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Multivariate Bayesian Logistic Regression
for Analysis of Clinical Study Safety
Issues1

William DuMouchel

Abstract. This paper describes a method for a model-based analysis of clin-
ical safety data called multivariate Bayesian logistic regression (MBLR). Par-
allel logistic regression models are fit to a set of medically related issues,
or response variables, and MBLR allows information from the different is-
sues to “borrow strength” from each other. The method is especially suited
to sparse response data, as often occurs when fine-grained adverse events
are collected from subjects in studies sized more for efficacy than for safety
investigations. A combined analysis of data from multiple studies can be per-
formed and the method enables a search for vulnerable subgroups based on
the covariates in the regression model. An example involving 10 medically
related issues from a pool of 8 studies is presented, as well as simulations
showing distributional properties of the method.

Key words and phrases: Adverse drug reactions, Bayesian shrinkage, drug
safety, data granularity, hierarchical Bayesian model, parallel logistic regres-
sions, sparse data, variance component estimation.

1. INTRODUCTION

This paper introduces an analysis method for safety
data from a pool of clinical studies called multivariate
Bayesian logistic regression analysis (MBLR). The de-
pendent or response variables in the MBLR are defined
at the subject level, that is, for each subject the response
is either 0 or 1 for each safety issue, depending on
whether that subject has been determined to be affected
by that issue based on the data available at the time of
the analysis. Safety issues can include occurrence of
specific adverse events as well as clinically significant
lab tests or other safety-related measurements. The pre-
dictor variables, assumed to be dichotomous or cate-
gorical, are all assumed to be observable at the time of
subject randomization. The analysis is cross-sectional
rather than longitudinal, and does not take into account
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the variability, if any, of the length of time different
subjects have been observed. The primary predictor is
study Arm, assumed to be dichotomous with values
“Treatment” or “Comparator.” Other subject-level co-
variates may be included, such as gender or age cate-
gories, or medical history variables. One feature of the
MBLR approach is that the interactions of treatment
arm with each of the other covariates are automatically
included in the analysis model. Data from a pool of
multiple studies (having common treatment arm defi-
nitions) may be included in the same analysis, in which
case the study identifier would be considered a subject
covariate. Analyses involving a pool of studies are sim-
ilar in spirit to a full-data meta-analysis.

Estimation of effects involves a hierarchical Bayesi-
an algorithm as described below. There are two pri-
mary rationales for the Bayesian approach. First, data
concerning safety issues are often sparse, leading to
high variability in relative rates of rare events among
subject subgroups, and the smoothing inherent in em-
pirical Bayes shrinkage estimates can alleviate prob-
lems with estimation of ratios of small rates and the
use of multiple post-hoc comparisons when encounter-
ing unexpected effects. Second, MBLR fits the same
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analytical model to each response variable and then al-
lows the estimates of effects for the different responses
to “borrow strength” from each other, to the extent
that the patterns of coefficient estimates across differ-
ent responses are similar. This implies that the different
safety issues should be medically related, so that it is
plausible that the different issues have related mech-
anisms of causation or are different expressions of a
broad syndrome, such as being involved in the same
body system, or different MedDRA terms in nearby
locations in the MedDRA hierarchy of adverse event
definitions. The goal is to assist with the problem of
uncertain granularity of analysis. The question of how
to classify and group adverse drug reaction reports
can be controversial because different assignments can
change the statistical significance of count data treat-
ment effects, and methods and definitions for compar-
ing adverse drug event rates are not well standardized
(Dean, 2003). Sometimes the amount of data available
for each of the related safety issues is too little for re-
liable comparisons, whereas doing a single analysis on
a transformed response, defined as present when any
of the original issues are present, risks submerging a
few potentially significant issues among others having
no treatment association. The Bayesian approach is a
compromise between these two extremes.

The proposed methodology is not intended to replace
or replicate other processes for evaluating safety risk
but rather to support and augment them. In spite of the
formal modeling structure, its spirit is more a mixture
of exploratory and confirmatory analysis, a way to get
a big picture review when there are very many parame-
ters of interest. The resulting estimates with confidence
intervals can provide a new approach to the problem of
how to best evaluate safety risk from clinical studies
designed to test efficacy.

This paper describes the statistical model and the es-
timation algorithms used in a commercial implementa-
tion of MBLR. There is also some discussion of al-
ternate models and algorithms with reasons for our
choices. An example analysis utilizes data from a set
of clinical studies generously provided by an industry
partner, and a simulation provides information on the
statistical properties of the method.

2. THE BAYESIAN MODEL FOR MBLR

As with standard logistic regression, MBLR pro-
duces parameter estimates interpretable as log odds,
and provides upper and lower confidence bounds for

these estimates. The method is based on the hierarchi-
cal Bayesian model described below. Identical regres-
sion models (i.e., the same predictor variables for dif-
ferent response variables) are estimated assuming that
the relationships being examined are all based on the
same underlying process. The response variables rep-
resent issues comprising a potentially common safety
problem and the underlying process is an adverse reac-
tion caused by the treatment compound. The regression
models are various examinations of relationships be-
tween subgroups defined by the covariates and the re-
sponse issues. The Bayesian estimates of treatment-by-
covariate interactions are conservative (estimates are
“shrunk” toward null hypothesis values), in order to re-
duce the false alarm due to high variance in small sam-
ple sizes. This conservatism is a form of adjustment for
multiple comparisons.

It is natural to desire a comparison of MBLR with
a more standard analysis, which, for the present pur-
pose, means a logistic regression model where the esti-
mates for the different responses are not shrunk toward
each other, and where interactions between treatment
and other covariates are not being estimated. However,
it can often happen, with sparse safety data involving
rare adverse events and the use of other predictors in
addition to the treatment effect, that standard logis-
tic regression estimation can fail, because the likeli-
hood function has no unique finite maximizing set of
parameters. Gelman et al. (2008) discuss this prob-
lem, caused by what they call separation and sparsity,
and suggest the automatic use of weakly informative
prior distributions as a default choice for such analyses.
Along the lines of the Gelman et al. (2008) suggestion,
we will compare MBLR to a “weak Bayes” method
that corresponds to setting certain variance compo-
nents (that are estimated by MBLR) to values selected
to be so large that the resulting estimates would be vir-
tually the same as those of standard logistic regression
if the data are not so sparse as to be unidentifiable. This
comparison method will be denoted regularized logis-
tic regression (RLR).

The event data can be considered as a K-column ma-
trix Y , with a row for each subject and a column for
each issue, and where Ysk = 1 if subject s experienced
issue k, 0 otherwise. Since all subject covariates are
assumed categorical, we will use a grouped-data ap-
proach, where there are ni subjects (i = 1, . . . ,m) that
have identical covariates and treatment allocation in the
ith group, and where Nik of these subjects experienced
issue k.
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MBLR requires the inclusion of the treatment arm
and of one or more additional predictors in the model,
where all predictors are categorical.

Across the set of issues a single regression model
is used. If there are J predictors excluding Treatment,
and the j th predictor has gj categories, j = 1, . . . , J ,
then there will be G = ∑

gj subgroups analyzed. The
model will usually have 2G + 2 − 2J degrees of free-
dom and estimation is performed by constraining sums
of coefficients involving the same covariate to add to 0.
The Bayesian methods presented here allow estimation
in the presence of additional collinearity of predictors,
in which case the computed posterior standard devia-
tions would then reflect the uncertainty inherent in a
deficient design.

For the ith group of subjects, the modeled probabil-
ity of experiencing issue k is Pik , where

Pik = 1/[1 + exp(−Zik)] and where(1)

Zik = α0k + ∑
1≤g≤G

Xigαgk

(2)

+ Ti

(
β0k + ∑

1≤g≤G

Xigβgk

)
.

The G columns of X define the G dummy vari-
ables for the J covariates, and Ti is an indicator for
the treatment status of the ith group. The values of αgk

(g = 0, . . . ,G; k = 1, . . . ,K) define the risk of issue k

for the comparator subjects. As mentioned above, the
sums

∑
g αgk = 0, where the sums are over the cat-

egories of each covariate for each k. The more natu-
ral quantities (α0k + αgk) are the log odds that a com-
parator subject in subgroup g will experience issue k,
g = 1, . . . ,G, averaged across the categories of other
predictors not defined by subgroup g.

Concerning treatment effects, the quantities (β0k +
βgk) are the estimated log odds ratios for the risk of
issue k (treatment versus comparator) that subjects in
group g experience, g = 1, . . . ,G, averaged across
the categories of other predictors not defined by sub-
group g. The sums

∑
g βgk are constrained just as the

α’s were.
If G is large, there will be many possible sub-

group comparisons, and, since these confidence inter-
vals have not been adjusted for multiple comparisons,
caution is advised in interpreting the largest few of
such observed subgroup estimates. The MBLR esti-
mates of these quantities are designed to be more re-
liable in the presence of multiple comparisons because
subgroup-by-treatment interaction effects are “shrunk”
toward 0 in a statistically appropriate way, and there is

also a partial averaging across issues, so that subgroup
and treatment effects and subgroup-by-treatment inter-
actions can “borrow strength” if there is an observed
similar pattern of treatment and subgroup effects in
most of the K issues being analyzed. When configur-
ing a multivariate Bayesian logistic regression, the an-
alyst should try to select those issues for which there
is some suspicion of a common medical mechanism
involved. If the Bayesian algorithm does not detect a
common pattern of subgroup effects, then the Bayesian
algorithm will perform little partial averaging across
issues, because corresponding variance component es-
timates will be large.

The Bayesian model is a two-stage hierarchical prior
specification:

αgk|Ag ∼ N(Ag,σ
2
A),

(3)
k = 1, . . . ,K;g = 1, . . . ,G,

β0k|B0 ∼ N(B0, σ
2
0 ), k = 1, . . . ,K,(4)

βgk|Bg ∼ N(Bg,σ
2
B),

(5)
k = 1, . . . ,K;g = 1, . . . ,G,

Bg ∼ N(0, τ 2), g = 1, . . . ,G.(6)

The prior distributions of α0k , k = 1, . . . ,K , and
of Ag , g = 1, . . . ,G, and of B0 are assumed uniform
within (−∞,+∞). Equations (3)–(5) embody the as-
sumption that coefficients for the same predictor across
multiple issues cluster around the predictor-specific
values (A1, . . . ,AG,B0, . . . ,BG) with the degree of
clustering dependent on the magnitude of three vari-
ances (σ 2

A,σ 2
0 , σ 2

B ). If any of these variances are near
0, there will be a tight cluster of the corresponding re-
gression coefficients across the K responses, whereas
if they are large, there may be no noticeable common
pattern across k for predictor g. The values of α0k cor-
respond to the constant terms in the regressions, and we
assume no common shrinkage of constant terms across
issues, since the absolute frequencies of the issues are
not being modeled here.

Equation (6) embodies the assumption that the null
hypotheses Bg = 0 (i.e., no treatment-by-covariate in-
teractions when averaged across responses) are given
priority in the analyses. This is the assumption that
helps protect against the multiple comparisons fallacy
when searching for vulnerable covariate subgroups.
The value of τ 2 determines how strongly to shrink the
G prior means Bg toward 0 in the second level of the
prior specification.
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The four standard deviations (σA,σ0, σB, τ ) have
prior distributions assumed to be uniform in the four-
dimensional cube 0 ≤ σ , τ ≤ d . Their joint poste-
rior distribution is approximated by a discrete distri-
bution for computational convenience, as described
below. The posterior distribution of the coefficients
{Ag,Bg,αgk, βgk} is defined as a mixture of the dis-
tributions of the coefficients conditional on the pos-
sible values of the variance components. The method
produces an approximate variance–covariance matrix
for all the coefficients, and this also allows the esti-
mation of standard deviations and confidence intervals
(credible intervals) for linear combinations of param-
eters such as the quantities (β0k + βgk) describing the
total treatment effect estimates for each subgroup.

General discussion of hierarchical Bayesian regres-
sion models is available in Carlin and Louis (2000),
although the particular model (involving multiple re-
sponses) and estimation methods used in this paper
are not discussed there. Searle, Casella and McCulloch
[(1992), Chapter 9] also discuss related methods, in-
cluding a logit-normal model somewhat similar to this
one.

3. ESTIMATION DETAILS

Estimation of MBLR Parameters

The estimation algorithm for MBLR is based on sep-
arate maximizations of the posterior distributions of
the coefficients, conditional on the values of the vari-
ance components. Then these posterior distributions
are averaged to provide an overall posterior distribu-
tion, where the weights in the average are determined
by the Bayes factors for different values of the vector of
the four variance components. First we assume that the
four standard deviations (σA,σ0, σB, τ ) are fixed and
known and consider estimation of the other parame-
ters.

Estimation of Coefficients and Prior Means
Conditional on Prior Standard Deviations

There are M = 2(G + 1)(K + 1) − 1 such param-
eters: 2G + 1 prior means, (G + 1)K values αgk and
(G + 1)K values of βgk . However, 2J (K + 1) sums
of these parameters are defined as 0, leaving M∗ =
2(G−J + 1)(K + 1)− 1 dimensions for estimation. It
is convenient to imagine that subjects are grouped ac-
cording to unique values of their covariates and treat-
ment allocation, so that the data are the sample sizes
ni and the counts Nik (i = 1, . . . ,m; k = 1, . . . ,K),
where i indexes m strata defined by unique values of

covariates and treatment. The joint distribution of the
parameters and the data can be represented as

p(A1, . . . ,AG,B0, . . . ,BG)

· ∏
k

p(α0k, . . . , αGk,β0k, . . . , βGk|{A}{B})(7)

· p({Nik}|{A}{B}{α}{β}).
The prior distributions of A1, . . . ,AG, B0 and the

{α0k} are assumed uniform over (−∞,+∞), whereas
all the remaining parameters have prior distributions as
given in equations (3)–(6).

Therefore, if logL is the log posterior joint distribu-
tion of all the parameters, then, up to a constant,

2 logL = −
[∑
g>0

B2
g/τ 2 + (G − J ) log(τ 2)

]

−
[∑
g>0

∑
k

(αgk − Ag)
2/σ 2

A

+ (G − J )K log(σ 2
A)

]

−
[∑

k

(β0k − B0)
2/σ 2

0 + K log(σ 2
0 )

]

(8)

−
[∑
g>0

∑
k

(βgk − Bg)
2/σ 2

B

+ (G − J )K log(σ 2
B)

]

+ 2
∑
i

∑
k

[Nik log(Pik)

+ (ni − Nik) log(1 − Pik)].
In (8), the terms involving log(τ 2), log(σ 2

A) and
log(σ 2

B) all have a factor (G − J ), rather than the more
natural G, since there are G values {Ag} and {Bg}. But
since they are being estimated subject to J constraints
where subsets of them add to 0, the factor (G − J ) is
substituted, analogous to the way REML estimates are
defined for variance components in a frequentist anal-
ysis. For fixed variance components, maximization of
(8) with respect to all other parameters, remembering
that the Pik are defined by (1) and (2), involves a rel-
atively straightforward modification of the usual logis-
tic regression calculations. The prior means {Ag} and
{Bg} are treated analogously to the coefficients {αgk}
and {βgk} during the Newton–Raphson maximization
of logL. Each iteration involves calculation of the vec-
tor S of M first derivatives of logL with respect to the
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parameters in (8) and the M × M Hessian matrix H

of the negative second derivatives of logL. The initial
values of α0k are log(N+k/(n+ − N+k)), k = 1, . . . ,K

(the subscript “+” means sum over the values of i),
whereas the initial values of all other parameters are 0.

Upon convergence of the maximization, the vari-
ance–covariance matrix of the estimated parameters is
assumed to be

V = V (σA,σ0, σB, τ ) = H−1.(9)

[Actually, the matrix H will be singular because of
the constraints that reduce the rank of H . The inter-
pretation of (9) is as follows. Define a subset θ∗ of
M∗ parameters out of the M-vector θ , where one pa-
rameter from each constrained subset has been omit-
ted, but will be constrained to be equal to the neg-
ative of the sum of the other parameters in its sub-
set. Define the M × M∗ matrix Z that converts from
θ∗ to θ , that is, θ = Zθ∗. Then (9) is interpreted as
V = Z(ZtHZ)−1Zt . The same transformation is used
during the Newton–Raphson maximization of logL.
Also, in (11b) and later, the determinant of V is com-
puted as the determinant of V ∗ = (ZtHZ)−1.]

The computation of V as H−1 uses the assumption
that the counts {Nik} are independent across both i and
k, conditional on the parameters. The occurrence of
different events in the same subject may be connected
via the parameters, but not otherwise correlated in this
model. If this assumption is violated, the variances in
V may be underestimated. Since the M parameters in-
clude both all the coefficients as well as their prior
means, the variances in V for any one component au-
tomatically include uncertainty due to correlation with
all other components. In particular, uncertainty in the
prior means {Ag,B0,Bg} is taken account of in the
estimated posterior variances of the {αgk,βgk} (up to
the accuracy of the approximate multivariate normal-
ity of the joint posterior distribution of the parame-
ters).

Accounting for Uncertainty in the Prior Standard
Deviations

The prior distribution of the set of possible values
of (σA,σ0, σB, τ ) is assumed to be uniform within the
four-dimensional cube with limits (0, d), where a de-
fault value of d = 1.5 is selected as discussed be-
low. A discrete search method approximates the pos-
terior distribution within this cube. Before discussing
the details, consider the situation where the prior stan-
dard deviation vector φ = (σA,σ0, σB, τ ) is assumed

to be one of S discrete values φ1, φ2, . . . , φS . De-
note the vector of coefficients and prior means by
θ = (A1, . . . ,AG,B0, . . . ,BG,α01, . . . , αGK,β01, . . . ,

βGK), and assume that the maximized logL and the
estimated posterior mean and covariance matrix of θ

are (logLs, θs,Vs) if φ = φs , s = 1, . . . , S. Then the
marginal posterior distribution of θ , adjusting for un-
certainty in φ, is assumed to be multivariate normal
with mean θ̂ and covariance matrix V , where

θ̂ = ∑
s

πsθs,(10a)

V = ∑
s

πs[Vs + (θs − θ̂ )(θs − θ̂ )t ],(10b)

and where πs , the posterior weight given to φ = φs ,
s = 1, . . . , S, is defined by

πs = BFs/(BF1 + · · · + BFS),(11a)

BFs = exp(logLs)
√

det(Vs).(11b)

The quantity BFs is the (relative) Bayes factor for the
hypothesis φ = φs . The usual definition of the Bayes
factor requires the integration of the joint likelihood
over the space of all parameters not specified by the
hypothesis—in this case the space of all θ . Using the
approximation of this likelihood as proportional to a
multivariate normal density with covariance matrix Vs ,
and the known fact that volume under the multivariate
exponential form exp[−θ t (Vs)

−1θ/2] is proportional
to the square root of the determinant of Vs , the defini-
tion of BFs is as given in (11). The approximation (11)
is the standard Laplace approximation often used for
numerical integration in Bayesian methods. However,
a different justification for computing (11b) in order to
obtain estimates for variance components is given by
the theory of h-likelihood (Lee and Nelder, 1996; Lee,
Nelder and Pawitan, 2006; Meng, 2009).

Selection and computation of the values (φs,πs ),
s = 1, . . . ,S

Representing the 4-dimensional naturally continu-
ous distribution of φ by a set of discrete points is a
challenge. Assuming a range of d = 1.5 for each ele-
ment of φ and a spacing of 0.1 would mean a grid of
S = 154 > 50,000 points, the vast majority of which
would have values of πs nearly 0. Determination of
a set of just S = 33 points to represent the approxi-
mate posterior distribution of φ is performed as out-
lined next. A logistic transformation is used to con-
vert the bounded cube (0, d)4 to the unbounded region
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where all four elements can range from (−∞,+∞) by
defining

λ = (λA,λ0, λB,λτ ) where

σA = d/(1 + e−λA), σ0 = d/(1 + e−λ0),(12)

σB = d/(1 + e−λB ), τ = d/(1 + e−λτ ).

With this transformation, a uniform prior distribution
on (0, d) for each σ corresponds to a prior distribution
for each λ over the real line of f (λ) ∝ σ(λ)(d −σ(λ)).
The purpose of this transform is to allow simpler search
procedures that don’t have to worry about boundary
constraints, as well as to make approximation of the
posterior by a multivariate normal distribution more ac-
curate. Then the posterior density of λ is assumed to be

g(λ) = g(λA,λ0, λB,λτ )

∝ f (λA)f (λ0)f (λB)f (λτ )(13)

· exp(logLs)
√

det(Vs),

where logL and V in (13) are now functions of λ, and
the λ’s vary over (−∞,+∞).

The determination of the discrete distribution (φs,

πs), s = 1, . . . , S, is a five-step process:
Step 1: Use the method of steepest ascent to find the

value λmax that maximizes g(λ) in (13). Derivatives of
g are computed numerically as first difference ratios
with respect to each of the four arguments. The starting
value for the search is λ = (0,0,0,0).

Step 2: Construct a design of S = 33 λ-values by
adding 16 points on the surface of each of two con-
centric spheres centered at λmax. The points on the in-
ner sphere consist of 8 star points, where one compo-
nent of λ is λmax ± 2δ0 and the other three components
equal λmax, and 8 half-fractional factorial points, where
all components are λmax ± δ0. The points on the outer
sphere are similar to those on the inner sphere, except
that δ0 is replaced by 1.5δ0 and the fractional facto-
rial points are from the opposite half fraction as the
fractional factorial points on the inner sphere. The de-
fault value of δ0 = 0.3 on the scale of λ. Visualizing
the geometry of the design, if a 4-dimensional sphere
has radius 1.5 times another, it encloses about 5 times
the volume.

Step 3: The double central composite design of
Step 2 is centered but not scaled to the actual distri-
bution g(λ). To find the appropriate scale factors in
each dimension, δ = (δ1, δ2, δ3, δ4), for a better fitting
design, a quadratic response surface model is fit to val-
ues of logg(λ) across the S points of this initial design.

The fitted model is

logg(λ) = c0 + ∑
i

ciλi + ∑
i≤j

cij λiλj .(14)

Now if the quadratic model fit exactly (i.e., if g were
exactly multivariate normal), then the second-order co-
efficients cij would specify the elements of the in-
verse of the posterior covariance matrix of λ. Accord-
ingly, we get what are hoped to be approximate poste-
rior standard deviations by setting δ = vector of square
roots of the diagonal of H−1, where

2H =

⎡
⎢⎢⎣

2c11 c12 c13 c14
c12 2c22 c23 c24
c13 c23 2c33 c34
c14 c24 c34 2c44

⎤
⎥⎥⎦ .(15)

Step 4: Next a new design like that of Step 2 is
constructed except that the δ0 used in Step 2 for all
4 dimensions is replaced by δ = (δ1, δ2, δ3, δ4) from
Step 3, so that the spheres are scaled differently in each
dimension. The values of logg(λ) are computed for
these 32 new points and a new quadratic response sur-
face is fit to this 33-point final design. Let the peak of
this fitted surface be denoted λfit, which will not ex-
actly equal λmax, and redefine δ = (δ1, δ2, δ3, δ4) by
using the coefficients from the new quadratic response
surface in (15).

Step 5: The discrete distribution defined by {λ(s),

g(λ(s)), s = 1, . . . , S} as computed in Step 4 will
roughly approximate the continuous distribution de-
fined by g(λ), but the approximation can be improved
by modifying the S = 33 probabilities to constrain the
4 means and 4 standard deviations of the discrete distri-
bution to exactly match the values λfit and δ that were
computed from the response surface fit of Step 4. The
final probabilities πs , s = 1, . . . , S, are computed as
the solution to the following constrained optimization
problem:

Find positive π1, . . . , πS that minimize the Kul-
lback–Leibler divergence

KL = ∑
s

g
(
λ(s)) log

[
g
(
λ(s))/πs

]
,

subject to the 9-dimensional constraints
(16) ∑

s

πs = 1; ∑
s

πsλ
(s) = λfit;

∑
s

πs

(
λ(s) − λfit)2 = δ2,

where the last two equations are each interpreted as
4 constraints, one for each component of λ. The con-
strained minimization problem of (16) is solved using
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the method of Lagrange multipliers combined with a
Newton–Raphson solution of the resulting 9 equations.

Thus, the {πs} used in (10) are the solution to (16)
rather than the more direct values in (11). They dif-
fer from (11) by incorporating the Jacobian terms of
(13) and the further modifications needed to satisfy the
constraints in (16). The values of {φs} used in (10) are
the back-transformations defined by (12) of the final
S = 33 points {λs} used in Steps 4 and 5.

Estimates Using Regularized Logistic Regression
(RLR)

To compare the MBLR results to standard logistic re-
gression, and still be able to avoid problems with non-
identifiability, as discussed above, the RLR algorithm
is defined by fitting MBLR under the constraints

σA = 5, σ0 = 5, σB = 0.001, τ = 0.001.(17)

Setting σB and τ very close to 0 effectively con-
strains the estimates of covariate-by-treatment inter-
actions to be 0. Setting σA and σ0 to be very large
prevents the estimates across different response events
from shrinking toward each other The rationale for
thinking that a prior standard deviation of 5 is very
large for a logistic regression coefficient is as follows.
Remembering that the coefficients are interpreted as
logs of odds ratios, an increase of 5 in a coefficient
corresponds to a multiplicative factor of e5 = 148.4
in an odds ratio. With respect to the assumed normal
prior distributions in equations (3)–(6), the prior stan-
dard deviation of 5 implies that about one-third of all
estimated odds ratios are expected to be outside the
range of (1/148 = 0.007, 148). This certainly seems
to be well beyond the range of expected odds ratios
in any medical risk estimation situation. See Gelman
et al. (2008) for a related discussion. [In the Bayesian
setup described above, we use as default limits for
the prior standard deviations (0, d = 1.5). Consider-
ing a prior standard deviation to be as large as 1.5,
where e1.5 = 4.5, implies that about one-third of the
estimated odds ratios would be outside the range of
(1/4.5 = 0.22, 4.5), which seems a bit of a stretch, but
barely conceivable.]

Using the values in (17) for the prior standard de-
viations, this alternative weak Bayesian prior method
estimates the parameters and their variances using the
iterative Newton–Raphson estimation described above.
The resulting estimates are computationally reliable
even if many of the response events are sparse. Such
estimates perform very little shrinkage across response

models because the prior standard deviations in equa-
tions (3)–(6) are large compared to the standard er-
rors of the (estimable) logistic regression coefficients.
However, the MBLR and RLR models as formulated
will not protect against problems of estimability in case
every response is quite sparse, because of the use of an
improper prior for the prior means (A1, . . . ,AG,B0). If
certain covariate or treatment categories are perfectly
correlated with every response, then one must either
drop such predictors or add additional response vari-
ables.

The Bayes factor for φ0 = (5,5,0.001,0.001) can be
computed and compared to the 33 values found in the
final grid of the Bayesian estimation described above,
which provides further evidence regarding the prior
standard deviations. In particular, large Bayes factors
against φ0 imply that the MBLR model fits the data
better than the RLR model, meaning that there is sig-
nificant evidence that either the responses have similar
covariate profiles or that there are significant covariate-
by-treatment interactions.

Confidence Intervals for Odds Ratios

Let the final estimate of, for example, βgk be bgk , so
that the odds ratio point estimate is ORgk = exp(bgk).
Using the normal approximation to the posterior dis-
tribution of the coefficients and the estimates of V

in equation (10), 90% confidence intervals (posterior
credible intervals) for the corresponding odds ratios are
given by

OR.05 = exp
[
bgk − 1.645

√
v(βgk)

]
< OR

(18)
< exp

[
bgk + 1.645

√
v(βgk)

] = OR.95.

For the main effects of covariates or for treatment,
these provide confidence (credible) intervals for odds
ratios of the predictor vs the response outcome. The
odds ratio comparing two categories of a multicategory
covariate would be found by taking the ratio of the cor-
responding exponentiated coefficients.

Interpreting the interaction effects of covariates with
treatment arm is tricky, since it would involve ratios
of odds ratios. To aid in interpretation, one can present
in addition to the interaction coefficients themselves,
the sums of the treatment coefficient plus the interac-
tion coefficients. Confidence intervals for these sums
are formed in the usual way, taking into account the co-
variances between the treatment coefficient and the in-
teraction coefficients. When these sums and their con-
fidence limits are exponentiated, we get estimates and
limits for subgroup treatment-by-outcome odds ratios.
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These estimates are oriented toward finding potentially
vulnerable subgroups where the adverse effect risk of
treatment is especially high.

4. DISCUSSION OF METHODS AND ALTERNATE
MODELS

The philosophy of estimation is not to try to model
the medical mechanisms perfectly, but to provide a
reliable compromise between pooling related sparse
events in order to increase the sample size, and fitting
separate models to each event, with the correspond-
ing loss of power due to small samples. The selection
of which issues to include in an MBLR is important.
There needs to be at least a superficial plausibility that
all or many of the selected outcome issues might have
similar odds ratios with treatment and with the covari-
ates in the model, what Bayesians call exchangeability.
Sometimes it may be difficult to decide what other is-
sues to include if attention has focused primarily on
a single and seemingly unique issue such as subject
death. Because it takes several degrees of freedom to
estimate a variance component, the values of some of
the standard deviations in equations (3)–(6) may be
poorly estimated if K and/or G are not large, but the
use of Bayes factors and the computation of the πs in
(11) and (16) allow some assessment and adjustment
for this uncertainty.

The current model is quite similar in spirit to, and
somewhat inspired by, that proposed by Berry and
Berry (2004). They also assume that drug adverse re-
actions are classified into similar medical groupings
in order to use a shrinkage model to allow borrowing
strength across similar medical events. They focus on
treatment/comparator odds ratios only and do not con-
sider covariates or the use of logistic regression. They
also define a more complex model having many more
variance components than the one proposed here.

One might ask the question of why estimate covari-
ate effects at all, since in a randomized study the co-
variates should all be nearly orthogonal to the treat-
ment variable? The rationale in MBLR is not so much
to adjust for potential biases in the treatment main ef-
fect, but to be able to include treatment-by-covariate
interactions in order to detect possibly vulnerable sub-
groups that might react differently to the treatment.
When G is large (many covariate categories) it will of-
ten be difficult to estimate so many parameters unless
all the issues being modeled occur frequently. The mul-
tiple comparisons involved make any search for vul-
nerable subgroups difficult and subject to false alarms,

especially for sparse events. This makes the use of
Bayesian shrinkage of the interaction terms in (6) espe-
cially valuable: it negotiates the bias-variance trade-off
among multiple event rates having possibly very differ-
ent sampling variances. Without this smoothing effect,
estimates of interactions affecting rare events will be so
variable as to be useless, which is why the RLR method
is defined to estimate only main effects.

The importance of avoiding undue rejection of the
null hypothesis in the presence of multiple post-hoc
comparisons is central to being properly conservative
when evaluating treatment efficacy. There is a ques-
tion as to how much this conservatism should extend
to exploratory analyses of safety issues. For exam-
ple, the prior specification (6) shrinks the interaction
prior means Bg toward 0, whereas the main effect prior
means Ag and B0 are not shrunk toward 0. We pre-
fer to maintain maximum sensitivity to safety main ef-
fects, while accepting that true interaction effects are
less likely and need more false alarm protection. We
also encourage parallel computation of the minimal-
shrinkage regularized LR estimates discussed above,
so that the analyst can perform an easy comparison and
sensitivity analysis of the effects of shrinkage.

The prior distributions in equations (3)–(6) are all
assumed to be normal distributions. Many Bayesian
researchers have pointed out that since normal distri-
butions generate few outliers, outliers may be corre-
spondingly suppressed under this assumption. Com-
monly suggested alternative prior distributions are the
double exponential and Student’s t , which tend to
shrink outliers less. The double exponential (“lasso”)
prior has nonstandard theoretical properties that make
computation of standard errors of coefficients problem-
atical, and so have been ruled out for this application.
Alternative distributions like Student’s t are difficult to
handle computationally in our complex situation where
there are hundreds of coefficients and multiple variance
components. The normal model that we use has a con-
cave log posterior density function and the iterative es-
timation algorithm is guaranteed to converge.

There is a similar computational feasibility rationale
for using the discrete approximation to the distribu-
tion of prior standard deviations. It is more common in
the recent Bayesian literature to use Gibbs sampling or
another Markov chain Monte Carlo (MCMC) method
to estimate the posterior distributions of all parame-
ters. Two reasons for preferring to avoid such meth-
ods are as follows: first, we want to allow scientists
without much statistical sophistication, much less ex-
perience with fancy Bayesian computational methods,
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Issue Treatment events Comparator events 95% C.I. for Odds Ratio

Anuria 8 0 (1.0 , 295.4)
Dry mouth 308 65 (3.9 , 6.7)
Hyperkalaemia 218 162 (1.1 , 1.7)
Micturition urgency 13 3 (1.2 , 12.6)
Nocturia 19 7 (1.1 , 6.1)
Pollakiuria 193 34 (4.1 , 8.5)
Polydipsia 49 4 (4.2 , 29.3)
Polyuria 100 17 (3.5 , 9.8)
Thirst 543 66 (7.5 , 12.6)
Urine output increased 13 1 (1.7 , 48.8)

Subject counts: Treatment = 3110 Comparator = 2642

DISPLAY 1. Statistics for ten issues related to dehydration/renal function for the pooled studies.

to use MBLR and these users would have trouble as-
sessing convergence of such high-dimensional MCMC
runs. Second, these users might also be uncomfortable
with the fact that repeating an analysis on the same data
typically leads to slightly, but noticeably, different an-
swers. The method for handling the variance compo-
nent estimation outlined above provides computation-
ally and statistically reliable answers within a feasible
computational burden. As described above, there are
three roughly equally expensive stages in the model fit-
ting computations: the two preparatory stages of find-
ing the maximum of the posterior distribution and then
evaluating it on an initial grid to find scale parameters
in each direction, and the last stage of evaluating the
model on the final grid to approximate the posterior
distribution of the variance components.

5. EXAMPLE ANALYSIS

Data Description

The data used for the example analyses are from a
pool of eight studies, kindly contributed by an anony-
mous partner. Four of the studies were for one indica-
tion and four were for a second indication. There were
a total of 5752 subjects in the pooled studies, 3110 in
the Treatment arm and 2642 in the Comparator arm.

Display 1 shows statistics from these studies for a set
of ten issues related to dehydration and/or renal func-
tion. All ten issues show up with greater frequency in
the treatment arm than in the comparator. The final two
columns are the endpoints of 95% confidence intervals
for the odds ratios comparing treatment and compara-
tor groups in the pooled data, computed using a nor-
mal approximation for the log (odds ratio) after adding

Treatment Comparator

Gender = F 908 685
Gender = M 2202 1957
Study = A1 246 84
Study = A2 120 120
Study = A3 239 80
Study = A4 191 63
Study = B1 102 103
Study = B2 17 11
Study = B3 123 120
Study = B4 2072 2061
Renal history = Y 190 191
Renal history = N 2920 2451
Age = 50 or under 382 348
Age = 51 to 65 1089 902
Age = 66 to 75 948 820
Age = Over 75 691 572

All patients 3110 2642

DISPLAY 2. Distribution of subjects by covariates and treatment
arm.

0.5 to every cell of each 2 × 2 table. It is clear that
many of these issues are associated with treatment, and
we wish to investigate the commonality of these med-
ically related issues, as well as the possibility that cer-
tain subgroups of subjects may be more or less affected
by these associations.

Display 2 shows the four covariates selected as
grouping variables for this analysis: Gender, Study ID,
Renal History and Age. Recall that of the 8 studies
being pooled, there were 4 studies for each of two po-
tential indications for the drug. The Study ID values
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of A1–A4 and B1–B4 distinguish the studies for in-
dication A and indication B. The Renal History vari-
able distinguishes those subjects whose medical his-
tory (before randomization) includes one or more re-
nal problems. As can be seen from Display 2, there
are many more male than female subjects, and the age
range 51 to 75 predominates. Three of the studies for
indication A had about a 3:1 split of Treatment to Com-
parator subject counts, while the other five studies are
more equally split. Study B2 had only 28 subjects total,
while Study B4 had 4133 subjects, over two-thirds of
the total in the pool. Only about 7% of the subjects had
a previous history of renal problems.

Display 1 shows that five of the ten issues affected
fewer than 10 Comparator-group subjects, whereas
there are 16 separate covariate groups in Display 2.
This makes it unlikely that those rare issues would oc-
cur in every treatment–covariate combination, which
is necessary for convergence of a standard LR where
the model includes all treatment–covariate interaction
terms. In fact, only 3 of the 10 issues satisfy this con-
dition, confirming the necessity of some special tech-
nique such as MBLR to try to estimate treatment-by-
covariate interactions, and, in fact, even a main-effects
only model would not be estimable by standard logistic
regression applied to the rarer of these response issues,
making the regularized LR necessary for this example.

Posterior Distributions for Prior Standard
Deviations

This example has K = 10, J = 4 and G = 16, with
the total number of parameters (elements of θ ) to es-
timate being M = 2(G + 1)(K + 1) − 1 = 373, with
M∗ = 285 degrees of freedom. Display 3 shows vari-
ous results as a function of the four prior standard devi-
ations. The top row 0 describes the regularized LR case
where σA = 5, σ0 = 5, σB = 0.001, τ = 0.001. The
rows labeled 1–33 in Display 3 show results for the
final grid used to approximate the posterior distribu-
tion of φ. The row 1 values are the maximum posterior
estimates (transformed from the scale of λ to that of
φ) estimated by the final response surface fit described
above. Rows 2–33 show the remaining values of the
final stage grid. In this example, all stages of the esti-
mation required a total of about 400 iterations through
the data, that is, about 400 evaluations of (8) and its
first and second derivatives with respect to M∗ = 285
parameters.

The rightmost column in Display 3, headed “PROB,”
shows the values of 100π%, as defined by (16). As dis-
cussed above, these probabilities have been adjusted so

that the discrete distribution of λ matches the means
and variances of the continuous distribution of λ as
estimated by the response surface fit to the values of
logg.

The bottom two rows of Display 3 show the poste-
rior mean and standard deviations of the components
of φ using this 33-point discrete approximation. It can
be seen that the values are approximately (σA = 0.34,
σ0 = 0.76, σB = 0.15, τ = 0.20). The value in the row
marked “Mean” and the column marked “PROB” is
computed as

∑
s π2

s = 0.0639, which is a measure of
the dispersion of the probabilities πs . The smaller it is,
the more spread out are the probabilities among the 33
grid points. Large values of

∑
s π2

s , say, values above
0.2, would imply that the scale or location of the grid
might be poorly chosen, so that only a few points on
the grid are very probable.

Comparison of MBLR and RLR Estimates of
Treatment Effects

Display 4 shows estimation results for the treat-
ment main effects for each of the two methods and
for each response event and for the prior mean of all
responses. The prior mean odds ratio is defined as
exp(B0), whereas the treatment odds ratio for the kth
response is exp(β0k). For each combination the odds
ratio and its approximate 90% confidence (credible) in-
terval are shown, based on (18). Comparing the MBLR
to the RLR estimates, we see that the MBLR estimates
are pulled away from the RLR estimates and “shrunk”
toward the MBLR prior mean, which represents the av-
erage or typical odds ratio across response issues. The
degree of shrinkage is greatest for the highest-variance
RLR estimates, corresponding to the rare issues such
as Anuria and Urine output increased. For these two is-
sues, although the MBLR odds ratio estimate is smaller
than the corresponding RLR odds ratio, but so are their
posterior variances, so that the lower bounds of the
MBLR intervals are greater, providing greater statis-
tical significance from the null hypothesis of OR = 1.
Even though all 8 occurrences of Anuria were in the
treatment arm, the treatment effect does not show up as
significant with the multiple-predictor RLR model—
the MBLR estimate of the effect on Anuria seems more
reasonable.

Inspection of Display 4 shows that not all of the
MBLR confidence intervals are narrower than the cor-
responding RLR interval. The reverse is true for the
more frequent responses such as Hyperkalaemia and
Thirst. In these cases, the MBLR estimates do not ben-
efit much from the relatively weak prior distribution,
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σA σ0 σB τ PROB

0 5.000 5.000 0.001 0.001 0.00%
1 0.327 0.688 0.161 0.196 15.90%
2 0.276 0.505 0.110 0.312 1.87%
3 0.276 0.505 0.232 0.118 3.02%
4 0.276 0.879 0.110 0.118 2.71%
5 0.276 0.879 0.232 0.312 4.32%
6 0.384 0.505 0.110 0.118 4.25%
7 0.384 0.505 0.232 0.312 1.83%
8 0.384 0.879 0.110 0.312 5.01%
9 0.384 0.879 0.232 0.118 1.75%

10 0.252 0.423 0.090 0.091 0.14%
11 0.252 0.423 0.276 0.387 0.42%
12 0.252 0.969 0.090 0.387 0.88%
13 0.252 0.969 0.276 0.091 0.83%
14 0.416 0.423 0.090 0.387 0.51%
15 0.416 0.423 0.276 0.091 0.10%
16 0.416 0.969 0.090 0.091 5.40%
17 0.416 0.969 0.276 0.387 0.13%
18 0.231 0.688 0.161 0.196 1.86%
19 0.448 0.688 0.161 0.196 2.13%
20 0.327 0.350 0.161 0.196 1.37%
21 0.327 1.053 0.161 0.196 6.96%
22 0.327 0.688 0.074 0.196 8.12%
23 0.327 0.688 0.327 0.196 0.75%
24 0.327 0.688 0.161 0.070 5.80%
25 0.327 0.688 0.161 0.473 3.21%
26 0.192 0.688 0.161 0.196 0.87%
27 0.518 0.688 0.161 0.196 2.43%
28 0.327 0.232 0.161 0.196 0.02%
29 0.327 1.196 0.161 0.196 4.69%
30 0.327 0.688 0.049 0.196 5.54%
31 0.327 0.688 0.447 0.196 0.00%
32 0.327 0.688 0.161 0.041 6.18%
33 0.327 0.688 0.161 0.670 1.01%

Mean 0.336 0.756 0.146 0.196 6.39%
St.Dev. 0.053 0.183 0.053 0.105

DISPLAY 3. Calculation summary for the final grid of prior standard deviations.

and their posterior variances are adversely impacted by
the uncertainty in the variance component estimation
as well as the need to estimate all of the interaction pa-
rameters, which are assumed away by the RLR model.

MBLR Estimates of Prior Means

Display 5 graphs the MBLR estimates of the (expo-
nentiated) prior means {Ag,B0,Bg}, with their 90%
CIs. These are interpreted as effects for a “typical”

response variable. Remembering that coefficients for
categories of each covariate must sum to 0, the corre-
sponding odds ratios must average to 1 when plotted on
a log scale. The middle interval shows the main effect
of treatment, the intervals above show covariate main
effects, and the intervals below show treatment interac-
tions. As also shown in Display 4, the treatment effect
prior mean is about 4.4 on the odds ratio scale, with
90% limits of (2.7, 7.1). The main effects of covari-
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DISPLAY 4. Estimates of main effect of treatment by method and response variable.

DISPLAY 5. Estimates of PRIOR_MEAN from MBLR.
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ate estimates, shown above the treatment line, can be
thought of as the effects of covariate categories within
the comparator arm, and as centers of shrinkage across
the responses. Thus, the rates of these events in the
comparator arm are somewhat less for Age:50 and un-
der and for Renal History:N. Also, Study:A2 had a par-
ticularly high event rate, while Study:B4 had a partic-
ularly low event rate. But none of these differences in
groups based on covariates are as large as the treatment
effect.

The lower set of estimates in Display 5 portray the
treatment–covariate interactions. As can be seen, these
effects are smaller than the main covariate effects and
much smaller than the main treatment effect. The treat-
ment effect estimates within the four studies for Indica-
tion A are all larger than the four estimates for the Indi-
cation B studies, but the uncertainty intervals all over-
lap considerably. Although this does not rule out larger
interaction effects for some of the response variables,
the fact that σA, is about 0.3 and both σB , and τ are
each less than 0.2 means that such effects for individ-
ual responses are also likely to be fairly small. Since σ0
is about 0.76, there is more room for variation in treat-
ment main effect among the responses, as we also saw

in Display 4, where the Treatment odds ratios ranged
from 1.3 for Hyperkalaemia to 7.4 for Polydipsia.

The prior means of the treatment by covariate inter-
actions (the bottom 16 intervals of Display 5) have es-
pecially small posterior means, as might be expected
given that they have been shrunk toward 0 because of
the small value of τ , with posterior mean = 0.196 in
Display 3. Another way of saying this is that the esti-
mates of Bg were so small compared to their sampling
variances that only a small value of τ is compatible
with these results and the assumption of (6).

The estimates of prior means under the regularized
LR model are less interesting. Assuming that σA and
σ0 are large implies that Ag and B0 cannot be esti-
mated well and will thus have wide confidence inter-
vals, and of course assuming no interactions means that
the Bg = 0 for g > 0.

Breakdown of Estimates by Study for Issue
Pollakiuria

Display 6 shows the MBLR 90% intervals for odds
ratios relating to the Study ID covariate and the is-
sue Pollakiuria (very frequent daytime urination). The
2×2 table information in Display 1 shows that this was

DISPLAY 6. MBLR estimates of odds ratios relating to the Study covariate for the response Pollakiuria.
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highly associated with treatment (193:34 split by treat-
ment:comparator). Our discussion focuses on whether
and how the results differ by the studies being pooled,
and what summary conclusions are justified across
studies. The goal is similar to meta-analysis, except
that we have complete data from each study and so can
adjust for more potentially biasing between-study dif-
ferences.

The top eight intervals in Display 6 show the Study
main effects, corresponding to relative differences
among the comparator arm odds of reporting Pollak-
iura within the studies. These differential estimates are
adjusted for the other covariates Age, Gender and Re-
nalHistory. There are relatively large and significant
study effects, especially between Study A2 and Study
B4, where the estimated odds ratio is over 8 (2.8 ver-
sus 0.34 on the horizontal axis), with relatively narrow
90% intervals.

The next set of eight intervals shows the Treatment
by Study interaction estimates. Although the differ-
ences are not as large as in the comparator arms, the
pattern is similar, in that the studies that had a large
base rate of Pollakiuria tended to have larger increases
in adjusted Pollakiura rates. The three studies having
the largest treatment effects (A1, A2, A4) are all based
on Indication A. These estimates are somewhat hard
to interpret, being ratios of odds ratio estimates. The
lower set of intervals return to the simple odds ratio
scale by adding (on the log scale) the interaction es-
timates to the main effect of treatment. The very bot-
tom interval shows the 90% interval for the treatment
main effect, and the central points for the eight inter-
vals above it average to the center point at the bottom.

These last 9 intervals in Display 6 are reminiscent
of the way a meta-analysis is often presented in a
“ladder plot,” with estimates of effect for each study,
and followed by a combined treatment estimate at the
bottom. However, there are certain differences due to
the more complex MBLR model. First, as mentioned
above, these estimates have been adjusted for differen-
tial covariate distributions across studies. Second, the
Pollakiuria estimates here have been shrunk toward the
prior mean estimates of the odds ratios involving all re-
sponses. Third, the shrinkage of interaction estimates
toward 0, governed by τ in (6), is similar to the shrink-
age toward a common mean effect that occurs in a ran-
dom effects meta-analysis. Fourth, the weight that each
study contributes to the overall estimate is governed
by a more complex formula than in either the stan-
dard fixed or random effects meta-analyses. However,
it does share with the random effects methodology the

fact that relative weights are much attenuated com-
pared to relative sample sizes. Finally, this more com-
plex calculation means that the single-study treatment
estimates in the above MBLR graph do not preserve
the between-study differences, as might be shown in a
standard meta-analysis presentation.

The response Pollakiuria was chosen as the exam-
ple for Display 6 because that issue showed a greater
Treatment-by-Study effect than other issues: for exam-
ple, in Display 6 the Trt*Study:A1 effect is 1.33, while
the Trt*Study:B4 effect is 0.79, for a ratio of 1.68, and
the two 90% intervals barely overlap. Is this post-hoc
selection legitimate? Clearly, this way of finding “in-
teresting” results is biased in many standard settings.
However, the Bayesian shrinkage methodology tends
to offset such biases, as will be seen in the simulation
results to follow.

6. SIMULATION STUDY OF MBLR AND RLR

The statistical properties of MBLR are studied using
a simulation of the model that MBLR assumes. The
purpose is to compare the accuracy of the MBLR re-
sults with that of the RLR results in the context of a
situation like that in the example of Section 5, where
there are rare events and sparse data. The simulation
emulates that example in the sense that the distribution
of subject covariates and treatment assignment matches
the data in Section 5 exactly. Also, the list of response
issues is the same and the baseline probabilities (as
measured by the intercept term in the logistic regres-
sions) of each response in the simulation are similar
to that in the data of Section 5. The protocol for each
simulation involves the following steps:

1. Set the K intercept term values α0k , one for each
of the responses.

2. Set the G + 1 prior means A1,A2, . . . ,AG,B0.
3. Set the four prior standard deviations φ = (σA,σ0,

σB, τ ).
4. Repeat steps (5 through 12) NSIM times:

5. Draw {αgk} from N(Ag,σ
2
A), g = 1, . . . ,G;

k = 1, . . . ,K .
(Note: all random variable generation is

performed using built-in R functions. Also,
constraints that αgk must sum to 0 as g varies
over the categories of each single covariate are
enforced by subtracting means over the corre-
sponding covariate from the originally drawn
αgk . An analogous procedure is used in steps
7 and 8.)

6. Draw {β0k} from N(B0, σ
2
0 ), k = 1, . . . ,K .
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7. Draw {Bg} from N(0, τ 2), g = 1, . . . ,G.
8. Draw {βgk} from N(Bg,σ

2
B), g = 1, . . . ,G;

k = 1, . . . ,K .
9. For each set of ni subjects having the same

covariate values and treatment assignment,
compute Zik and Pik using (1) and (2), i =
1, . . . ,m; k = 1, . . . ,K .

10. Draw {Nik} from binomial (ni,Pik), i =
1, . . . ,m; k = 1, . . . ,K .

11. Fit both the MBLR and the RLR model to the
counts {Nik}.

12. Update cumulative summaries of estimation
results for each simulation as described below.

13. Create reports summarizing the estimation accu-
racy of the two methods regarding all parameters.

Simulation Summary Statistics

There are M = 2(G + 1)(K + 1) − 1 parameters be-
ing estimated and two estimation methods: MBLR and
RLR, so the total number of estimators being evaluated
is R = 2M . For simulation s (s = 1, . . . ,NSIM) and for
estimate r (r = 1, . . . ,R), let:

θrs = true value of parameter r for simulation s, as
defined by steps 1, 2, 5, 6, 7 and 8,
qrs = estimated value (posterior mean) of parame-
ter r for simulation s,
sers = estimated SE (posterior standard deviation)
for parameter estimate r for simulation s,
BIASr = ∑

s(qrs − θrs)/NSIM [average estimation
error],

RMSEr =
√

(
∑

s(qrs − θrs)2/NSIM) [square root of
mean squared estimation error],
Z2

r = (
∑

s(qrs −θrs)
2/se2

rs)/NSIM [average squared
standardized estimation error],
CI.05r = (# times qrs + 1.645sers < θrs)/NSIM
[proportion of times 90% CI is too low],
CI.95r = (# times qrs − 1.645sers > θrs)/NSIM
[proportion of times 90% CI is too high].

These summary statistics focus on the estimation ac-
curacy of qrs and also on the calibration accuracy of
sers . We want BIAS and RMSE to be as close to 0
as possible, we want Z2 to be near 1, and we want
CI.05 and CI.95 to be near 0.05. The R estimates can
be grouped by the two methods, the (K + 1) responses
(counting PRIOR_MEAN as a generalized response)
and the 2G+2 different term definitions. The term def-
initions fall into three general term types:

COV = {Ag,αgk},
TREAT = {B0, β0k},

TRT∗COV = {Bg,βgk}.

We can summarize the simulation of the R estimates
by averaging the six accuracy summaries listed above
over groups defined by method, response and/or term
type.

Finally, for the MBLR, we can summarize the pos-
terior means and standard deviations of the four esti-
mated prior standard deviations.

Simulation Design

The simulations are designed to compare variations
in three design factors, each at two levels, so that 8
separate simulations were performed, with each sim-
ulation having NSIM = 250 replications, and so that a
simple comparison of the two levels of each factor will
be based on 1000 replications at each level. The three
design factors correspond to two different choices at
each of the first three steps in the simulation protocol
given above:

Factor 1, Level 1: Frequent responses only (most fre-
quent 5 in the example data).

Factor 1, Level 2: Both frequent and rare responses
(all 10 issues in the example data).

The K = 10 situation uses the same 10 issues
as in the example of Section 5, with the values of
the intercept terms α0k set equal to the estimated
values from the real data, shown in Display 7. The
baseline probabilities are defined as exp(α0k), also
shown, which range from 0.055 for Hyperkalaemia
to 0.00044 for Anuria. When K = 5, the most fre-
quent 5 response issues are used, as shown in rows
1–5 of Display 7.

Factor 2, Level 1: Average of main effects = 0 (Ag =
0 for all g, B0 = 0).

Response Intercept Base.Prob

1. Hyperkalaemia −2.906 0.0547
2. Thirst −3.333 0.0357
3. Dry mouth −3.429 0.0324
4. Pollakiuria −3.645 0.0261
5. Polyuria −4.787 0.0083

6. Nocturia −5.646 0.0035
7. Polydipsia −5.819 0.0030
8. Micturition urgency −6.618 0.0013
9. Urine output increased −6.972 0.0009

10. Anuria −7.722 0.0004

DISPLAY 7. Estimated values of intercept terms α0k that are used
in the simulations. When K = 5, only the first 5 responses in the dis-
play are used. The baseline probabilities are defined as exp(α0k),
which range from 0.055 for Hyperkalaemia to 0.00044 for Anuria.
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Term Estimated Level 1 Level 2

Gender: F 0.028 0 0.056
Gender: M −0.028 0 −0.056
Study: A1 0.094 0 0.188
Study: A2 0.529 0 1.058
Study: A3 −0.325 0 −0.65
Study: A4 0.33 0 0.66
Study: B1 0.293 0 0.586
Study: B2 −0.232 0 −0.464
Study: B3 −0.273 0 −0.546
Study: B4 −0.417 0 −0.834
RenalHistory: N −0.187 0 −0.374
RenalHistory: Y 0.187 0 0.374
Age: 50 and under −0.251 0 −0.502
Age: 51–65 0.109 0 0.218
Age: 66–75 0.239 0 0.478
Age: over 75 −0.097 0 −0.194
Treatment 1.484 0 2.968

DISPLAY 8. Prior means for the main effects, as estimated by
MBLR from the real data, and as varied in the simulations, either
all zeros (Level 1), or set to twice the estimated values (Level 2).

Factor 2, Level 2: Prior Means of main effects rela-
tively large nonzero values.

For Level 2, the values of A1, . . . ,AG,B0 are set
to two times the values estimated in the analysis
of the actual data. Display 8 shows the coefficient
values as estimated and as used in the simulations.

Factor 3, Level 1: σA = 0.4, σ0 = 0.6, σB = 0.2, τ =
0.2 (Small PSDs).

Factor 3, Level 2: σA = 1.0, σ0 = 1.2, σB = 0.8, τ =
0.8 (Large PSDs).

The Level 1 values of prior standard deviations
are similar to those estimated from the example

data, while the Level 2 values are significantly
larger.

All simulations create 5752 subjects having the same
joint distribution of covariates and treatment alloca-
tions as the actual data and as summarized in Display 2.
Thus, G = 16 and M = 203, R = 566 when K = 5,
while M = 373, R = 1066 when K = 10.

Simulation Results

Display 9 shows summaries of the distributions of
(square roots of) variance component estimates, which
are denoted PSDs for prior standard deviations in the
model equations (3)–(6). Since there are 4 separate
PSDs in the model, and the simulations are run at two
sets of PSDs, the scales of all the PSDs in Display 9
have been normalized by dividing each estimated PSD
and each estimated sampling standard deviation by the
true PSD used in the corresponding simulation. Thus,
a value of 1 for an average estimated PSD in Display 9
is interpreted as an unbiased estimate, and a value of
0.1 for the standard deviation of the sampling distribu-
tion of a PSD in Display 9 is interpreted as a coefficient
of variation of 10%.

Display 9 has 8 columns and 7 rows. There are 4
pairs of columns, corresponding to the sampling means
and standard deviations of the estimates of each of the
four PSDs in the model. The 7 rows of Display 9 cor-
respond to different subsets of the 2000 simulations.
Row 1 shows averages over all simulations, whereas
the other rows show averages over a subset of 1000
simulations corresponding to the levels of each of the
factors in the experimental design. For example, con-
sider the columns labeled σ0 and SDσ0 in Display 9.
In row 1, 1.005 implies that overall the mean of es-
timates of the Treatment PSD are within 0.5% of the
true value, and the next value of SDσ0 = 0.271 implies

σA SDσA σ0 SDσ0 σB SDσB τ SDτ

All MBLR simulations 1.035 0.130 1.005 0.271 0.988 0.236 1.088 0.368
Responses: Frequent 1.044 0.144 1.004 0.283 1.004 0.253 1.073 0.373
Responses: Freq + Rare 1.026 0.116 1.007 0.260 0.971 0.219 1.102 0.363
Mean effects: Zero 1.034 0.133 1.005 0.276 1.000 0.245 1.091 0.376
Mean effects: Large 1.035 0.126 1.006 0.267 0.975 0.227 1.084 0.360
Prior SDs: Small 1.037 0.153 1.131 0.353 0.954 0.340 1.136 0.476
Prior SDs: Large 1.033 0.106 0.879 0.190 1.022 0.132 1.039 0.259

DISPLAY 9. Summary of estimation of prior standard deviations (PSD) in the MBLR simulations. All estimated PSDs are divided by the true
PSD to put their sampling distributions on a common scale. The row “All Simulations” shows means and standard deviations of normalized
estimates across all 2000 simulations. Other rows show results for subsets of 1000 simulations broken down by the two levels of each of the
three design factors in the experiment. See text for explanation of the design factors and their levels.
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that individual estimates are typically about 27% off
the true value. Of course that value is principally re-
flective of the sample size and the experimental design
of the clinical studies. All simulations used the same
clinical study setups, but there was variation according
to the three factors in the simulation. Going down the
rows in these same two columns, we see that estimates
of σ0 had almost exactly the same means and standard
deviations whether all ten responses were being simu-
lated or whether just the most frequent five responses
were simulated. Similarly, the next two rows show that
there was virtually no difference in the sampling means
and standard deviations of σ0 between the situation
where the average effects are about 0 versus relatively
large effects. However, the final two rows of the Dis-
play show that when all four PSDs are small (σA = 0.4,
σ0 = 0.6, σB = 0.2, τ = 0.2) the estimate of σ0 is bi-
ased upward about 13%, and when all four PSDs are
large (σA = 1.0, σ0 = 1.2, σB = 0.8, τ = 0.8) it is bi-
ased downward by about the same percentage. The di-
rection of the biases implies that estimates tend to be
somewhat more central with respect to the restricted
range imposed (0 < σ0 < 1.5) than the true value, thus
moderating the estimates. The coefficient of variation
of σ0 is about 35% in the former case and about 19%
in the latter case. This corresponds to roughly the same
standard deviation of the estimate of σ0 whether σ0 is
0.6 or 1.2.

This effect only shows up with respect to σ0; the
other columns in Display 9 show that mean estimates
of σA, σB and τ are relatively unaffected by any
of the three factors in the simulation, especially σA

and σB . Consideration of degrees of freedom may ex-
plain this—these two variance components have (G −
J )(K − 1) degrees of freedom, whereas σ0 has K − 1
df and τ has G − J df, so one might expect them to
be harder to estimate (although the definition of de-
grees of freedom is somewhat fuzzy in this nonlinear
Bayesian setting). Estimates of τ seem to be most vari-
able percentagewise, with coefficient of variation in the
30–40 percent range. In all cases the coefficient of vari-
ation is larger for the smaller true PSDs. The standard
deviation of estimation decreases when the true PSD
decreases, but not fully proportionally.

However, remember that the goal of the analysis is
not to estimate the variance components per se, but
to use them to define a model that can better estimate
the logistic coefficients by adjusting to global patterns
in the data across responses and predictor categories.
Each individual estimation does not assume that the
PSDs are exactly equal to their posterior mean, but

rather the estimation involves an integration across the
posterior distribution of the PSDs. In that respect, it
is interesting to examine the posterior standard devia-
tions of the PSDs. They have not been included in Dis-
play 9 in order to save space, but in fact the average
of the posterior standard deviations across simulations
was remarkably similar to the sampling standard devi-
ations of the posterior means of each PSD. They typi-
cally differed by only 10% or so for each of the 8 sets
of 250 simulations. Thus, our model expects that the
PSDs will be hard to estimate and works within that
uncertainty.

Estimation of Logistic Coefficients

Display 10 summarizes the simulation distributions
of the various logistic regression coefficients. Part (a)
of Display 10 focuses on the main effect of Treatment.
The first two rows of Display 10(a) compare the Treat-
ment effect accuracy of the RLR estimates to that of
the MBLR estimates. The first four columns refer to
the estimation of the prior mean coefficient, B0, what
might be called the “all response summary,” while the
last four columns refer to the estimation of coefficients,
β0k , for the individual responses. Across all 2000 sim-
ulations, the RMSE for RLR is almost double that of
MBLR for estimation of B0, and more than double, on
average, for estimating the β0k . Since statistical effi-
ciency is typically inversely proportional to the square
of RMSE, this implies that MBLR is about 4 times
as efficient as RLR at estimating treatment/comparator
odds ratios in this setting.

The statistic Z2 is designed to measure the calibra-
tion of the posterior standard deviations computed by
a method to the actual sampling distribution, where
Z2 = 1 implies perfect calibration. When Z2 � 1, the
claimed standard errors of coefficients are too opti-
mistic (too small), and the reverse is true when Z2 � 1.
The values of Z2 provide similar information to the
counts of times confidence intervals fail to enclose the
true values of coefficients. When Z2 is too large and
putative standard errors are too small, the too-short
confidence intervals will miss the true values more than
the nominal percent of times, and conversely. Look-
ing at the first two rows of Display 10(a), we see that
RLR is poorly calibrated in this sense. Computed stan-
dard errors are too large for the all-response summary
and too small for the individual response treatment
effects. As a result, supposedly 90% confidence in-
tervals had 99.7% coverage for the all-response sum-
maries and only 53.8% coverage for individual re-
sponse treatment effects. In contrast, the MBLR esti-
mates are much better calibrated, with Z2 about 1.2
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(a) Treatment effect prior mean B0 Treatment effect for responses β0k

RMSE Z2 CI.05 CI.95 RMSE Z2 CI.05 CI.95

All RLR simulations 0.719 0.192 0.000 0.003 1.066 26.026 0.108 0.354
All MBLR simulations 0.383 1.167 0.056 0.070 0.466 1.248 0.061 0.074
Responses: Frequent 0.424 1.235 0.068 0.067 0.314 1.200 0.059 0.073
Responses: Rare 0.343 1.099 0.044 0.073 0.619 1.297 0.063 0.075
Mean effects: Zero 0.386 1.163 0.046 0.076 0.491 1.284 0.052 0.090
Mean effects: Large 0.381 1.170 0.066 0.064 0.442 1.212 0.070 0.058
Prior SDs: Small 0.286 1.023 0.043 0.062 0.375 1.217 0.058 0.073
Prior SDs: Large 0.481 1.310 0.069 0.078 0.557 1.280 0.064 0.076

(b) Covariate effect prior means Ag Covariate effect for responses αgk

RMSE Z2 CI.05 CI.95 RMSE Z2 CI.05 CI.95

All RLR simulations 0.490 0.105 0.000 0.000 0.819 11.662 0.166 0.190
All MBLR simulations 0.297 0.972 0.044 0.052 0.373 1.041 0.049 0.057
Responses: Frequent 0.323 0.959 0.043 0.052 0.280 1.041 0.049 0.056
Responses: Rare 0.272 0.986 0.045 0.052 0.466 1.042 0.049 0.057
Mean effects: Zero 0.300 0.959 0.042 0.051 0.388 1.026 0.047 0.056
Mean effects: Large 0.295 0.986 0.046 0.053 0.358 1.056 0.051 0.057
Prior SDs: Small 0.205 0.990 0.044 0.055 0.283 1.048 0.050 0.057
Prior SDs: Large 0.390 0.954 0.043 0.049 0.463 1.034 0.048 0.057

(c) Interaction effect prior means Bg Interaction effect for responses βgk

RMSE Z2 CI.05 CI.95 RMSE Z2 CI.05 CI.95

All MBLR simulations 0.347 3.189 0.151 0.144 0.346 1.116 0.059 0.057
Responses: Frequent 0.353 2.940 0.144 0.141 0.292 1.110 0.059 0.056
Responses: Rare 0.340 3.439 0.159 0.147 0.399 1.122 0.059 0.057
Mean effects: Zero 0.347 3.114 0.150 0.140 0.360 1.120 0.060 0.057
Mean effects: Large 0.346 3.265 0.152 0.148 0.331 1.112 0.059 0.056
Prior SDs: Small 0.171 2.489 0.130 0.122 0.203 1.174 0.062 0.061
Prior SDs: Large 0.522 3.890 0.173 0.166 0.488 1.058 0.056 0.053

DISPLAY 10. Summary of estimated logistic coefficient distributions within the simulations. Separate subtables for (a) treatment effects B0
and β0k , (b) covariate main effects Ag and αgk , (c) treatment-by-covariate interactions Bg and βgk (g = 1, . . . ,G). See text for explanation
of the summary statistics.

and nominally 90% intervals having coverage proba-
bilities averaging about 87%.

The remaining rows of Display 10(a) show the be-
havior of the MBLR estimation for subsets of simu-
lations defined by the three two-level factors. Rows 3
and 4 compare results for simulations with the 5 more
frequent responses to those for the 5 less frequent re-
sponses. In the latter case, although the runs generated
all 10 responses and all 10 were used in the analysis,
the results in the row labeled “Responses: Rare” are
based only on accuracy statistics for the 5 least fre-

quent responses, in order to better isolate the estima-
tion ability of MBLR for rare events. We see that in
fact the RMSE, Z2, and 90% interval coverage proba-
bilities are roughly the same for the rare and frequent
events. (Of course, we assume that a run with only
the five rare events would lead to much more variable
estimation—it is the ability of the Bayesian algorithm
to detect and measure similarities between frequent
and rare events, and to “borrow strength” appropriately,
that allows such accuracy.) The next two rows of Dis-
play 10(a) show that whether the true prior means are
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0 or not makes no difference in the estimation prop-
erties. The final two rows of Display 10(a) show that
estimation is significantly more accurate when PSDs
are small than when they are large, which make sense,
because small PSDs imply more commonality across
the responses, and thus more opportunity to borrow
strength and increase estimation accuracy. But even
with the larger set of PSDs, MBLR quite outperforms
RLR.

Display 10(b) shows the corresponding results for
the estimation of covariate main effects. For this ex-
ample, the estimation of Ag and αgk seems to be more
accurate, using either RLR or MBLR, on average for
the 16 covariate effects (indexed by g) than it was for
the single main effect of treatment. However, the ad-
vantage of MBLR over RLR is about the same, both in
terms of RMSE and in terms of standard error calibra-
tion as measured by Z2 and the coverage probabilities
of nominal 90% intervals.

Display 10(c) shows the simulation accuracy of esti-
mation of covariate–treatment interaction coefficients.
Since the RLR model does not estimate interactions,
only MBLR results are presented. Looking first at the
right-hand set of four columns in Display 10(c) that
refer to estimation of the βgk , all four accuracy mea-
sures seem to mimic the values in Display 10(b)—it
appears that MBLR can estimate individual covariate–
treatment interactions as accurately as the main effects
of covariates. Now looking at the first four columns of
Display 10(c), where the Bg are being estimated, the
entire column of RMSE values are about the same as
in Displays 10(a) and 10(b), so the posterior mean es-
timates of the Bg are about as accurate as those of B0
and of Ag . However, it seems that the posterior stan-
dard deviations of the Bg are too optimistic, since the
values of Z2 are about 3 times too large, and the er-
ror rate of the corresponding nominal 90% intervals is

about 30% instead of 10%. This result is puzzling and
awaits further investigation.

Bayesian Shrinkage Estimates are Resistant to the
Multiple Comparisons Fallacy

Display 11 shows the remarkable power of Bayesian
shrinkage estimates to avoid bias even in the pres-
ence of post-hoc selection of the most significant of
many estimates. For each simulation, the task is to
find the most significant treatment × covariate interac-
tion among all the responses. There are 16 covariate-
based subsets in the model that get interaction esti-
mates for every response variable and K = 10 or 5 re-
sponses, making a total of 16K = 80 or 160 ratios (es-
timated interaction coefficient)/(estimated s.e. of inter-
action coefficient). The largest ratio (one-sided alterna-
tive) in each MBLR analysis is selected and then the
known true value for the selected interaction is used to
compute the accuracy measures. This selection and as-
sessment is repeated for each of the 2000 simulations.
The first column of Display 11 is the average of the
true coefficients for the selected interactions. Remem-
bering that the true interactions are generated from a

N(0, σ 2
B +τ 2) distribution, where

√
(σ 2

B + τ 2) = either
0.283 (smaller PSDs) or 1.13 (larger PSDs), it is clear
from the “True Int” column that MBLR is selecting
fairly large interactions. The column headed BIAS
contains the average difference between the selected
estimate and its true value. Remarkably, the MBLR
post-hoc selections have virtually no bias, either over-
all or in any of the six factor-based subsets. The final
four columns in Display 11 show the same accuracy
measures as those of Display 10. The RMSE values in
Display 11 are smaller than any of those in Display 10,
which at first might seem surprising, but is a conse-
quence of the fact that the maximum of 80 or 160 iden-
tically normally distributed variates will have smaller

True Int. Bias RMSE Z2 CI.05 CI.95

All MBLR simulations 0.976 0.004 0.173 1.314 0.070 0.070
Responses: Frequent 0.985 0.007 0.179 1.346 0.078 0.077
Responses: Freq + Rare 0.968 0.000 0.167 1.281 0.061 0.062
Mean effects: Zero 0.972 0.011 0.171 1.312 0.074 0.068
Mean effects: Large 0.980 −0.004 0.175 1.315 0.065 0.071
Prior SDs: Small 0.337 0.019 0.163 1.600 0.084 0.093
Prior SDs: Large 1.616 −0.011 0.184 1.027 0.055 0.046

DISPLAY 11. Simulation of the resistance to multiple comparisons bias of MBLR. At each simulation, the most significant treatment ×
covariate interaction was singled out across all responses by selecting the largest of the GK values (G = 16, K = 5 or 10, GK = 80 or 160)
of (estimated interaction coefficient)/(estimated posterior s.d. of coefficient). The MBLR estimates are unbiased with relatively small RMSE.
See text for discussion of other columns.
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standard deviation than a single such variate, due to
the short tail of the normal distribution. The calibra-
tion of the posterior standard deviations of the selected
most significant interaction, as measured by the values
of Z2 and the coverage probabilities, is not perfect but
is similar to that of the treatment main effects in Dis-
play 10(a). This excellent accuracy of MBLR shrink-
age estimates in the face of post-hoc selection is in
spite of the fact that the variance components which
determine the amount of shrinkage were not known in
advance but were estimated separately for each simu-
lation.

Discussion of the Simulation

It should not be surprising that data generated by a
specific Bayesian model can be better analyzed by fit-
ting that model. But these simulations show that there
is a surprisingly large advantage to doing so, and that
you give up a lot of efficiency (equivalently waste
clinical resources) by forgoing such an analysis if, in
fact, such a model is realistic. With the RLR approach,
which itself is probably a more efficient analysis than
straight logistic regression, you give up the possibility
of estimating treatment–covariate interactions and yet
still lose accuracy in estimation of main effects. The
principal nonBayesian alternative is to form a single
pooled response, treating the different issues as equiv-
alent. But then you don’t even get estimates for the sep-
arate issues and you would be submerging completely
the medical distinction between, say, such a serious ad-
verse event as Anuria and Dry mouth or Thirst. Our
methodology is a “Goldilocks alternative” to the bias-
variance trade-off, neither as variable as estimating so
many parameters with no prior shrinkage, nor as biased
as assuming that all issues have the same response to
treatment and that all interactions are 0.

7. SUMMARY AND CONCLUSIONS

Safety issues with low observed frequencies will
produce standard logistic regression estimates with
wide confidence intervals (based on highly variable
sampling distributions). Clinical safety data is often of
very fine granularity. Each observation of a subject’s
adverse event is described with great precision, pro-
viding a great multiplicity of events to be tabulated
and whose event frequencies must be compared across
treatment arms. Defining event groupings for the pur-
pose of getting pooled events with more reliable rela-
tive frequencies is hard to do in advance, before the set
of somewhat frequent events is observed. After the data

are collected, it can be controversial to lump events to-
gether because the selection of events to pool can deter-
mine how significant Treatment/Comparator odds ra-
tios become. The multivariate Bayesian logistic regres-
sion methodology described here is designed to be a
compromise between separate analyses of finely distin-
guished events and a single analysis of a pooled event.
It requires the selection of a set of medically related
issues, potentially exchangeable with respect to their
dependence on treatment and covariates.

A key concept underlying the proposed methodol-
ogy is that a set of K issues have been prespecified
as important and likely to be biologically and clini-
cally related. It would be a misuse of the method to
try very many subsets of a large set of issues, stopping
only when an “interesting” result is obtained. A similar
caution pertains to selection of covariates—only those
with some prior justification should be included. When
too many extraneous covariates are entered, the esti-
mated variance components may lead to over-shrinking
those effects and/or interactions that are present, and
lead to overly narrow confidence intervals.

The methodology is exploratory in nature, in that the
analyst is encouraged to examine the relationship of the
adverse event frequencies to multiple covariates and to
treatment by covariate interactions. These more com-
plicated models may not be estimable by a standard
logistic regression algorithm because the data are of-
ten too sparse for the number of parameters being esti-
mated. Two strategies are used to cope with this spar-
sity. First, a Bayesian model allows the analysis of each
issue to borrow strength from the other issues, assumed
medically related so that this sort of averaging is not
unreasonable. The fitting of the MBLR model is ac-
complished by the multiple runs of a maximum likeli-
hood algorithm, together with the estimation of Bayes
factors for a range of values of the unknown vari-
ance components. The MBLR algorithm is intended
to be able to measure the degree to which the issues
have similar main effects and interactions with treat-
ment on the logit scale. The hierarchical prior speci-
fication in equations (3)–(5) allows for partial averag-
ing across issues for those model coefficients that seem
similar. There is also a tendency for the treatment ×
covariate interaction coefficients to be shrunk toward
the null value of 0, to an extent controlled by an es-
timated EB variance parameter as in (6). This shrink-
age is intended to offset the tendency of exploratory
methods to find “significant” subgroup effects purely
by chance. Second, a comparison method, denoted reg-
ularized logistic regression, sets particular values of the
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variance components in the empirical Bayes model to
emulate standard logistic regression (without interac-
tions) while avoiding computational problems and in-
estimable effects that can be caused by low counts.
This modification is designed to hardly affect the esti-
mates from standard logistic regression when the data
are not sparse.

Since treatment-by-covariate interaction coefficients
are difficult to interpret, the sums of the treatment main
effect plus the covariate interactions are also presented
and interpreted as the estimated treatment effect that
would hold for subjects in the subgroup identified by
the covariate value. This combined effect is apropos to
the search for a subject subgroup that might be partic-
ularly vulnerable to an adverse reaction to treatment.

The goal is to allow safety review of a large amount
of clinical data using a sophisticated methodology that
can nevertheless be mastered by those without ad-
vanced training in Bayesian methods or the theory of
variance component estimation, or the interpretation of
large masses of sparse data. Section 5 shows an ex-
ample partial analysis of 10 medically related issues
within a pool of 8 studies involving over 5700 subjects
with a model involving treatment, 5 covariates involv-
ing 13 defined covariate values, and including exami-
nation of treatment-by-covariate interactions. Section 6
describes a simulation study that measures the large
gains in efficiency that MBLR can attain, compared to
separate analyses for each issue. The striking results
in Display 11 show the ability of Bayesian modeling
to greatly reduce bias due to post-hoc selection of the
most significant contrast.

The Multivariate Bayesian Logistic Regression is a
technique that can add to the tools available to the
data analyst or medical reviewer. The method does
not eliminate the need for experimental replicability

and convergence with medical knowledge. A signifi-
cant Bayesian result found in one sample that is not
replicable may just be indicative of a sampling prob-
lem. With that said, it is hoped that this new tool will
ease the burden of seeing the forest for the trees during
the analysis of clinical safety data.
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