (ShortExtremes,

LongExtremes)

5 (1,10) 5 (1,10) 92 (46, 184) 150

Magnitudes km = 0.2–4 ks = −2 : 2 kb = −2 : 2 km = 0.2-4

Shape Rect. (RandomWalkExtreme

rw)

rect (rw) rect (rw) rect (rw) rect

Using this data generation scheme, a standard data cube

Xti,j ,lat,lon,var is created, encompassing 300 time steps (T ),

10 temporally correlated variables (VAR), and the total num-

ber of latitudes (LAT) and longitudes (LON) fixed to 50 each.

We induce anomalous events with a spatial extent of 40 % of

the latitude and longitude and 10 events, each with a tempo-

ral extent of five time steps. Our total number of anomalies

equals about 3 % of the total data cube.

In the basic version we create four data cubes, each with a

different temporary event type, including

– shift in the baseline, i.e., shift of the running mean of a

time series (BaseShift) (Fig. 2a);

– change in the variance of the time series (Vari-

anceChange) (Fig. 2b);

– change in the amplitude of the mean seasonal cycle of a

time series (MSCChange) (Fig. 2c);

– onset of a trend in the time series (TrendOnset)

(Fig. 2d).

Regarding the data properties, some of the event type data

property combinations are excluded (Table A1). In detail, we

do not expect a TrendOnset to infect neighbored cells (Tren-

dOnset plus RandomWalkExtreme) and a TrendOnset can

hardly be called a TrendOnset if it encompasses only one

time step (ShortExtremes).
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Appendix B: Detailed results
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Figure B1. AUC versus event magnitude for all combinations (grey) and the univariate control (red). Columns of the matrix represent

different event types; rows represent data properties. Additional colored workflows represent the workflows with the five highest mean

values for the magnitudes > 2 SD (> 0.6).
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Figure B2. Effect of the data properties on the three best detection algorithms (KDE, REC, KNN-Gamma) presented as AUC difference of

the UNIV control for the event types (a–d).

Earth Syst. Dynam., 8, 677–696, 2017 www.earth-syst-dynam.net/8/677/2017/



M. Flach et al.: Multivariate anomaly detection for Earth observations: a comparison 693

The Supplement related to this article is available online

at https://doi.org/10.5194/esd-8-677-2017-supplement.

Author contributions. MF and MDM designed the study in col-

laboration with FG, AB, JD, MR, and ER; MF implemented the al-

gorithms, including contributions from FG, PB, and ER; MF wrote

the paper with contributions from all co-authors.

Competing interests. The authors declare that they have no con-

flict of interest.

Acknowledgements. This research has received funding from

the International Max Planck Research School for Global Bio-

geochemical Cycles (IMPRS), the European Space Agency via

the STSE project CAB-LAB, and the BACI project, a European

Union’s Horizon 2020 research and innovation programme under

grant agreement no. 64176. We thank Simone Girst for her kind

language check. Reik Donner and one anonymous referee provided

valuable suggestions for improvement.

The article processing charges for this open-access

publication were covered by the Max Planck Society.

Edited by: Sagnik Dey

Reviewed by: Reik Donner and one anonymous referee

References

Aggarwal, C. C.: Outlier Ensembles, ACM SIGKDD Explorations

Newsletter, 14, 49–58, 2012.

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason,

B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B.,

Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J.,

Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar,

E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., and

Vazquez-Aguirre, J. L.: Global observed changes in daily climate

extremes of temperature and precipitation, J. Geophys. Res, 111,

D05109, https://doi.org/10.1029/2005JD006290, 2006.

Bae, K.-H., Karolyi, G. A., and Stulz, R. M.: A New Approach

to Measuring Financial Contagion, Rev. Financ. Stud., 16, 717–

763, 2003.

Baldocchi, D., Falge, E., and Wilson, K.: A spectral analysis of

biosphere–atmosphere trace gas flux densities and meteorolog-

ical variables across hour to multi-year time scales, Agr. Forest

Meteorol., 107, 1–27, 2001.

Bathiany, S., Notz, D., Mauritsen, T., Raedel, G., and Brovkin, V.:

On the Potential for Abrupt Arctic Winter Sea Ice Loss , J. Cli-

mate, 29, 2703–2719, 2016.

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Car-

valhais, N., Rödenbeck, C., Altaf Arain, M., Baldocchi, D., Bo-

nan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A.,

Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roup-

sard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward,

F. I., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake:

Global Distribution and Covariation with Climate, Science, 329,

843–838, 2010.

Bintanja, R. and van der Linden, E. C.: The chang-

ing seasonal climate in the Arctic, Sci. Rep., 3, 1556,

https://doi.org/10.1038/srep01556, 2013.

Bodesheim, P., Freytag, A., Rodner, E., Kemmler, M., and Denzler,

J.: Kernel Null Space Methods for Novelty Detection, CVPR,

Portland, Oregon, 3374–3381, 2013.

Chang, C.-C. and Lin, C.-J.: LIBSVM: A Library for Support Vec-

tor Machines, ACM Transactions on Intelligent Systems and

Technology, 2, 27:1–27:27, 2013.

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V.,

Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Cheval-

lier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grün-

wald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Lous-

tau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M.,

Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F.,

Sanz, M. J., Schulze, E. D., Vesala, T., and Valentini, R.: Europe-

wide reduction in primary productivity caused by the heat and

drought in 2003, Nature, 437, 529–533, 2005.

Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A.,

Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Mar-

land, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo,

G., Bopp, L., Bréon, F.-M., Broquet, G., Dargaville, R., Bat-

tin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler,

J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gur-

ney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law,

B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., My-

neni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y.,

Paris, J.-D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S.,

Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel,

D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G.,

Wickland, D., Williams, M., and Zehner, C.: Current system-

atic carbon-cycle observations and the need for implementing

a policy-relevant carbon observing system, Biogeosciences, 11,

3547–3602, https://doi.org/10.5194/bg-11-3547-2014, 2014.

Ding, X., Li, Y., Belatreche, A., and Maguire, L. P.: An experi-

mental evaluation of novelty detection methods, Neurocomput-

ing, 135, 313–327, 2014.

Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn,

R. J. H., Willett, K. M., Aguilar, E., Brunet, M., Caesar, J., Hewit-

son, B., Jack, C., Klein Tank, A. M. G., Kruger, A. C., Marengo,

J., Peterson, T. C., Renom, M., Oria Rojas, C., Rusticucci, M.,

Salinger, J., Elrayah, A. S., Sekele, S. S., Srivastava, A. K.,

Trewin, B., Villarroel, C., Vincent, L. A., Zhai, P., Zhang, X.,

and Kitching, S.: Updated analyses of temperature and precipita-

tion extreme indices since the beginning of the twentieth century:

The HadEX2 dataset, J. Geophys. Res.-Atmos., 118, 2098–2118,

2013.

Donges, J. F., Donner, R. V., Rehfeld, K., Marwan, N., Trauth,

M. H., and Kurths, J.: Identification of dynamical transi-

tions in marine palaeoclimate records by recurrence net-

work analysis, Nonlin. Processes Geophys., 18, 545–562,

https://doi.org/10.5194/npg-18-545-2011, 2011a.

Donges, J. F., Donner, R. V., Trauth, M. H., Marwan, N., Schellnhu-

ber, H.-J., and Kurths, J.: Nonlinear detection of paleoclimate-

variability transitions possibly related to human evolution, P.

Natl. Acad. Sci. USA, 108, 20422–20427, 2011b.

www.earth-syst-dynam.net/8/677/2017/ Earth Syst. Dynam., 8, 677–696, 2017

https://doi.org/10.5194/esd-8-677-2017-supplement
https://doi.org/10.1029/2005JD006290
https://doi.org/10.1038/srep01556
https://doi.org/10.5194/bg-11-3547-2014
https://doi.org/10.5194/npg-18-545-2011


694 M. Flach et al.: Multivariate anomaly detection for Earth observations: a comparison

Donges, J. F., Heitzig, J., Donner, R. V., and Kurths,

J.: Analytical framework for recurrence network

analysis of time series, Phys. Rev. E, 85, 046105,

https://doi.org/10.1103/PhysRevE.85.046105, 2012.

Donges, J. F., Schleussner, C. F., Siegmund, J. F., and Donner, R. V.:

Event coincidence analysis for quantifying statistical interrela-

tionships between event time series, The European Physical Jour-

nal Special Topics, 225, 471–487, 2016.

Donner, R. V., Zou, Y., Donges, J. F., Marwan, N., and

Kurths, J.: Recurrence networks – A novel paradigm for

nonlinear time series analysis, New J. Phys., 12, 033025,

https://doi.org/10.1088/1367-2630/12/3/033025, 2010.

Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C.,

Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oeve-

len, P., Robock, A., and Jackson, T.: The International Soil Mois-

ture Network: a data hosting facility for global in situ soil mois-

ture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698,

https://doi.org/10.5194/hess-15-1675-2011, 2011.

Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M.,

Huntingford, C., Scheffer, M., Sgubin, G., and Swingedouw, D.:

Catalogue of abrupt shifts in Intergovernmental Panel on Climate

Change climate models, P. Natl. Acad. Sci., 112, E5777–E5786,

2015.

Durante, F. and Salvadori, G.: On the construction of multivariate

extreme value models via copulas, Environmetrics, 21, 143–161,

2010.

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, T. R. K.,

and Mearns, L. O.: Climate Extremes: Observations, Modeling,

and Impacts, Science, 289, 2068–2074, 2000.

Faranda, D. and Vaienti, S.: A new recurrences based technique for

detecting robust extrema in long temperature records, Geophys.

Res. Lett., 40, 5782–5786, 2013.

Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett.,

27, 861–874, 2006.

Fischer, E. M.: Robust projections of combined humidity and tem-

perature extremes, Nature Climate Change, 3, 126–130, 2013.

Flach, M., Lange, H., Foken, T., and Hauhs, M.: Recurrence Analy-

sis of Eddy Covariance Fluxes, in: Recurrence Plots and Their

Quantifications: Expanding Horizons, edited by: Webber Jr.,

C. L., Ioana, C., and Marwan, N., Springer Proceedings in

Physics, Cham, 301–319, 2016.

Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M., Neigh, C.,

and Reichstein, M.: Trend Change Detection in NDVI Time Se-

ries: Effects of Inter-Annual Variability and Methodology, Re-

mote Sens., 5, 2113–2144, 2013.

Ge, Z., Song, Z., and Gao, F.: Review of Recent Research on Data-

Based Process Monitoring, Ind. Eng. Chem. Res., 52, 3543–

3562, 2013.

Ghil, M., Yiou, P., Hallegatte, S., Malamud, B. D., Naveau, P.,

Soloviev, A., Friederichs, P., Keilis-Borok, V., Kondrashov, D.,

Kossobokov, V., Mestre, O., Nicolis, C., Rust, H. W., Shebalin,

P., Vrac, M., Witt, A., and Zaliapin, I.: Extreme events: dynam-

ics, statistics and prediction, Nonlin. Processes Geophys., 18,

295–350, https://doi.org/10.5194/npg-18-295-2011, 2011.

Guanche, Y., Rodner, E., Flach, M., Sippel, S., Mahecha, M. D.,

and Denzler, J.: Detecting Multivariate Biosphere Extremes, in:

Proceedings of the 6th International Workshop on Climate In-

formatics: CI2016, edited by: Banerjee, A., Ding, W., and Dy,

V., NCAR Technical Note NCAR/TN-529+PROC, Boulder: Na-

tional Center for Atmospheric Research, 9–12, 2016.

Hansen, J., Sato, M., and Ruedy, R.: Perception of climate change,

P. Natl. Acad. Sci. USA, 109, E2415–E2423, 2012.

Harmeling, S., Dornhege, G., Tax, D., Meinecke, F., and Müller, K.-

R.: From outliers to prototypes: Ordering data, Neurocomputing,

69, 1608–1618, 2006.

Hegger, R., Kantz, H., and Schreiber, T.: Practical implementation

of nonlinear time series methods: The TISEAN package, Chaos:

An Interdisciplinary Journal of Nonlinear Science, 9, 413–435,

1999.

Hornik, K. and Meyer, D.: Deriving Consensus Rankings from

Benchmarking Experiments, in: Advances in Data Analysis,

Studies in Classification, Data Analysis, and Knowledge Orga-

nization, edited by: Decker, R. and Lenz, H.-J., Springer, Berlin,

Heidelberg, 163–170, 2007.

Hotelling, H.: Multivariate Quality Control – Illustrated by the

Air Testing of Sample Bombsights, in: Techniques of Statisti-

cal Analysis, edited by: Eisenhart, C., Hastay, M. W., and Wallis,

W. A., McGraw-Hill, New York, 111–184, 1947.

Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M., and

Cox, P. M.: No increase in global temperature variability despite

changing regional patterns, Nature, 500, 327–330, 2013.

Hyväringen, A. and Oja, E.: Independent component analysis: algo-

rithms and applications, Neural Networks, 13, 411–430, 2000.

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson,

A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen,

J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G.,

Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors,

E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams,

C.: Global patterns of land-atmosphere fluxes of carbon diox-

ide, latent heat, and sensible heat derived from eddy covariance,

satellite, and meteorological observations, J. Geophys. Res, 116,

G00J07, https://doi.org/10.1029/2010JG001566, 2011.

Kennel, M. B., Brown, R., and Abarbanel, H. D. I.: Determining

embedding dimension for phase- space reconstruction using a

geometrical construction, Phys. Rev. A, 45, 3403–3411, 1992.

Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M.: Changes in

temperature and precipitation extremes in the CMIP5 ensemble,

Climatic Change, 119, 345–357, 2013.

Killourhy, K. S. and Maxion, R. A.: Comparing Anomaly-Detection

Algorithms for Keystroke Dynamics, IEEE/IFIP International

Conference on Dependable Systems & Networks, 125–134,

2009.
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