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ABSTRACT  13 

Sleep is observed in most animals, which suggests it subserves a fundamental process associated with 14 

adaptive biological functions. However, the evidence to directly associate  sleep with a specific function 15 

is lacking, in part because sleep is not a single process in many animals. In humans and other mammals, 16 

different sleep stages have traditionally been identified using electroencephalograms (EEGs), but such 17 

an approach is not feasible in different animals such as insects. Here, we perform long-term 18 

multichannel local field potential (LFP) recordings in the brains of behaving flies undergoing 19 

spontaneous sleep bouts. We developed protocols to allow for consistent spatial recordings of LFPs 20 

across multiple flies, allowing us to compare the LFP activity across awake and sleep periods and further 21 

compare the same to induced sleep. Using machine learning, we uncover the existence of distinct 22 

temporal stages of sleep and explore the associated spatial and spectral features across the fly brain. 23 

Further, we analyze the electrophysiological correlates of micro-behaviours associated with certain 24 

sleep stages. We confirm the existence of a distinct sleep stage associated with rhythmic proboscis 25 

extensions and show that spectral features of this sleep-related behavior differ significantly from those 26 
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associated with the same behavior during wakefulness, indicating a dissociation between behavior and 27 

the brain states wherein these behaviors reside. 28 

 29 

 30 

Introduction 31 

Humans spend a third of their life engaged in sleep, wherein they become less responsive to external 32 

stimuli. Most animals studied so far, starting from the tiny fruit fly to the large sperm whale (Miller et 33 

al. 2008) display extended periods of quiescence, which are now categorized as sleep. Evolutionary 34 

conservation of the sleep state in all animals suggests that its benefits outweigh the potential risks and 35 

vulnerabilities brought on by losing awareness of one’s external environment. Sleep deprivation has 36 

been shown to produce deficits in learning and memory (Rasch and Born 2013), immune system 37 

malfunction (Besedovsky, Lange, and Born 2012) and stress regulation (Paul J. Shaw et al. 2002). 38 

However, the organization of sleep in relation to its potential functions remains unclear. Different 39 

theories have been proposed for functions of sleep including those involving processes like neuronal 40 

plasticity and synaptic downscaling (Cirelli and Tononi 2008) and metabolic waste clearance (Xie et al. 41 

2013). However, sleep research methodology is largely driven by research in humans and other 42 

mammals and the primary way of classifying sleep states has therefore been using electrophysiological 43 

readouts, such as electroencephalography (EEG). By identifying distinct electrical signatures associated 44 

with the different stages of sleep, different functional roles have been hypothesized for them. For 45 

example, rapid eye movement (REM) sleep in mammals has been proposed to regulate motor learning 46 

and memory consolidation (Siegel 2001; Walker and Stickgold 2004), while slow wave sleep (SWS) has 47 

been proposed to regulate synaptic strength and homeostasis mechanisms (Tononi and Cirelli 2014). 48 

 49 

One of the primary challenges for understanding sleep architecture has been developing a capacity to 50 

record and assess brain-wide patterns of electrical activity across long time periods that encompass 51 

several sleep-wake transitions. In this context, small animals such as the fruitfly Drosophila 52 

melanogaster present as extremely challenging subjects, even though they could potentially provide a 53 

wealth of molecular genetic tools to help better understand sleep biology. Previous sleep studies in flies 54 

have either recorded from just a single LFP channel during spontaneous sleep bouts (Yap et al. 2017; 55 
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van Alphen et al. 2013; Nitz et al. 2002; B. van Swinderen, Nitz, and Greenspan 2004), or from multi 56 

channel probes during short (~15min) bouts of genetically-induced sleep (Yap et al. 2017; Paulk et al. 57 

2013). In other work, whole-brain calcium imaging in sleep-deprived flies revealed distinct stages of 58 

spontaneous sleep (Tainton-Heap et al. 2021), although these recordings were rarely long enough to 59 

display any revealing sleep architecture, and it remains unclear how these different sleep stages might 60 

be manifested across the fly brain from the central complex to optic lobes. 61 

 62 

The primary reasons for the lack of whole-brain or multichannel sleep data in Drosophila are technical 63 

in nature: a) it is difficult to perform long-term electrophysiological recordings with multiple electrodes 64 

in such small brains; the survival rate is low; and the recording tools used do not yet allow for consistent 65 

spatial positioning of multiple electrodes across different flies. b) calcium imaging on the other hand, 66 

which lacks in temporal precision compared to LFPs, does allow for consistent spatial locations of 67 

recordings (with image registration tools), however concerns with photobleaching and phototoxicity 68 

have made it difficult to achieve the long-term recordings to acquire spontaneous sleep data. 69 

Subsampling provides one solution: for example, in a recent study 24 hr recordings were conducted by 70 

recording for only 1 sec after every minute (thus recording for only 1.6% of the overall time)  (Flores-71 

Valle and Seelig 2022). However, this subsampling approach might miss important sleep transitions or 72 

longer-lasting sleep phenomena. To best compare the brain activity during sleep in flies with similar 73 

data from other animals would ideally involve similar readouts akin to a whole-brain EEG, which in 74 

Drosophila would necessarily involve miniaturized multichannel probes such as used previously for 75 

visual studies (Paulk et al. 2013, 2015) as well induced sleep (Yap et al. 2017) and anesthesia 76 

experiments (Leung et al. 2021; Cohen, van Swinderen, and Tsuchiya 2018; Cohen et al. 2016; Cohen 77 

and Tsuchiya 2018; Muñoz et al. 2020). Additionally, such recordings would ideally be supplemented 78 

by detailed behavioral analysis beyond the simple locomotory determinants that have traditionally 79 

defined sleep in flies (P. J. Shaw et al. 2000; Hendricks et al. 2000). Mammalian sleep stages involve 80 

distinct micro-behaviors in addition to electrophysiological correlates (Dement and Kleitman 1957; 81 

Fulda et al. 2011), and this seems to be true for invertebrates as well (van Alphen et al. 2021; Rößler et 82 

al. 2022; Iglesias et al. 2019). 83 

 84 
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In this study, we optimized a multichannel LFP recording preparation for Drosophila flies, to track 85 

long-term neural activity in 16 channels across one hemisphere of the fly brain, in a transect from the 86 

retina to the central complex. The flies underwent spontaneous sleep bouts while walking/resting on 87 

an air-supported ball, and survived long enough to provide 20 hrs of data over one circadian cycle. We 88 

developed calibration tools to consistently record from similar spatial locations in different flies. We 89 

used machine learning based methods (support vector machines and random forest classifiers) to first 90 

investigate the structure of sleep bouts, and further explored the spectral features across multiple brain 91 

channels. We also employed machine learning techniques (pose tracking and identification) to identify 92 

fly micro-behaviors during these long-term recordings, to determine their potential association with 93 

different sleep stages. Taken together our analyses identify distinct sleep stages in the fly central brain, 94 

with rhythmic proboscis extensions being a key behavioral feature. We find that the LFP features 95 

associated with proboscis extensions during wake and sleep are dissimilar, suggesting that a distinct 96 

brain state is driving the sleep functions associated with this rhythmic micro-behavior. 97 

 98 

Results 99 

Behavioral analysis of tethered flies during sleep and wake. 100 

Prior to conducting any electrophysiological recordings, we first investigated how flies slept when 101 

tethered to a rigid metal post while being able to walk on an air-supported ball (Figure 1A). Flies were 102 

filmed overnight under infrared illumination, and locomotory behavior was quantified using a pixel 103 

subtraction method (Yap et al. 2017) to identify sleep epochs, defined by the absence of locomotion or 104 

grooming behavior for 5 minutes or more (P. J. Shaw et al. 2000; Hendricks et al. 2000; van Alphen et 105 

al. 2013; Yap et al. 2017). We also tracked the movement of different body parts, including the 106 

proboscis, antennae, and abdomen to detect potential micro-behaviors during sleep. For this, we used 107 

machine learning (DeepLabCut (Mathis et al. 2018)) to train a classifier to track micro-behavioral 108 

movements through wake as well as sleep (Figure 1B). As shown previously (Yap et al. 2017) tethered 109 

flies were able to sleep in this context (Figure 1C; Figure S1A). As described recently (van Alphen et 110 

al. 2021), we also observed regular proboscis extensions (PEs) during wake, as well as during sleep bouts 111 

(Figure S1B), which often occurred in rhythmic succession (Figure 1C, orange trace). We also observed 112 

antennal movements and were surprised to discover that these were oscillatory in a subset of flies 113 
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(Figure 1C, red trace). Since PEs were also often rhythmic during sleep, we characterized both micro-114 

behaviors in the frequency domain (Figure 1D,E, top) to determine if these were different between 115 

sleep and wake. We found that a greater proportion of the sleeping states displayed both antennal 116 

periodicity as well as PE periodicity, compared to the waking states (Figure 1D,E, bottom), and that 117 

antennal periodicity occurred at a small but significantly lower frequency during wake (Figure S1G). 118 

However, the time course and presence of individual proboscis extensions (Figure S1B/C), as well as 119 

the dynamics (e.g., periodicity, frequency) of periodic proboscis extensions were not different between 120 

sleep and wake (Figure S1F), even if this presence varied across sleep and wake. 121 

 122 

A previous study suggested that PEs during sleep are accomplishing a specific function in flies linked 123 

to waste clearance, and that these might be specific to a deeper sleep stage  (van Alphen et al. 2021). 124 

We therefore next examined if PE and antennal periodicity varied throughout a sleep bout. For this, 125 

we segmented all >5 min sleep bouts into 5 distinct epochs, as done previously for spontaneous sleep 126 

experiments in tethered flies (Yap et al. 2017; Tainton-Heap et al. 2021) (Figure 1C, top schema). The 127 

first 2 and last 2 minutes of sleep (flanked by locomotory behavior) were analyzed separately for micro-128 

behaviors, and compared to ‘midsleep’ epochs which could be of different durations. To understand if 129 

likelihood of periodicity for both antennae and proboscis vary based on the sleep epochs we used 130 

multilevel modeling instead of traditional repeated measures of analysis of variance (as different flies 131 

had varying numbers of sleep epochs). For details refer to the methods section (Multilevel models - 132 

models for antennal, proboscis periodicity). For all the micro-behaviors, the ‘epoch’ model (where the 133 

periodicity depends only on the sleep epoch) emerged as the winning model and a reliable main effect 134 

of epoch was found (p<0.001) in all cases. Further, we performed post-hoc tests using tukey adjustment 135 

(for multiple comparisons) to identify differences between pairs that are significant. Thus, we found an 136 

apparent increase in the likelihood of periodicity for both antennae and proboscis during the middle 137 

segments of sleep bouts (Figure 1F,G). This suggested physiological differences which might be detected 138 

in the fly brain, so we then performed electrophysiological recordings in a similar context. 139 
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 140 
Figure 1: Micro-behaviors of tethered flies. A) Schema for the setup used to record micro-behaviors of sleeping 141 

and waking flies. A tethered fly stands on an air-supported ball. B) The fly is filmed by two cameras. Footage from 142 

these cameras is fed through a preprocessing pipeline that tracks movements of the antennae (Top), legs (Middle), 143 

abdomen and proboscis (Bottom). C) An example sleep bout from a fly. Locomotive activity (Black) has ceased 144 

for long enough that the period of inactivity is classified as a sleep bout. The movement of the right antenna (Red 145 

trace) shows an apparent low frequency periodicity (See inset) across the 6 minute bout, interrupted in the middle 146 

by a series of proboscis extensions (Orange trace; See inset). D) Top, FFT of antennal activity during an exemplar 147 

sleep bout containing antennal periodicity. Bottom, Comparison of the fraction of sleep and wake that consisted 148 

of periodic antennal activity (*p < 0.05; Student’s T-test). E) As with D, for proboscis periodicity. F) Proportions 149 

of antennal periodicity (left and right antennae) across different sleep segments: +0:+1 indicates 1 mins after start 150 

of sleep, +1:+2 indicates 2 mins after start of sleep, x:-2 indicates 2 mins before end of sleep, x:-1 indicates 1 mins 151 
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before end of sleep. The normalized count is significantly higher in the midsleep segments compared to other 152 

segments. G) As with F, but for periodic extensions of the proboscis***p<0.001, ns indicates not significant. 153 

 154 

Long-term multichannel recordings with spontaneous sleep bouts. 155 

We recorded local field potentials (LFPs) across the fly brain using a linear 16-channel electrode 156 

inserted into the left eye of flies in a similar context as above, walking (or resting) on an air-supported 157 

ball (Figure 2A,B). The electrode insertion location was positioned to sample LFPs from the retina to 158 

the central brain (Paulk et al. 2013) (Figure 2C, white arrowheads). The depth of insertion of the 159 

electrode was optimized by using a visual stimulus calibration protocol, based on a reliable LFP 160 

polarity-reversal identified in the fly inner optic lobes (Figure S2; and see Methods for polarity 161 

reversal). The change in polarity (positive to negative deflections in response to the visual stimulus) 162 

was always positioned between electrodes 11-13 in all flies, before the start of the long-term LFP 163 

recordings. This LFP polarity-based method allowed us to maintain a level of recording consistency 164 

across flies in terms of spatial locations of the electrodes, thereby allowing us to compare and combine 165 

LFP data across multiple flies. To further ensure reproducible recording locations, we also developed a 166 

dye-based registration method (Figure S3,4; and see Methods for dye-based localization) and estimated 167 

recording channel locations in the brain for two sample flies. Using this method we identified three 168 

broadly-defined brain recording regions to simplify our subsequent analyses (Figure 2D): central 169 

channels (1-5), middle channels (6-10) and peripheral channels (12-16); here assuming polarity reversal 170 

in channel 11. Also for further analysis, as the polarity reversal channel is used for re-referencing, the 171 

number of channels used in analysis becomes 15. 172 

 173 

We utilized the above calibration steps and recorded LFP data from 16 flies over the course of a day 174 

and night cycle (Figure 2E; and See Methods for data exclusion criteria). We designed our recordings 175 

so that experiments were started at different times in different flies, to achieve complete coverage of a 176 

full day-night cycle. We however only examined the first 8 hours of the LFP data in each fly (Figure 177 

2E), to ensure we were always recording from active and responsive animals (all 16 flies were still alive 178 

after 24 hours).  179 

 180 
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 181 

Figure 2: A) In vivo long-term electrophysiology recording setup: tethered flies were placed on an air supported 182 

ball setup which served as a platform for walking/rest. B) Top view of electrode insertion process, with electrode 183 

approaching from the left eye of an example fly. C) Side view of electrode insertion site on the dorsal part of the 184 

left eye. D) Localization of electrodes using fluorescent dye: the electrode numbers (black) are displayed along 185 

with the dye (green), eigenvector (yellow) indicating the main path of the probe, the fafb14 neuropil (red). E) 186 

Raster plot showing the used recording times (LFP) for the 16 flies. Only the first 8 hours of LFP recording were 187 

used for analysis though all the flies survived for more than 24 hours. F) Fly movement is quantified using video 188 

recorded in profile view with infrared lighting. Movement was quantified between adjacent frames with pixel 189 
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difference and contour thresholding. G) Movement area (activity pattern) plotted along with ‘awake’ and ‘sleep’ 190 

state labeling for an example sleep bout. H) Sleep bouts during day are significantly longer than night thus 191 

confirming the occurrence of natural sleep in our setup. * indicates p < 0.05 192 

 193 

The behavior of the flies was recorded under infrared lighting (Figure 2F) and their movements were 194 

quantified using a combination of pixel difference (van Alphen et al. 2013)  and contour thresholding 195 

between neighboring frames (See Methods for movement analysis). Sleep was defined by 5 min 196 

immobility criteria, based on previous observations in unrestrained flies (P. J. Shaw et al. 2000; 197 

Hendricks et al. 2000) as well as tethered flies (van Alphen et al. 2013; Yap et al. 2017). Fly mobility 198 

along with classification of different behavioral states (‘awake’, ‘sleep’) for an example sleep bout is 199 

shown in Figure 2G. Since it was unclear whether flies would even sleep in this multichannel recording 200 

preparation, we tallied immobility bout durations across the day and the night for each fly (we used 16 201 

hrs of video data for each fly - See Methods for data exclusion criteria), expecting that flies should be 202 

sleeping more at night on average. We found that flies were able to sleep in this preparation, and that 203 

nighttime sleep bouts were indeed longer than daytime sleep bouts (median = 22.42 min vs 13.99 min, 204 

respectively; t(13) = -2.32, p<0.05) (Figure 2H). This confirms that similar to single channel LFP 205 

recordings (van Alphen et al. 2013; Yap et al. 2017) flies slept reliably in this multichannel recording 206 

preparation, allowing us to assess changes in LFP activity across the fly brain during sleep and 207 

wakefulness, and to relate these changes to sleep micro-behaviors. 208 

 209 

LFP differences across the brain during spontaneous sleep and awake. 210 

Next, we focused on the multichannel data to identify potential differences between sleep and wake 211 

across the fly brain, separating our recordings into three broad regions: central, middle, and peripheral 212 

(Figure 3A). An example sleep bout and its corresponding spectrograms across the central, middle, and 213 

peripheral channels reveals increased activity during sleep in the central brain compared to the 214 

periphery (Figure 3B). Additionally, we noted variegated effects in the lower frequencies (5-10 Hz) 215 

within the sleep bout  (Figure 3B, arrowheads) as well as significant LFP activity (5-40 Hz) associated 216 

with locomotion.  217 
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 218 

 219 

Figure 3: A) 16 electrodes color coded by location (purple - peripheral, gray - reference, brown - middle, yellow 220 

- central) are illustrated on an outline of a standard drosophila brain. B) Spectrogram in different channels groups 221 

across an example sleep bout shows variation (magenta arrowheads) in the lower frequency bands (5-10 Hz) 222 

within the sleep bout, while activity across 5-40 Hz in the flanking awake period. C) Movement area (activity 223 

pattern) plotted along with ‘awake’ and ‘sleep’ state labeling for this example sleep bout. 224 
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When we examined sample LFP data more closely across all channels  (Figure 4), we observed higher 225 

LPF amplitudes in the central and middle channels than in the peripheral channels, and more activity 226 

during wake than during sleep (Figure 4A,B).  227 

 228 

Interestingly, the fly brain is not necessarily quiet during sleep, with some channels (e.g., channels 5-229 

7) displaying increased activity compared to other channels. To substantiate our observations, we 230 

performed spectral analysis on the data. For this purpose, we epoched the LFP data into 60 sec bins and 231 

computed the power spectrum per epoch per channel (See Methods for LFP analysis - preprocessing, 232 

power spectrum analysis). Since LFP data recorded from flies can be sensitive to physiological artifacts 233 

such as heartbeat and body movements (Paulk et al. 2013), we employed a common referencing system 234 

(based on a brain based signal) that allowed for removal of non-brain based physiological noise. Plotting 235 

the power spectral density across the three different channel groupings for different frequency bands 236 

(5-40 Hz), revealed consistently greater power in all flies (n=16) during wake than during sleep across 237 

the entire recording transect (Figure 4D). Although decreased LFP power during sleep is consistent 238 

with previous findings involving single channel recordings in flies (van Alphen et al. 2013; Yap et al. 239 

2017; Nitz et al. 2002), it was surprising to see that even the fly optic lobes are significantly less active 240 

during sleep compared to wake, suggesting a brain-wide effect. 241 

 242 

We next examined more closely the relationship between individual channels and LFP spectral 243 

frequency between sleep and wake states. We employed non-parametric resampling tools to identify 244 

the precise patterns (frequency x channel pairs) differing across awake and sleep at the group level. For 245 

this purpose, we first computed the difference in mean spectral data across awake and sleep for 246 

individual flies. Then, we performed a cluster permutation test (flies x frequencies x channels) on the 247 

difference between awake and sleep data (Figure 4D - left panel) to reveal a significant cluster 248 

(frequency x channel pair). The significant cluster as indicated by the magenta box (Figure 4D - left 249 

panel) covered all frequencies (5-40 Hz) and channels (1-15), thereby confirming the spectral results 250 

in Figure 4C that found a brain-wide decrease in power during sleep compared to wake. As we had a 251 

single significant cluster (magenta box), we then sought to identify subclasses of frequencies and 252 

channels within this cluster which might be more specifically associated with sleep.  253 
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Figure 4: A,B) Average LFP across a sample awake and sleep bout in an example fly. C) Mean power spectrum of  255 

LFP (5-40 Hz) across ‘awake’ and ‘sleep’ states in the central, middle, peripheral channels. Across all channels, 256 

‘sleep’ periods have lower LFP power compared to the ‘awake’ periods. D) Spectrogram showing the mean 257 

difference across ‘sleep’ and ‘awake’ periods, while clustering analysis reveals a single significant cluster (magenta 258 

box) across all channels and frequencies. Effect sizes are also plotted to identify the individual effect values for 259 

every frequency and channel pair. 260 

 261 

We computed the effect sizes for every channel x frequency combination (Figure 4E - right panel). 262 

This revealed an interesting frequency structure distinguishing sleep from wake. This included areas of 263 

interest in the 5-10 Hz and 25-40 Hz range in the central channels (1-3). The 5-10 Hz frequency domain 264 

was identified in a previous study as being relevant to sleep in Drosophila (Yap et al. 2017), and the 265 

higher 25-40 Hz range overlaps with the frequencies associated with attention-like behavior in flies 266 

(Bruno van Swinderen and Greenspan 2003; Grabowska et al. 2020). Consistent with previous work, it 267 

is however clear that LFP activity is mostly decreased during all of sleep compared to wake, even in 268 

the 7-10 Hz range that has been associated with certain sleep stages (Figure S5). 269 

 270 

LFP differences across induced sleep and awake. 271 

Sleep can be acutely induced in Drosophila by using optogenetic or thermogenetic activation of sleep-272 

promoting neurons (Shafer and Keene 2021). We were curious whether induced sleep revealed similar 273 

effects across the fly brain, following the same statistical approaches employed above for spontaneous 274 

sleep. For this, we focused on whole-brain recordings taken from 104y-Gal4 / UAS-TrpA1 flies, a sleep-275 

promoting circuit (Figure S6A) that expresses a temperature sensitive cation channel in the fan-shaped 276 

body in the central brain (Donlea et al. 2011). As shown in a previous study (Yap et al. 2017) as well as 277 

other Drosophila sleep studies (Dag et al. 2019), activating these neurons with heat (temperature ~ 278 

29°C) results in behavioral quiescence and induced sleep, whereas control strains remain awake and 279 

active. In these recordings, a different multichannel probe was employed (Figure S6B), with 16 280 

recording sites that spanned the entire brain from eye to eye (Paulk et al. 2013). We preprocessed the 281 

induced sleep LFP data (See Methods for thermogenetic sleep induction) in a similar fashion to the 282 

spontaneous sleep LFP data. We first contrasted the mean power spectra per fly under two conditions: 283 

baseline and sleep induction (Figure S6C). As above, we then performed a cluster permutation test (flies 284 

x frequencies x channels) on the difference between baseline wakefulness and induced sleep, to reveal 285 
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a significant cluster (frequency x channel pair). Thus, we uncovered a significant cluster (Figure S6D) 286 

in the central brain channels across all (5-40Hz) frequency bands, whereas the 104y-Gal4/+ control 287 

flies did not reveal such a cluster (Figure S6E,F). It is interesting to note that sleep induction using this 288 

strain yielded an opposite effect to what we found during spontaneous sleep: LFP activity during 289 

induced sleep is on average higher than during baseline wakefulness (Figure S6D), while it was lower 290 

during spontaneous sleep (Figure S5). Additionally, the effect observed during induced sleep was only 291 

observed in the central channels whereas the spontaneous sleep effects appear to at least cover the 292 

entire hemisphere from center to periphery. This shows that genetically-induced sleep in flies can 293 

produce strikingly different electrophysiological signatures than spontaneous sleep, consistent with 294 

several previous similar observations (Tainton-Heap et al. 2021; Yap et al. 2017; Anthoney et al. 2023; 295 

Lin, Panula, and Passani 2015; Troup et al. 2018). For the rest of this current study, we focus on 296 

spontaneous sleep. 297 

 298 

Machine learning identifies distinct sleep stages in multichannel data. 299 

Our earlier analysis of micro-behaviors during sleep in this preparation (Figure 1) suggests that sleep is 300 

not a single phenomenon, and that the requisite 5 min immobility criterion might not fully capture 301 

potential LFP and behavioral changes that might occur across a sleep bout. There is evidence that sleep 302 

quality (via arousal threshold probing) in wild-type Drosophila flies also changes across a bout of 303 

quiescence (van Alphen et al. 2013; Faville et al. 2015), suggesting that flies transition from lighter to 304 

deeper sleep stages. To assess whether this might also be evident in our multichannel recordings, we 305 

divided our LFP data (for all channels) into five different temporal segments, analyzing only sleep 306 

epochs that were 5 min or longer (Figure 5A): 1) ‘presleep’: the 2 mins (-2 to 0 mins) before flies stopped 307 

moving; 2) ‘earlysleep’: the first 2 mins (0 to 2 mins) after the start of a sleep bout; 3) ‘latesleep’: the last 308 

2 mins of sleep before mobility resumed; 4) ‘midsleep’: any time between ‘earlysleep’ and ‘latesleep’. 5) 309 

‘awake’: the rest of our LFP data. Our partitioning of the LFP data matches a similar partitioning applied 310 

to whole-brain calcium imaging of flies engaged in spontaneous sleep (Tainton-Heap et al. 2021). 311 

 312 

 313 

 314 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.544704doi: bioRxiv preprint 

https://paperpile.com/c/P0heRD/1lBy+HIrO+DiKq+1Lvy+6rBf
https://paperpile.com/c/P0heRD/1lBy+HIrO+DiKq+1Lvy+6rBf
https://paperpile.com/c/P0heRD/Evi2+uIj7
https://paperpile.com/c/P0heRD/1lBy
https://doi.org/10.1101/2023.06.12.544704
http://creativecommons.org/licenses/by/4.0/


15 

 315 

 316 

 317 

 318 

 319 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.544704doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.12.544704
http://creativecommons.org/licenses/by/4.0/


16 

Figure 5: A) Sleep bouts (> 5 min) were binned into 4 segments. 2 mins before the start of immobility (presleep), 320 

2 mins after the start of immobility (earlysleep), 2 mins before the end of immobility (latesleep), the period 321 

between early and latesleep is midsleep, rest of the periods are categorized as awake. B) Probability estimates (of 322 

awake class) plotted across different time segments. Horizontal dotted line indicates values above 0.5 are likely 323 

to be classified as awake and below 0.5 as sleep. Vertical dotted line at 0 indicates start of immobility period and 324 

at x indicates end of immobility period. Unpaired samples t-test was conducted across different epochs to test for 325 

statistical significance. C) Comparison of mean power spectrum across different channels and different sleep 326 

stages. ** p<0.01, ***p<0.001, ns indicates not significant. 327 

 328 

To understand how LFP based signatures change within a sleep bout, we decided to perform a 329 

hypothesis-agnostic analysis through machine learning techniques. To perform such machine learning 330 

based classification, we first used support vector machine (SVM) based techniques. Briefly, SVM belong 331 

to a class of supervised learning model, that is comprised of building a hyperplane or set of hyperplanes 332 

in a high dimensional space (using the kernel trick for non-linear mapping functions) with the goal to 333 

maximize the separation distance between the closest data point (in the training dataset) of any class 334 

(functional margin) (Cortes and Vapnik 1995). The choice of the optimal hyperplane is made in such a 335 

way that the generalization error would be lower for the new data points in the test dataset (Figure 336 

S7A). For detailed steps for preprocessing of data and implementation of classifiers refer to Methods for 337 

sleep staging by classifiers. The probabilistic prediction per class per iteration is shown in Figure 5B. It 338 

is interesting to note several points. First, the probability of awake data is ~0.7 and of midsleep is ~0.0 339 

indicating that the classifier performs well on classes that it has already been trained on. Second, at the 340 

epoch -2 to -1min, when the fly is still moving (yellow circles), LFP data indicates that it is closer to 341 

resembling sleep (<0.5), before dropping fast to ~0.3 (turquoise circles) in the first two minutes of sleep.  342 

 343 

The above analysis indicates that with this approach we could predict the probability a fly will fall 344 

asleep 2 mins before the start of the immobility period. Interestingly, just 1 min before flies fall asleep 345 

the LFP data indicates a brief moment more closely resembling wake (yellow circles), perhaps 346 

associated with grooming periods (observed in honeybees for example (Eban-Rothschild and Bloch 347 

2008)). Interestingly, in the first two minutes of sleep (turquoise circles) reveal a probability metric 348 

halfway between midsleep and wake, suggesting either a gradual descent into deeper sleep or a distinct 349 

sleep stage. Finally, at the epoch from x-2 to x-1 min before mobility resumes (brown circles), the 350 

probability metric returns to a similar level as early sleep.  Immediately after mobility resumes, the LFP 351 
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data is classified as no different than awake, i.e, there is no post-sleep ambiguity. It is important to note 352 

that only the ‘awake’ and ‘midsleep’ data has been seen by the classifier, the rest of the data -4 to +2 353 

min, x-2 to x+2 min has never been seen by the classifier. Additionally, midsleep collapses a wide range 354 

of different sleep durations in different flies, so could still be averaging different sleep states within. 355 

Nevertheless, our results suggest that broadly dichotomizing mid sleep and wake identifies other sleep 356 

stages that resemble neither. 357 

 358 

Model based spectral analysis differentiates wakefulness from sleep bouts across different 359 

channels. 360 

Having revealed how multichannel LFP data can be used to differentiate across different temporal 361 

stages of sleep, we next decided to identify what channels might be important for revealing this. For 362 

this purpose, we employed a multilevel modeling approach.  To reveal how spectral data might change 363 

throughout the fly brain across a sleep bout, we calculated the mean spectral power for each of the 364 

aforementioned epochs and pooled data from central, middle, and peripheral channels. Because 365 

different flies had varying numbers of sleep epochs, we used multilevel models instead of traditional 366 

repeated measures of analysis of variance. For details refer to the methods section (Multilevel models - 367 

models for spectral analysis). The ‘epoch-channel’ model emerged as the winning model; here the 368 

power spectrum depends on a combination of the LFP epoch type and the channel type. In the epoch-369 

channel model, we found that there was a reliable main effect of both epoch (p<0.001) and channel 370 

(p<0.001) on power spectrum and also the interaction between epoch and channel also had a reliable 371 

effect (p<0.001) on power spectrum. In summary, the above model-based analysis confirms that the 372 

power spectrum of the LFP data varies based on the channel location and also the epoch state of the 373 

fly.  374 

 375 

We then proceeded to examine more closely how differences in the sleep LFP might be segregated 376 

across the fly brain (Figure 5C) using post-hoc tests (using tukey adjustment for multiple comparisons) 377 

from the epoch-channel model. In the central channels, the ‘awake’ data was significantly different 378 

compared to all sleep categories, and critically was also different to the ‘presleep’ data. It is important 379 

to note that behaviourally the fly is still considered awake in the ‘presleep’ period (i.e., it is still moving). 380 
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Thus, the ability to predict sleep at least 2 mins before the onset of immobility, which was revealed in 381 

our SVM analysis (Figure 5B), might be explained by these significant spectral differences only 382 

observed in the central channels. In the middle channels, the ‘awake’ data was also significantly 383 

different across all sleep categories, however was not different to the ‘presleep’ data. Further, the 384 

‘presleep’ period was significantly different from ‘earlysleep’,‘midsleep’,‘latesleep’ periods. In the 385 

peripheral channels, the ‘awake’ data was significantly different across all sleep categories, however 386 

was again not different to the ‘presleep’ data. Taken together, mean power spectral data across different 387 

channels was thus able to differentiate between ‘awake’, ‘presleep’, and different sleep epochs of sleep. 388 

However, the post-hoc analysis did not differentiate among sleep epochs (‘earlysleep’, ‘midsleep’, 389 

‘latesleep’).  Since this is inconsistent with previous findings using single glass electrodes (Yap et al. 390 

2017), we questioned if the pooling of channel x frequencies data (3 broad brain regions x 1 overall 391 

power spectrum) could be hiding more specific effects which might become evident with the full 392 

(15x145) dimension of channels x frequencies.  393 

 394 

LFP features across different temporal stages of sleep. 395 

Having established the existence of different temporal stages of sleep using a classifier based on SVM 396 

and confirming the same using model-based analysis, we were next interested in the features in the 397 

LFP data (which channels at what frequencies are important for distinguishing epochs within a sleep 398 

bout), that helps us differentiate these stages.  399 

 400 

For this purpose we used random forest classifiers. A random forest classifier is a class of supervised 401 

learning algorithms that utilizes an ensemble of multiple decision trees for classification/regression. 402 

This could be illustrated by an example (Figure 6A). In the first step subsets of training data (#1 to #n) 403 

were created by making a random sample of size N with replacement. This allows for the ensemble of 404 

decision trees (#1 to #n) to be decorrelated and the process of such random sampling is called bagging 405 

(bootstrap aggregation). In the second step, each decision tree (#1 to #n) picks only a random subsample 406 

of features (feature randomness) instead of all features (again allowing for the decision trees to be 407 

decorrelated).  408 
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Figure 6: A) Schematic indicating the workings of a multiclass random forest classifier in identifying the predicted 410 

class. B) Performance metrics like precision, recall, f1-score across different classes of the trained classifier. C) 411 

Normalized confusion matrix of the trained classifier. D) Feature importance of the multiclass classifier indicates 412 

an ROI across central channels and frequency bands (5-10 Hz) as critically important.  413 

 414 

In the final step, all the decision trees create individual predictions of classes and the final outcome 415 

would be resolved by simple majority voting (illustrated here with a goal of classifying ‘awake’ vs 416 

‘sleep’). Thus, bagging and feature randomness allows for the random forest to perform better than 417 

individual decision trees. 418 

 419 

We performed a multiclass classification of the following classes: ‘awake’, ‘presleep’, ‘earlysleep’, 420 

‘midsleep’, ‘latesleep’. For the detailed preprocessing and feature computation steps refer to the 421 

methods section (Sleep staging by classifiers - multiclass svm analysis & feature importance). We then 422 

computed classifier performance metrics (See methods for sleep staging by classifiers - classifier 423 

metrics) like precision, recall, f1-score (Figure 6B) and further normalized confusion matrix (Figure 424 

6C) which reveal excellent performance in predicting the multiple classes (green boxes). This indicates 425 

that classifier features (channels x frequency) are sufficient to distinguish multiple sleep stages (classes) 426 

and furthermore provide direct evidence of multiple sleep stages. Another reason for using random 427 

forest classifiers is that it is possible to identify relative feature importance in the performance of 428 

classifiers, thereby identifying features (channels x frequency) which are important for differentiating 429 

across multiple sleep stages. 430 

 431 

To identify the LFP features most likely discriminating among sleep stages, we utilized the multiclass 432 

random forest classifier (described above), and uncovered the features that are important in this 433 

classifier (Figure 6D) with permutation importance technique. Interestingly, the most important 434 

features fall within a narrow range of channels (1-3) and frequencies (5-10 Hz). This indicates that the 435 

5-10 Hz frequency range within the central channels are the most important in resolving different 436 

sleep stages. Next, we decided to cross-validate the utility of this permutation-based technique in 437 

resolving across different epochs. For this purpose, we created a multiclass random forest classifier, 438 

with target classes as: ‘awake’, ‘sleep’, and identified the features that are important in this classifier 439 

(Figure S8A). The most important features are actually distributed evenly among all the features 440 
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(channels x frequency), thus cross-validating our previous clustering results (Figure 4D) wherein we 441 

showed that the LFP differences across ‘awake’ and ‘sleep’ are distributed across all channels and 442 

frequencies. 443 

 444 

Proboscis extension behavior during sleep in multichannel recordings. 445 

Earlier, we identified rhythmic proboscis extensions (PEs) during midsleep (Figure 1), which we 446 

propose describe a distinct sleep stage in Drosophila (van Alphen et al. 2021). However, it is unclear if 447 

brain activity associated with PEs are sleep-like or PE-specific. This distinction is important, as it would 448 

disambiguate a unique brain state (deep sleep) from a specific behavior associated with that state (PEs). 449 

In order to identify PEs in our electrophysiological dataset, we again used DeepLabCut (Mathis et al. 450 

2018) to track different body parts of the fly (Figure 7A). We further used multiple classifiers based on 451 

the tracking data, followed by manual verification to identify the PEs. Sample proboscis extension 452 

periods in an example fly along with a few of the features (x,y proboscis location, likelihood of location, 453 

distance of proboscis to eye) are shown in  Figure 7B.  For more details on the proboscis detection steps 454 

refer to the section - Methods for proboscis tracking for flies on electrophysiology setup. Our classifier 455 

accuracy was over 80% for most flies (Figure 7C): the ground truth was validation by a human observer 456 

on classifier detected events. In Figure 7D, we plot the mean proboscis to eye distance for all the flies 457 

averaged across awake and sleep bouts. As described earlier for flies without implanted electrodes, PEs 458 

executed during wake and sleep are behaviourally similar and hence would be difficult to distinguish 459 

from each other using video alone. Similar to our behavioral dataset, PE events usually occur in 460 

rhythmic bouts of more than one, rather than single events. In Figure 7E, we plot the inter-proboscis 461 

interval period, which is the interval between consecutive PE events in a single proboscis bout. It can 462 

be seen that most proboscis events occur within 1.8 sec (95th percentile) of each other. As shown before 463 

in our behavioral data without implanted electrodes, the inter-proboscis interval does not vary across 464 

awake and sleep periods. Next in Figure 7F, we decided to probe the number of single (one PE event) 465 

and multi (>1 PE event) across different flies. We found that occurrences of single PE events are 466 

significantly lower than multi PE events using a pairwise t-test with t(13) = 3.72, p<0.01.  467 

 468 

 469 
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Figure 7: A) Seven different body parts were annotated using DeepLabCut for pose estimation. B) Identified PE 473 

periods (yellow boxes) were plotted along with filtered body parts of proboscis and other estimated metrics. C) 474 

PE events detection accuracy across different flies. D) Average proboscis to eye distance (across all flies) plotted 475 

across frames and time periods are similar in awake and sleep states. E) During PE burst events, inter proboscis 476 

intervals are highly regular, with one PE occurring every 1.5 s  at group level. F) PE events are more likely to 477 

occur as multiple events (bursts) instead of a single event. G) About 33% of PE events occur as single while the 478 

rest are bursts of varying length. H) Number of PE events occurring after the first 5 mins of sleep is significantly 479 

higher than in the first 5 mins, indicating that more PE events occur in deeper stages of sleep. Also displayed is 480 

the control analysis, with awake depth showing no increase with PE event count. I) Normalized proboscis event 481 

count across different sleep segments: -2:-1 indicates 2 mins before start of sleep, -1:0 indicates 1 mins before start 482 

of sleep, +0:+1 indicates 1 mins after start of sleep, +1:+2 indicates 2 mins after start of sleep, x:-2 indicates 2 mins 483 

before end of sleep, x:-1 indicates 1 mins before end of sleep. The normalized count is significantly higher in the 484 

midsleep segments compared to other segments. J) Proboscis events occurring in midsleep across different sleep 485 

depths. *p<0.05, ** p<0.01, ***p<0.001, ns indicates not significant. 486 

 487 

To further illustrate this point in Figure 7G, we plotted the burst length of a PE event (number of 488 

extension events within a PE bout) and found that only 33% of the events are single PE while the rest 489 

are multiple PE events. Overall, our investigation of PEs in this multichannel recording dataset is in 490 

concurrence with our first (electrode-free) dataset, suggesting that inserting probe into the fly brain 491 

does not alter several measures associated with this micro-behavior. 492 

 493 

Previous work has linked PEs with a deep sleep stage in flies (van Alphen et al. 2021). We therefore 494 

next investigated whether the number of PEs varied across a sleep bout in our LFP recording dataset, 495 

as suggested in our purely behavioral dataset (Figure 1G). We found that more PE events occur after 5 496 

min of a sleep bout, compared to those occurring before the 5th min of a sleep (Figure 7H) (pairwise t-497 

test, t(12) = -2.8, p<0.05), suggesting that PEs indeed predominate during deeper sleep. We also 498 

compared PEs immediately after flies had awakened from sleep, which revealed no significant 499 

difference (Figure 7H) (pairwise t-test, t(13) = -1.92, p>0.05) between PE bouts occurring after the 5th 500 

min of an awake bout compared to those occurring before the 5th min of an awake bout, confirming 501 

that transitions into sleep (rather than transitions back to wake) were associated with increased PE 502 

events. 503 

 504 

 505 

 506 
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We next asked if the number of PE events changed across a sleep bout in our multichannel recording 507 

preparation. To determine if the PE event count varies across different temporal sleep stages (Figure 508 

7I) we used multilevel models. For details refer to the methods section (Multilevel models - models for 509 

PE event counts). The time_label model (where the PE event count depends only on the specific 510 

temporal sleep stage) emerged as the winning model. Further, we performed post-hoc tests using tukey 511 

adjustment (for multiple comparisons) to identify differences between pairs that are significant. We 512 

found that PE events occur more often in midsleep compared to other sleep stages. Returning to our 513 

original observation that most PEs occur after 5min of sleep, we plotted the distribution of PE events 514 

occur in the midsleep epoch across all flies (Figure 7J), and found that 95 percentile of all PE events in 515 

midsleep indeed occur after 2.5 minutes of the midsleep epoch (thus, 4.5 mins from sleep onset). 516 

 517 

LFP features of a deep sleep stage with proboscis extension. 518 

We next questioned whether PEs occurring during sleep and wake had similar neural correlates, or if 519 

the sleep-related events were indeed different and thus indicative of a unique sleep-related function. 520 

We therefore focused on the multichannel data to identify any differences in the LFP activity associated 521 

with PEs during wake and sleep epochs. We first identified the PE periods (Refer to Methods LFP 522 

analysis - proboscis: Identification of proboscis periods) and extracted the LFP data and epoched them 523 

into 1 sec bins. Second, we used spectral analysis to determine if  epochs characterized by PEs differ in 524 

frequencies across different channels, for wake compared to sleep. For this purpose, we computed the 525 

spectral power for every 1 sec epoch per channel (See Methods for LFP analysis - proboscis: power 526 

spectrum analysis), using as before a common reference system for re-referencing the LPF data. Third, 527 

we employed non-parametric resampling tools to identify the precise patterns (frequency x channel 528 

pairs) differing in proboscis periods within awake and sleep at the group level. For this purpose, we 529 

first computed the difference in mean spectral data across non-proboscis periods (awake or sleep) and 530 

proboscis periods (awake proboscis and sleep proboscis respectively) for individual flies. We then 531 

performed a cluster permutation test (flies x frequencies x channels) on the difference data to reveal 532 

significant clusters (frequency x channel pair).   533 

 534 
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 535 

Figure 8: A) Spectrogram showing the mean difference across ‘awakeprob’ (PE events in awake periods) and 536 

‘awake’ periods, while clustering analysis reveals a single significant cluster across middle channels in all 537 

frequencies. Activity within the significant cluster indicates activity in the ‘awakeprob’ is comparatively lower 538 

than ‘awake’ periods. B) Spectrogram showing the mean difference across ‘sleepprob’ (PE events in sleep periods) 539 

and ‘sleep’ periods, while clustering analysis reveals a single significant cluster across central channels in higher 540 

frequencies (35 - 40 Hz). Activity within the significant cluster indicates activity in the ‘sleepprob’ is 541 

comparatively higher than ‘sleep’ periods. C) Spectrogram showing the mean difference across ‘awakeprob’ and 542 

‘sleepprob’ periods, while clustering analysis reveals a single significant cluster mostly across all channels in 543 

higher frequencies (25 - 40 Hz). Activity within the significant cluster indicates activity in the ‘sleepprob’ is 544 

comparatively lower than ‘awakeprob’ periods, thereby elucidating a significant difference across proboscis 545 

events occurring in sleep and awake periods (though phenotypically they look the same - Figure 7D). 546 

 547 
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 548 

In Figure 8A, we show the difference data (awake proboscis - awake period) and clustering analysis, 549 

which reveals a significant cluster in the middle channels (6-10) across all frequencies. Further, within 550 

the significant cluster we also performed a post hoc analysis revealing that spectral activity within the 551 

awake proboscis periods are lower than awake periods. In Figure 8B, we show the difference data (sleep 552 

proboscis - sleep period) and clustering analysis reveals a significant cluster in the central channels (1-553 

5) across higher frequencies (32-40 Hz). Further, within the significant cluster we also performed a 554 

post hoc analysis revealing that spectral activity within the sleep proboscis periods are higher than 555 

sleep periods (in contrast to the awake proboscis periods). In Figure 8C, we directly compared the 556 

awake and sleep proboscis periods and showed the difference data (awake proboscis - sleep proboscis) 557 

and clustering analysis, which reveals a significant cluster in the central, middle channels (1-9) across 558 

higher frequencies (25-40 Hz). Further, within the significant cluster we also performed a post hoc 559 

analysis revealing that spectral activity within the sleep proboscis periods are lower than awake 560 

proboscis periods. This suggests that PEs occurring during sleep are qualitatively different from 561 

identical PE events occurring during wake. This suggests that the brain activity state (e.g., quiet or deep 562 

sleep (Tainton-Heap et al. 2021; Anthoney et al. 2023)) overrides the neural correlates associated with 563 

the same behavior occurring during wake. 564 

 565 

 566 

Discussion 567 

Sleep is most likely a whole-brain phenomenon, meaning that its presumed varied functions 568 

(Kirszenblat and van Swinderen 2015) are understood to be of benefit to the entire brain rather than 569 

to only specific sub-circuits. There is good evidence for this in the Drosophila model, with synaptic 570 

physiology for example changing during sleep in the optic lobes of flies (Donlea, Ramanan, and Shaw 571 

2009) as well as brain-wide (Gilestro, Tononi, and Cirelli 2009). Similarly, in mammals, subcortical as 572 

well as cortical brain regions experience sleep-related changes that are thought to be important for 573 

maintaining neuronal homeostasis (Tononi and Cirelli 2014). Accordingly, to better understand sleep 574 

in an animal model such as Drosophila melanogaster requires sampling associated changes in neural 575 

activity across the fly brain, and not only in specific sub-circuits of interest. Unlike in larger animal 576 

models such as mice, recording from multiple brain regions in behaving (and sleeping) flies has been 577 
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challenging, so there has been limited capacity to investigate dynamic brain processes during sleep in 578 

this otherwise powerful model system. While genetically encoded reporters of neural activity (e.g., 579 

GCaMPs) have been successfully used to describe spontaneous sleep in flies (Tainton-Heap et al. 2021; 580 

Flores-Valle and Seelig 2022; Bushey, Tononi, and Cirelli 2015), these are typically still limited to a 581 

narrow region of interest (e.g., the mushroom bodies, or the central complex), and imaging conditions 582 

are rarely commensurate with the typical day-night cycles of normal sleep. In this study, we overcame 583 

these drawbacks by recording electrical activity from 16 channels across the fly brain, in behaving flies 584 

across long-lasting recordings that spanned a typical day and night. Our multichannel recording 585 

preparation therefore approximates as closely as possible - in flies - a sleep EEG, which has been the 586 

starting point for most discussions on sleep physiology in other animals. The human sleep EEG has 587 

defined the sleep stages that are now being investigated in other animals (Kirszenblat and van 588 

Swinderen 2015; Van De Poll and van Swinderen 2021; Raccuglia et al. 2019, 2022), although this is 589 

obviously a neocortical view with potentially little relevance to animals lacking the neural architecture 590 

giving rise to sleep signatures such as delta (1-4Hz) during slow-wave sleep or theta (5-8Hz) during 591 

REM sleep (Jaggard, Wang, and Mourrain 2021). 592 

 593 

Rather than focus on specific frequency bands such as delta and theta, we conducted an agnostic 594 

analysis of our multichannel LFP data using machine learning techniques. These unbiased classifiers 595 

identified distinct stages of sleep, in flies that were otherwise entirely quiescent (apart from certain 596 

micro-behaviors, which we discuss further below). These identified sleep stages align closely with 597 

similar changes in brain activity dynamics observed in calcium imaging data in spontaneously sleeping 598 

flies (Tainton-Heap et al. 2021). For example, in the calcium imaging data we showed that even before 599 

sleep onset, the number of ‘active’ neurons is already different (lower) than wake; accordingly, in the 600 

current electrophysiological data the classifiers predict sleep onset 2min before flies stop moving. This 601 

also aligns with an older (single channel) electrophysiological sleep study in flies showing that brain 602 

LFP activity becomes uncorrelated from behavior 5min before sleep onset (B. van Swinderen, Nitz, and 603 

Greenspan 2004). Together, these findings make a compelling case for dissociative states in the fly 604 

brain, which is consistent with the view that such states might also be changing within a sleep bout. 605 

 606 
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Our multichannel recordings also revealed that changes in sleep physiology are likely to encompass the 607 

entire fly brain, from the optic lobes to the central complex. This is also consistent with other studies, 608 

although this has not been previously demonstrated using a comprehensive multichannel approach. 609 

An early study in honeybees showed that visually responsive neurons in the optic lobes become 610 

unresponsive during sleep (Kaiser and Steiner-Kaiser 1983), and that these cells become rapidly 611 

responsive again when bees are woken up with an air puff. Immunochemical studies investigating 612 

synaptic proteins found that these were downregulated in the optic lobes during sleep (Donlea, 613 

Ramanan, and Shaw 2009), as well as in the whole brain (Gilestro, Tononi, and Cirelli 2009). It is 614 

understood that the insect optic lobes receive significant feedback from the central brain, as well as 615 

from the contralateral lobes (Scheffer et al. 2020; Mu et al. 2012), and it has been shown that oscillatory 616 

neural activity extends throughout the fly brain (Paulk et al. 2013), so our finding that the optic lobes 617 

also ‘sleep’ is not quite surprising. Recent work using a similar multichannel recording preparation 618 

found that isoflurane anesthesia impacted feedback from the central brain to the optic lobes (Cohen, 619 

van Swinderen, and Tsuchiya 2018), suggesting that such efferent communication is a feature of the 620 

waking fly brain. Yet, sleep in the central fly brain is different from sleep in the periphery. 621 

Interestingly, only central channels were predictive of sleep onset, and only the central channels 622 

revealed the 5-10Hz frequency features that we have previously identified in single channel recordings 623 

(Yap et al. 2017). This suggests a sleep-regulatory role for the central complex, which aligns well with 624 

previous studies (Donlea et al. 2011; Troup et al. 2018; Tainton-Heap et al. 2021). 625 

 626 

Sleep in Drosophila was originally defined by inactivity criteria, based on locomotion-based readouts 627 

(P. J. Shaw et al. 2000; Hendricks et al. 2000). Subsequent studies employing video monitoring and 628 

probing arousal thresholds confirmed these simple readouts to be accurate estimates of sleep in flies 629 

(van Alphen et al. 2013; Faville et al. 2015; Wiggin et al. 2020), but these behavioral studies also showed 630 

that flies slept in distinct stages. Only recently has closer video monitoring of fly micro-behaviors 631 

revealed that these animals are not entirely immobile during sleep (van Alphen et al. 2021), although 632 

some micro-behaviors were already anecdotally observed in the first reports of fly sleep, such as 633 

changes in posture (P. J. Shaw et al. 2000; Hendricks et al. 2000). Other insects, such as honeybees, 634 

display characteristic micro-behaviors during sleep, such as changes in posture (Eban-Rothschild and 635 

Bloch 2008)  and antennal movements (Sauer et al. 2003). Interestingly, in our study we also found 636 
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evidence of altered antennal movements during fly sleep, alongside the previously reported proboscis 637 

extensions (van Alphen et al. 2021). These micro-behaviors are not necessarily correlated, although 638 

they do seem to be increased during mid-sleep epochs. PEs have been associated with a deep sleep 639 

function (waste clearance) in a previous study (van Alphen et al. 2021), so their occurrence in rhythmic 640 

spells during mid-sleep is consistent with that interpretation. 641 

 642 

Interestingly, PEs during wake and sleep are electrophysiologically different, even though they are 643 

behaviorally identical. We found that the neural signatures of PEs occurring during wake are 644 

concentrated in the middle channels, and spread across all frequencies (5-40Hz). It is interesting to 645 

note that these middle channels could coincide with the location of neuropils of the antennal 646 

mechanosensory and motor center (AMMC). Several studies (Kain and Dahanukar 2015; Kim, Kirkhart, 647 

and Scott 2017) have implicated the AMMC as the location of axons of gustatory projection neurons 648 

(GPNs) and thus an immediate higher order processing center for taste. Other studies (Flood et al. 2013) 649 

have also shown that persistent depolarization of motor command activity of the Fdg (feeding) neurons 650 

could also result in PEs. In this context, it is pertinent to note that LFP activity during PE events in the 651 

awake periods are higher than those in the ‘awake’ periods without PE events, suggesting a distinct PE 652 

signature. But this is not the case for the exact same behaviors during sleep. We found that LFP activity 653 

for PEs occurring during sleep bouts are concentrated instead in the central channels and engage 654 

primarily the higher frequencies (32-40 Hz). This suggests a distinct control mechanism for PEs 655 

occurring during sleep versus wake, with central brain circuits potentially involved in regulating this 656 

sleep-related function. 657 

 658 

There are obviously several drawbacks to studying sleep physiology in a tethered animal that has been 659 

skewered by a recording electrode. Sleep cannot be quite normal in such a preparation. For example, it 660 

is possible that the damage caused by the electrode evokes an increased need for repair (Stanhope et al. 661 

2020) and consequently waste clearance (van Alphen et al. 2021), thus increased PE behavior. 662 

However, this would also be the case for windows in the brain created for calcium imaging (Tainton-663 

Heap et al. 2021) (and in the latter scenario the proboscis is typically glued in place to prevent brain 664 

motion artifacts), so no fly brain recording preparation (yet) can realistically sidestep these concerns. 665 
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Nevertheless, it is evident that even in this somewhat contrived context, flies do still sleep and their 666 

sleep displays unequivocal evidence of distinct stages.  667 

 668 

Our study also paves the way for asking fundamental questions about fly sleep in the following fashion. 669 

First, the LFP activity of mutant strains (with higher, or lower baseline sleep) could be recorded and 670 

its differences across the wild type could be quantified. Second, for understanding and probing the 671 

exact spatial patterns of specific sleep stages identified in this study with higher resolution, 2-photon 672 

imaging at the whole brain level could be recorded for longer duration (controlled by closed loop 673 

detection of events), while optimizing for signal loss with photo bleaching. Third, closed loop 674 

techniques could be employed to disrupt sleep either at the PE stage or at other relevant stages to 675 

identify behavioral phenotypes, thereby providing casual evidence for function of the specific stage. 676 

 677 

Our multichannel data add to the growing realization that the entire insect brain engages in dynamical 678 

patterns of activity during both sleep and wake (Tainton-Heap et al. 2021; Troup, Tainton-Heap, and 679 

van Swinderen 2023), and does not simply shut off when insects become immobile or quiescent. To 680 

understand these patterns of activity and how they might relate to conserved sleep functions (Van De 681 

Poll and van Swinderen 2021) requires novel approaches derived from machine learning, as done in 682 

this study, rather than approximations inspired from human EEG. 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 
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Materials and Methods  696 

Animals.  697 

Flies (Drosophila melanogaster) were reared on a standard fly medium under a 12h light/dark cycle 698 

(lights on at 8 A.M). Flies were raised on a 25°C incubator (Tritech research inc) with 50-60% humidity 699 

and fewer than 5 flies were maintained per vial to ensure optimal nutrition and growth. Adult female 700 

flies (<3 days post eclosion) of wild-type Canton-S (CS) were used for the electrophysiological 701 

recordings. The choice of age of flies was based on pilot data that suggested a higher survival rate of 702 

younger flies over a 12h period on the air supported ball setup (after electrode insertion). Flies used for 703 

the behavioral dataset were between 3 - 7 days post eclosion. For thermogenetic experiments refer to 704 

(Yap et al. 2017) for further details. 705 

 706 

Fly tethering.  707 

First, flies were anesthetized on a thermoelectric cooled-block maintained at a temperature of 1-2°C. 708 

Second, the thorax, dorsal surface and wings of the fly were glued to a tungsten rod using dental cement 709 

(Coltene Whaledent Synergy D6 Flow A3.5/ B3) and cured using high intensity blue light (Radii Plus, 710 

Henry Scheinn Dental) for about 30-40 sec. Further, dental cement was also applied to the necks to 711 

stabilize them and prevent lateral movement of the head during electrode insertion (next section). 712 

Third, to prepare the fly for the multichannel overnight recording, we placed a sharpened fine wire 713 

made of platinum into the thorax (0.25 mm; A-M systems). The platinum rod serves as a reference 714 

electrode and helps filter the noise originating from non-brain sources. The insertion of a platinum 715 

electrode (while providing minimal discomfort to movement of animal) was done using a custom 716 

holder with a micro-manipulator to enable targeted depth of insertion. For flies in the behavioral 717 

dataset, the procedure was the same, except that no reference wire was inserted. 718 

 719 

Multichannel preparation.  720 

First, the tethered fly from the previous step was placed on an air supported ball (polystyrene) that 721 

served as a platform for walking/rest. Humidified air was delivered to the fly using a tube below the 722 

ball (also from the side) to prevent desiccation. Second, to record from half of the regions in the fly 723 

brain (half-brain probe) we used a 16-electrode linear silicon probe (model no. A1x16-3 mm50-177; 724 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.544704doi: bioRxiv preprint 

https://paperpile.com/c/P0heRD/HIrO
https://doi.org/10.1101/2023.06.12.544704
http://creativecommons.org/licenses/by/4.0/


32 

NeuroNexus Technologies). Third, the probe was inserted into the eye of the fly laterally using a micro-725 

manipulator (Merzhauser, Wetzlar, Germany). The probe was inserted such that the electrode sites 726 

faced the posterior side of the brain. The final electrode position (depth of insertion) was determined 727 

using the polarity reversal procedure described below. For flies recorded in the behavioral dataset the 728 

setup was similar, except that a custom chamber was lowered over the ball and fly to maintain a 729 

humidified environment during recordings. 730 

 731 

Polarity reversal.  732 

Variability in spatial location of recording sites across different flies is a primary impediment when 733 

comparing data across different flies. This occurs mainly due to the angle and depth of insertion of the 734 

probe, both of which cannot be precisely controlled. To overcome this issue and to obtain comparable 735 

recording sites across flies, we designed a novel paradigm using visual evoked potentials (Figure S2).  736 

First, while the probe was being inserted from the periphery to the center of the brain, we used visual 737 

stimuli (square wave of 3 sec in duration with 1Hz frequency) from a blue LED. When the visual stimuli 738 

was displayed we simultaneously recorded the local field potentials from the 16 electrode sites. During 739 

the initial stage of insertion, most of the electrodes are outside of the brain and only a few are inside 740 

the eye, optic lobe. The recordings in the electrodes inside the eye, brain show a visual evoked potential 741 

corresponding to the leading edge and the trailing edge of the square wave. Second, we move the probe 742 

slowly towards the center of the brain so more of the electrode sites would now be inside the brain. 743 

Third, we notice that some electrodes have a negative deflection and some have a positive deflection 744 

with respect to the leading edge of the square wave. The electrodes in the eye, optic lobe regions display 745 

a positive deflection and electrodes further to the central parts of the brain display a negative deflection. 746 

However this polarity change usually happens in the electrodes that are coincident on the regions right 747 

after the medulla. Fourth, for all flies we made sure that the polarity change coincided with the 748 

electrodes 11-13 inorder to establish consistency in terms of the spatial locations.   749 

 750 

 751 

 752 

 753 

 754 
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Dye based localization.  755 

Inorder to identify the possible locations in the brain targeted by the electrodes, we used a three step 756 

procedure. In the first stage, we used immunohistochemistry to identify the locations of electrodes 757 

using a fluorescent dye and neuropils using antibodies against nc82 (presynaptic marker bruchpilot) 758 

respectively. In the second stage, we used a registration procedure to map the dye locations to an EM 759 

dataset (using nc82 images). In the third stage, we used principal component analysis to identify the 760 

precise neuropils targeted. 761 

a) Immunohistochemistry.  762 

First, we labeled the probe with Texas red fluorescent dye conjugated to 10,000-Da mol mass dextran 763 

dissolved in distilled water (Invitrogen) to identify the recording locations. Second, after removing the 764 

flies from the tether, the brains were dissected in ice cold 1x phosphate buffer solution (PBS) and fixed 765 

in 4% paraformaldehyde diluted in PBS-T (1× PBS, 0.2 Triton-X 100) for 20 minutes in dark to preserve 766 

the fluorescence of the dye. Third, after fixation, tissues were washed 3 times with PBS-T (0.2% Triton 767 

X-100 in PBS (PBST) with 0.01% sodium azide (Sigma Aldrich)) and blocked for 1 hour in 10 % Goat 768 

Serum (Sigma Aldrich). Fourth, the brains were then incubated overnight in a primary antibody 769 

solution (mouse anti-nc82 1:20 DSHB). Fifth, on the next day brains were washed 3 times with PBS-T 770 

(10 min per wash) and incubated overnight in a secondary anti-body solution (1:250 goat anti-mouse 771 

Alexa 647). Finally, the brain was washed in PBST and embedded in Vectashield and imaged using a 772 

confocal microscope (Zeiss). 773 

b) Image registration.  774 

First, for each fly we used the nc82 image as source space to align to the JFRC2 template space (which 775 

is a spatially calibrated version of JFRC (Jenett et al. 2012) from FlyLight). The registration process 776 

involved two steps: i) rigid affine registration that roughly aligned the source image to the template 777 

space with 12 degrees of freedom (translation, rotation, scaling). ii) non-rigid registration that allowed 778 

different brain regions to move independently with a smoothness penalty. The entire process was 779 

carried out using the CMTK plugin (FiJi toolbox) as described here (Ostrovsky, Cachero, and Jefferis 780 

2013). Second, we then used the JFRC2 (light-level) registration as bridging registration to FAFB14 781 

(EM dataset) using the natverse toolbox (Bates et al. 2020) and mapped both the nc82 images and the 782 

dye locations to the FAFB14 space. 783 
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c)  Electrode localisation.  784 

The electrode dye locations inside the brain are usually visible as fragments (points) instead of a single 785 

continuous (line) segment, mainly because the insertion of the probe causes the smearing of the dye on 786 

the neuropils in the brain. Inorder to identify the precise locations of the recording electrodes in the 787 

brain, we first used the points and performed principal component analysis to find the eigenvector or 788 

line (1st principal component) that would have minimize the distance between the different points to 789 

the line itself. This line could be thought of as the main path of the probe as it entered into the brain. 790 

Next, we choose the innermost electrode as the projection of the innermost point (dye location) 791 

projected onto the eigenvector. The rest of the recording electrode sites were obtained by sampling the 792 

same eigenvector at intervals of 25 µm (which is the interelectrode distance on the probe) from the 793 

innermost point. 794 

 795 

LFP recording.  796 

The LFP data from the 16-electrode probe was acquired using Tucker–Davis Technologies (Tucker-797 

Davis Technologies, US) multichannel data acquisition system at 25 kHz coupled with a RZ5 Bioamp 798 

processor and RP2.1 enhanced real-time processor. Data was acquired and amplified using a pre-799 

amplifier (RA16PA/RA4PA Medusa PreAmp). The pre-amplifier used can only record data of up to 20 800 

hours on a single charge cycle, hence we limited the recording of the LFP signals to 20 hour duration. 801 

Further, as file sizes tend to be larger over longer recording periods, we recorded data in chunks of 1 802 

hour which was automatically controlled via a MATLAB script. 803 

 804 

Video recording for flies on electrophysiology setup.  805 

The ball setup was illuminated with visible light, switched ON at 8 AM and switched OFF at 8 PM 806 

(mimicking the light/dark cycle conditions in the incubator). Further, we used Infrared LEDs for 807 

monitoring the movement of the fly on the ball (which allowed us to quantify movements under both 808 

the light and the dark cycle. We recorded the fly in profile view with a digital camera from Scopetek 809 

(DCM 130E) and to achieve optical magnification, we used a zoom lens (from Navitar). As done 810 

previously (Yap et al. 2017), we removed the IR filter in front of the camera sensor, to allow for filming 811 

under IR light, thereby achieving constant illumination under both day and night. We made a custom 812 
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script with Python (2.7.15), OpenCV (3.4.2.17), that allowed for recording videos automatically and 813 

saving them in hourly intervals. The video was recorded with a resolution of 640 x 480 pixels at 30 814 

frames per second using Xvid codec and further with additional metadata (time stamps in a csv file) 815 

that allowed a later matching up of the LFP data with the video data.  816 

 817 

Video recording for flies on behavioral dataset setup. 818 

The camera in this setup was a Point Grey/Teledyne FLIR Firefly perpendicular to the fly, in addition 819 

to an extra camera (ProMicroScan) placed on the trinocular output of a Nikon SZ7 stereomicroscope. 820 

This second camera was used to record a close-up view of the head of the fly for the purposes of tracking 821 

movements of the antennae. Illumination was as above with infrared LEDs and recordings were 822 

obtained with the same Python scripts. 823 

 824 

Movement analysis.  825 

The fly movement was quantified with the video files using  Python (3.6.1), OpenCV (3.4.9) in the 826 

following manner. First, every video file (1 per hour of recording) was read frame by frame. Second, 827 

for each frame, we clipped the image such that the main focus was on the fly while ignoring items in 828 

the background. Third, we converted the color space for each frame from BGR to grayscale. Fourth, 829 

we computed the ‘deltaframe’ as the absolute difference of the current frame with the previous frame. 830 

Fifth, we thresholded the deltaframe using a custom defined threshold per fly and converted them into 831 

binary. Sixth, we dilated the thresholded image and identified contours in the dilated image and looped 832 

over the different contours selecting those above a specific threshold (area). Finally, we drew rectangles 833 

around the contours above the threshold on the original (color) image to manually verify the 834 

movement location. Only those frames that had contours above threshold were regarded as ‘moved’ 835 

frames, other frames would be classified as ‘still’. Thus, each frame would be either 0 (still) or 1 (moved).  836 

In the next stage, we used the frame by frame movement data to identify segments of LFP data as ‘sleep’ 837 

or ‘awake’ etc in the following fashion. First, we synced the LFP data with the video data by using the 838 

time stamps in both the LFP data and video metadata (csv files). Second, we clipped both the LFP and 839 

video data to the first 8 hours of recording. Though 23 flies survived for more than 24 hours, we only 840 

used the first 8 hours to ensure that the fly’s health was completely optimal (considering the 841 
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circumstances) in both the behavior and brain recordings. Further only 16 flies were used for the 842 

analysis, as 7 of them had issues with calibration (noisy or no calibration) or abnormal activity (either 843 

no sleep trials or very active). Third, we pruned movement data to ensure brief noise in movements 844 

are avoided. Fourth, we identified the segments of data wherein the fly was immobile for more than 5 845 

mins as ‘sleep’ and the segment immediately preceding 2 mins before the sleep data as ‘presleep’ and 846 

the rest of the data as ‘awake’. 847 

 848 

 849 

LFP analysis.  850 

a) Preprocessing. 851 

LFP data was analyzed with custom-made scripts in MATLAB (The MathWorks) using EEGLAB 852 

toolbox (Delorme and Makeig 2004). The preprocessing steps were as follows: First, the binary data was 853 

extracted for every hour from Tucker-Davis technology ‘tank’ file format to MATLAB ‘mat’ file format. 854 

Second, the data were resampled to 250 Hz and bandpass filtered with zero phase shift between 0.5 and 855 

40 Hz using hamming windowed-sinc FIR filter, further line noise at 50 Hz was removed using a notch 856 

filter. Third, the hourly LFP data was saved to EEGLAB ‘.set’ file format. Fourth, the hourly LFP data 857 

were interpolated in a linear way to avoid any discontinuities between the hourly segments of data. 858 

Fifth, the movement data (see Movement analysis) was added to the EEGLAB file along with the start 859 

and end time based on video data. Sixth, the multi-hour LFP data (along with the movement data) is 860 

collated for the first 8 hours of the recording. Seventh, we created separate epochs based on movement 861 

data into ‘sleep’, ‘presleep’, ‘awake’ (where preceding 2 mins of immobility (-2 to 0 mins) is ‘presleep’ 862 

and immobility is ‘sleep’ and the rest of the data is ‘awake’, here 0 mins is the start of the immobility). 863 

Eighth, the epochs were now re-referenced based on the channel where the polarity reversal occurred. 864 

For this we identified the channel wherein the polarity reversal occurred (see Polarity reversal section) 865 

and subtracted all the channels from this channel, thus resulting in 15 channels after the re-referencing. 866 

This brain based referencing technique (similar to the Cz based reference in human EEG recordings) 867 

allows for filtering of non-brain based physiological noise (like heartbeat etc). Previous multichannel 868 

recordings used only the thorax based referencing (followed by bipolar referencing) along with 869 

Independent Component Analysis (ICA) to remove physiological noises. However, the identification 870 
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of noise components like heartbeat etc from ICA is subjective and further depends on the expertise of 871 

the human curator. Our technique overcomes these issues while simultaneously providing a method to 872 

remove physiological noises not originating from the brain. 873 

b) Power spectrum analysis (sleep vs awake). 874 

The power spectra of the LFP data was computed for each fly in the following fashion. First, each 875 

condition (‘awake’, ‘sleep’ etc) of varying duration was re-epoched into trials of 60 sec duration. Second, 876 

each trial was bandpass filtered with zero phase shift between 5 and 40 Hz using hamming windowed-877 

sinc FIR filter. Third, for each trial, power spectra (in decibels) was computed using the ‘spectopo’ 878 

function in the EEGLAB toolbox in MATLAB. Fourth, the mean power spectra for all the trials per 879 

condition per fly was computed. The goal of the power spectra analysis was to identify the cluster of 880 

frequency bands and channels that differ across the sleep, awake periods at the group level. To perform 881 

these group level comparisons (sleep vs awake periods) we only used flies that had at least 10 trials 882 

under each condition. We performed a cluster permutation test (flies x frequencies x channels) using 883 

MNE (0.22.0) in python (permutation_cluster_1samp_test) (Gramfort et al. 2013) with all possible 884 

permutations  to identify clusters that differ across awake and sleep periods. We also computed the 885 

effect sizes for every channel x frequency combination using cohen's d measure (difference of means/ 886 

standard deviation).  887 

 888 

Thermogenetic sleep induction.  889 

The thermogenetic sleep induction data was collected using 104y-Gal4 lines as part of the study (Yap 890 

et al. 2017). This multichannel recording consisted of a 16-electrode full-brain probe (model no. A1x16-891 

3mm50-177; NeuroNexus Technologies) covering the whole of the brain (Figure S6B) (in contrast to 892 

the half-brain probe mentioned before) with interelectrode distance of 50 µm. The rest of the recording 893 

parameters were the same as mentioned in the previous section. Sleep induction was achieved by 894 

transient circuit activation of the sleep promoting circuit innervating the dorsal fan shaped body (dFB). 895 

For example, this was done by using the 104y gal4 lines (offering cell type specificity in the dfB regions) 896 

to control the expression of UAS driven TrpA1 (temperature sensitive cation channel), thereby 897 

allowing for the activation of the specific neurons in dFB with temperature changes. As described in 898 

(Yap et al. 2017), before the induction of sleep, the baseline activity was recorded in the ‘baseline’ 899 
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condition for 3 secs, followed by stimulation in the ‘sleep induction’ condition for 3 secs before 900 

returning to recovery for 3 secs. 901 

a) Preprocessing. 902 

LFP data was analyzed with custom-made scripts in MATLAB (The MathWorks) using EEGLAB as 903 

mentioned before. The preprocessing steps were as follows: First, the LFP data per condition (‘baseline’, 904 

‘sleep induction’, ‘recovery’) was converted to EEGLAB ‘.set’ file format with a sampling rate of 1 KHz. 905 

Second, the LFP data was re-referenced using a differential approach, wherein nearby channels are 906 

subtracted with each other resulting in 15 channels. 907 

b) Power spectrum analysis (baseline vs sleep induction). 908 

The power spectra of the LFP data was computed for each fly in the following fashion. First, each 909 

condition (‘baseline’, ‘sleep induction’ etc) was reepoched into trials of 1 sec duration. Second, each 910 

trial was bandpass filtered with zero phase shift between 5 and 40 Hz using hamming windowed-sinc 911 

FIR filter. Third, for each trial, power spectra (in decibels) was computed using the ‘spectopo’ function 912 

in the EEGLAB toolbox in MATLAB. Fourth, the mean power spectra for all the trials per condition 913 

per fly was computed. The group level comparison was performed using cluster permutation test 914 

methods (as described in previous sections) to identify differences in frequency x channels across 915 

‘preheat’ and ‘heaton’ conditions. 916 

 917 

 918 

 919 

Sleep staging by classifiers.  920 

The main goal of this analysis was to use classifiers to identify the existence of sleep stages using LFP 921 

data. 922 

a) Labeling of sleep states. 923 

Here, we relabelled the segments of data (already identified as ‘sleep’, ‘awake’ based on movement data) 924 

in the following fashion. First, we labeled the segments of data in the first 2 mins (0 to 2 mins) after 925 

the start of immobility as ‘earlysleep’ and the segments of the data in the preceding 2 mins (-2 to 0 926 

mins) as ‘presleep’. Second, we labeled the segments of data in the last 2 mins of sleep as ‘latesleep’ and 927 
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the segments of data in between the ‘earlysleep’ and ‘latesleep’ as ‘midsleep’. The rest of the data is 928 

considered as ‘awake’.  929 

b) Preprocessing & power spectrum computation. 930 

The preprocessing steps were the same as mentioned in the previous section (LFP preprocessing). For 931 

the computation of the power spectrum, we followed similar procedures as mentioned before, however 932 

we saved the individual power spectrum per trial (channels x frequency) per fly in a csv file along with 933 

the corresponding label of the sleep state.  934 

c) Classifier probability analysis. 935 

We implemented a support vector machine (svm) based classifier using scikit-learn (0.24.2) to classify 936 

the LFP data using the following steps. First, we collated the features based on power spectrum 937 

(channels x frequency) from all the flies across different sleep states. Second, we filtered the features to 938 

only ‘awake’ (5106 epochs) and ‘midsleep’ (1165 epochs) states. Here, we also did not feed (for training) 939 

the preceding 2 mins of  ‘presleep’ and succeeding 2 mins of ‘earlysleep’ and the last 2 mins of sleep 940 

‘latesleep’ into the classifier (we used those minutes for sanity check purposes - Refer to Figure 5A). 941 

Third, we encoded the target labels (‘awake’, ‘midsleep’) into binary states using ‘LabelEncoder’ from 942 

scikit-learn. Fourth, we balanced the composition of labels (or classes) to prevent bias due to unequal 943 

distribution of classes in the training dataset. Fifth, we divided the dataset into train and test sets (80% 944 

train, 20% test) using ‘train_test_split’ from scikit-learn in a stratified fashion. Sixth, we subjected both 945 

the train and test data to a standard scaler using ‘StandardScaler’ from scikit-learn, which removes the 946 

mean of the data and scales it by the variance. Seventh, we implemented a svm based classifier using a 947 

‘linear’ kernel along with probability estimates per class and fit the classifier to the train dataset. Eighth, 948 

we used the trained classifier on the test dataset and computed different metrics of classifier 949 

performance like accuracy, roc_auc, recall, precision, f1-score etc using ‘metrics’ from scikit-learn 950 

(Figure S7B). Ninth, we used the trained classifier on all class labels (‘awake’, ‘presleep’, ‘earlysleep’, 951 

‘midsleep’, ‘latesleep’, preceding 2 mins of  ‘presleep’ and succeeding 2 mins of ‘latesleep’) from the 952 

original dataset and computed the probability estimates per class. It is pertinent to note that none of 953 

the ‘presleep’, ‘earlysleep’, ‘latesleep’, preceding 2 mins of  ‘presleep’ and succeeding 2 mins of ‘latesleep’ 954 

the data have not been seen by the classifier beforehand. The above process from Step 5 onwards is 955 
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repeated a further 4 times with different test, train splits to create five different iterations of classifiers 956 

and performance metrics. 957 

 958 

d) Multiclass svm analysis & Feature importance. 959 

To identify differences across multiple classes (‘awake’, ‘presleep’, ‘earlysleep’, ‘midsleep’, ‘latesleep’) 960 

we implemented a random forest classifier using scikit-learn (0.24.2) to classify the LFP data using the 961 

following steps. First, we collated the features based on power spectrum (channels x frequency) from 962 

all the flies across different sleep states. Second, as the different labels (or classes) were unbalanced viz: 963 

‘awake’(5585 epochs), ‘presleep’(258 epochs), ’earlysleep’(262 epochs ), ’midsleep’ (1165 epochs ), 964 

’latesleep’ (262 epochs), we used SMOTE (Synthetic Minority Over-sampling Technique) from 965 

imblearn (0.8.1) to balance the distribution of classes in the dataset. Third, we divided the dataset into 966 

train and test sets (80% train, 20% test) using ‘train_test_split’ from scikit-learn in a stratified fashion. 967 

Fourth, we subjected both the train and test data to a standard scaler using ‘StandardScaler’ from scikit-968 

learn, as mentioned in the previous section. Fifth, we encoded the target labels into binary states using 969 

‘LabelBinarizer’ from scikit-learn. Sixth, we implemented a random forest classifier for this multiclass 970 

classification problem. As the random forest classifier has multiple hyperparameters that need to be 971 

tuned, we first used a random grid (using ‘RandomizedSearchCV’ from scikit-learn) to search for the 972 

hyperparameters and then further used these parameters in a grid search model (using ‘GridSearchCV’ 973 

from scikit-learn) to identify the best hyperparameters. Seventh, we used the trained classifier on the 974 

test dataset and computed different metrics of classifier performance like recall, precision, f1-score etc 975 

using ‘metrics’ from scikit-learn separately for all the 5 classes. Furthermore, we also computed a 976 

normalized confusion matrix using ‘confusion_matrix’ from scikit-learn. The above process from Step 977 

5 onwards is repeated a further 4 times with different test, train splits to create five different iterations 978 

of classifiers and performance metrics. Finally to identify and rank the importance of different features 979 

we utilized the permutation importance metric (using ‘permutation_importance’ from scikit-learn). 980 

The permutation feature importance works by randomly shuffling a single feature value and further 981 

identifying the decrease in the model score (Breiman 2001). The process breaks the relationship 982 

between the shuffled feature and the target, thus if the feature is very important, it would be indicated 983 

by a high drop in model score, on the other hand if it is relatively unimportant, then the model score 984 

would not be affected so much. We used the permutation importance with a repeat of 5, and for each 985 
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train/test split we computed a permutation importance score. Finally, the mean permutation 986 

importance score was computed using all the splits. 987 

e) Classifier metrics. 988 

The performance of the above-mentioned classifiers (both SVM based, random forest based) was 989 

evaluated using metrics like accuracy, recall, precision, roc_auc, f1-score. The definition of these 990 

metrics are as follows:  991 

Recall: This refers to the ability of a classifier to correctly detect the true class of the epoch among the 992 

classifications made. It is obtained by the (TP/TP + FN). It is also known as sensitivity. TP: True 993 

Positives, FN: False Negatives.  994 

Precision: This refers to the exactness of the classifier. It is obtained by the  (TP/TP + FP). TP: True 995 

Positives, FP: False Positives. 996 

F1-score: This refers to the harmonic mean between precision and recall.  997 

roc_auc: This refers to the area under the receiver operating curve. In general, it refers to how efficient 998 

the classifier is in identifying different epochs. Scores closer to 1 indicate a highly efficient classifier 999 

whereas those closer to 0 indicate otherwise. 1000 

Accuracy: This is defined as the number of correctly classified epochs divided by the overall number 1001 

of epochs classified.  1002 

Confusion matrix: This enables visualization of the classifier performance, by tabulating the predicted 1003 

classes against actual classes. For multiclass problems (random forest classifiers here), the values in the 1004 

diagonal indicate where the predicted and actual classes converge, whereas those on the off-diagonal 1005 

indicate misclassifications. 1006 

 1007 

Proboscis tracking for flies on electrophysiology setup. 1008 

a) Pose detection. 1009 

We used DeepLabCut (Mathis et al. 2018) to track the different body parts of the fly using an artificial 1010 

neural network trained in the following fashion. First, we extracted frames from: sample videos 1011 

wherein the fly performs the following: normal walking movement on the ball (‘all_body’), proboscis 1012 

extension periods (’proboscis’) both while asleep and awake. For each fly we extracted videos of the 1013 

above mentioned categories for the purpose of creating annotation labels. Second, we extracted frames 1014 
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from these videos and further labeled the different body parts: eye, proboscis, leg1_tip, leg1_joint, 1015 

leg3_tip, leg3_joint, abdomen (Figure 7). Third, we trained the neural network per fly using this dataset 1016 

with ‘resnet_50’ weights until the loss parameter during training stabilizes. The performance of the 1017 

network per fly (train, test error in pixels) was in general similar in both the train and test datasets. 1018 

Fourth, we evaluated the annotation performance manually by labeling a test video and verifying the 1019 

same. Finally, this trained network (per fly) was used for annotating the video for the first 9 hours of 1020 

the recording. 1021 

b) Pose analysis. 1022 

In the next step, we use the pose detection output to design a classifier capable of identifying proboscis 1023 

extension periods. First, we manually detected several sample time points (to be used as ground truth 1024 

for training/testing the classifier) in the video of each fly and identified proboscis time periods and 1025 

saved them in a ‘csv’ file. Second, we used the pose tracking data (x,y,likelihood) for the body parts of 1026 

the proboscis, leg1_tip, leg1_joint, eye, abdomen and further computed low pass filtered data (0.1 Hz 1027 

butterworth filter) of each body part. Further we also computed the moving average (window length 1028 

of 5 samples) of the filtered data. Third, we computed ‘dist_eyeprob’ as the euclidean distance between 1029 

the proboscis and eye body part and finally multiplied the same with the likelihood of the proboscis 1030 

body part. Fourth, we used the above-mentioned body parts (and its derivatives) as features and used 1031 

the ‘StandardScaler’ from scikit-learn for normalizing the data. Fifth, we divided the dataset into train 1032 

and test sets (70% train, 30% test) using ‘train_test_split’ from scikit-learn. Sixth, we implemented a 1033 

svm based classifier using a ‘rbf’ kernel and fit the classifier to the train dataset. Seventh, we used the 1034 

trained classifier on the test dataset and computed different metrics of classifier performance like 1035 

accuracy, recall, precision etc using ‘metrics’ from scikit-learn. The data segments (frames) identified 1036 

here will be used to construct the candidate proboscis periods, which then will be further refined in 1037 

the next steps. 1038 

c) Proboscis detection. 1039 

First, we use the frames identified by the classifier from the previous section and construct continuous 1040 

segments to identify time periods of probable proboscis periods. Further, we add additional time periods 1041 

by using the likelihood of the proboscis part with a threshold based method. Second, we identify the 1042 

peak frame (where the maximum displacement of the proboscis occurs) in each proboscis extension 1043 
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event (each proboscis bout consists of multiple proboscis extension events) and save the identified 1044 

proboscis events (frame number, time, behavior state) to a ‘csv’ file. Third, each event in the csv file is 1045 

manually verified and only true events are further taken forward. This process is repeated for all the 1046 

flies and the proboscis detection accuracy per fly is plotted in Figure 7C. 1047 

 1048 

Micro-behaviour tracking for flies on behavioral dataset setup.  1049 

Here, the same method for tracking micro-behaviors via DeepLabCut was used, focusing on the 1050 

proboscis and abdomen for the lateral camera view (See above), and the base and tip of the left and 1051 

right antennae for the dorsal view of the fly head. The data from these two streams was imported into 1052 

a custom MATLAB (2020a) script, which performed synchronization based on the integrated 1053 

timestamps. After preprocessing, antennal tracking with DeepLabCut was converted into an angle for 1054 

both respective antennae by calculation of the respective positions of the bases and tips, with the angle 1055 

of the fly’s head with respect to the camera automatically derived from this data and used to correct 1056 

the angle of the antennae. For the proboscis a median position was calculated for each recording - 1057 

assumed to be the resting position - and the distance and angle between the proboscis at any given time 1058 

point and this median position was calculated. Extensions of the proboscis were derived from this 1059 

distance data with the ‘findpeaks’ function in MATLAB, with a number of exclusion criteria applied to 1060 

remove tracking artifacts. For example, detected peaks that exceeded a biologically plausible distance 1061 

threshold, lasted only for a single frame, or had an implausible instantaneous rise time were excluded. 1062 

Since this method could potentially be biased towards identifying proboscis activity that follows a 1063 

prototypical shape, we also employed an alternative proboscis event detection based purely on the 1064 

current distance of the proboscis from resting. In this we used a manually set threshold for each fly to 1065 

detect portions in the recording when the proboscis was extended versus not, and for these ‘events’ we 1066 

calculated the duration and median angle of the proboscis during the span of the event. Periods of 1067 

antennal periodicity in recordings were calculated based on a Fast Fourier Transform (FFT), applied to 1068 

time segments of recordings. Since proboscis activity was not sinusoidal in nature (and thus would 1069 

behave poorly if subjected to an FFT), periodicity for this organ was calculated manually as a factor of 1070 

timing between individual PEs in that proboscis extensions were periodic if they occurred less than 6s 1071 

after a preceding proboscis extension. This value was selected from observation of typical inter-PE 1072 

intervals.   1073 
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 1074 

LFP analysis - proboscis.  1075 

The main goal of this analysis was to identify the spectral signatures associated with the proboscis 1076 

extension periods across ‘awake’ and ‘sleep’ states in the LFP data. 1077 

a) Identification of proboscis periods. 1078 

First, we used the csv file containing frame by frame detection of manually verified proboscis events 1079 

(from the section above). Second, we identify periods of proboscis extensions which are close together 1080 

(within 10 sec of each other) and label them as continuous periods. Third, we add activity labels like 1081 

‘awake’ (awake periods without any proboscis activity), ‘awakeprob’ (awake periods with proboscis 1082 

activity), ‘sleep’ (sleep periods without any proboscis activity), ‘sleepprob’ (sleep periods with proboscis 1083 

activity), ‘presleep’ (presleep periods without any proboscis activity), ‘presleepprob’ (presleep periods 1084 

with proboscis activity) based on annotated behaviors. Fourth, we extract the LFP data corresponding 1085 

to the different time periods across each fly. 1086 

b) Power spectrum analysis. 1087 

The preprocessing steps for the extracted LFP data were the same as mentioned in the previous section 1088 

(LFP preprocessing). For the computation of the power spectrum, we followed similar procedures as 1089 

mentioned before, however we computed the individual power spectrum per trial (channels x 1090 

frequency) per fly by re-epoching them into trials of 1 sec in duration (instead of the 60 sec periods for 1091 

sleep analysis, as the proboscis periods are usually shorter). Then the mean power spectrum for all the 1092 

trials per condition per fly was computed. Next, we performed cluster permutation tests (flies x 1093 

frequencies x channels) for identifying the differences across frequencies and channels across different 1094 

conditions. For this analysis we only used flies that had at least 50 trials under each condition. 1095 

 1096 

Multilevel models. 1097 

a) Models for antennal, proboscis periodicity. 1098 

We defined 2 different multilevel models (Supplementary Table 1,3,5 - left, right antenna, proboscis) 1099 

to understand how the likelihood of periodicity varies by sleep epoch. In the null model, the periodicity 1100 

depends only on the mean per fly (fixed effect) and the fly ID (random effect). In the second model 1101 

(epoch model), the periodicity depends only on the epoch (fixed effect) and the fly ID (random effect). 1102 
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These models were fit using the ‘lmer’ function (‘lmerTest’ package) in R (Kuznetsova, Brockhoff, and 1103 

Christensen 2017) and the winning model is identified as the one with the highest log-likelihood by 1104 

comparing it with the null model, and performing a likelihood ratio chi-square test (χ2). Finally the 1105 

winning model was analyzed using the ‘anova’ function (Supplementary Table 2,4,6 - left, right 1106 

antenna, proboscis) in R (Fox and Weisberg 2018). 1107 

b) Models for spectral analysis. 1108 

We defined 4 different multilevel models (Supplementary Table 7) to understand the modulation of 1109 

the power spectrum by sleep epoch and channel type. In the null model, the power spectrum depends 1110 

only on the mean per fly (fixed effect) and the fly ID (random effect). In the second model (epoch 1111 

model), the power spectrum depends only on the LFP epoch type (fixed effect) and the fly ID (random 1112 

effect). In the third model (channel model), the power spectrum depends only on the channel type 1113 

(fixed effect) and the fly ID (random effect). In the fourth model (epoch-channel model), the power 1114 

spectrum depends on a combination of the LFP epoch type and the channel type, both used as fixed 1115 

effects, and the fly ID (random effect). These four models were fit using the ‘lmer’ function (‘lmerTest’ 1116 

package) in R (Kuznetsova, Brockhoff, and Christensen 2017) and the winning model is identified as 1117 

the one with the highest log-likelihood by comparing it with the null model, and performing a 1118 

likelihood ratio chi-square test (χ2). Finally the top two winning models were compared against each 1119 

other using ‘anova’ function in R (Fox and Weisberg 2018), to validate whether the winning model (if 1120 

it is more complex) is actually better than the losing model (if it is simpler). The epoch-channel model 1121 

emerged as the winning model, indicating an important contribution from different channels. The 1122 

epoch-channel was further analyzed with the ‘anova’ function (Supplementary Table 8) in R (Fox and 1123 

Weisberg 2018) 1124 

c) Models for PE event counts. 1125 

We defined 2 different multilevel models (Supplementary Table 9) to understand the modulation of PE 1126 

event count by sleep epochs. In the null model, the PE event count depends only on the mean per fly 1127 

(fixed effect) and the fly ID (random effect). In the second model (time_label model), the PE event 1128 

count depends only on the specific temporal sleep stage (fixed effect) and the fly ID (random effect). 1129 

These 2 models were fit using the ‘lmer’ function (‘lmerTest’ package) in R (Kuznetsova, Brockhoff, 1130 

and Christensen 2017) and the winning model is identified as the one with the highest log-likelihood 1131 
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by comparing it with the null model, and performing a likelihood ratio chi-square test (χ2). Thus, the 1132 

time_label model emerged as the winning model. The time_label model was further analyzed with the 1133 

‘anova’ function (Supplementary Table 10) in R (Fox and Weisberg 2018) 1134 

 1135 
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Supplementary material 1346 

 1347 

Suppl Table 1: Model comparison - Left antenna 1348 

Model Parameters Log-likelihood Pr(>χ2) 

Null Fixed: mean, Random: fly ID -106.53 - 

epoch Fixed: time_label, Random: fly ID -73.58 <0.001 

 1349 

Suppl Table 2: Type III analysis of variance with Satterthwaite's method of the winning model (Epoch) 1350 

- Left antenna 1351 

Model elements Sum Sq Mean Sq NumDF DenDF F value Pr(>F)  

Epoch 4.5527 1.1382  4 1090 16.985 <0.001 

 1352 

Suppl Table 3: Model comparison - Right antenna 1353 

Model Parameters Log-likelihood Pr(>χ2) 

Null Fixed: mean, Random: fly ID -68.415 - 

epoch Fixed: time_label, Random: fly ID -44.468 <0.001 

 1354 

Suppl Table 4: Type III analysis of variance with Satterthwaite's method of the winning model (Epoch) 1355 

- Right antenna 1356 

Model elements Sum Sq Mean Sq NumDF DenDF F value Pr(>F)  

Epoch 3.1004 0.7751  4 1125 12.232 <0.001 

 1357 
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 1359 

 1360 

Suppl Table 5: Model comparison - PEs 1361 

Model Parameters Log-likelihood Pr(>χ2) 

Null Fixed: mean, Random: fly ID -301.09 - 

epoch Fixed: time_label, Random: fly ID -207.25 <0.001 

 1362 

Suppl Table 6: Type III analysis of variance with Satterthwaite's method of the winning model (Epoch) 1363 

- PEs 1364 

Model elements Sum Sq Mean Sq NumDF DenDF F value Pr(>F)  

Epoch 20.877 5.2192  4 795 52.923 <0.001 

 1365 

Suppl Table 7: Model comparison - LFP power spectrum 1366 

Model Parameters Log-likelihood Pr(>χ2) 

Null Fixed: mean, Random: fly ID -68117 - 

Epoch Fixed: epoch, Random: fly ID -67941 <0.001 

Channel Fixed: channel, Random: fly ID -52391 <0.001 

Epoch-Channel Fixed: epoch*channel, Random: fly ID -51593 <0.001 

 1367 

 1368 

 1369 

 1370 

 1371 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.544704doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.12.544704
http://creativecommons.org/licenses/by/4.0/


53 

 1372 

 1373 

 1374 

 1375 

Suppl Table 8: Type III analysis of variance with Satterthwaite's method of the winning model (Epoch-1376 

Channel) - LFP power spectrum 1377 

Model elements Sum Sq Mean Sq NumDF DenDF F value Pr(>F)  

Epoch 8476 2119  4 22582 378.025 <0.001 

Channel 112004 56002 2 22580 9990.441 <0.001 

Epoch:Channel 796 100 8 22580 17.756 <0.001 

 1378 

Suppl Table 9: Model comparison - PEs LFP dataset 1379 

Model Parameters Log-likelihood Pr(>χ2) 

Null Fixed: mean, Random: fly ID -4.5588 - 

time_label Fixed: time_label, Random: fly ID 15.0632 <0.001 

 1380 

Suppl Table 10: Type III analysis of variance with Satterthwaite's method of the winning model 1381 

(time_label) - PEs LFP dataset 1382 

Model elements Sum Sq Mean Sq NumDF DenDF F value Pr(>F)  

time_label 1.2145 0.20241  6 41 9.6039 <0.001 

 1383 
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 1386 

 1387 

 1388 

 1389 

Supplementary Figure 1: Additional metrics of proboscis activity during sleep and wake. A) Representation of 1390 

the distribution of sleep (Blue) and wake (Red) across N=11 recorded individuals over the course of time. B) 1391 

Averaged timecourse of proboscis extension distance from resting during a single event for sleep (Blue) and wake 1392 

(Red). C) Comparison of proboscis extension rates during sleep and wake (n.s. ; Student’s T-test). D) Histogram 1393 

of the distribution of times between PEs during sleep (Blue) and wake (Red). E) Comparison of the fraction of 1394 

PEs that were periodic versus isolated for sleep and wake (p < 0.05; Student’s T-test). F) Comparison of the average 1395 

frequency of PE periodicity across sleep and wake (n.s.; Student’s T-test). G) As with F, for antennal periodicity 1396 

(p < 0.05; Student’s T-test). 1397 
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 1401 

 1402 

Supplementary Figure 2: Electrode insertion depth was controlled by using a polarity reversal method. In this 1403 

example fly, the change in LED stimulation (OFF to ON) stage, coincides with a LFP deflection. The LFP 1404 

deflection changes from positive (12th channel) to negative (11th channel). The LFP amplitude depicted here is 1405 

based on an average of 5 trials, with the shaded region representing the standard error. 1406 

 1407 
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 1409 

 1410 

Supplementary Figure 3: Electrode locations were determined using a dye based localisation method. Neuropil 1411 

stain (A) and electrode dye locations (B) were registered to JFRC2 space (D) via non-rigid registration. Further 1412 

Bridging registration was used to register to FAFB space (F), the registration templates were applied on electrode 1413 

dye locations (B) to produce co-localisation (H). 1414 
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 1415 

Supplementary Figure 4: Electrode locations were determined using a dye based localisation method. Neuropil 1416 

stain (A) and electrode dye locations (B) were registered to JFRC2 space (D) via non-rigid registration. Further 1417 

Bridging registration was used to register to FAFB space (F), the registration templates were applied on electrode 1418 

dye locations (B) to produce co-localisation (H).  1419 

 1420 

 1421 
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 1424 

 1425 

 1426 

Supplementary Figure 5: Power differences across central, middle, peripheral channels in the frequency bands of 1427 

7-10 Hz. 1428 

 1429 
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Supplementary Figure 6: Spectral differences in thermogenetically induced sleep recorded using full brain probe. 1443 
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 1447 

Supplementary Figure 7: A) Schematic indicating the optimal separation of awake and sleep classes using 1448 

classifiers based on support vector machines. B) SVM based classifier performance across different metrics based 1449 

on 5 different train/test data splits. 1450 
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 1467 

 1468 

Supplementary Figure 8: A) Feature importance of the multiclass classifier (reduced to awake vs sleep) indicates 1469 

an ROI across all channels and almost all frequency bands as critically important. This cross validates the 1470 

differences in the power spectrum across awake and sleep as shown in Figure 4D. B,C,D,E) Feature importance 1471 

of multiclass classifier for the other categories. 1472 
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