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Abstract

Background: Modeling of gene expression data from time course experiments often involves the
use of linear models such as those obtained from principal component analysis (PCA), independent
component analysis (ICA), or other methods. Such methods do not generally yield factors with a
clear biological interpretation. Moreover, implicit assumptions about the measurement errors
often limit the application of these methods to log-transformed data, destroying linear structure in
the untransformed expression data.

Results: In this work, a method for the linear decomposition of gene expression data by
multivariate curve resolution (MCR) is introduced. The MCR method is based on an alternating
least-squares (ALS) algorithm implemented with a weighted least squares approach. The new
method, MCR-WALS, extracts a small number of basis functions from untransformed microarray
data using only non-negativity constraints. Measurement error information can be incorporated
into the modeling process and missing data can be imputed. The utility of the method is
demonstrated through its application to yeast cell cycle data.

Conclusion: Profiles extracted by MCR-WALS exhibit a strong correlation with cell cycle-
associated genes, but also suggest new insights into the regulation of those genes. The unique
features of the MCR-WALS algorithm are its freedom from assumptions about the underlying
linear model other than the non-negativity of gene expression, its ability to analyze non-log-
transformed data, and its use of measurement error information to obtain a weighted model and
accommodate missing measurements.

Background

In recent years there has been an increased interest in the
study of serial microarray experiments, particularly time
course data. This has been driven by the greater availabil-
ity of such data and the appeal of elucidating the temporal
relationships among genes. Often, approaches to the anal-
ysis of these data sets have employed traditional methods

of exploratory data analysis and clustering, but it has been
recognized that methods specifically designed to exploit
the temporal relationships are advantageous [1]. This has
led to approaches based on time series and frequency
analysis, hidden Markov models, and linear modeling,
among others.
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One popular strategy in modeling time course data will be
referred to here as bilinear modeling. In this approach, the
matrix of gene expression data, X (m genes x n experi-
ments), is represented as the product of two lower rank
matrices, which we will designate as C and P, and a resid-
ual error term, E:

X=CP+E (1)

(Note: In this work, matrices will be represented by bold
upper-case fonts, vectors by bold lower case fonts, and
scalars by italics.) In this representation, C has dimen-
sions m x p and P has dimensions p x n, where p is the
number of basis vectors (also referred to as factors or com-
ponents) needed to reconstruct the data within experi-
mental uncertainty. Normally, for microarray
experiments, the number of genes (m) is much greater
than the number of experiments (n), which in turn is
greater than p. In general, the first goal in bilinear mode-
ling is to obtain the matrices C and P, given the experi-
mental data, X, and some knowledge or assumptions of
the statistical characteristics of E. However, for a given
data set there are an infinite number of degenerate solu-
tions for C and P due to arbitrary rotation (rotational
ambiguity) and scaling (scale ambiguity) of the basis vec-
tors in the subspace they define. To overcome this prob-
lem, some of the approaches commonly adopted in the
microarray literature include expression deconvolution,
principal components analysis (PCA) and independent
components analysis (ICA), among others.

In expression deconvolution [2], the rotational ambiguity
problem in Eq. (1) is addressed by assuming that the
matrix C is already known. Typically, the vectors that con-
stitute the columns of C would be estimated from cells
known to be associated with a specific cellular state, such
as certain phases of the cell cycle. Once C is known, the
solution for P becomes a classical least squares problem.
Although this approach is quite straightforward, its major
drawback is that it requires complete knowledge of one of
the constituent matrices, information which is not always
available. This information is not required for PCA [3-6],
which uses singular value decomposition (SVD) to
decompose the expression matrix into a set of scores (C)
and loadings (P) that are truncated to the first p factors.
PCA imposes the constraint that successive factors in the
decomposition must (a) account for the largest amount of
residual variance, and (b) be orthogonal to all of the fac-
tors determined to that point. Because of these con-
straints, the scores and loadings vectors do not normally
have an obvious biological interpretation. Despite this
shortcoming, the extension of SVD to compare expression
profiles across different data sets has been reported [7,8].
The strategy employed by ICA [9-11] in the decomposi-
tion of X is similar to that used by PCA, except that the
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constraints require a minimization of the statistical
dependence of the columns of C. Although one might
expect this constraint to produce more meaningful factors
than PCA, the biological rationale behind its imposition
has not been clearly established. Other bilinear modeling
approaches have also been used (e.g. [12,13]), but these
will not be described in detail, except where they relate to
the current work below.

In this work, an alternative approach to solving the bilin-
ear modeling problem represented by Equation (1) is
described and evaluated. This problem is not new and
arises in many disciplines, leading to a variety of solu-
tions. In chemistry, the problem often presents itself in
the analysis of chemical mixtures, where neither the con-
centration nor the identity of the constituents is known.
Solutions to this problem, collectively referred to as mul-
tivariate curve resolution (MCR) methods [14,15],
impose constraints on the results that are physically
meaningful. The simplest and most common of these is a
requirement of non-negativity in the elements of C and P.
Other constraints include unimodality, equality, and clo-
sure. Quite often, the imposition of one or more con-
straints is sufficient to produce a unique or nearly unique
solution to the rotational ambiguity problem. (It should
be noted that, in the absence of additional information, it
is impossible to resolve the scale ambiguity, so an arbi-
trary normalization is normally applied to the basis vec-
tors in either C or P.) We show that this approach, with
some modifications necessitated by the nature of microar-
ray data, can be successfully adapted to study gene expres-
sion.

A simple biological model

To rationalize the bilinear model in Equation (1) from a
biological perspective, Figure 1 shows a simple framework
illustrated for the case of only three genes and two under-
lying factors or components. We will refer to the matrix P
generically as the "profile matrix" and it can be viewed as
representing the evolution of regulatory inputs (transcrip-
tion factors, promoters, promoter/suppressor combina-
tions) as a function of time. In other work, analogous
terms have been used to describe the vectors of the profile
matrix: "process objects" [12]; "transcription module"
[13]; "biological processes" [10]; "arraylets" [7]; "eigenar-
rays" [5]. In all of these instances, a fundamental assump-
tion is that "the coregulation of genes may be described by
a small number of effective regulators, each acting on a
large set of genes and varying between distinct biological
situations" [9]. The matrix C will be referred to as the
"contribution matrix" and describes how each gene
responds to each of the regulating factors. In a conceptual
interpretation, these could correspond to receptor ele-
ments on a particular gene. In the example given in Figure
1, gene 1 responds only to the first transcription factor
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Simplified representation of the bilinear model. The expression levels of three genes as a function of time are repre-
sented as the linear combination of two underlying regualtory factors making up the profile matrix, P, and the contribution
matrix, C, which determines how each gene responds to the individual regulatory factors.

and gene 2 only to the second, while gene 3 responds in
equal measure to both regulators. Although only values of
unity or zero are used in the example for simplicity, the
model in its general form does not impose this restriction.
The elements of C are analogously referred to in a variety
of ways in other work: "gene objects" [12]; "independent
components” [9]; "pure populations” [2]; "genelets" [7];
"eigengenes" [5]. The expression profile for each gene is
therefore represented as a linear combination of the vec-
tors in the profile matrix in proportions defined by the
gene's contribution values. If one could extract the profile
matrix from the expression data, it would provide impor-
tant information regarding the underlying regulatory
inputs driving gene expression. Likewise, a knowledge of
the contribution matrix would illuminate relationships
among the genes in the organism.

The model represented in Figure 1 is amenable to solution
through the implementation of non-negativity con-
straints for the elements of C and P, since a regulatory
input can turn the expression of a gene on or off, but it
cannot result in negative expression. Therefore, it should
be possible to apply MCR with non-negativity constraints
to expression data, with one important caveat - it cannot
be directly applied to log-transformed data. The implica-
tions of this are discussed in the next section.

Implications of data transformation

While the level of gene expression cannot physically be
negative, this is not true of the logarithms, so non-negativ-
ity constraints in MCR cannot be applied to log-trans-
formed data. While this represents one limitation of log-
transformed data, there is another implication of impos-
ing the transformation that is perhaps more important. It
should be apparent that the simple linear relationship
represented in Figure 1, where the level of expression of a

gene is presumed to be in direct proportion to the abun-
dance of contributing regulatory factors, would no longer
be valid under logarithmic transformation. Despite this
fact, there appears to be little discussion in the literature
regarding the actual representation of expression values.
We have found that many of the authors studying applica-
tions of bilinear modeling methods do not explicitly state
whether log-transformed values were used, but those who
did generally used transformed data, implying that this is
the norm. There is a limited discussion of the effects of the
log transformation on the linear model [10,11]. These
authors point out that a linear model in the log-trans-
formed domain corresponds to a multiplicative model in
the untransformed domain; i.e. the expression of a gene is
in proportion to the product of two or more regulating
factors. While such cooperative effects are entirely possi-
ble and even likely, the simple linear model represented
by Figure 1 seems to us to be a more intuitive construct for
a first approximation. Lee et al. [10] suggested the use of
nonlinear mapping to resolve this problem. Kreil et al.
[11] compared the results of applying ICA to transformed
and untransformed data and found lower reconstruction
errors in the log-transformed space. They suggest that a
possible reason for this was the structure of measurement
errors in the two spaces.

One of the reasons for the popularity of log-ratio as
opposed to ratio data in representing gene expression is
the error structure of raw expression data, which is gener-
ally accepted to have a multiplicative component (see for
example [16]). Because uncertainty in the intensity ratio is
typically proportional to the magnitude of the value, log-
transformation gives rise to values with a uniform error
variance. Moreover, transformation reduces the influence
of outliers, which are common in microarray experiments.
Because most bilinear modeling algorithms are based on
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least-squares minimization, the effects of heteroscedastic
measurement error and outliers can be large. Derived
models will tend to emphasize large measurements, even
though smaller measurements may contain an equivalent
amount of information. This problem can be exacerbated
with time-course experiments, where variations in expres-
sion can be genome-wide and the reference mRNA does
not always bear a close expression match to the test
mRNA.

Based on the view that the linear model presented in Fig-
ure 1 seems more natural from a biological perspective,
and our desire to impose non-negativity constraints, mod-
eling in this work was conducted on untransformed
ratios. It was clear that, in order to do this, some method
would be need to be developed to accommodate the mul-
tiplicative error structure and outliers in the data. Liu et al.
[6] employed a robust form of SVD to address the prob-
lem of outliers, but avoided the multiplicative noise issue
by applying it to log-transformed data. Except in special
circumstances, the problem of non-uniform measure-
ment noise cannot be addressed through simple scaling.
However, in recent years, a number of techniques, such as
maximum likelihood PCA (MLPCA) [17] and total least
squares (TLS) [18], have been developed to treat hetero-
scedastic and correlated error structures. In this work, we
have adapted a TLS approach to MCR and demonstrate its
performance through its application to widely studied
yeast cell cycle data.

Multivariate curve resolution

MCR attempts to solve Eq. (1) for its two constituent
matrices based on a prior knowledge of the number of
underlying factors, p, and any constraints on the system.
Generally, non-negativity constraints are assumed and
additional constraints are added as required by the prob-
lem. In early work, Lawton and Sylvestre [19] developed
an analytical solution for boundaries of solution vectors
in the case of two factors, but direct solution for more
than two components is made impractical due to the com-
plexities of the problem. A wide range of alternative strat-
egies have been developed since that time, but one of the
most popular approaches due to its simplicity and relia-
bility is alternating least squares (ALS) [20]. This is the
approach used in this work.

The basic algorithm for curve resolution by ALS is as fol-
lows. Initially, one must choose the number of factors
(components), p, that will be extracted for the bilinear
model. A variety of approaches can be used for this, many
of which are based on the statistics of reconstructing the
original data from PCA scores and loadings with increas-
ing numbers of factors [21]. Alternatively, one can exam-
ine the results of curve resolution applied with different
numbers of factors, seeking results that show a pattern of
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behavior consistent with the system under study. For
example, in a time course study, one would expect that
profiles extracted will show a smoothly varying function
(assuming sufficient sampling). The appearance of ran-
dom patterns would suggest that one has reached the
point where noise is being modeled.

Once the number of factors has been chosen, an initial
estimate for C or P must be provided. Because of the sym-
metry of the algorithm, either of the matrices can be the
starting point, but in this application P is suggested since
it will be smaller and follow a more systematic variation.
One disadvantage of the ALS algorithm is that the selec-
tion of this initial matrix can influence the final solution,
in part because this solution may represent only one of a
range of feasible solutions. The variability of these solu-
tions will depend somewhat on the structure of the data,
but in many cases they will fall into fairly tight bounda-
ries. There are several approaches to defining the initial P.
One is to simply assign random positive values to the ele-
ments. While this ensures the results will be unbiased, the
initial vectors are almost certainly well outside the sub-
space of the measurements and therefore convergence
may be slower and more prone to numerical difficulties.
Another fairly simple approach is to use p profiles selected
randomly from X. These will be close to the true subspace,
but may have some problems with collinearity. Other
more systematic methods, such as SIMPLISMA [22] and
the needle-search method [23], can also be used. Which-
ever method is used, it is advisable to run the algorithm
several times from different starting points to ensure con-
sistency in the generated profiles.

At each stage in the algorithm where a new estimate of P
is generated, it is scaled so that the Euclidean norm of each
row is equal to unity. This is necessary because of the scale
ambiguity that results from the fact that the columns of C
and the rows of P can be arbitrarily scaled relative to each
other to give the same result for X. Because of this, the
absolute magnitudes of the rows of P and the columns of
C are not meaningful except in a relative sense within each
vector. This ambiguity can only be resolved if separate
absolute standards are available, but generally the relative
magnitudes are more important in any case. To avoid infi-
nite degenerate solutions that differ only by a scaling fac-
tor, the ambiguity requires that one of the matrices be
scaled to a fixed point of reference so that convergence can
be determined. In this case, the profile vectors are scaled
to unit length, but other criteria, such as unit area, could
also have been used.

The iterative part of the ALS algorithm begins when an
estimate of C is calculated based on the initial estimate of
P and the microarray data in X. This can be obtained in
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the usual way, solving the least-squares problem using the
pseudo-inverse of the estimated P,

C=xp'(PP")! (2)
In order to observe non-negativity constraints, the nega-

tive values in C are set to zero once this result is obtained.
Alternatively, a more rigorous solution to the non-nega-
tive least squares (NNLS) problem can be obtained using
standard methods [24] which minimize the sum of
squares of residuals in X conditional on the constraint
that the elements in C are greater than or equal to zero.
Following this step, the estimated C matrix is used to re-
estimate P. Once again, this can be done by censoring the
standard least squares solution,

P (€T 1eTx (3)

or by solving the NNLS problem. The rows of P are nor-
malized as described above following this step, and the
procedure is repeated, estimating C once again from P.
Egs. (2) and (3) represent the core of the ALS algorithm
and give rise to its name, since each step alternately esti-
mates one matrix given the other. The iterations continue
until convergence, which is most easily tested by checking
for insignificant changes in P and/or C.

Weighted multivariate curve resolution

Although the ALS method for multivariate curve resolu-
tion works well in many cases, one of the assumptions
that it makes in solving the least squares problem is that
the residual measurement errors exhibit uniform meas-
urement variance. While this is true, or nearly true, for
many spectroscopic methods used in chemistry, the same
cannot be said for microarray data. It has been widely
observed that microarray intensity measurements, at least
for relatively high intensities, exhibit a multiplicative error
structure; i.e. a constant coefficient of variation [16,25-
29]. Through propagation of error, it is easily shown that
this proportional error structure in the intensities leads to
multiplicative errors in the expression ratios as well. This
is problematic for MCR-ALS, since it will tend to ignore
the smaller signals, even though they have the same sig-
nal-to-noise ratio as the larger signals. This problem is
normally addressed through a log transformation, but as
noted earlier, this would destroy the bilinear structure of
the original expression data and remove the non-negativ-
ity constraint used by MCR.

A more general model for the error structure in microarray
intensity measurements involves both multiplicative and
additive terms [16,27], with the additive term becoming
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most important for low intensity measurements. As
expected, this additive term leads to a very large coefficient
of variation in expression ratios for low intensity signals,
which do not follow the general multiplicative error struc-
ture. Often, these measurements, which are close to the
background, are excluded from the analysis, as are spots
that are judged to be unacceptable due to their morphol-
ogy or other reasons. Such missing data can be treated in
a number of ways. One approach is to simply eliminate
the corresponding gene from all experiments, but this
may remove important information if the measurement is
unreliable in only one or a few experiments. Therefore, a
number of methods have been developed to accommo-
date missing data through imputation [6,30]. This would
be a desirable feature of a curve resolution algorithm as
well.

What is needed is a MCR method that is capable of incor-
porating measurement error information into the data
analysis to obtain an optimal solution under these cir-
cumstances, in effect weighting each measurement in pro-
portion to its estimated reliability. With such a method,
the proportional error structure of microarray measure-
ments could be accommodated so that a ratio change of
0.2 to 0.4 would be given as much weight as a change
from 5 to 10. Moreover, missing measurements could be
assigned large uncertainties so they would carry no weight
in defining the final model and would effectively be
imputed from the other data. In addition to the error
models assumed here, such an approach should be able to
handle any arbitrary error structure presented in microar-
ray data.

The requirements above describe an errors-in-variables
problem for linear regression and this problem has been
solved in a variety of ways for different fields of study. Per-
haps the most general of these is the technique of total
least squares (TLS), which provides an optimal solution
for X in the linear regression problem Y = AX given that Y
and A can have arbitrary error structures [18]. Typically,
the solution proceeds by augmenting Y with A column-
wise and finding the optimal subspace representation of
[Y A] using maximum likelihood approaches. The recon-
structed Y and A matrices are then used to solve the least
squares problem in the usual way. This approach is closely
related to the technique of maximum likelihood principal
components analysis (MLPCA) which has recently been
described in the literature [17,31]. The TLS approach can
be incorporated into the existing MCR-ALS curve resolu-
tion method by employing a TLS solution in place of the
standard least squares solution. The resulting algorithm
will be referred to as weighted alternating least squares
(MCR-WALS). The algorithm is given in the "Methods"
section, so only a brief description is presented here.
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To describe how the WALS algorithm works, we will con-
sider the first half of the alternating estimation procedure.
In this case, we are given X, which has an arbitrary error

structure, and P, which is assumed to be known with cer-
tainty, and must solve for C. The TLS solution to the
regression problem X = CP is solved (conceptually) by

first augmenting X with P row-wise and finding the opti-
mal p-dimensional subspace of the augmented matrix. In
this case, it is clear that this subspace is defined by the p

rows of P, since it is assumed to be known exactly. It
remains to find the optimal representation of X in this
subspace. We will assume that the errors in X follow a nor-
mal distribution and their variances are described by a
companion matrix, S, of equal dimensions. The estima-

tion of X in the subspace of P is then given by the maxi-
mum likelihood projection of X:

;. = x. 2 PT (P 1pT) P (4)

In this equation, x;, indicates the ith row of X and Z; is the
corresponding error covariance matrix, given by a diago-
nal matrix whose diagonal elements are the ith row of S.
The maximum likelihood projection weights the projec-

tion of each row of X into P in such a way that measure-
ments with large uncertainties are given less weight. Once
each row has been projected in this way, the estimate of C

is obtained in the usual way (see Eq. (2)), except using X
instead of X.

The second half of the ATLS algorithm proceeds in a sim-
ilar manner except that the maximum likelihood projec-

tion into the space of C is carried out using the columns
of X instead of the rows:

%, =CC"Y¥'C)'CTY¥; 'k, (5)

In this case x,; is the jth column of X and ‘¥, is the corre-
sponding error covariance matrix, which is a diagonal
matrix consisting of elements from the jth column of S.

The least squares problem is once again solved using an

analog of Eq. (3) employing X.

Using the MCR-WALS algorithm, the error structure inher-
ent in the microarray data can be incorporated in the
curve resolution procedure. Furthermore, missing data
can be accommodated by assigning a very large variance
to the associated measurements.
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Results and discussion

Yeast cell cycle data

To demonstrate the utility of the algorithms proposed
here, microarray data related to the cell cycle of Saccharo-
myces cerivisiae described by Spellman et al. [32] were
employed. Specifically, the subset of data related to the o-
factor block release experiment were used. The data in the
o-factor release subset consisted of microarray measure-
ments for 6178 open reading frames at 7 minute intervals
from 0 to 119 minutes, for a total of 18 experiments. This
data set was further screened to exclude any genes for
which there were more than 4 missing measurements.
This data set will be referred to as "Alpha-full" here and
consisted of 6044 genes. In addition to this, a smaller set
of 696 pre-selected genes from this group was used as
well. These genes, identified as exhibiting cell cycle-
dependent changes in mRNA expression levels, were the
same as those employed by Lu et al. [2]. This data set will
be referred to as "Alpha-696" in this work. For both data
sets, a corresponding measurement standard deviation
matrix was constructed by assuming proportional errors
of 20% of the measurement. This value is consistent with
observations we have made on other microarrays, but is
not critical since the absolute magnitude of the propor-
tional error weighting will not affect the results. In addi-
tion, missing measurements (2042 in Alpha-full, 0 in
Alpha-696) were set to zero and the corresponding error
standard deviation was set to a value much greater than
the largest proportional error value in the data (a value of
100 was used in this work).

The cell cycle data set was used because it has been widely
studied and exhibits some temporally structured patterns
of gene expression. In addition, a number of genes postu-
lated to be associated with cell cycle regulation have been
identified. It was hoped confirmation of these patterns
could be established through curve resolution methods,
although a one-to-one correspondence between the
underlying regulating factors and the genes related to
these cycles is not necessarily required. It should be
emphasized, however, that the objective of this work is to
demonstrate the utility of the curve resolution method
and not to conduct an extensive analysis of the cell cycle
using this tool.

Curve resolution of Alpha-696 data

Initially the MCR-WALS algorithm was applied to the
Alpha-696 data set since this had been prescreened to
select for genes with cell-cycle related expression patterns
and therefore was thought to be more amenable to suc-
cessful curve resolution analysis. The data were analyzed
by specifying 4, 5, 6, 7, 8 and 9 components (factors) and
the extracted time profiles (normalized to unit length) are
shown in Figure 2 for each case. Different numbers of
components were used because it was not known a priori
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Figure 2

MCR-WALS results (P matrix) for Alpha-696 data set. Profile vectors (normalized to unit length) extracted for models
with 4 to 9 components are shown. The vectors are arranged in order of appearance of the first major peak in the profile.

how many underlying factors would be present, although
it was suspected that a lower limit would be related to the
number of different phases in the cell cycle. Furthermore,
more confidence in the results can be achieved if the pro-
files remain consistent as the number of components is
increased. If extraneous components are extracted, these
can often be identified by an inconsistent or irregular pat-
tern, or because they correlate with only a few genes that
may represent outliers. The profiles extracted by MCR-
WALS are not obtained in any particular order, but for the
purposes of representation and comparison, they have
been arranged in Figure 2 by the order of appearance of
the first significant peak value.

The first and most significant feature to notice about Fig-
ure 2 is that all of the profiles extracted are consistent with
the dynamics of the system being studied. In some cases,

a unimodal profile compatible with a unique set of condi-
tions is observed, while in other cases a cyclical pattern
suggesting a relationship with the cell cycle is apparent.
Most patterns are clear and smooth, with well defined
maxima and minima that fall close to zero. These features
alone indicate that the results of curve resolution are
meaningful and suggest the potential utility of the
method. While it is not essential that these underlying reg-
ulatory profiles correlate directly with stages in the cell
cycle, since the latter are only required to be linear combi-
nations of the former, there is a natural expectation that
this will be the case. Because of this, these relationships
warrant further investigation.

Considering first the four-component analysis shown in
Figure 2a, the relationships with stages of the cell cycle
were investigated in two ways. First, the 292 genes classi-
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fied by Spellman et al. (ref [32]; Fig. 7) into five categories
related to the yeast cell cycle were extracted. The expres-
sion profiles of these genes were then normalized and
plotted as shown in Figure 3. This allowed a visual com-
parison between the profiles extracted and those observed
for genes reported to be representative of that stage of the
cell cycle. Note that, in this plot, missing measurements
were interpolated between the surrounding measure-
ments. A second, more quantitative comparison was
made through a correlation study, the results of which are
presented in Table 1. This was conducted by first finding

http://www.biomedcentral.com/1471-2105/7/343

the genes in the entire set (Alpha-full, 6044 genes) that
correlated most strongly with each of the profiles
extracted. Correlation coefficients were calculated around
the origin (rather than around the mean) and a cutoff of
>0.8 was arbitrarily chosen to indicate substantial similar-
ity with the profiles. The number of genes meeting this cri-
terion for each profile is listed as the parameter "N, ," in
Table 1. Within this group, the number of genes which
were on Spellman's list of 292 genes is was also deter-
mined and is given as "(N,,,.,) " in the table. For each pro-
file, correlated genes that were found on this list are given

Time (min.)

Figure 3

20 40 60 80 100 120
Time (min.)

Profiles of designated cell cycle regulated genes. Expression profiles (normalized to unit length) for the 292 cell cycle
regulated genes identified by Spellman et al. [32] are shown grouped by the associated phase.
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Table I: Analysis of 4-component curve resolution results from Alpha-696 data. Cell-cycle related genes (as classified by Spellman
[32]) from Alpha-full (6044 genes) that have a strong correlation (r>0.8) with extracted profiles are listed, along with the associated
phase. The numbers in parentheses give the ranking in the correlation list and the correlation coefficient. See text for more details.

Curve | Curve 2

Curve 3 Curve 4

MFAI GI (I, 0.96)

AGA2 M/GI (5, 0.88)
TIPI MIGI (12, 0.85)
GFAI MIGI (22, 0.82)
GLKI M/GI (31, 081)

SVsI Gl (1, 0.98)
POL30 GI (2, 0.97)
MNNI GI (3, 0.96)
CLN2 GI (4, 0.96)
RNRI G1 (5, 0.96)
CDC2I GI (10, 0.94)
MCDI GI (11,0.93)
CTF4 GI (12, 0.93)
SMC3 GI (13,0.93)
MSH2 G1 (15, 0.93)
CDC9 GI (16, 0.92)
MSHé G1 (18, 0.92)
RFA2 GI (19, 0.92)
RAD27 GI (20, 0.92)
RADS5I GI (21, 0.92)
CSI2 G1 (24,091)
RNR3 G (25,0.91)
RAD53 GI (26, 0.91)
RSRI G1 (29, 0.90)
RFAI G (30, 0.90)

ALK1 M (2, 0.96)
HTA3 S (6, 0.94)
CDC5 M (7, 0.94)
CLB2 M (11, 0.93)
BUD4 M (17, 0.93)
KIP2 G2 (21, 0.92)
ERG3 G2 (22, 0.92)
CLBI M (24, 0.92)
ACE2 M (26, 0.92)
MOBI M (27, 0.91)
AURI G2 (28,091)
ORCI G2 (32,091)
TUB2 G2 (33, 0.91)
$502 G2 (35, 0.90)
CWP2 G2 (47, 0.90)
NUMI G2 (62, 0.89)
MYOI M (65, 0.89)
NUF2 M (73, 0.89)
TEMI M (80, 0.89)
CWPI G2 (84, 0.89)

ASHI MIGI (5, 0.94)
EGT2 MIGI (6, 0.94)
PCL9 M/GI (8,0.92)
SICI MIGI (9, 0.91)
FAA3 M/GI (14, 0.88)
CDC6 MIGI (20, 0.85)
MCM3 MIGI (24, 0.84)
MCM2 M (25, 0.83)
PHOI1 M (26, 0.83)
BUD9 GI (27, 0.83)
PHOI12 M (33, 0.82)
CDC47 M (34, 0.82)
CDC46 MIGI (35, 0.81)
FTRI M (36, 0.81)
PHO5 M (38, 0.81)

Neoe (Npaeen) With r>0.8: 35 (5) 353 (92) 3395 (121) 43 (15)
Classification: None S,G2,M M/GI
Scores: Gl 0.008 0.596 0.161 0.007
S 0.000 0.154 0.715 0.000
G2 0.000 0.000 0.696 0.000
M 0.000 0.000 0.539 0.081
M/GI 0.082 0.062 0.040 0.173

in the table in descending order of correlation, along with
the cell cycle stages to which they were assigned. Also
shown in parentheses is the rank of that gene (among all
genes) in the correlation list and the corresponding corre-
lation coefficient. In order to conserve space, a maximum
number of 20 genes from each list was allowed in the
table.

The first of the four curves in Figure 2a (curve 1, as labeled
on the left-hand side) is characterized by a maximum at
time zero that falls relatively quickly to baseline levels.
This curve was initially thought to be associated with
genes that are down-regulated after release from o-factor
arrest as they do not appear to be part of the regular cell
cycle, although there is another small increase around one
hour. In Table 1, only 5 of the genes classified in Spell-
man's list correlate highly with this profile (r>0.8) and
only 35 genes in the set of 6044 in Alpha-full show this
level of correlation. Interestingly, the most highly corre-
lated profile of the 6044 genes is MFA1, which has been
classified as being associated with G1. The other four clas-

sified genes are associated with M/G1. The fact that only
35 genes exhibit an expression profile with a correlation
of >0.8 suggests that this profile is rarely observed in its
pure form, but is likely to be a component of many genes.
The significance of this is discussed in more detail in the
context of curve 4 below.

The second curve in Figure 2a has a much clearer interpre-
tation. Comparison with Figure 3a readily suggests an
association of this profile with G1. This is further sup-
ported by the data in Table 1. All of the top five correlated
genes have been classified by Spellman as G1, as well as
20 of the top 30. A total of 82 of a possible 119 genes clas-
sified as G1 by Spellman have a correlation coefficient of
>0.8 with curve 2, while 3 were classified as M/G1 and 7
were classified as S, for a total of 92 genes from Spellman's
list. In order to make this classification more quantitative,
each profile was given a score for each of the five cell cycle
classes. This score was calculated by:
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N,
Score(p,c) = Y. 1 /N (6)
i=1

This equation describes the score for profile p on class c,
where ¢ represents G1, S, G2, M or M/G1. The term r;, rep-
resents the correlation coefficient between profile p and
the expression profile of gene i, where the summation is
over all N, genes in class ¢ (as given by Spellman) that
have a correlation coefficient greater than 0.8 with profile
p. The quantity N, is the total number of genes in that as
class classified by Spellman (G1 =119, S=37,G2=34,M
= 61, M/G1 = 41). As an example, if all of the 119 G1
genes in Spellman's list had a correlation coefficient of
unity with curve 2, the score would be 1, which is the
highest value attainable. In Table 1, the score for curve 2
on G1 is 0.539, while the next highest is 0.154 for S, sup-
porting the classification of G1.

Curve 3 in the four-component case also exhibits a cyclical
pattern that is shifted later in time from Curve 2. This
would be consistent with S, G2 or M and all of these
classes give high scores with Curve 3, with 31/37 of the
designated S genes, 27/34 of the designated G2 genes, and
38/61 of the designated M genes giving correlation coeffi-
cients above 0.8. Visually (see Figure 3b) and by score, the
best match appears to be S, but it is likely that these three
groups have merged together in this profile since an inad-
equate number of components were specified to capture
all of the elements of the cell cycle. This is not a very spe-
cific group, since more than half of the 6044 genes give a
correlation of 0.8 or better.

The fourth curve in Figure 2a gives a poor score with all of
the designated classes except for M/G1. Of the 15 highly
correlated genes with designated classes, 8 of these are M/
G1, 6 are M, and 1 is G1. The score and number of corre-
lated M/G1 genes is not especially high and the reason for
this becomes clear on visual inspection of Figure 3. In
addition to the peak around 70 minutes, the M/G1 desig-
nated genes also exhibit a peak just before the first peak of
Curve 2, which has been designated G1. Thus, it would
appear that the M/G1 phase is a composite of the two
underlying functions shown in curves 1 and 4. Further-
more, close examination of the expression patterns for the
designated M/G1 genes in Figure 3e reveals that some of
these gene expression profiles are dominated by the first
peak, some by the second peak, and some show a distinc-
tive rapid decay from time zero. This suggests the presence
of two or more processes underlying these genes. This
does not mean that all of these genes cannot be consid-
ered to belong to the M/G1 classification, only that there
may be more than one driving force behind the expression
of these genes.

http://www.biomedcentral.com/1471-2105/7/343

This initial four-component analysis was promising, but
suggested (as anticipated) that there were too few compo-
nents to adequately model the cell cycle. It was expected
that extension to five components would allow better res-
olution of the S, G2 and M phases. While this did happen,
other unexpected observations were made. The results of
this analysis are shown in Figure 2b and Table 2 (the cor-
relation coefficients have been removed to save space). In
this case, curves 3 and 4 exhibit clear and excellent
matches to designated S and M genes, respectively,
although curve 3 also exhibits some strong G1 and M
character, as might be expected. Also, as for the four-com-
ponent model, the M/G1 phase seems to be a combina-
tion of the first and last curves and therefore gives only a
moderate score in each case. What is particularly interest-
ing is that the strongly correlated G1 pattern that was so
apparent in the four-component model has disappeared
in the five-component case. Instead, in this case, curve 2
represents the first peak of the G1 profile, but because the
second cycle is absent, strong correlations with the desig-
nated genes are not observed. It is our interpretation that
the second cycle of the G1 phase is now represented in
curve 5 and what is seen in curves 2 and 5 are two separate
regulating profiles for a mix of genes designated as G1 and
M/G1. Note that in the five-component case relative to the
four-component case, curve 1 falls off more sharply, curve
2 is shifted to an earlier time, and curve 5 (corresponding
to curve 4 in Figure 2a) is shifted to a later time, all of
which would be consistent with a blending of G1 and M/
G1. Another notable feature of the five-component analy-
sis is that there is no clearly defined curve for G2. How-
ever, the profiles for the designated G2 genes shown
Figure 3c do not show distinctive features and could easily
be obtained through linear combinations of the five
curves presented.

The six-component model, presented in Figure 2c shows
essentially the same features as the five-component
model, with the addition of one new profile characterized
by a single spike in expression levels at the second time
point at t = 7 minutes. Because of the transient nature of
this peak, it is not clear whether this represents a real pro-
file, or whether it is simply an artifact of outliers in the
data. Only one of the genes in Spellman's classification
(PHD1 - M) shows a strong correlation with this profile
(rank = 8, r = 0.84) and there are only 10 genes with a cor-
relation above 0.8. This does not, however, exclude it
from being a component of other expression profiles.
Because the remaining profiles were so similar to the five-
component model, a full table of correlation data is not
included.

The profiles of the seven-component model shown in Fig-
ure 2d includes many of the same patterns as were seen in
the five- and six-component models, but also brings a
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Table 2: Analysis of 5-component curve resolution results from Alpha-696 data. Cell-cycle related genes from Alpha-full that have a
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strong correlation (r>0.8) with extracted profiles are listed, along with the associated phase. See text for more details.

Curve | Curve 2 Curve 3 Curve 4 Curve 5
AGA2 MIGI (3) GLKI M/G1 (6) HHF2 S (I) CLB2 M (2) EGT2 MIGI (2)
AGAI| MIGI (5) CLB6 GI (8) HTAI' S (2) CYK2 M (6) BUDY GI (5)
SST2 MIGI (9) MFAI G1 (10) HTBI S (3) CDC5 M (7) SICI M/GI (10)
STE2 M (10) HHFI S (4) IQGI M (8) FAA3 MIGI (12)
KAR4 M/GI (13) HHTI S (5) MYOI M (13) PCL9 M/IGI (13)
FUSI M/GI (22) HHT2 S (6) SWI5 M (14) ASHI M/IGI (19)
MFA2 M (24) HTA2 S (7) CLBI M (I5)
HTB2 S (9) ALKI M (16)
HHOI S (1) PHO3 M (17)
SPC98 G (13) PHOS5 M (18)
GASI GI (14) BUD4 M (19)
PSAI GI (17) CDC20 M (20)
HTA3 S (18) PMPI M (28)
STU2 S (25) PMA2 M (30)
WSC2 S (26) MOBI M (31)
GOGS5 S (28) PMAI M (32)
SUR4 GI (29) PHOII M (33)
RFA3 G1 (30) CHS2 M (36)
PDSI GI (32) CDC47 M (37)
PMTI GI (33) ACE2 M (38)
Neor (Nmacch): 27 (7) 12 (3) 1398 (101) 80 (24) 20 (6)
Classification: M/GI Gl S M M/GI
Scores: G| 0.000 0.014 0.326 0.000 0.008
S 0.000 0.000 0.743 0.000 0.000
G2 0.000 0.000 0.443 0.025 0.000
M 0.028 0.000 0.080 0.331 0.000
M/GI 0.110 0.020 0.000 0.000 0.106

refinement that validates some of the hypotheses
extended for the simpler models. To conserve space, the
full table of results for the seven-component model is
included as supplementary data (see additional file 1:
TableA) and only summarized here. Curves 1, 2 and 3 are
essentially unchanged from the six-component model.
Curve 4, which is associated with the S phase, has a nota-
ble change in that the second cycle is considerably
reduced in its magnitude. The score on the S phase genes
is reduced to 0.281, compared to 0.743 and 0.721 for the
five- and six-component models, respectively. More
importantly, however, this profile is now much more spe-
cific for the S phase genes. In the five- and six-component
models, the scores of this curve on G1 were 0.326 and
0.305, while the scores on G2 were both 0.443. For the
corresponding curve in the seven-component model, the
G1 score is only 0.041 and the G2 score is 0. Furthermore,
the number of correlated genes has dropped from 1398 in
the five-component model and 1294 in the six-compo-
nent model to only 45 in the seven-component model.
This clearly indicates that the model expansion has per-

mitted this curve to become much more specific in repre-
senting the S phase.

Curve 5 for the seven-component model, which is repre-
sentative of the M phase, has remained essentially the
same as in the five- and six-component models, but curves
6 and 7 represent a further refinement of the last profile in
the previous models. In earlier models, it was postulated
that the G1 and M/G1 phases were driven by two distinct
underlying functions, each correlated with one of the two
peaks in the cycles. For the five-component model, it
appeared that the last profile was a blending of the second
cycle of these two phases. Now, in the seven-component
model, it appears that this mixing has been resolved in
curves 6 and 7. Curve 6, which has been shifted to shorter
times, is representative of the second cycle of M/G1 and
correlates with four designated genes in that group (see
additional file 1: TableA). Curve 7 is shifted to longer
times and correlates well with the second cycle of the G1
phase, again matching four genes in that group. As before,
neither of these curves by itself gives a strong correlation
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with a large number of designated genes in the corre-
sponding phases, but this is because they only represent
half of the cycle. Even so, the genes that are correlated rep-
resent a statistically meaningful group of the overall pop-
ulation. When the time profile is divided into two and
each halfis considered separately, the G1 score for curve 3
increases from 0.007 to 0.405 (first half) and the G1 score
for curve 7 increases from 0.028 to 0.870 (second half).
Likewise, the M/G1 score for curve 1 increases from 0.130
to 0.161 (first half) and that for curve 6 increases from
0.087 to 0.303 (second half). This is further evidence of
two independent driving functions for G1 and M/G1, one
which is active on release from o-factor arrest and another
which becomes activated in the second cycle.

Extensions of the model to 8 and 9 components, as shown
in Figures 2e and 2f, retain essentially the same features as
the earlier models, but some more subtle changes are evi-
dent. In particular, the profile associated with the S phase
(curve 4 in Figures 2c-f) seems to follow the same pattern
as the G1 and M/G1 genes, with the two parts of the cycles
separating from one another. For the eight-component
model, the second half of the S phase is likely modeled by
the newly appearing curve 5, which has a high score on
the genes classified as S (0.529) as well as a high score on
the G2 genes (0.270). For the nine-component model,
curve five develops more G2 character and for the first
time a profile is classified in this group with a score of
0.470, although it also exhibits similarity to S and M
(scores of 0.199 and 0.304, respectively). In this case,
some of the second half of the S cycle has likely been
blended into the second half of the G1 cycle represented
as curve 9. The nine-component model is also character-
ized by a new profile in curve 6 (although it is arguable
which is "new") that appears to be a combination of G2
and M.

At this point, the capabilities of curve resolution are
approaching their limits and become increasingly specu-
lative. As more components are added to the model, the
algorithm diverts its efforts to modeling more subtle
changes in the expression patterns and eventually artifacts
that may be more related to noise than biological change
creep into the profiles. This is evidenced by some of the
later models which show more sporadic variations than
the earlier ones. Also, as the changes being modeled in the
cell approach finer and finer resolution in the time
domain, our confidence in the results becomes eroded.
For example, we can question whether curve 2 in Figures
2c-f is real or is an artifact of that particular time point.
The limits of the curve resolution approach can be
extended in several ways that include the acquisition of
better quality data, more frequent sampling of the system,
and the inclusion of reliable uncertainty information in
the measurements.

http://www.biomedcentral.com/1471-2105/7/343

It is important to remember that this modeling was per-
formed with no prior assumptions about the components
present, only assumptions of bilinearity and non-negativ-
ity were used. To further illustrate the effectiveness of
curve resolution for extracting cell cycle related informa-
tion, Figure 4 shows the normalized expression profiles of
five genes used by Lu et al [2] to represent the phases of the
cell cycle. These are shown as solid lines. Superimposed
on these (dashed lines) are selected curves from the eight-
component model with close matches. For G1, two curves
are shown because it is postulated here that this cycle is
driven by two different underlying processes. (The same is
proposed for M/G1, but only one profile is evident in the
selected gene.) No model profile is compared to the
selected curve for G2, since there was no definitive match.
Overall, the synchronicity of the extracted profiles with
the independently selected genes is very good and sup-
ports this method of analysis.

As further evidence of the legitimacy of the profiles
extracted by curve resolution, Figure 5 shows each of the
curves extracted from the eight-component model
(dashed lines) plotted with the 40 most highly correlated
expression profiles (normalized to unit length) from
Alpha-full. This plot confirms the presence of the predom-

|cLN2
(G1)

{HTA2
—| )

CLB4
(G2)

CLB2
M)
SIC1
| (M/G1)
0 20 40 60 80 100 120
Time (min.)
Figure 4

Comparison of MCR-WALS extracted profiles with
designated cell cycle regulated genes. Selected profile
vectors (dashed lines) extracted from the Alpha-696 data set
with the 8-component model are compared with the time
profiles for representative genes (solid lines) selected by Lu
et al. [2] for each phase of the cell cycle. Both sets of profiles
are normalized to unit length. Two extracted profiles were
necessary to account for each cycle of the G| phase and no
clear match was indicated for G2.
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Figure 5

Time (min.)

Comparison of MCR-WALS extracted profiles with highly correlated gene expression profiles. Profile vectors
extracted from the Alpha-696 data set with the 8-component model (thick dashed lines) are compared with the 40 most highly
correlated gene expression profiles from the Alpha-full data set. All profiles are normalized to unit length.

inantly unimodal profiles (curves 1,2,3, 4, 7 and 8), sup-
porting the case for separate underlying regulatory factors
for G1 and M/G1.

Curve resolution for Alpha-full data

In the analysis of the subset of genes represented by the
Alpha-696 data set, it could be argued that the original
microarray data had already been screened for genes that
are known to be associated with cell cycle regulation. In
other studies where such a subset selection may not be
possible, the utility of the curve resolution method
remains to be demonstrated. In other words, can curve
resolution be used to extract original information from
microarray data sets with no prior knowledge of gene
association? To answer this question, the curve resolution
algorithm was applied to the entire Alpha-full data set
(6044 genes) without any prior information other than
the proposed number of components and the non-nega-
tivity constraints normally applied. The results of this
analysis are presented in Figure 6. The correlation and
classification analysis for the four-component model is

given in Table 3, and that for the five-component model
is included as supplementary data to conserve space (see
additional file 2: TableB).

On initial examination of Figure 6, it is immediately clear
that the profiles extracted have some association with the
cell cycle. Furthermore, comparison with Figure 2 reveals
strong similarities in the profiles, although the profiles
extracted from the Alpha-696 data set are generally more
cleanly defined. This was anticipated, since the cell cycle
genes in the expanded data set are diluted by other genes
that may be unrelated or noisy. Another difference
between the two sets of results is that, while the profiles
exhibited are similar, they do not always appear in the
same sequence. For example, in the Alpha-696 set, the two
cycles of G1 separate into different components by the
five-component model, while for the Alpha-full set this
does not happen until six components are employed.
Likewise, in the full data set, the sharp transient at 7 min-
utes does not appear until the seven-component model,
where it was evident in the six-component model for the
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Table 3: Analysis of 4-component curve resolution results from Alpha-full data. Cell-cycle related genes from Alpha-full that have a
strong correlation (r>0.8) with extracted profiles are listed, along with the associated phase. See text for more details.

Curve |

Curve 2

Curve 3

Curve 4

AGA2 MIGI (3, 0.93)
AGAI MIGI (7, 0.87)
MFAI G1 (8, 0.85)
STE2 M (10, 0.84)
SST2 MIGI (14,0.82)

POL30 GI (I, 0.96)
CLN2 GI (2, 0.96)
MCDI GI (3, 0.95)
RNRI G1 (4, 0.95)
SWI4 MIGI (5, 0.94)
RADSI G (7, 0.93)
CLB6 GI (8, 0.93)
RADS53 GI (9, 0.93)
SVsI GI (10, 0.93)
CTF4 Gl (11,0.93)
MNNI GI (12,0.92)
MSHé G1 (19,0.91)
CDCY Gl (21, 0.90)
SMC3 G1 (22, 0.90)
RFAI G1 (25, 0.90)
RAD27 GI (26, 0.90)
CLB5 GI (29, 0.90)
RNR3 G1 (30, 0.90)
CDC21 GI (31, 0.89)
ASFI GI (33, 0.89)

HTA3'S (3,091)
HTAI S (7, 0.90)
ERG3 G2 (8, 0.90)
HTBI S (9, 0.90)
HHOI S (12, 0.89)
HHF2 S (14, 0.89)
CWP2 G2 (24, 0.88)
RFA3 G1 (27, 0.88)
WSC2 S (28, 0.88)
GDAI S (29, 0.88)
SUR4 G1 (35, 0.87)
HHFI S (36, 0.87)
HHT2 S (38, 0.87)
HHTI S (42, 0.87)
TUB2 G2 (55, 0.87)
AURI G2 (61, 0.86)
METI7 G2 (67, 0.86)
METI14 'S (72, 0.86)
KIP3 G2 (76, 0.86)
GICI S (82, 0.86)

PMAI M (2, 0.95)
IQGI M (6, 0.94)

FTRI M (10, 0.93)
CDC47 M (11, 0.93)
VAPI M (13,0.93)
MYOI M (16, 0.92)
PHOS5 M (17, 0.92)
MCM2 M (23, 0.92)
PHOI1 M (28, 0.92)
PHO3 M (31,0.92)
CYK2 M (32,0.92)
FET3 M (33, 0.92)
PMA2 M (36, 0.91)
CLBI M (40, 0.91)
CDC20 M (47, 0.91)
BUD4 M (64, 0.90)
SHE2 M (85, 0.90)

FAA3 MIG1 (98, 0.90)
SWI5 M (121, 0.89)
CDC6 MIG1 (130, 0.89)

Neor (Niaccn) With r>0.8: 19 (5) 212 (60) 1517 (91) 3895 (125)
Classification: M/GI Gl S M
Scores:

Gl 0.007 0.410 0.181 0.131

S 0.000 0.000 0.712 0.222
G2 0.000 0.000 0.591 0516

M 0.014 0.000 0.136 0.758
M/GI 0.064 0.084 0.000 0.456

reduced data set. This is expected, since the distribution of
gene expression profiles will be different in the full data
set compared to the reduced set.

A complete analysis of the Alpha-Full profiles will not be
carried out here, since the treatment is similar to the
reduced data set. The tables show correlation data with the
genes classified by Spellman for the four- and five-compo-
nent models, respectively. For the four-component model
(Table 3), the classifications for G1, S, M, and M/G1 (early
expression) are clear. For the five-component data (see
additional file 2: TableB) the classifications are less defin-
itive, but the profiles still show a strong association with
cell cycle regulated genes. In general, the correlation
scores become more ambiguous as the number of compo-
nents increases. This is due to several factors, including the
blending of similar profiles, the resolution of profiles into
early and late components, and the noise in the profiles
resulting from noisy data. Nevertheless, the trends are
clear and support the contention that this method can be

used to extract underlying information in an unbiased
way with no prior knowledge about the data.

Uniqueness of MCR-WALS solutions

An important consideration in the application of MCR is
the uniqueness of the solutions it produces. In the work
presented here, one set of solutions was presented for
each model/data set combination. This is a common prac-
tice in the presentation of MCR results, but it is not very
realistic. While it is hoped that the reported solution is
representative, a range of equivalent or nearly equivalent
solutions is usually possible. Reasons for this include: (1)
the possible existence of mathematically degenerate solu-
tions to Eq. (1) (rotational ambiguity), (2) computational
and numerical limitations of the method used, and (3)
noise in the data.

In their original work on self-modeling curve resolution
for two-component systems, Lawton and Sylvestre [19]
recognized that a set of solutions was possible, even in the
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Figure 6

MCR-ATLS results (P matrix) for Alpha-full data set. Profile vectors (normalized to unit length) extracted for models
with 4 to 7 components are shown. The vectors are arranged in order of appearance of the first major peak in the profile.

presence of constraints. Therefore, the profiles (absorb-
ance spectra in their case) were presented in the form of
allowed boundaries ("feasible solutions") where the con-
straints could be satisfied. Although a number of attempts
have been made to extend the analytical solution pro-
vided by Lawton and Sylvestre to more than two compo-
nents [33-35], this has proven to be very difficult,
especially in the presence of noisy data. Moreover, the
notion of profile "boundaries" is not very meaningful in
higher dimensions, since all of the profiles in a degenerate
set are linked together and this is not reflected in the pres-
entation of profile boundaries; i.e. it is not possible to mix
solutions for the components arbitrarily [36]. Some
attempts have been made to attach boundaries to modern
MCR methods such as ALS with mixed success [36-38].
Fortunately, many experimental situations lead to solu-
tions that are unique or tightly bounded, so a single solu-
tion is often acceptable. This is because the nature of the
data may lead to measurement points (e.g. times or genes)
that are unique or highly selective for one component.
Unfortunately, this is difficult to assess a priori.

Another source of multiple solutions is computational
limitations. It is possible (and likely) that different start-
ing points will yield different solutions, not only because
of rotational ambiguities, but also because of local
minima or premature termination. The ALS algorithm is
quite stable in its convergence properties (although it can
be slower than other minimization strategies) and this is
one of the reasons for its popularity, but it is not immune
from numerical problems. In this work, the use of the
SIMPLISMA algorithm [22] removed the random element
of initialization, although it should be noted that this
method does not work well in the presence of large
amounts of noise.

Finally, measurement noise plays an important role in the
solutions obtained. Clearly, the data represents a single
realization of the experimental results and MCR solutions
for replicate experiments are not expected to be identical.
Without the availability of replicate data, this contribu-
tion to the variability is difficult to assess directly, but it
can be inferred through re-sampling methods.
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Reproducibility of MCR-WALS results for two representative profiles from the six-component model. Profile
vectors for two selected components of the six-component model extracted under different conditions. In each case, ten rep-
licate runs were made. (a) Alpha 696, random initialization, (b) Alpha-696, random subsampling, (c) Alpha-full, random initializa-

tion, (d) Alpha-full, random subsampling.

To gain insight into the reproducibility of the solutions
presented in Figures 2 and 6, two approaches, "random
initialization" and "random sub-sampling" were adopted
and new solutions were generated from ten replicate runs
of the MCR-WALS algorithm in each case. In the random
initialization approach, different initial estimates of P
were obtained each time the program was run by ran-
domly selecting individual gene profiles that were used as
starting values. In the random sub-sampling approach,
ten subsets of data, each half the size of the original data
set, were obtained by randomly selecting gene expression
profiles from the original data. These were then analyzed
by MCR-WALS with initial estimates obtained via SIM-
PLISMA. Figure 7 shows some of the results of these stud-
ies. Although models with fewer components generally
produce more reproducible results, the profiles in Figure
7 are for the more demanding six-component model. For
simplicity, only two components were chosen for display
and these were picked on the basis of their consistency

among different models and between the Alpha-696 and
Alpha-full data sets (components 4/4 and 3/2 in Figures
2/6).

The results in Figure 7 show good reproducibility among
the profiles extracted in terms of the major features that
they exhibit. As expected, the range of solutions is gener-
ally narrower for the Alpha-696 data, since these genes
were preselected on the basis of cell-cycle association, but
good results were still obtained for the full set of genes.
For the bimodal curves in the right-hand panels, there is
some shifting of the relative contributions of the two
peaks and some small changes in their positions, but the
association of these profiles with the cell cycle is unmis-
takable and is clearly not a statistical aberration. In the
left-hand panels, a feature that was not apparent in either
of the original analyses but was evident in the reproduci-
bility studies is the second peak that occurs around 80
min. The presence of this peak is consistent with the sec-
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ond cycle of G1-regulated genes that were associated with
the unimodal peak in the original analysis, so its appear-
ance is not surprising and supports the original classifica-
tion.

Clearly this type of reproducibility analysis is useful in
assessing the reliability of the profiles extracted by MCR-
WALS. Although there might be an inclination to report
the average of these solutions as an overall solution, this
is not recommended since the average profiles do not gen-
erally define an acceptable solution set. It should be noted
that some of the profiles in the higher component models
showed significant variability, but this was expected and is
intimated at by the shape of the profiles themselves. In
addition, obtaining consistent matching of the profiles
from replicate runs can be a challenge, since the correla-
tions are not always obvious.

Conclusion

The primary objective of this work has been to demon-
strate that the MCR-WALS algorithm is an effective tool
for extracting useful information from serial microarray
experiments. Features of the method include (1) it is rela-
tively simple and efficient, (2) it makes no assumptions
about the underlying model other than linearity and non-
negativity in the contribution and profile matrices, (3) it
is applicable to untransformed expression data, and (4) it
can accommodate arbitrary error structures and missing
data (within reasonable limits). Through the application
of MCR-WALS to yeast cell cycle data, we have demon-
strated the utility of the profile vectors in the interpreta-
tion of gene expression regulation. With no prior
information, the algorithm was able to extract profiles
that were clearly associated with cell cycle regulated genes,
even when the full data set was used. Moreover, the results
indicated the possibility of more than one underlying reg-
ulatory factor in some cases, suggesting that this approach
could be a valuable tool in the inferential study of cellular
regulation.

More work needs to be done to establish the utility of this
approach and expand its capabilities. This includes further
validation of the MCR-WALS algorithm through its appli-
cation to other experiments and the development of bet-
ter methods to interpret the profile and contribution
matrices in a biological context. At present, the complexi-
ties of biological models for gene regulation make it diffi-
cult to establish a direct physical relationship to the linear
model used in this work, although this would clearly be
useful. The "components" or "factors" used here are
assumed to have some association with regulatory factors
in the cell, but it is likely that limitations in the experi-
mental measurements restrict the number of regulatory
inputs that can be reliably modeled. Nevertheless, the
profiles extracted and their relationships to the expression

http://www.biomedcentral.com/1471-2105/7/343

of individual genes should serve as a starting point for
more extensive investigation. Further algorithmic
improvements, such as the inclusion of additional biolog-
ically relevant constraints on the solutions and the devel-
opment of methods to better estimate the number of
factors, should also improve the utility of the methodol-

ogy.

Methods
The MCR-WALS algorithm used in this work is presented
below.

1. Choose the number of components, p, and the initial
estimate for P, designated as P . Normalize the row vec-

tors of P to unit length. Estimate a matrix of error vari-
ances for X, designated as S.

2. Perform a maximum likelihood projection of each row

of X into the space of P to give an estimated X:

;. = x. 2 PL (P pT) P (7)

where X, represents the ith row vector of X and X;is a

diagonal matrix formed from the ith row of S.

3.Solve X = CP +Efor C given X and P. Use NNLS,
or truncate the negative elements to zero.

4. Perform a maximum likelihood projection of each col-

umn of X into the space of ¢ to give an estimated X:
I ~eTw—1v1ATgy-1

5.S0lve X = CP +E for P given X and C. Use NNLS,
or truncate the negative elements to zero. Normalize the

rows of P to unit length.
6. Repeat from Step 2 until convergence.

This algorithm was implemented in MatLab® (The Math-
Works, Natick, MA) under Microsoft Windows® platform.
MatLab® programs (".m" text files) and data sets (".mat"
files) used in this work are available for download from
the corresponding author's web-site. [39]. The data used
are also available in a standard spreadsheet format as sup-
plementary material (see additional file 3:SpelData). The
program made available uses simple truncation of the
least squares solution as opposed to NNLS and provides
three options for initialization (random initialization,
random subsets, and SIMPLISMA). As noted, the use of
different starting profiles can result in small differences in
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the results obtained, but the same patterns should be
observed in all cases. For the results reported here, the
SIMPLISMA method was used.
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