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Abstract. Climate simulations often suffer from statistical

biases with respect to observations or reanalyses. It is there-

fore common to correct (or adjust) those simulations before

using them as inputs into impact models. However, most bias

correction (BC) methods are univariate and so do not account

for the statistical dependences linking the different locations

and/or physical variables of interest. In addition, they are of-

ten deterministic, and stochasticity is frequently needed to

investigate climate uncertainty and to add constrained ran-

domness to climate simulations that do not possess a realis-

tic variability. This study presents a multivariate method of

rank resampling for distributions and dependences (R2D2)

bias correction allowing one to adjust not only the univariate

distributions but also their inter-variable and inter-site de-

pendence structures. Moreover, the proposed R2D2 method

provides some stochasticity since it can generate as many

multivariate corrected outputs as the number of statistical di-

mensions (i.e., number of grid cell × number of climate vari-

ables) of the simulations to be corrected. It is based on an

assumption of stability in time of the dependence structure

– making it possible to deal with a high number of statisti-

cal dimensions – that lets the climate model drive the tem-

poral properties and their changes in time. R2D2 is applied

on temperature and precipitation reanalysis time series with

respect to high-resolution reference data over the southeast

of France (1506 grid cell). Bivariate, 1506-dimensional and

3012-dimensional versions of R2D2 are tested over a histori-

cal period and compared to a univariate BC. How the differ-

ent BC methods behave in a climate change context is also

illustrated with an application to regional climate simula-

tions over the 2071–2100 period. The results indicate that the

1d-BC basically reproduces the climate model multivariate

properties, 2d-R2D2 is only satisfying in the inter-variable

context, 1506d-R2D2 strongly improves inter-site properties

and 3012d-R2D2 is able to account for both. Applications of

the proposed R2D2 method to various climate datasets are

relevant for many impact studies. The perspectives of im-

provements are numerous, such as introducing stochasticity

in the dependence itself, questioning its stability assumption,

and accounting for temporal properties adjustment while in-

cluding more physics in the adjustment procedures.

1 Introduction

Climate change impact studies aim to investigate and un-

derstand the consequences of the potential evolutions of the

climate system. Impacts can be hydrological with changes

in seasonal flows and water resources driven by precipita-

tion changes (e.g., Schneider et al., 2013), agronomical with

crop yields perturbed by heat stress and/or rainfall evolutions

(e.g., Müller et al., 2010; Wheeler and von Braun, 2013) and

ecological with plant and animal diversity (in terms of struc-

tures or spatial repartitions) modified by future climate con-

ditions (e.g., Araújo and Rahbek, 2006; Tisseuil et al., 2012),

among many others. The common point of those impact stud-

ies is that they use global (GCM) or regional climate model

(RCM) simulations of different variables over future time pe-

riods according to some scenarios as inputs into impact mod-

els to project (e.g., hydrological, ecological) consequences of

climate change. However, most of those climate simulations
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suffer from statistical biases with respect to observations –

or more generally reference data. This means that some of

their statistical properties, such as mean, variance, distribu-

tion or even temporal, spatial or inter-variable dependence

structures may not be representative of what is observed in

the reference dataset. Consequently, before employing cli-

mate simulations to feed an impact model, it is often manda-

tory to “bias correct” (or to “adjust”) them in order to correct

some of their statistical properties (e.g., Christensen et al.,

2008; Muerth et al., 2013).

Over the last decade, most of the developed – and there-

fore applied – bias correction (BC) methods focused on

the adjustment of the mean (e.g., Delta method, Xu, 1999),

the variance (e.g., simple scaling adjustment, Berg et al.,

2012) or more generally on the adjustment of the distribution

(e.g., “quantile-mapping”, Haddad and Rosenfeld, 1997).

Bias adjustments of the whole distribution through quantile-

mapping techniques have been quite popular since it allows

for adjusting not only the mean and variance but also any

quantile of the variable of interest. Hence, many variants

have been proposed (e.g., Déqué, 2007; Michelangeli et al.,

2009; Kallache et al., 2011; Tramblay et al., 2013; Vrac et al.,

2016) and applied in different studies (e.g., Oettli et al., 2011;

Colette et al., 2012; Tisseuil et al., 2012; Vigaud et al., 2013).

Nevertheless, usually, those approaches only work in a uni-

variate context, which means that they are designed to in-

dependently correct one variable at a time, for one location

(e.g., grid cell) at a time. Therefore, if the marginal (i.e., uni-

variate) distributions are generally improved, that is closer to

the reference ones – even when the BC is used as a prelimi-

nary step to downscaling (e.g., Colette et al., 2012; Vrac and

Vaittinada Ayar, 2017) – the inter-site and inter-variable de-

pendence structures are usually conserved from the climate

model simulations to be corrected. Indeed, 1d-BC methods

preserving the ranks of the simulations – as it is the case

for quantile-mapping approaches – will not correct the cop-

ula functions characterizing the dependencies between sites

and/or between variables (e.g., Nelsen, 2006; Schölzel and

Friederichs, 2008; Vrac et al., 2011; Bevacqua et al., 2017).

Such a preservation of the model dependence can obviously

cause some deficiencies in the subsequent impact studies that

will use the 1-dimensional bias corrected simulations if the

model copula function is far from that of the references. It

is therefore crucial to adjust not only the marginal distribu-

tions of the climate simulations but also their multivariate de-

pendence structures, which is the goal of the present study.

A few multivariate methodologies have been proposed over

the last few years (e.g., Bardossy and Pegram, 2012; Piani

and Haerter, 2012; Mao et al., 2015; Vrac and Friederichs,

2015; Cannon, 2017; Dekens et al., 2017; Li et al., 2017).

Most of these methods can be categorized into one of the

two following approaches: the “marginal/dependence” cor-

rection approach and the “successive conditional” correction

approach. The “marginal/dependence” BC methods (e.g.,

“matrix recorrelation” approach in Bardossy and Pegram,

2012; Vrac and Friederichs, 2015; Cannon, 2017; Li et al.,

2017) separately correct the 1d-marginal distributions (e.g.,

one variable at one given location) and the dependence struc-

ture, usually under the form of the underlying copula func-

tion linking the different marginal distributions. Once those

two components of the joint distribution have been corrected,

they are reassembled to obtain adjusted data that respect

both the univariate and multivariate dependencies. Although

they also aim to adjust climate simulations in a multivari-

ate fashion, the “successive conditional” BC methods (e.g.,

“sequential recorrelation” approach in Bardossy and Pegram,

2012; Piani and Haerter, 2012; Dekens et al., 2017) are based

on a slightly different philosophy. They consist first of cor-

recting one given variable (e.g., one variable at one spe-

cific location). Then, a second variable (e.g., another vari-

able or another location) is corrected conditionally on the

previously corrected variable. The procedure goes on suc-

cessively for each dimension (variable/location), correcting

variable n conditionally on previously corrected variables

(1, . . . ,n−1). However, this approach suffers from two main

limitations. First, since at each step the correction is per-

formed conditionally on previously corrected data, this re-

duces the number of data available for adjusting each simu-

lation. Consequently, the higher the number of variables to

correct, the fewer the number of data to perform the bias

correction at each successive step, and therefore the less ro-

bust the correction. Second, the ordering of the variables in

the successive corrections matters: different orderings gener-

ally produce different corrections with different qualitative

results (e.g., in terms of multivariate properties; see Piani

and Haerter, 2012; Vrac and Friederichs, 2015). For those

reasons, the present study deals with the development of a

multivariate BC method within the “marginal/dependence”

approach. The proposed methodology relies on the “Empir-

ical Copula – Bias Correction” (EC-BC) method (Vrac and

Friederichs, 2015) and is intended to fill some of its weak-

nesses, mainly its lack of flexibility in terms of temporal

properties as well as its deterministic aspect. Concerning the

time-related weakness, it has to be noted that it is not pos-

sible to correct the multidimensional properties of the sim-

ulations without changing the rank sequence of the simula-

tions. In other words, any multivariate BC method will nec-

essarily modify the initial rank chronology of the simulated

events. For example, the EC-BC method – belonging to the

“marginal/dependence” correction family – allows for both

the corrected 1d-distributions to evolve consistently with the

modeled ones and to reproduce the dependence (copula)

structure of the references. But the price for this reproduction

is that the temporal sequence of the ranks of the corrected

data is exactly that of the reference data over the calibration

time period, even for an adjustment performed over a future

time period (or more generally over a projection/correction

time period different from the calibration one). Of course,

there is no reason why the rank chronology should be the

same. This also implies that this multivariate BC provides
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deterministic corrections, while some studies pointed out the

need for stochastic corrections or at least the need for intro-

ducing some stochasticity and variability in the BC process

(e.g., Wong et al., 2014; Mao et al., 2015; Volosciuk et al.,

2017). Hence, the goals of this paper are

– to propose a multivariate BC (MBC) method for both

multi-site and multi-variable simulations;

– to relax the temporal constraints of EC-BC on the cor-

rected data ranks in order to let the climate model drive

more temporal properties and their evolutions and there-

fore express its own temporal dynamics;

– to introduce some stochasticity in the MBC outputs, or

at least to enable the proposed MBC method to provide

multiple corrected scenarios.

The proposed method relies on a multivariate Rank Resam-

pling for Distributions and Dependences bias correction and

will here be referred to as R2D2. This paper is organized as

follows: the reference and reanalysis datasets used in this

study are presented in Sect. 2. The R2D2 method is then

described in Sect. 3 after some reminders about the copula

theory and the EC-BC approach. The design of experiments

performed to evaluate R2D2 over a historical time period is

presented in Sect. 4 and results are provided in Sect. 5. Sec-

tion 6 displays an application of R2D2 to RCM simulations

over a future time period. Conclusions, potential future de-

velopments and discussions are finally given in Sect. 7.

2 Reference and model data

To apply, investigate and evaluate the proposed R2D2 cor-

rection method, a reference dataset and a model dataset to

be corrected is needed, as for any BC method. The reference

data employed here are daily temperature and precipitation

time series from the “Systeme d’Analyze Fournissant des

Renseignements Atmosphériques à la Neige” (SAFRAN) re-

analysis data (Quintana-Segui et al., 2008) over the southeast

region of France (2 − 7.5◦ E × 42 − 45◦ N) corresponding to

1506 continental grid cell with an approximate 8 km × 8 km

spatial resolution. SAFRAN has been described, validated

and employed in many studies (e.g., Quintana-Segui et al.,

2008; Lavaysse et al., 2012; Vrac et al., 2012).

The ERA-Interim (hereafter ERA-I; Dee et al., 2011) daily

reanalysis data with a 0.75◦ by 0.75◦ spatial resolution are

used here as model data to be corrected. Temperature at

2 m (hereafter T2) and precipitation data (hereafter PR) have

been extracted for the same spatial domain as for the refer-

ence data. The time period from 1 January 1980 to 31 De-

cember 2009 is retained for both reference and ERA-I data.

Then, each ERA-I grid cell is first regridded by a simple

nearest neighbor technique to the nearest SAFRAN grid cell

center, in order to be associated with a unique reference

SAFRAN grid cell. Next, each BC method to be tested is ap-

plied over two distinct periods of the year: one corresponding

loosely to “winter” from 15 October to 14 April, the other to

“summer” from 15 April to 14 October. For each “season”,

corrected ERA-I T2 and PR are obtained for the 1995–2009

“evaluation” time period based on BC models calibrated over

1980–1994. Note that, as they potentially still include some

seasonality (especially in temperature), 6-month long sea-

sons to condition the BC procedures are certainly not the

most suited time intervals for practical use or applications.

In the latter cases, regular 3-month seasons or even monthly

conditioning could be preferred, provided that enough data

are available for calibration and projection. This could nev-

ertheless introduce some artificial “discontinuities” when go-

ing from one month or season to another, which may be

detrimental to some specific applications. However, here, 6-

month seasons correspond to a very convenient cutting for

testing and illustrating how a newly developed BC method

behaves, which is the main purpose of this article. Indeed,

this cutting allows for (1) increasing the number of data

points (e.g., with respect to a monthly cutting) and (2) re-

stricting the number of figures and evaluations that would be

multiplied by two in case of 3-month seasons, or by six with

a monthly cutting.

Moreover, Sect. 6 of this article will present an illustra-

tion of how the suggested R2D2 method works when ap-

plied to RCMs, both in present and future climates. Never-

theless, the ERA-I reanalyses are primarily used as test data

to be corrected because they ensure some consistency with

the SAFRAN reference dataset. Indeed, when employing

RCM data in a cross-validation context (or more generally

when applying a BC method to RCM data over a projection

time period different from the calibration time period), the

changes in statistical properties (e.g., mean, variance) from

the calibration to the projection time periods can be different

for the reference and for the RCM data. Hence, when evalu-

ating the results of a BC method over a projection period, it

may be difficult to assess which remaining biases come from

the disagreement between reference and RCM changes, and

which come from the BC method itself. Using reanalysis data

ensures more consistency with the reference and is therefore

more appropriate for initial evaluation of a BC method.

3 Reconstructing multi-site and multi-variable

dependence structures

3.1 A brief reminder on copulas

In many of the multivariate BC development papers, the no-

tion of “copula functions” is used. Indeed, those functions

characterize the rank dependence structure of most multi-

variate joint distributions (e.g., Nelsen, 2006; Schölzel and

Friederichs, 2008) through the Sklar’s theorem (Sklar, 1959).

This theorem expresses that any multivariate cumulative dis-
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tribution function (CDF) can be described by the univariate

marginal CDFs of the multivariate random variable and a

copula function. The latter is itself a multivariate CDF de-

picting the statistical dependence of the transformed random

variables Uj = FXj
(Xj ), where Xj is the j -th variable of the

d-dimensional random variable X = (X1, . . . ,Xd)T and FXj

the respective marginal CDF. Mathematically, Sklar’s theo-

rem states that any multivariate CDF FX (e.g., temperature at

several stations) can be written as

FX = CX

(

FX1 , . . . ,FXd

)

, (1)

where CX is the copula of X. Therefore, any multivariate

BC method will necessarily correct the copula of the sim-

ulations, explicitly (e.g., Piani and Haerter, 2012; Vrac and

Friederichs, 2015) or implicitly (e.g., Cannon, 2017; Dekens

et al., 2017).

3.2 A brief reminder of the “Empirical Copula – Bias

Correction” (EC-BC) approach

The EC-BC approach (Vrac and Friederichs, 2015) takes

advantage of the so-called “Schaake Shuffle”, described by

Clark et al. (2004) and employed in various studies to recon-

struct multivariate dependence structures (e.g., Voisin et al.,

2010; Verkade et al., 2013; Cannon, 2017, among others).

The principle is the following: first, a 1d-BC is performed on

each statistical dimension (i.e., for each variable at each loca-

tion). Second, the univariate bias corrected data are reordered

such that their rank time series is identical to that of the

reference sample. This univariate shuffling performed sep-

arately on each variable allows us to reproduce both the tem-

poral, inter-site and inter-variable dependencies of the refer-

ence data (see the synthetic example in Table 1 of Sect. 4c

in Vrac and Friederichs, 2015), since it exactly reproduces

the empirical copula function of the references. However, if

the inter-site and inter-variable dependence structures can be

assumed to be stable over time because they can be consid-

ered to be imposed by physical constraints over the region

of interest, this is not the case for the temporal structures

(or rank chronology of the climate events). For example, rain

persistence can shorten or enlarge, or heat waves can increase

and/or be more frequent, and seasonality of some specific

(temperature or precipitation) events may change, depend-

ing on the geographical domain. It is therefore needed to re-

lax the EC-BC temporal constraint to let the climate simula-

tions express their temporal dynamics and evolutions through

time. This is the goal of the proposed methodology.

3.3 The Rank Resampling for Distributions and

Dependences (R2D2) bias correction approach

The R2D2 method is developed in the

“marginal/dependence” context: The main idea of R2D2 is

to take advantage of the Schaake Shuffle as in EC-BC but

to relax the constraint of the reproduction of the temporal

structure observed in the reference dataset. To do so, a

historical time period is used as the calibration time period

for which both climate simulations and reference datasets

are at one’s disposal. The correction is performed over a

projection time period (e.g., a future time period) where

only climate simulations are available. The R2D2 method

proceeds as follows (please refer to Appendix A for a

detailed mathematical description of the R2D2 algorithm):

1. As in EC-BC or any “marginal/dependence” approach,

each dimension (variable/location) is first corrected in-

dependently from the others by a univariate BC method.

In the present study, the CDF-t method is used (e.g.,

Vrac et al., 2012).

2. Then, a dimension is selected (i.e., one physical vari-

able at one given location) to serve as a “reference di-

mension” for the shuffling. For this specific dimension,

the time sequence of the ranks of the 1d-bias-corrected

data is kept untouched. Note that this sequence is there-

fore the same as that of the ranks of the simulations to

be corrected, at least with a BC method preserving the

ranks as it is the case for CDF-t.

3. Next, for each time step t of the projection time period,

R2D2 looks for the time step t∗ in the calibration time

period for which the rank of the reference dimension

is the same as the current rank of the reference dimen-

sion, i.e., R2D2 searches t∗ such that rankdim
1d−BC(t) =

rankdim
ref.data(t∗), where rankdim

A(t) is the rank – in the

dataset A – of the value taken by the reference dimen-

sion dim at time step t .

4. Once this time step t∗ is found, the time series of the

other dimensions (i.e., the other variables at the same

location, and all variables at the other locations) are

shuffled such that the inter-site and inter-variable rank

structures of the reference dataset are reproduced. This

means that the rank association found in the reference

dataset for time t∗ is reproduced for time t .

5. Steps 2 to 4 are then repeated successively until each

dimension has served as the reference dimension.

Those different steps are expressed in more mathematical

and algorithmic ways in the Appendix A.

An example is now given to illustrate the functioning

of R2D2. Let’s assume that the multivariate bias correction

problem of interest concerns P = 3 statistical dimensions.

Those can be one physical variable for three grid cell, or three

physical variables for one grid cell. Each dimension is simu-

lated and observed over N = 4 consecutive time steps (e.g.,

days). Of course, in practice, many more variables, grid cell

and time steps can be treated. Let’s say that the first step of in-

dependent univariate bias correction was performed and that

the reference and 1d-bias-corrected data are those given in

Table 1, where each second column indicates the ranks of the
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Table 1. One example of 3-dimensional reference data and results from the 1d-bias correction of sample size 4 for illustration of the R2D2

method. k() indicates the rank within the sample.

References 1d-BC

x
(i)
R

k(x
(i)
R

) y
(i)
R

k(y
(i)
R

) z
(i)
R

k(z
(i)
R

) x
(i)
1d

k(x
(i)
1d

) y
(i)
1d

k(y
(i)
1d

) z
(i)
1d

k(z
(i)
1d

)

0.3 1 1.1 1 2.1 2 0.7 3 1.3 2 1.9 1

0.5 2 1.7 3 1.8 1 0.5 2 1.8 4 2.9 4

0.9 4 1.2 2 3.0 4 0.2 1 1.1 1 2.0 2

0.8 3 1.9 4 2.7 3 0.9 4 1.4 3 2.6 3

Table 2. Results of the R2D2 correction method. As the initial data are 3-dimensional, three time series are provided by R2D2. The k indicates

the rank within the sample. Within each 3-dimensional time series, the bold values and ranks indicate the dimension and rank sequence taken

as reference.

3d-BC (1/3) 3d-BC (2/3) 3d-BC (3/3)

x(i) k y(i) k z(i) k x(i) k y(i) k z(i) k x(i) k y(i) k z(i) k

0.7 3 1.8 4 2.6 3 0.9 4 1.3 2 2.9 4 0.5 2 1.4 3 1.9 1

0.5 2 1.4 3 1.9 1 0.7 3 1.8 4 2.6 3 0.9 4 1.3 2 2.9 4

0.2 1 1.1 1 2.0 2 0.2 1 1.1 1 2.0 2 0.2 1 1.1 1 2.0 2

0.9 4 1.3 2 2.9 4 0.5 2 1.4 3 1.9 1 0.7 3 1.8 4 2.6 3

values in the time series displayed in the previous column.

The results provided by R2D2 are given in Table 2. First, a

reference dimension is selected, starting with x in this illus-

tration, and the 1d-BC time series of this dimension is pre-

served at this stage. We can note that the first column of “3d-

BC (1/3)” in Table 2 is therefore the same as that given by

the univariate BC of dimension x in Table 1. Then, for each

time step (i.e., row in those two tables), the rank of the cur-

rent 1d-BC value is calculated. The time step with the same

rank is then searched into the reference data for this dimen-

sion (here, x, first and second columns in Table 1) and the

ranks of the other dimensions y and z for this time step are

taken to shuffle the 1d-corrections of those two dimensions.

For example, for the first time step in Table 2, the value 0.7 of

the reference dimension x has rank 3. Looking into Table 1,

rank 3 is found at the last time step for x, and is associated

with ranks 4 and 3 for y and z, respectively. Therefore, the

x = 0.7 value is associated with values 1.8 and 2.6, which

have ranks 4 and 3 for y and z, respectively, in the univari-

ate bias correction (Table 1). This procedure is then repeated

for each time step before changing the reference dimension

and rank sequence. R2D2 then provides as many corrections

as the total number dimensions – or at least as many as the

number of reference dimensions employed. Indeed, for prac-

tical reasons, it may be necessary to apply this algorithm on

a reduced number of reference dimensions, therefore reduc-

ing the number of corrected outputs. However, whatever the

number of reference dimensions or correction scenarios se-

lected, the multivariate corrected data should all have equiv-

alent inter-site and inter-variable copula functions.

Moreover, step 4 assumes that these copula (dependence)

functions are stable in time (i.e., stationary) and correspond

to those from the reference data. This assumption makes

it possible to apply the proposed R2D2 method in a high-

dimensional context, e.g., more than 3000 statistical dimen-

sions as will be illustrated in the following sections.

In the present study, the CDF-t univariate adjustment

method (e.g., Vrac et al., 2012) is used to perform step 1 of

the above algorithm. For the precipitation variable, CDF-t

has been applied based on the relatively common “threshold

adaptation” procedure. It consists of first defining a thresh-

old th for which model data below th are set to zero (e.g.,

Schmidli et al., 2006; Lavaysse et al., 2012). This threshold

is chosen such that the frequency of days with model precip-

itation greater than th is the same as the frequency of rainy

days in the reference (observed) precipitation dataset. After

this thresholding, only the positive values are corrected by

CDF-t with respect to the strictly positive observed values.

Other approaches are possible, such as applying a BC model

directly on the whole time series including both dry days and

rainy days, i.e., without separating the correction methodol-

ogy into occurrence and intensity (e.g., Vrac et al., 2012; Vi-

gaud et al., 2013; Vrac et al., 2016, among others). The latter

approach has also been tested for preliminary tests and the

results were not sensibly different from those presented in

this article (not shown). Note also that other 1d-BC methods

can of course be employed instead of CDF-t. For example,

the regular quantile-mapping approach (e.g., Déqué, 2007)

has also been tested within R2D2 and similar results were

obtained (not shown).

www.hydrol-earth-syst-sci.net/22/3175/2018/ Hydrol. Earth Syst. Sci., 22, 3175–3196, 2018
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4 Design of experiments

This section describes the comparisons that will be per-

formed between different BC methods in the following for

evaluating the proposed R2D2 bias correction methodology.

It is first reminded that, for each tested BC method ap-

plied to ERA-I reanalyses with SAFRAN data as refer-

ence, the calibration period is 1980–1994, while the correc-

tion/evaluation period is 1995–2009. Moreover, each calibra-

tion/evaluation is performed for daily temperature and pre-

cipitation time series on 1506 grid cell in the southeast of

France over a 6-month “winter” (15 October to 14 April) and

a 6-month “summer” (15 April to 14 October).

First of all, the 1-dimensional CDF-t bias correction (e.g.,

Michelangeli et al., 2009; Vrac et al., 2012) is performed.

As it is also the 1d-BC method used in step 1 of the R2D2

algorithm, this will allow us to evaluate the contribution of

the other steps in R2D2. Then, various configurations of the

R2D2 method are applied and evaluated:

– a 2-dimensional R2D2 version, where each grid cell is

corrected independently but temperature and precipita-

tion are corrected jointly within each grid cell. As there

are 1506 grid cell for the present dataset, 1506 applica-

tions of 2d-R2D2 are realized;

– a 1506-dimensional R2D2 version, where all 1506

grid cell time series are corrected jointly but separately

in temperature and precipitation. Therefore, two 1506d-

R2D2 are realized, one for temperature and one for pre-

cipitation;

– a 3012-dimensional version, where temperature and

precipitation for all the 1506 grid cell are corrected

jointly. Only one 3012d-BC is needed here.

Note that, as R2D2 can return as many datasets (or “scenar-

ios”) of correction as the number of statistical dimensions,

the 2d-R2D2 versions return two corrected datasets for each

grid cell. However, for the 1506d- and 3012d-R2D2 versions,

a sub-sample of 10 reference dimensions has been selected

for each version. Therefore, those versions provide 10 cor-

rected datasets. The 10 reference dimensions have been cho-

sen to uniformly cover the geographical domain for each

physical variable.

In the following Sect. 5, the results of those four BC meth-

ods (1d, 2d, 1506d, 3012d) as well as the initial dataset to

be corrected (ERA-I) are compared according to three differ-

ent aspects evaluated on the 1995–2009 evaluation period.

First, the inter-variable dependence properties are investi-

gated in Sect. 5.1. Second, the inter-site dependence struc-

tures are compared in Sect. 5.2. Finally, although this aspect

was not part of the correction design, the temporal properties

are also evaluated in Sect. 5.3. Indeed, as any multivariate

BC method will necessarily modify the initial rank chronol-

ogy of the simulated events, it is interesting to understand –

or at least to quantify – these modifications.

5 Results

In this section, all analyses are realized for the winter season

but the main conclusions hold for the summer results that are

displayed in the Supplement.

5.1 Inter-variable correlations

First, the BC results are compared in terms of inter-variable

correlations. To do so, the spearman correlation between

temperature and precipitation time series have been com-

puted for each of the 1506 grid cell and the resulting maps

are shown in Fig. 1. Note that the Pearson correlation maps

have also been computed. The results were very similar (not

shown) but, based on Pearson correlations, a larger gap be-

tween the ERA-I Pearson correlations Fig. 1b and the ref-

erence SAFRAN Pearson correlations Fig. 1a means that

most maps only use a reduced number of colors, which is

not convenient for visual evaluations. This is why only the

Spearman correlation is used in Fig. 1. In this figure, it is

clear that the ERA-I inter-variable correlation map Fig. 1b is

very different from that of SAFRAN (a), with spearman rank

correlations not only differing in their intensities but also in

their structure. This strongly exemplifies the need for adjust-

ment of this aspect. The 1d-BC CDF-t method Fig. 1c mod-

ifies the intensities of those correlations but does not change

its structure, basically conserving that of ERA-I. However,

the 2d- and 3012d-R2D2 methods (Fig. 1d and f, respec-

tively) provide major improvements, since they allow us to

approximate the temperature–precipitation correlations from

SAFRAN (a). Correlation maps from those two R2D2 ver-

sions are strictly the same, indicating that the 3012d-version

is a generalization of the 2d-configuration (at least in this

inter-variable evaluation context). This is not the case for the

1506d-R2D2 configuration that basically destroys the inter-

variable correlations. Indeed, as in this configuration, tem-

perature and precipitation are adjusted separately and inde-

pendently from each other, the obtained correlations are – by

construction – close to 0. This version is designed to take care

of the inter-site dependence but completely disregards and

even ruins inter-variable correlations. Note that the 3012d-

R2D2 configuration provides the same correlation map as

presented in Fig. 1.f, whatever the reference dimension se-

lected. This is also true for the 2d- and 1506d-versions where

a different reference dimension still generates equivalent cor-

relations.

5.2 Spatial correlations

The evaluation is now performed in terms of inter-site and

spatial correlation. A principal component analysis (PCA)

is first carried out on each physical variable (i.e., tempera-

ture and precipitation) separately but for the whole region

of interest (i.e., 1506 grid cell). However, before applying

the PCA, the daily areal mean has been removed from each
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Figure 1. Inter-variable Spearman correlation maps in winter over the evaluation period from: (a) SAFRAN; (b) ERA-I; (c) 1d-BC

(CDF-t); (d) 2d-R2D2; (e) 1506d-R2D2 on temperature and 1506d-R2D2 on precipitation; (f) 3012d-R2D2.

daily data. Indeed, the data present a high day-to-day vari-

ability within the region of interest. This strongly impacts

the PCA that shows a predominant empirical orthogonal

function (EOF) almost uniform over the region if the areal

mean is not removed (not shown). Moreover, as precipitation

presents a skewed distribution, all zero precipitation values

are put to a non-zero but positive small value (3.3−4) and the

precipitation PCA is performed on the logarithm of the val-

ues (following, e.g., Vrac and Friederichs, 2015), where the

areal mean has been removed. Although the log-precipitation

values look more Gaussian than the initial ones, a PCA on

those transformed data should still be interpreted with pru-

dence. This is nevertheless a helpful means to describe spa-

tial modes of variability. Figures 2 and 3 show the maps of

the first EOFs obtained from PCAs applied to temperature

or log-precipitation, respectively, from the different datasets.

For both variables, ERA-I first EOF (Figs. 2b and 3b) maps

are quite dissimilar from the SAFRAN EOF maps (Figs. 2a

and 3a). The univariate BC (Figs. 2c and 3c) shows simi-

lar results as those from ERA-I, although less pronounced

for precipitation (Fig. 3c). Concerning the results of the 2-

dimensional version of R2D2 (Figs. 2d and 3d), for each

grid cell, they are obtained based on selecting as reference di-

mension the “other” dimension. In other words, for precipita-

tion the reference dimension is temperature, and for temper-

ature the reference dimension is precipitation. Indeed, oth-

erwise (i.e., if the reference dimension is the variable of in-

terest), by construction, the spatial structures resulting from

the 2d-R2D2 are exactly the same as those from the 1d-BC

presented in Figs. 2c and 3c (not shown). In the present con-

figuration of the 2d-R2D2 version, the spatial modes of vari-

ability (in Figs. 2d and 3d) are different from both the ERA-I

and 1d-BC results. They visually look more similar to the

SAFRAN results and seem to improve the inter-site depen-

dence structure. But this is not the case for summer results

(see Supplement) and they do present some major differ-

ences with respect to SAFRAN for both precipitation and

temperature in the two seasons. However, the first EOF maps

from the 1506-dimensional (Figs. 2e and 3e) and the 3012-

dimensional versions (Figs. 2f and 3f) are very close to those

from the reference SAFRAN dataset, indicating a satisfying

modeling of the main modes of inter-site variability, both for

temperature and (log-) precipitation. This is also confirmed

by the eigenvalues and explained variance fractions of the

leading EOF for temperature and log-precipitation given in

Fig. 4, as well as by the correlograms (i.e., correlations in

function of the distance) displayed in Fig. 5. In those fig-

ures, the results of the 1506d- and 3012d-R2D2 versions are
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Figure 2. Maps of first temperature predominant empirical orthogonal functions (EOFs) in winter over the evaluation period

for (a) SAFRAN; (b) ERA-I; (c) 1d-BC (CDF-t); (d) 2d-R2D2 (with PR as reference dimension); (e) 1506d-R2D2 (on T2 only); (f) 3012d-

R2D2.

the same: they stick closely to the SAFRAN eigenvalues and

explained variances (Fig. 4) and reproduce well its correl-

ogram (Fig. 5), even at long distances. The other datasets

show deviations from SAFRAN more or less pronounced

and in agreement with previous Figs. 2 and 3: ERA-I re-

sults are relatively far away from SAFRAN, 1d-BC slightly

modifies the spatial properties but stays comparable to ERA-

I and 2d-R2D2 degrades the ERA-I spatial properties (at least

in the present configuration). The same conclusions hold for

summer (see the Supplement) where the 1506d- and 3012d-

R2D2 versions follow SAFRAN spatial properties, although

some differences appear between the correlograms at long

distances (> 400 km) especially for temperature.

In order to get more quantification of those results, various

Spearman and Pearson correlation matrices was computed

for the different datasets (SAFRAN, ERA-I and the BC re-

sults) in the evaluation period over the 1506 locations:

– on temperature vs. temperature (resulting in a

1506 × 1506 spatial correlation matrix);

– on precipitation vs. precipitation (1506 × 1506 spatial

correlation matrix);

– on temperature vs. precipitation (1506 × 1506 spatial

correlation matrix across the two variables);

– on (temperature, precipitation) vs. (temperature, precip-

itation) (3012 × 3012 spatial and inter-variable correla-

tion matrix).

The SAFRAN correlation matrix is then subtracted from the

correlation matrix of each dataset (ERA-I and the BC re-

sults), therefore providing matrices that describe differences

in correlations (hereafter referred to as Diffcorr). The abso-

lute values of the elements of this matrix are then summed

and the result – noted Scorr – gives a numerical indication of

the global quality of the dataset dependence structure with

respect to that of SAFRAN. The values of Scorr for each

dataset and for the different types of correlations are given

in Table 3. The results for the “T2 vs. T2” and “PR vs. PR”

correlations are quite similar, showing the good behavior of

the 1506d- and 3012d-BC methods, while it is clear that the

2d-R2D2 version deteriorates the ERA-I and 1d-BC corre-

lations. For the “T2 vs. PR” correlations, the 2d-BC ver-

sion is relatively equivalent to the ERA-I and 1d-BC but the

1506d-R2D2 slightly degrades those results, while the 3012-

dimensional version is much better. Finally, for the “(T2,PR)

vs. (T2,PR)” correlations, the 2d-BC version appears as not

adapted, the 1506d-BC improves ERA-I and the 1d-BC but

3012d-R2D2 provides the best results.
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Figure 3. Same as Fig. 2 but for precipitation.

Table 3. Values of Scorr, corresponding to the sum of the absolute values of the elements of the difference correlation matrices for each

dataset and for the different types of correlations (see text for details) in winter. Values have to be multiplied by 104. Some methods and

applications provide different Scorr values depending on the reference dimension. For those cases, the mean Scorr value is indicated and the

standard deviation is indicated between brackets. Values in bold font indicate the smallest values for the line.

ERA-I 1d-BC 2d-R2D2 1506d-R2D2 (T2 or PR) 3012d-R2D2

Spearman (T) 20.1 20.1 96.4 (±107.9) 5.4 5.4

Pearson (T) 19 18.6 96.3 (±109.8) 4.8 4.8

Spearman (PR) 69 40.6 73.6 (±46.7) 5.8 5.8

Pearson (PR) 87.9 62.1 74.7 (±17.8) 10.4 10.4

Spearman (T2 vs. PR) 25.8 24.5 23.4 (±11) 30.4 (±5.8) 8

Pearson (T2 vs. PR) 16.3 13.3 14.8 (±6.7) 19.4 (±3.5) 5.7

Spearman (T and PR) 140.7 109.6 216.7 (±83.2) 71.9 (±11.6) 27

Pearson (T and PR) 139.5 107.3 200.6 (±105.5) 54 (±7.1) 26.6

Other analyses of the spatial properties derived for the

different BC methods were also performed (e.g., quantile-

quantile plots of the daily areal means) but are not provided

here since their conclusions were the same as in the presented

figures: 1d-BC approximately preserves ERA-I properties

that are biased with respect to SAFRAN’s; 2d-BC changes

the ERA-I spatial statistics but does not necessarily improve

them, while 1506d- and 3012d-BC via R2D2 provides satis-

fying spatial variability and dependence structures, close to

those from SAFRAN.

5.3 Temporal correlations

The proposed R2D2 method is not designed to reproduce,

correct or preserve the temporal structure of the simulations

to be corrected. However, as any multivariate BC will neces-

sarily modify their rank sequence, it is interesting to under-
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Figure 4. Eigenvalues (a, c) and percentage of explained variance (b, d) of temperature at 2 m (a, b) and precipitation (c, d) in winter over

the evaluation period for: SAFRAN (circles); ERA-I (dashed); 1d-BC by CDF-t (dotted); 2d-R2D2 (dashed-dotted); 1506d-R2D2 (T2 or PR,

long dashed); 3012d-R2D2 (solid line). Note that results of the 1506d- (long dashed) and 3012d-R2D2 (solid line) versions are the same and

are therefore superimposed.
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Figure 5. Correlograms in winter over the evaluation period for (a) temperature at 2 m; (b) precipitation, from SAFRAN (circles); ERA-I

(dashed); 1d-BC (dotted); 2d-BC (dashed-dotted); 1506d-BC (T2 or PR, long dashed); 3012d-BC (solid line). Note that results of the 1506d-

(long dashed) and 3012d-R2D2 (solid line) versions are the same and are therefore superimposed.
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Figure 6. Maps of lag-1 day temperature auto-correlations in winter over the evaluation period for (a) SAFRAN; (b) ERA-I; (c) 1d-

BC; (d) 2d-R2D2 (with PR as ref.dim. for each grid cell); (e) 1506d-R2D2; (f1–5) 3012d-R2D2 with five different reference temperature

locations.

stand how strong those modifications are, depending on the

R2D2 version. Hence, Figs. 6 and 7 display, for each dataset,

the 1-day lag auto-correlation maps over the evaluation pe-

riod for T2 and PR, respectively. For temperature, the ERA-I

data (Fig. 6b) have high auto-correlation values between 0.8

and 0.9 in agreement with SAFRAN data (Fig. 6a), although

the spatial structure is different (not highlighted here). Since

the univariate CDF-t method preserves the rank sequence,

the 1d-BC results (Fig. 6c) have similar auto-correlations.

However, the other results (2d, 1506d and 3012d) deeply

change the ERA-I auto-correlation values, with a strong re-

duction from the 2d-BC results (Fig. 6d). For the 3012d-

R2D2 version, the auto-correlations depend on the statistical

dimension serving as reference. Therefore, five illustrations
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Figure 7. Same as Fig. 6 but for precipitation.

are provided in panels 6f1–f5 obtained from five reference

dimensions, here corresponding to temperature at five loca-

tions. Interestingly, those five locations roughly correspond

to the center of the red zones visible in panels Fig. 6f1–f5.

Indeed, as the reference dimension preserves the rank se-

quence of the 1d-BC – and therefore of the model data to

be corrected – the same auto-correlation values are found

at this specific location. The obtained correlation is some-

how also reproduced on a neighborhood more or less ex-

tended around this location, and rapidly decreases out of this

neighborhood. For precipitation (Fig. 7), the same behavior

is present although less pronounced. Moreover, the ERA-I

auto-correlation results (Fig. 6b) are not in agreement with

SAFRAN (Fig. 6a) anymore, and the 1d-BC results (Fig. 6c)

appear quite different from ERA-I. The changes in behav-

ior of the different BC results come from the precipitation

occurrences that are modified both in frequency and in the

structure of their sequence (e.g., spells). This is not shown
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Figure 8. Box plots of the mean absolute error (MAE) values calculated on lag-1 to lag-7 day Pearson correlations for: ERA-I; 1d-BC;

2d-BC; 1506d-BC of T2 or PR (example for first reference variable); 3012d-BC with five different reference temperature locations. (a, c) for

2 m-temperature; (b, d) for precipitation; (a, b) winter; (c, d) summer.

here to constrain this article to a reasonable size but maps of

wet and dry spell mean lengths as well as maps of probability

of dry day given that the previous one is wet, and the other

way around, are provided in the Supplement for both winter

and summer. Nevertheless, in order to have a larger view on

the temporal correlation of the different datasets, the mean

absolute error (hereafter referred to as MAE) with respect to

SAFRAN was computed over the evaluation period for each

grid cell and physical variable, based on the first seven auto-

correlation values:

MAE =

7
∑

n=1

|ρn(D) − ρn(SAFRAN)|, (2)

where ρn(D) is the n-day lag auto-correlation value of the

dataset D. The resulting values are presented via box plots –

summarizing the spatial variability of the MAE – in Fig. 8,

and via maps as Supplement. For temperature (left panels of

Fig. 8), except for the 2d-BC results that show a degrada-

tion of the MAE values compared to those from ERA-I or

1d-BC for both seasons, the conclusions are not exactly the

same in winter and in summer. In winter, the MAE results

from the 1506d- and 3012d-BC versions are of lower qual-

ity (i.e., higher MAE values) than those from ERA-I. This is

not the case in summer where those versions present equiv-

alent or even better (i.e., smaller) MAE values. For precip-

itation, however, winter and summer results are consistent:

all tested BC methods generally improve the ERA-I MAEs

– although only slightly for 2d-R2D2 – and the 1506d- and

3012d-R2D2 MAE are relatively close to those from the 1d-

BC that presents the best (i.e., smallest) MAE values.

6 Bias correction of RCM simulations

6.1 GCM/RCM runs and scenario

For illustration purposes, in order to evaluate and compare

the different BC methods when applied to regional climate

simulations over a historical period and in a future climate
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change context, two RCMs driven by the same GCM are

used to provide simulations to be corrected. Those RCMs are

(i) the “Weather Research and Forecasting” (WRF) regional

climate model (Skamarock et al., 2008) developed by the Na-

tional Center for Atmospheric Research and (ii) the “Rossby

Centre regional Atmospheric” model (RCA4; Samuelsson

et al., 2011). Both RCMs provide daily simulations at a

0.11◦×0.11◦ spatial resolution over the European domain of

the Coordinated Regional Climate Downscaling Experiment

(CORDEX; Giorgi et al., 2009; Jacob et al., 2014), and were

forced by the “Institut Pierre Simon Laplace” (IPSL) global

climate model (Marti et al., 2010; Dufresne et al., 2013) with

a “historical” 1950–2005 run, as well as for the 2006–2100

time period under a scenario of representative concentration

pathway associated with a radiative forcing of +8.5 W m2

(RCP8.5) in the year 2100 with respect to the preindustrial

period (IPCC, 2013). The calibration of the different BC

methods is made over the SAFRAN 1980–2009 time period,

and for the same winter and summer seasons as previously.

The corrections of the WRF and RCA4 simulations are then

performed over 1980–2009 and 2071–2100, and only with

1d-CDF-t, 2d-R2D2 (for T2 and PR together but for each of

the 1506 grid cell separately) and 3012d-R2D2. The 1506d-

BC version (either on T2 or PR) was not performed in this

section since, in the previous one, it provided either equiva-

lent or lower quality results than the 3012d-R2D2 version. In

the following, results are given for the WRF model in winter

but the WRF summer and RCA4 winter and summer results

are provided as Supplement.

6.2 Historical evaluations and changes from historical

to future climate simulations

This subsection contains a short evaluation of the BC meth-

ods applied to the RCM simulations over the 1980–2009 his-

torical period, as well as an illustration of how the tested

BC methods behave and differ from each other in a climate

change context, both in terms of inter-variable and inter-site

dependencies. As an objective of this sub-section is to eval-

uate the changes from the historical (1980–2009) to the fu-

ture (2071–2100) time periods, in order to save space, the

evaluations of the BC methods applied to the RCM simula-

tions are performed directly over the whole historical period

(1980–2009), without cross-validation. Nevertheless, when

applying the same cross-validation exercise as was done with

ERA-I in Sect. 5, the conclusions were exactly the same with

RCM data (not shown). First, for each dataset, the inter-

variable correlation between T2 and PR in winter is calcu-

lated for each grid cell for both the historical and future time

period. The resulting maps are presented in the left panels

of Fig. 9. Similarly to the BC of the ERA-I reanalyses, al-

though the inter-variable correlations from WRF and its 1d-

BC are quite distinct from the reference ones, the 2d- and

3012d-R2D2 versions (Fig. 9e and g, respectively) provide

the same maps as that from SAFRAN (Fig. 9i), confirm-

ing their performance also on RCM simulations. However,

the 2d-version does not do so well from the spatial per-

spective, as illustrated in Fig. 10 showing the temperature

and precipitation correlograms. When driven by the “oppo-

site” variable (i.e., T2 for PR correlograms and PR for T2

correlograms), the 2d-BC correlograms are away from both

SAFRAN and RCM data, with a strong fall of correlation as

soon as the very short distances (a few km) and a flat behav-

ior after. As for the 3012d-BC of WRF, its correlogram nicely

fits the empirical correlations calculated from SAFRAN for

both variables. Regarding the RCM future climate simula-

tions and their bias corrections, right panels of Fig. 9 show

the changes (i.e., future – present) of the inter-variable cor-

relations. The 1d-CDF-t method smoothes the RCM changes

but preserves their structure, while, as expected, the 2d- and

3012d-BC versions do not present strong changes and there-

fore tend to provide an inter-variable correlation structure

close to that of the SAFRAN data. For the changes in the

temperature correlograms (Fig. 10a), the RCM simulations

do not present much evolutions from the historical period to

2071–2100, and therefore the 1d-BC does the same. More-

over, neither the 2d-BC nor the 3012d-version show major

changes and so the two versions are consistent with the raw

simulations in terms of changes. For precipitation (Fig. 10b),

the RCM simulations (solid and dashed black lines) do see

some changes in the spatial dependence, and therefore, so

does the 1d-BC (green lines). Interestingly, the 3012d-BC

(red and orange, superimposed) also captures some changes,

although slightly less pronounced. This means that 3012d-

R2D2 allows a change (from historical to future) in the inter-

site dependence structure that is consistent with the change

provided by the RCM.

7 Conclusions and discussion

7.1 Conclusions

A new multivariate bias correction approach was proposed,

allowing to correct not only the marginal (univariate) distri-

butions of the climate variables of interest but also the sta-

tistical dependences between the variables, as well as the de-

pendences between the different locations over a given ge-

ographical domain. This approach relies on the previously

developed “Empirical Copula – Bias Correction” (EC-BC,

Vrac and Friederichs, 2015) method, whose all dependence

structures – inter-variable, inter-site and overall temporal -

were taken from reference data and exactly reproduced by

the EC-BC correction. The suggested BC approach is also

based on a rank resampling to adjust the copula functions

and therefore the dependences of the climate simulations,

but this R2D2 method relaxes the EC-BC temporal constraint

to let the climate model of interest express its temporal dy-

namics. Indeed, R2D2 is based on the assumption that the

inter-site and inter-variable copula (dependence) functions
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Figure 9. (left column) Inter-variable Pearson correlations between T2 and PR in winter for each grid cell and (right column) changes in inter-

variable Pearson correlations from the historical period to the 2071-2100 period; (a–b) for the WRF RCM; (c–d) for its 1d- bias correction

with CDFt; (e–f) for its 2d-R2D2 correction; (g–h) for its 3012d-R2D2 correction. Panel (i) corresponds to the correlations between T2 and

PR for the SAFRAN reference data over the historical period.

are imposed by physical constraints over the region of in-

terest and are therefore stable in time. Therefore, their de-

pendence structures can be extracted and reconstructed from

reference historical data. However, R2D2 is explicitly de-

signed to partially respect the changes in the climate model

(e.g., from historical to future periods) in terms of tempo-

ral (rank) properties. Since these evolutions can be distinct

for different physical variables and/or grid cell, R2D2 gener-

ates multiple bias corrected scenarios, which can be consid-

ered as a stochasticity describing the possible variability in

the different rank chronologies. As such, R2D2 can be seen

as a method that is halfway between a multivariate correc-
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Figure 10. Spatial correlograms of temperature (a) and precipitation (b) in winter computed from daily areal mean-removed data. Correla-

tions from SAFRAN are in circles; those from the WRF RCM are in black lines; 1d-BC in green; 2d-R2D2 driven by temperature in blue;

2d-R2D2 driven by precipitation in cyan; 3012d-R2D2 driven by temperature at a given location in red; 3012d-R2D2 driven by precipitation

at the same location in orange. Solid lines indicate results for the historical period and dashed lines for the 2071–2100 period. Note that for

temperature results (a), green and blue lines are superimposed. For precipitation (b), green and cyan are superimposed. Red and orange lines

are always superimposed for both (a) and (b).

tion method and a conditional multivariate stochastic weather

generator. The assumption of stability of the copula function

– which can hence be reproduced from the reference data –

allows us to apply the multivariate bias correction in a high-

dimensional context and at a reasonable computational cost.

For example, the dataset generated by 3012d-R2D2 and ana-

lyzed in Sect. 5 (2734 winter days to be corrected for temper-

ature and precipitation over 1506 grid cell) was obtained on a

regular laptop computer with a 2.2 GHz Intel Core i7 proces-

sor and a 8 Go 1600 MHz DDR3 memory. On this computer,

for each of the 1506 grid cell, the application of CDF-t (i.e.,

calibration and correction) takes about 0.05 s for tempera-

ture and 0.01 s for precipitation. Then, for one selected ref-

erence dimension, in the 3012-dimensional context, each ap-

plication of the steps 2–4 of the R2D2 algorithm presented in

Sect. 3.3 takes about 15 s. Consequently, the whole compu-

tation time of the 3012d-R2D2 version with 10 reference di-

mensions (and therefore 10 multivariate BC scenarios) took:

1506×(0.05+0.01) = 90.4 s (for the univariate BC, step 1) +

10 × 15 = 150 s (for the 10 iterations of the steps 2–4), sum-

ming to about 240 s = 4 min.

R2D2 was first applied to adjust temperature and precipi-

tation time series from ERA-Interim reanalyses (Dee et al.,

2011) with respect to the SAFRAN dataset (Quintana-Segui

et al., 2008) under a temporal cross-validation framework

on 1506 locations. Different configurations of R2D2 were

compared: a bivariate one (2d-R2D2) applied to jointly ad-

just temperature and precipitation but separately for each

grid cell, a 1506-dimensional version (1506d-R2D2) applied

jointly on the 1506 grid cell but separately for tempera-

ture and precipitation and a 3012-dimensional one (3012d-

R2D2) where the two variables were jointly corrected over

the 1506 grid cell. Those different versions were also com-

pared to the univariate CDF-t bias correction method (e.g.,

Vrac et al., 2012) and to the raw ERA-I data. The results indi-

cate that the 1d-BC by CDF-t generally reproduces the statis-

tical dependence properties of the data to be corrected, from

both the inter-variable, inter-site and temporal perspectives.

Moreover, by construction, if 2d-R2D2 greatly improves the

temperature–precipitation relationship, it does not do so well

for inter-site dependences. This is the other way around for

the 1506d-R2D2 that shows satisfying inter-site dependence

reconstructions but disregards the inter-variable relationship.

However, the 3012d-R2D2 performs well for both the inter-

variable and inter-site property corrections. Regarding the

temporal properties, except for the winter temperature with

the tested datasets, most BC versions tend to provide auto-

correlation getting slightly closer to SAFRAN’s. However, it

is worth keeping in mind that none of the multivariate BC

versions were designed to adjust the temporal properties.

The different BC versions were then also tested and com-

pared on climate simulations from the WRF and RCA4 re-

gional climate models (RCMs) over the 1980–2009 histori-

cal period as well as the 2071–2100 future time period. The

2071–2100 bias corrections was not made to evaluate the

methods (since no reference data are available for the future)

but rather to illustrate how the different multivariate R2D2

versions behave in a climate change context. The evaluations

over the historical period confirmed the results obtained on

ERA-I, indicating a robustness of R2D2 to the dataset to be

corrected.
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7.2 Future work and discussion

The possible future developments of this work are both

methodological and applied. First, as stated earlier, the vari-

ability/stochasticity introduced in the actual R2D2 version

refers only to the timing of the events and does not perturb

at all the corrected marginal distributions, neither the spatial

dependence between sites and/or variables. More stochastic-

ity could also be included into those properties. For exam-

ple, the inference of a parametric modeling of copulas (or

more generally of the dependence structures) would provide

parameters generally associated with some uncertainty (or

confidence intervals). Resampling those parameters based on

this uncertainty would then allow us to generate “perturbed”

copulas consistent with each other, and therefore multivariate

corrections that are stochastic in their dependences.

Moreover, based on the results presented in this study,

the assumption of conservation of the dependence structure

sounds reasonable for the inter-site aspects (Fig. 10) but a

bit more questionable for the inter-variable aspects, since the

tested RCM shows some evolution of the inter-variable cor-

relation in the future (Fig. 9). A generalization of this type of

analysis to many more climate models is therefore needed

to assess if the dependence preservation hypothesis is ro-

bust. This point can be reformulated as a practical question

for multivariate BC developments: should the (inter-variable

and/or inter-site) dependence structures evolve from calibra-

tion to projection periods? Due to the relative youth of the

multivariate BC methods, this is still an open question in the

literature that should be further investigated and debated.

Furthermore, the R2D2 method only partially preserves

the temporal properties of the simulations to be corrected,

and all multivariate BC methods necessarily modify the tem-

poral structure and rank chronology of the simulations. If

this is indirect for most of them (i.e., when accounting only

for inter-site or inter-variable structures), some authors tried

specifically to tackle the question of the temporal proper-

ties adjustment, such as Johnson and Sharma (2012) with

a nesting 1d-BC model working across multiple timescales,

Mehrotra and Sharma (2015) including inter-site dependence

or Mehrotra and Sharma (2016) including multiple meteo-

rological variables. However, no general comparison of the

pros and cons of the two approaches has been performed and

any BC method for both inter-site, inter-variable and tempo-

ral properties will necessarily consist of a trade-off between

the temporal modifications brought by the multivariate ad-

justment and the correction of the temporal aspects, while

respecting their changes from one time period to another.

More generally, there is not yet a complete intercompar-

ison of the multivariate bias adjustment methods. As the

need for such multivariate methods becomes crucial for many

impact studies, intercomparison exercises are now essential

to evaluate the various existing methodologies and to make

distinctions, not only between “marginals/dependence” and

“successive conditional” correction approaches for example

but also between different methods and assumptions within

each approach. If such an intercomparison study has to be

performed first from the climate point of view (i.e., in terms

of quality of the corrected climate variables and their various

properties), it should also be conducted from the perspec-

tive of some specific impacts and impact models, trying to

understand how the quality of the bias adjusted simulations

transfer into the often non-linear impact model outputs. To

do so, applying a high-dimensional R2D2 (and other meth-

ods) to various CMIP5 (and upcoming CMIP6) GCM sim-

ulations or to various CORDEX RCM runs would generate

useful large datasets of multivariate bias corrected climate

simulations. From the purely climatic point of view, those

datasets would provide a corrected ensemble to conduct cli-

mate change studies, such as related to detection and attri-

bution questions (e.g., Yiou et al., 2017), to the evolution

in risks of compound events (e.g., Bevacqua et al., 2017) or

more generally related to understanding of climate changes.

From the societal and/or environmental point of view, those

ensembles of multivariate corrected simulations would al-

low us to investigate how the correction of the dependence

structures might modify the impacts of climate change. This

question is quite large and concerns many domains, such as

hydrology, agronomy, ecology, etc., and can have major con-

sequences on adaptation and mitigation strategies.

Finally, the selection of an “optimal” reference dimension,

or at least some preferential ones, is certainly a necessary fu-

ture step. However, the notion of optimality here may depend

on the context of the correction and on the subsequent use of

the multivariate bias-corrected data. However, simple selec-

tion methods can be imagined. For example, a logical choice

can be to select the dimension for which the temporal dy-

namics of the model to be corrected is the most similar to

that of the observations over the calibration period. In such

a case, that could correspond to the dimension for which the

Spearman rank correlation (or an auto-correlation value) is

the closest to that of the reference (observational) data. Of

course, other selections are possible but this question is left

for future work. In the same idea, we could also consider a

“multivariate” reference vector. For example, instead of re-

lying on a univariate reference dimension, the latter can be a

couple (or more generally a n-dimensional vector) of dimen-

sions. This would then ensure that the dependence structure

linking those dimensions would be exactly that of the ini-

tial model and therefore “preserved” (i.e., not corrected). An-

other natural extension would also be to replace the univari-

ate or multivariate “reference dimension” time series (used to

condition the rank resampling in R2D2) by physical indices,

such as NAO or ENSO indices, coming from the climate

model to correct. Hence, by such an approach, R2D2 would

be applied in a conditional process-oriented BC framework.

Indeed, if the present study focused on the methodological

aspects of the multivariate bias correction, it is worth keeping

in mind that any application of a BC method should be per-

formed with some physically based motivations: depending
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on their intrinsic skills to model specific features, some cli-

mate simulations cannot sensibly be corrected, especially in

climate change context where artifacts of bias correction may

appear while not visible in present climate evaluations (e.g.,

Maraun et al., 2017). So the development of BC methodolo-

gies allowing one to include some physics in the adjustment

procedure is an important perspective of research, in order

to have BC approaches not used as black boxes while they

should be a support to increase the realism of the climate

simulations based on physical knowledge.

Data availability. ERA-Interim temperature and precipitation

datasets can be accessed through the ECMWF website at

https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/

reanalysis-datasets/era-interim/ (Dee et al., 2011). SAFRAN

temperature and precipitation datasets can be obtained on demand

from Meteo-France (https://donneespubliques.meteofrance.fr/

?fond=produit&id_produit=230&id_rubrique=40, in French;

Quintan-Segui et al., 2008). RCM simulations used in this study

can be downloaded from ESGF nodes, more information from

https://www.euro-cordex.net/060378/index.php.en (Jacob et al.,

2014).
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Appendix A: Some more mathematical descriptions of

the R2D2 bias correction method

The multivariate BC method is applied to P statistical dimen-

sions. Those dimensions encompass several physical vari-

ables at several grid cell. For example, if there are V physical

variables at each of the S grid cell, then P = V ×S. Each di-

mension is observed or simulated over N time steps, and in

the following V A
p (t) is the value of the dimension p from the

dataset A (reference, raw or corrected simulations) at time t .

The R2D2 method consists of the following steps:

1. Apply separate univariate BC to each dimension.

We obtain P univariate time series of N val-

ues: {(V 1dBC
1 (1), . . . ,V 1dBC

1 (N)), . . . , (V 1dBC
P (1), . . . ,

V 1dBC
P (N))};

2. Compute the time series of ranks for each 1d-bias cor-

rected dimension p mong (V 1dBC
p (1), . . . ,V 1dBC

p (N)).

For example, for dimension p, we compute

(rank(V 1dBC
p (1)), . . . , rank(V 1dBC

p (N))) that will

be denoted as (r1dBC
p (1), . . . , r1dBC

p (N)). Therefore, for

each time t , we have a P -dimensional vector of ranks:

R1dBC(t) = (r1dBC
1 (t), . . . , r1dBC

P (t));

3. Compute the time series of ranks for each dimension p

among (V ref
p (1), . . . ,V ref

p (N)) in the reference (calibra-

tion) dataset. For example, for dimension p, we com-

pute (rank(V ref
p (1)), . . . , rank(V ref

p (N))) that will be de-

noted as r ref
p (1), . . . , r ref

p (N)). Therefore, for each time

t , we have a P -dimensional vector of ranks: Rref(t) =

(r ref
1 (t), . . . , r ref

P (t));

4. Choose one dimension p (e.g., p = 1) and

(V 1dBC
p (1), . . . ,V 1dBC

p (N)) as the reference di-

mension and sequence. Then, for each time t from 1 to

N in the projection period:

(a) Find t∗ in the calibration period such that

r1dBC
p (t) = r ref

p (t∗) and therefore deduce Rref(t∗) =

(r ref
1 (t∗), . . . , r ref

P (t∗));

(b) For time t in the projection period, impose that

the P -dimensional vector of ranks is RPdBC(t) =

(r ref
1 (t∗), . . . , r1dBC

p (t), . . . , r ref
P (t∗));

(c) For all dimensions d 6= p, find the time step td
such that r ref

d (t∗) = V 1dBC
d (td). Then, define the

P -dimensional BC vector at time t as MBC(t) =

(V 1dBC
1 (t1), . . . ,V 1dBC

p (t), . . . ,V 1dBC
P (tP )). Thus,

MBC = {MBC(t = 1), . . . ,MBC(t = N)} gathers

the N P -dimensional vectors. In other words, MBC

is a P -dimensional time series of length N and con-

tains the multivariate bias corrected data via R2D2

with dimension p as reference dimension;

5. Repeat steps 4 (a–c) for all dimensions until P . This

generates MBCall, which gathers P objects MBC (one

per dimension as reference for the shuffling):

MBCall = (MBC(ref.dim. = 1), . . . ,MBC(ref.dim. =

P)).
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