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Abstract This paper introduces a multivariate density estimator for truncated and
censored data with special emphasis on extreme values based on survival analysis. A
local constant density estimator is considered. We extend this estimator by means of
tail flattening transformation, dimension reducing prior knowledge and a combination
of both. The asymptotic theory is derived for the proposed estimators. It shows that the
extensions might improve the performance of the density estimator when the trans-
formation and the prior knowledge is not too far away from the true distribution. A
simulation study shows that the density estimator based on tail flattening transforma-
tion and prior knowledge substantially outperforms the one without prior knowledge,
and therefore confirms the asymptotic results. The proposed estimators are illustrated
and compared in a data study of fire insurance claims.

Keywords Censoring - Champernowne - Counting process theory - Multiplicative
correction - Nonparametric estimation - Truncation

1 Introduction

Let (X1, Y1), ..., (Xn, Y,) be n independent identically distributed stochastic vari-
ables. We wish to estimate various functionals of the conditional distribution of Y
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given Xi. In particular we are concerned about functionals emphasizing the impor-
tance of extreme high values of the dependent variable, and we want to profit by some
complexity reducing structure or prior knowledge on a useful parametric model.

However, Y is subject to truncation and censoring—in the following filtering is
an abbreviation for data that might have been truncated or censored. One prominent
example where this statistical problem arises is in general insurance. The censor-
ing applies when there is some upper limit on the insurance policy. This happens
either as part of the actual contract or as a consequence of poor data collection where
only the actual expense of the company is recorded disregarding amounts paid by
the reinsurance company. Typically, an insurance company holds an excess of loss
contract where the reinsurance company covers amounts above some threshold value
exactly corresponding to the right censoring mechanism described above. Left trunca-
tion exactly corresponds to the widely used deductibles. A loss below the deductible
value is covered by the individual policy holder without even noticing the insurance
company.

Even in the simple one-dimensional case without any filtering our estimation prob-
lem is non-trivial and has given rise to an enormous amount of theory on the extreme
value behaviour of distributions and its estimation; the so-called extreme value theory
(EVT), see Embrechts et al. (1997) for a prominent textbook on this. However, most
of this literature is based on the asymptotic behaviour of the right tail of the distri-
bution, and in practise most EVT methods are based on personal judgements. Also,
there are surprisingly few simulation studies spelling out the actual benefits of EVT
methods. This led Bolancé et al. (2003) and Buch-Larsen et al. (2005) to view this
one-dimensional problem as a standard estimation problem attempting to improve
estimation considering the classical trade off between variance and bias present in all
problems of statistical inference. The extreme tail was accounted for by transforma-
tion methods inspired by the pioneering paper of Wand et al. (1991). In the working
paper version of Bolancé et al. (2003), a simulation study was carried out where it
was shown that classical EVT models did not work very well for any of the distribu-
tions considered in the study. See also Buch-Kromann (2009) for a comparison of the
transformation kernel density estimator and classical EVT and Bagkavos (2008) for
an application of transformation in the context of hazard rate estimation.

In this paper we generalise the structured density model of Buch-Kromann et al.
(2009) to the filtered data case. This extension however, makes it necessary to use a
new mathematical and technical set-up compared with Buch-Kromann et al. (2009).
Buch-Kromann et al. (2009) extended the approach of Buch-Larsen et al. (2005) to a
multivariate setting where the loss distribution is allowed to depend on covariates. This
led to various methods of multivariate density estimation and its adjustment guided
by structured models. Bouaziz and Lopez (2010) is another recent paper on a general
approach to multivariate density estimation based on censored data.

When dealing with filtered data, extensive use of counting process theory, see, i.e.
Martinussen and Scheike (2006), and the pioneering work of internal hazard estimators
in Beran (1981), Dabrowska (1987), McKeague and Utikal (1990) and Van Keilegom
and Veraverbeke (2001) and the alternative external hazard estimator introduced in
Nielsen and Linton (1995) are necessary. All these papers deal with locally constant
estimators. They are extended to locally linear versions in Li and Doss (1995) and
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Nielsen (1998) with superior boundary bias of order o?) compared with the local
constant boundary bias of order O (b),where b is the bandwidth, and further studied in
Bagkavos (2009). The paper Van Keilegom and Akritas (1999) proposed a new esti-
mator of the conditional cumulative density function based on a fully nonparametric
heteroscedastic regression model, which improved the estimator significantly, when
the censoring in the tail is “heavy”. The conditional density and hazard functions under
this model are studied in Van Keilegom and Veraverbeke (2002). Consistent nonpara-
metric estimators of the location function of the heteroscedastic regression model are
studied in Heuchenne and Van Keilegom (2007a) and a parametric version is studied
in Heuchenne and Van Keilegom (2007b). When dealing with multivariate estimation
problems, the rate of convergence of the standard estimators is poor, see Stone (1980),
and the interpretation might be difficult. One way to solve these problems is to make
assumptions about the structure of the problem, e.g. additive or multiplicative models,
as studied in Hastie and Tibshirani (1990), Linton and Nielsen (1995) and Linton et al.
(2003).

In this paper, we restrict ourselves to the locally constant estimator for reasons
of notation and presentation. The widely available methodology of regression is
not appropriate for this type of problems where we need a full model specification
and not just mean functions or quantiles. We extend the approach of the study in
Buch-Kromann et al. (2009) to the more complicated setting where filtering is pres-
ent, and we use counting process theory for this task. The authors in Nielsen et al.
(2009) note that nonparametric smoothing of densities can be generalised in such
a way that in a filtered data context it corresponds to local polynomial hazard esti-
mation weighted with the classical Kaplan—-Meier estimator. Without filtering, this
locally constant estimator simply collapses to the standard kernel density estimator.
It is also noticed in Nielsen et al. (2009) that they do not recommend this estimator
in general for filtered data. The reason is what they call exposure robustness indicat-
ing that another weighting, the so-called natural weighting combined with a smooth
version of the Kaplan—Meier estimator, works just as well as standard kernel den-
sity estimation when there is no filtering or when filtering is happening in a smooth
and nonsurprising way. However, when lack of robustness is present in the exposure
pattern, the method with natural weighting and a smoothed Kaplan—Meier estimator
significantly outperform the other method. Therefore, Nielsen et al. (2009) suggested
always to use the latter approach since there was no pain, only gain (see also Nielsen
and Tanggaard (2001) for a study about weighting functions in kernel hazard esti-
mation and Bagkavos and Patil (2008) focusing on plug-in bandwidth selectors by
applying local linear fitting). We generalise this latter approach to the multivariate
setting. First, we define a smoothed conditional Kaplan—Meier estimator as a simple
functional of the multivariate kernel hazard estimator of Nielsen and Linton (1995).
Then we define our nonparametric conditional density estimator as a weighted ver-
sion of this very same local constant multivariate kernel hazard estimator, where the
weight is the smoothed conditional Kaplan—Meier estimator. Once a conditional den-
sity estimator is available, we can approximate this density to our complexity reducing
structure. Finally, we apply this structured density to guide a bias correction leading
to our final smooth nonparametric density estimator. In this way, we add some struc-
ture to our estimation problem caused by the curse of dimensionality as described in
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Linton and Nielsen (1995) and Linton et al. (2003). However, we allow a nonpara-
metric correction of this structure in the final multiplicative correction step of our
procedure.

Recently, Linton et al. (2010) introduced and analysed another version of our mul-
tiplicate model. Their approach is based on multiplicative hazard estimation based
on standard smoothing without any tail correction. However, Linton et al. (2010) was
concerned about the body of the distribution not the tail. In iid one-dimensional density
estimation, we know from the study of Bolancé et al. (2003) that the standard kernel
smoother breaks down when estimating the tail and standard bias correction cannot
remedy this situation. Even though the multiplicative model only serves as a pilot
guidance of our final fully nonparametric estimator, we do know from other studies,
see for example Buch-Kromann (2009) that a good tail behaviour of the pilot estima-
tor is essential for the performance of the final nonparametric estimator. This is our
reason to construct an alternative density-based estimator incorporating a correction
for heavy tails.

The paper is organized as follows: In Sect. 2, we define the general model and in
Sect. 3, we define the estimators of the conditional density. In Sect. 4, the asymp-
totic properties of the estimators are presented, and Sect. 5 contains an application
and a Monte Carlo study which compares the performance of the conditional density
estimators. Section 6 is the conclusion.

2 The model

We would like to analyse (X, Y), but Y is not always observed. What we do observe
is (X, Y, D, T), where X is a one-dimensional covariate, Y=YACisY subject to
right censoring, D = I (Y < C) is an indicator of right censoring has occurred and
T is the truncation time, which means that Y is only observed when Y >T. Suppose
that ¥ and C are conditionally independent given X. Let N(s) = [/ (Y <s,D=1)
be a counting process with stochastic intensity A with respect to its natural filtra-
tion Fy, = o {X, T, D, N(s),s < y}, see Jacobsen (1982), Andersen et al. (1993)
and Martinussen and Scheike (2006) for solid introductions to the formulation of this
type of models. Hence, N has a compensator A that equals the integrated stochastic
intensity and M = N — A is a martingale. We assume that the stochastic intensity
function XA can be written as A(s) = ax (s) R(s), where ax (s) is the conditional hazard
of the distribution of ¥ given X and R(s)=1(T <s < Y) is the “at-risk” indicator,
indicating whether the counting process is able to jump at time s. Then, Sx(s) =
exp {— [y ox () du} is the conditional survival function and fx (s) = ax(s)Sx (s) is
the conditional density.

Our final notational definition in this section concerns our actually observed sto-
chastic variables. We assume that we observe independent and identically distributed
variables (X1, )71, D, T)),...,(X,, )7n, Dy, T;)). The resulting counting processes
Ny, ..., Ny have stochastic intensities A1, . . ., A, and compensators A1, ..., A, with
corresponding martingales My, ..., M,. Our aim is to estimate the conditional density
fx(s) given X = x, possibly guided by prior knowledge and structured models.
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3 Estimating the conditional density

In this section we introduce estimators for the conditional density of filtered data.
We first introduce a non-parametric filtered data density estimator taking filtering into
consideration by means of counting process theory. This estimator is the fundamen-
tal estimator on which all the following density estimators are built, even though its
usefulness is limited especially for heavy-tailed data. Subsequently, we introduce two
extensions of the non-parametric filtered data density estimator, namely tail flattening
transformations and multiplicative correction guided by prior knowledge. Tail flatten-
ing transformations improve performance of non-parametric estimators considerably
and multiplicative correction guided by prior knowledge allow us to “remove” the
simple and rough trends in data and thereby improve the non-parametric estimation.
At last we combine tail flattening transformations and multiplicative correction in our
recommended density estimator for filtered data.

3.1 The non-parametric filtered data density estimator

In the simple case where we have a homogeneous Poisson process, it is well known
that the maximum likelihood estimator of the hazard of the process equals observed
occurrences divided by the total exposure time of the process. Now let us consider a
local version of this: we take all observed occurrences localized around some covariate
or time and divide by the total exposure in this neighbourhood. This gives us a local
hazard estimator which depends on the covariate or time. One can even become slightly
more sophisticated and weigh these occurrences or exposure times according to how
far away they are from the covariate or time value that we want to know the intensity
of. This latter case is exactly the local kernel hazard estimator of Nielsen and Linton
(1995) that we will use in the following. Let K be some mean zero probability density

with finite variance and finite support and let K, (1) = %K (%) , where b is abandwidth.

Moreover, let&)(cb) 1) = %,where Or =" | Kp, (t—5)Kp,(x —X;) dN;(s),is the

total localised and smoothed number of occurrences, and b = (b, by) are bandwidths
corresponding to the time and the covariate X, respectively.

E = Z/ Kp, (t — $)Kp, (x — X;)Ri(s) ds

i=1

is the total localised and smoothed exposure; R;(s)=1(T; <s < )7i). This gives
an obvious candidate for our smoothed conditional survival function S ,Eb) (s) =
exp {— I ) du}.

We have two obvious candidates for the conditional density. One follows from the
fact that the density is just a function of the hazard and the suvival function, so that
one can plug it in to the estimated conditional hazard and survival function. However,
we prefer a more direct estimator that is the natural generalisation of the estimator of
Nielsen et al. (2009). They show that if the counting process in their case is replaced
by the integral of the estimated survival function with respect to the counting process,
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then local polynomial density estimators can be written as direct minimization of a
natural least squared loss criteria. In our case, this corresponds to replacing d N; (s) by
Sx . (8)dN; (s) in the kernel hazard estimator above. However, instead of N x; ($)dN; (s),
we replace dN; (s) with S’Xl.,(,-) (s)dN; (s), where S’Xl. .y (s) is aleave-one-out estimator:

N
S;bi)’(i)(s) = exp [_/0 &gfi)’(i)(u) du] (1)

. This trick from Mammen and

~ (b i J Kby (1—=5)Kp, (x—X ;) AN, (5)
where agf,-),(i)(t) = ZZ]J:, V/f'K,,Il(z—s)K,,;(x—xjj)Rj (;) s
Nielsen (2007) simplifies the predicability issues in the proofs of the asymptotic results
(see Appendix A); moreover, it often improves the performance of the estimators.
Under the assumption that not all data are removed in the filtration process, we
arrive at the non-parametric fitered data density estimator:

Siy [ Kay(t = $)Ka (x = X0) 8 1 (5) dNi(s)
>t Ka (1 = $)Ka, (x — Xi)Ri (s)ds

4D 1y = )

The bandwidths b = (b1, by) and d = (d;, d») in (2) allow us to undersmooth the
conditional survival function that we use as an auxiliary variable while estimating the
conditional density. The consequence of this undersmoothing is that the conditional
survival function can be seen as known from the point of view of asymptotic theory.
Otherwise, bias from § g’l )’(l.) (s) would disturb the results. In the practical application
in Sect. 5, where this estimator is applied, we have chosen (b1, by) = (d1/2, d>/2).

3.2 The transformed filtered data density estimator

When dealing with heavy tail distributions, tail flattening transformations, as intro-
duced in Wand et al. (1991), have shown to improve estimation accuracy; see Bolancé
et al. (2003) and Buch-Larsen et al. (2005) for simulation studies in one dimension
and Buch-Kromann et al. (2009) in the multivariate case. Moreover, tail flattening
transformations have shown robustifying properties when combined with alternative
prior assumptions of parametric distributions (see Buch-Kromann et al. (2007)).

Let W : [0, 0c0) — [0, 1) be a candidate of a tail flattening transformation, where W
is a cdf. Let i be the density corresponding to W that we assume to be differentiable,
and let W1 (7) be the inverse of the cdf W(s). ¥ could be the Champernowne cdf,
see Buch-Larsen et al. (2005), as this is a flexible and widely useable transforma-
tion function, e.g. in operational risk; see Bolancé et al. (2008), Guillen et al. (2007),
Gustafsson (2006), Gustafsson and Nielsen (2008), Gustafsson et al. (2006a,b). Other
transformations include transformations to normality, see Koekemoer and Swanepoel
(2008a,b), the Mobius-like transformation, see Clements et al. (2003) or the Johnson
families, see Yang and Marron (1999).

We transform our data with W and obtain the transformed counting process N; =
N; oW1 where ( fog)(x) = f{g(x)}. Note that our transformed counting process is
defined on [0, 1]. Now we calculate the non-parametric filtered data density estimator
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(2) on the transformed data set and obtain what we will call the transformed filtered
data density estimator on the \V-transformed axis:

STy Jo Kay (v = $)Kay(x — X) 8Ty 1(5) dNi(s)
S ) Kay (v = $)Kay (x — X)) R{W~1(s)) ds

~d,b
kD () =

WX

3

where S’fﬁ )Xi’(l.)(s) = exp {— Os &\(ﬁ)xi’(i)(u) du} is the leave-one-out estimator of the

survival function on the W-transformed axis, R; {¥ 1 (s)} is the “at-risk” indicator on
the transformed axis, and the leave-one-out hazard estimator on the transformed axis
is given by
| -
2 izi Jo Koy (t = $)Kp, (x — X ;) AN, (s)
1
Zj#l- Jo Kby (u —$)Kp,(x — Xj)Rj{W~1(s)}ds

N _
Ay x,.») (1) =

We backtransform (3) to obtain an estimator of f5 (s), called the transformed filtered
data density estimator on the original axis

FlD @0 = w0 x kg (w0}, @

l%&fl f) can be interpreted as an estimator of a correction to ¥, the density corre-
sponding to the transformation function, W.

3.3 The filtered data density estimator guided by prior knowledge

Assume we have a prior knowledge indicating that A, (s) is close to fy(s). By intro-
ducing a multiplicative bias correction (5) based on the prior knowledge %, where
h, could be some appropriate parametric model, we reduce the complexity of the
estimation problem; see Nielsen et al. (2009), Mammen and Nielsen (2007), Nielsen
and Tanggaard (2001). The multiplicative bias correction based on A is

Sy [ Ka (0 =) Kay e — X)8Y 1) {hx, ()} dNi(s)
S [ Ka (t — $)Ka (x — Xi)Ri(s)ds

e (1) =

)

and the final multiplicatively bias corrected estimator of f; (s), called the filtered data
density estmator guided by prior knowledge, is

29D (1) = hy (e (1), ©

3.4 The transformed filtered data density estimator guided by prior knowledge

Until now we have introduced a transformation approach that improves the perfor-
mance especially for heavy tailed distributions, and we have also discussed how to
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incorporate prior knowledge by multiplicative correction. Now we combine the tail
flattening transformation approach (4) with the multiplicative bias correction from (6)
to obtain a multiplicative corrected transformation estimator. On the W-transformed
axis the multiplicative bias corrections based on /4, is

2 b)( )_27 1 Jo Kd1 (v—5)Kg,(x—X; )Sq,x (,)(S)[hx IO lsz(S)( 7
l lfO Ko (v=8)Kg,(x—=X;)Ri{¥~ I(s)lds

where i, (s) = hy(s) /¥ (s) and the density estimator on the W-transformed axis is
therefore

kD ) = ha (W )5 () 8)

in the following called the transformed filtered data density estimator guided by prior
knowledge on transformed axis.
After back transformation we obtain an estimator of fy (s) on the original axis

TP @ = v ok§-D () ©)

called the transformed filtered data density estimator guided by prior knowledge on
original axis.

4 Asymptotic properties

The intuition behind the proof of the asymptotic theory is similar to what is known
from the theory of multivariate hazard estimation. In the proof of asymptotic theory
of the multivariate hazard estimator in Nielsen and Linton (1995) a counting pro-
cess is spilt into a martingale and its compensator: N(s) = M(s) + A(s), giving
dN(s) =dM(s) +dA(s) = dM(s) + A(s)ds = dM(s) + a(s)R(s)ds. In our proof,
we replace dN (s) with Sy (s)dN(s) = fx(s)R(s)ds + Sx(s)dM (s) and show that
this is equivalent to replacing dN (s) with S x (s)dN (s). This implies that the results
obtained about hazard estimation from smoothing dN (s) can be transferred to density
estimation by smoothing S x(s)dN (s) as in Nielsen et al. (2009).

To simplify the notation, we assume in the following that the scale of time ¢ and
covariate X is the same, and therefore we letb = by = by and d = d| = d»:

Let Z(x,s) = Pr(X < x | R(s) = 1) be the differentiable conditional distri-
bution of the covariate X given that the counting process can jump at time s and
let z(x, s) = dZ(x, s)/ds be the corresponding density of Z with respect to the two-
dimensional Lesbesque-measure. Alsolet ¢, (s) = z(x, s)r(s), wherer (s) = E{R(s)}
as defined in Sect. 2. Let f be the functional mapping (x, ¢) into fy(¢) and let ¢ be
the functional mapping (x, ¢) into ¢, (¢). Both are mappings from R x R into Ry.

Assumption A

1. Suppose that f is twice continuously differentiable and strictly positive at the
interior point (x, ) of R x R..
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2. Suppose that the two-dimensional functional ¢ is twice continuously differentia-
ble and strictly positive at the interior point (x, ) of R x R...

Suppose that nd> — co,d — 0,b/d — 0 and d*>/b — 0.

4. Suppose that for a constant § > 0, it holds that

>

0<s<t+§

W

R(s)

—4(s)

— op()

where ¢ : [0, r + 8] — Ry is a continuous strictly positive function.

Now we are able to write up the asymptotic theory of our non-parametric filtered
data density estimator (2). From a theoretical point of view, the theory of this estimator
is close to the theory of the non-parametric locally constant kernel hazard estimators
considered in Nielsen and Linton (1995) and Nielsen (1998).

Theorem 1 (Non-parametric filtered data density estimator) Suppose that assump-
tion A is satisfied. Define the kernel moments ||K||% = f K2%(u)du and pr(K) =
/K (u)u?* du, where the kernel function K is a density function with finite support,
mean zero and finite variance. Then the following holds:

Jd { [P0 — .0 = i 0| = N0y ),
where

Br(x. 1) = pa(K)(Bi(f. $)(x. 1) + Ba(f. ) (x. 1)}
)2 A0S (10)
yee.n ={lIKIB) RO

The two functionals in (10), By and Ba, both mappings from Ry x Ry into Ry, are
defined by

_@f/30@¢:(1)/01) | 87 fr(1) /07>

Bi(f, 9)(x, 1) = o) + > ) (1D
2 2
Bo(f. $)(x. 1) = (0fx(1)/3x) (09 (1)/0x) n 0 fx(1)/0x ' (12)
¢x (1) 2
Proof See Appendix A. O

Now we are ready to state the asymptotic theory of the above density estimator when
prior knowledge, represented by £, (¢), is used to bias correct the original estimator,
i.e. the filtered data density estimator guided by prior knowledge (6). The resulting
asymptotic theory is very similar to the asymptotic theory without bias correction.
However, the bias expression is changed such that it is the curvature of the true den-
sity divided by the prior knowledge that enters our bias expression. Therefore, this
approach improves performance when our prior knowledge is sufficiently precise to
capture essential properties of the curvature of the problem. If the prior knowledge
does not have this quality, it will not be helpful in our estimation process.
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Theorem 2 (Filtered data density estimator guided by prior knowledge) Suppose that
Assumption A is satisfied. Moreover, suppose that the functional h : R x RT — RT
mapping (x, t) into h,(t) is two times continuously differentiable, and that ¢ : R x
Rt — R* maps (x, 1) into cx(t) = fr(t) {he ()} "'} then

Jd[§0 1) = f:0) = a0 = N 10,y (x.0)
where

Ba(x, 1) = hy(Du2(K) {Bi(c, ¢)(x, 1) + Ba(c, ) (x, 1)} (13)
and y (x,t), u2(K), By and By are defined in Theorem 1.

Proof See Appendix B. O

Now we state the asymptotic theory of the density estimator when a transformation
approach is used in our estimation process, i.e. (4). The asymptotic theory is similar to
the asymptotic theory with multiplicative bias correction guided by prior knowledge.
The bias expression is changed such that it is the curvature of the transformed den-
sity that enters our bias expression. Therefore, the transformation approach improves
performance when the transformation captures essential properties of the curvature
of the problem. In the transformation approach, the variance is also affected since
it is multiplied by the density of the transformation. This is because the transforma-
tion approach acts similarly to a nearest neighbour type of approach compressing the
data through the transformation. The variance is affected in a similar fashion as with
nearest neighborhood methods accounting for the changed amount of information
present in a bandwidth distance. Let f1~!' o W~! be the functional mapping (x, t)
into fi {W=L(1)} [ {¥~')}]”". The map, f¢~' o W= is the conditional density
of the dependent variable Y after the transformation has taken place. Since we carry
out the nonparametric density estimation on this transformed axis, it is not surprising
that the main term in the bias of this approach is the bias of the density estimator on
this axis.

Theorem 3 (Transformed filtered data density estimator) Suppose that Assumption A
is satisfied and suppose that the functional WV is two times continuously differentiable;
then
~d,b
Vd [ {50 @) = 1) = B3 0] = N 10w 0y, 0)

where

Bax, 1) = Y pa(K) [Bi(F4™ 0w 007 x, ()
+B(fu 0w g oW (r, w()]

and y (x,t), u2(K), By and B, defined in Theorem 1.
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Proof See Appendix C. O

Let ¢y ' o W~! be the same functional as £~ o W~!, but with ¢ replacing f.
Then we can state the asymptotic theory of the transformed filtered data density esti-
mator guided by prior knowledge (9). From this approach we both get the advantage
of the nearest neighbour type of quality of the transformation and the bias reducing
advantage of our prior knowledge. The practical advantages of this approach are seen
in the numerical results in the next section.

Theorem 4 (Transformed filtered data density estimator guided by prior knowledge)
Suppose that Assumption A is satisfied and suppose that the functional h is two times
continuously differentiable, and the functional \V is three times continuously differen-
tiable; then

Vd [ F5D @) = f.0) = dBax, 0] = N 10w 0y (. 1)
where

Batx. ) = ()i (K)
x[Bi@y " 0w ) (v, W) + By@ 0w ) (x, W)

and ¢, (t) = fx (t)/fzx ®). y(x,t), u2(K), By and B> are defined in Theorem 1.

Proof See Appendix D. O

5 Numerical results

In this section, we analyse a data set that originates from the Danish general insurance
company, Codan Insurance, and contains commercial fire claims reported from 1995
to 2004. The data set consists of 2810 claims Y, and for each claim the corresponding
estimated maximum loss (EML) X, is reported. The data set is heavy-tailed with claim
sizes ranging from 19 to almost 6 million DKK. with average claim size at 56,220
DKK.

This section contains an application study and a Monte Carlo simulation study.
In the application study, we compute the transformed filtered data density estimator
both without and with prior knowledge and illustrate the estimators’ ability of taking
filtering into account. In the Monte Carlo study we compare the performance of the
same two estimators and benchmark against the prior knowledge estimator both when
the prior knowledge is true and when the prior knowledge is roughly and not exactly
true. Moreover, we compare the results with the performance of the standard two-
dimensional transformation kernel density estimator studied in Buch-Kromann et al.
(2009).

The transformation approach both improves the estimation performance and the
visualization properties. When dealing with heavy-tailed data as commercial fire
claims, a classical kernel density estimator without transformation and with constant
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bandwidths as defined in (2) has a very bad performance and therefore it is omitted
in this study. We transform the claims as well as the EMLs with the three parameter
Champernowne cdf

. x+o)*—c*
(0% (M 4 0)Y — 2

T(x) (14)

with parameters (o, M, ¢) estimated by a maximum likelihood procedure taking fil-
tering into account (see Appendix E).

First define the transformed filtered data density estimator (3), where the transfor-
mation function W is the Champernowne cdf (14) with maximal likelihood parameters
as described above. The choice of the Champernowne cdf as transformation function
is due to its ability to capture different distribution shapes and its special utility for
heavy-tailed data; see Buch-Larsen et al. (2005) and Buch-Kromann et al. (2009) for
further details about the Champernowne cdf. Notice that the explanatory variable,
X in (3) is the Champernowne-transformed EMLs, which lie between 0 and 1. The
choice of Champernowne transformation of both claims and EMLs ensures that the
two variables are of the same scale, and therefore the simplification d = d; = d; and
b = by = bj is reasonable. The estimator is called 121 and is defined from (3)

Sy Jo Ka = $)Kax — X8 () dNi(s)
Sy fy Kaw —$)Ka(x — X)) RiAT =1 (s)} ds

/E](U) = (15)

where 1\7,- = N;joT,and Ky(u) = d! K(u/d) where K is the Epanechnikov
kernel function. The bandwidth d is a simple Silverman-rule-of-thumb, see Silver-
man (1986), and b = d/2 to ensure the undersmoothing of the conditional survival
function as mentioned in Sect. 3. As mentioned, 7T is the Champernowne cdf, defined
in (14).

Thereafter, we define the prior knowledge. For that purpose, we set up a median
regression model corresponding to the model described in Linton et al. (2010) given by

Y =m(X)e.

where ¢ and X is independent, and where the estimator of m is based on the density
estimator (15), but with doubled bandwidths to ensure a smooth shape. The choice of
this model is motivated by its ability to capture the shape of the distribution in a crude
and smooth way. The density estimator of ¢ is a one-dimensional version of the trans-
formation filtering data density estimator (4), which takes the corresponding filtering
on ¢ into account. The filtering on ¢ follows directly from the filtering on Y, i.e. if
(Y, X, T, C)isaclaim Y, with corresponding EML X, truncation 7 and censoring C,
then (T, C), where T = T/m(X) and C = C/m(X) is the corresponding filtering on
¢ under the median regression model. However, the estimation procedure in this paper
is slightly more complicated, due to the possible filtering on ¢ that needs to be taken
into consideration. Let /1 ( y) be the resulting prior knowledge density on original axis
estimated as if it was known, see Buch-Kromann et al. (2009), and then let k» be prior
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knowledge density on the Champernowne-transformed axis, defined as

_ h (1)

W= =T

(16)

At last, we define the transformed filtered data density estimator on transformed
axes guided by the prior knowledge %, defined above. The resulting estimator corre-
sponds to (8) based on the Champernowne transformation.

hATT Y Iy o Ka = $)KaG = X8y o ©lhx AT~ N~ dN;(s)

ks (v) = —
P Jo Ka—9)Kaqx — X)) Ri{T~1(s)} ds

a7

where d is equal to a double Silverman-rule-of-thumb bandwidth and b = d/2.

To illustrate the estimator’s ability to handle filtering data, we set up a filtering
scheme. We simulate truncation for 25% randomly chosen claims and choose the
truncation levels for these claims uniformly on 0 to 10,000 DKK., which corresponds
to the 0 and 58% empirical quantiles, respectively. Analogously, we simulate censor-
ing for 25% randomly chosen claims and choose the censoring levels uniformly on
100,000 to 6,000,000 DKK., corresponding to the 89 and 100% empirical quantiles.
We will refer to this filtering scheme as the 25% filtering scheme. Analogously, we
compute a 50% filtering scheme, where filtering is simulated on 50% of the claims.

Figure 1 illustrates how the exposure of the fire claims data set is affected by the
two filtering schemes compared with the no filtering scheme. We plot the smoothed
exposures for the two filtering schemes relative to the exposure without filtering. The
smoothed exposures correspond to the denominator of (15). In Fig. 1 the truncation
can be recognized clearly in both the 25 and the 50% filtering scheme, whereas the
censoring is much less clear on the relative exposure plots for both filtering schemes.
This is due to the chosen values of truncation and censoring levels, which are based

Exposure: 25% filtering relative to no filtering Exposure: 50% filtering relative to no filtering
< Q]
Cenf-------- \;— ----------------- Cen
© _| ! ©
o o

0.78 0 0 /_/ - 0.55 ,_/'\
~ "6
o | N / RN T o /05
Sl T T T T T ° T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig.1 Smoothed exposure of no filtering scheme relative to smoothed exposure of, respectively, 25% (left)
and 50% (right) filtering scheme
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on realistic filtering levels for the underlying commercial fire insurance data set. In
the 25% filtering scheme, 283 claims are influenced by left-truncation and only 6
claims are influenced by right-censoring, whereas in the 50% filtering scheme the
corresponding claims numbers are 561 and 5 claims, respectively.

5.1 Application

In the application study, we compute the transformed filtered data density estimator
both without and with prior knowledge, i.e. (15) and (17), and plot them on the trans-
formed axes together with the prior knowledge density (16) in the three data filtering
schemes.

The transformed filtered data density estimator (15) of the fire claims data set is
illustrated in Fig. 2 in the three filtering schemes. The three plots are very similar.
This means that the dependence structure between X and Y is almost identical even
though we have made a systematic reduction in the exposure in the 25 and 50% fil-
tering schemes, as illustrated in Fig. 1. Also the marginal distributions of X and Y
are similar due to the maximum likelihood procedure’s ability to take filtering into
account: the estimated parameters of the Champernowne transformation function (14)
0,9 = (atj g, Mjg,cjg), where j = {X, Y} indicates whether the parameters corre-
spond to either X or Y, and ¢ = {0, 25, 50} indicates the chosen filtering scheme, are

Or.0 = (1.66,2.56 x 107,6.06 x 107°), 60 = (0.82,7.54 x 10°, 3.44 x 10%)
Or25 = (1.67,2.60 x 107,622 x 107°), 6,25 = (0.82,7.47 x 10°,2.84 x 10°)
0,50 = (1.65,2.78 x 107,6.80 x 1075), 6y 50 = (0.82,7.67 x 10%,2.17 x 10%)

The fact that both the dependence structure and the marginal distributions seem to
be similar, indicates the transformed filtered data density estimator’s ability to take
filtering into consideration.

The prior knowledge density on transformed axes (16) in the no-filtering, the 25-
and 50% filtering schemes are illustrated in Fig. 3. As in Fig. 2 we recognize that the

Nonparametric density, no filtering Nonparametric density 25% filtering Nonparametric density, 50% filtering
o

O— " - s |
- - - Yu/ﬁ
© | o | 12 o | 1_2/\
o =} =]
1-
<°._ I © 9
o = 06 o ;
%
<r_ <.-_ <r_
=] o |-12 =]
14 - 1.4
<\!_ (\!- g-
o o
0.8 08—"" OB ,\A OB\/'
24 [f04 = —12 ,—04—/_\ O._— 12 a—o4
o T o o
0 0.2 0.8 1.0 0.0 02 0.8 .0 00 02 0.8 0

Fig. 2 The transformed filtered data density estimator (15) computed on the fire claim data set without
filtering (left), with the 25% (middle) and the 50% (right) filtering scheme. We recognize that the density
estimates are almost identical which illustrates the density estimator’s ability to take filtering into account
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Prior knowlegde, no filtering Prior knowlegde, 25% filtering ° Prior knowlegde, 50% filtering
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Fig. 3 The prior knowledge density (16) computed on the fire claim data set without filtering (left), with
the 25% (middle) and the 50% (right) filtering scheme. We recognize that the density estimates are almost
identical which illustrates the density estimator’s ability to take filtering into account
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Fig. 4 The transformed filtered data density estimator guided by prior knowledge (17) computed on the
fire claim data set without filtering (left), with the 25% (middle) and the 50% (right) filtering scheme. We
recognize that the density estimates are almost identical which illustrates the density estimators ability to
take filtering into account

shapes in the three plots illustrating the dependence structures are almost identical due
to the method’s ability to take filtering into account. We mention that the prior knowl-
edge estimator puts perhaps too much structure into the density estimator. However,
if it is not too wrong, then the multiplicative bias correction will correct it and benefit
from it in the final estimator.

At last we illustrate the transformed filtered data density estimator guided by prior
knowledge (17) in the three filtering schemes on Champernowne transformed axes
in Fig. 4. Compared with Fig. 3, some structure from the median regression density
estimator (prior knowledge) is inherited. This is because we have a good prior knowl-
edge. However, the multiplicative bias corrected density estimator has the opportunity
to correct the density estimator in regions where the prior knowledge seems to be
wrong. We also recognize the similarities between the dependence structures of the
density estimators in the three filtering schemes in Fig. 4.

5.2 Monte Carlo study

In the Monte Carlo study, we want to compare the three performance of the estimators
defined in Sect. 5 and illustrated in the application study. The simulation is based
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on the commercial fire insurance data set we have described above. We compute a
multiplicative model with iid lognormal residuals independent of X

Y = ozXﬂsl
to the data set and obtain the following estimates:
a=18237 B=032 & ~logN(—1.62,1.8)

We will refer to this model as model 1.
Thereafter, we define model 2 based on model 1, but now we assume that the
parameters in the lognormal distribution of the residuals depend on x:

Y = aXPer(x)

where &2(x) ~ log N(uy; ox). We choose the residual parameter’s dependence of x
so that the dependence is linear on the Champernowne transformed axis

oy =1.5405Ty(x) pnux =—0.50,

where Tp(x) is the Champernowne cdf defined in (14) with parameters 6 =
(1.66,2.56 x 107,6.06 x 107). In model 2, we use the same values of o and S
as in model 1.

Now, we simulate S = 100 data sets with sample size n = {100, 500, 1,000} from
model 1 and model 2 and with the X’s bootstrapped from the original EML values in
the commercial fire insurance data set. Moreover, we simulate a 25 and 50% filtering
scheme to each data set.

We mention that data simulated from model 1 corresponds to estimation with a
true prior knowledge, whereas data simulated from model 2 corresponds to estimation
with a roughly and not exactly true prior knowledge.

To each of the simulated data sets, we compute the transformed filtered data den-
sity estimator (15), the prior knowledge in the form of the median regression density
estimator (16) and the transformed filtered data density estimator guided by prior
knowledge (17). We call the density estimators IEM, (x), wherei = {1, 2, 3} is the type
of estimator defined analogously to Sect. 5, and where ¢ = {0, 25, 50} is the filtering
scheme and compare them with the true density on the Champernowne transformed
axis, called k(x), from either model 1 or model 2, with the following performance
measure:

. l -— -
ISEkig) = — Z{ki,¢(Xi) — k(X))
i=1

where (X;);=1,...n are the bootstrapped X’s in the sample.
In Table 1, the average of the ISE errors are presented for each estimator, each n and
each model. First we notice that k3 ¢ outperforms k1 4 almost everywhere, even when
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Table 1 Monte Carlo simulation comparing the performance of the estimators

n =100 n =500 n = 1,000

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
MISE (k) o) 0.08147 0.07545 0.03556 0.03384 0.02516 0.02311
MISE(k2,0) 0.07129 0.06554 0.03475 0.03152 0.02966 0.02520
MISE(k3,0) 0.06515 0.06273 0.03770 0.03184 0.03346 0.02397
MISE(IE]Y25) 0.09621 0.08348 0.04102 0.03649 0.02827 0.02440
MISE (k5 25) 0.08581 0.07047 0.03702 0.03329 0.02762 0.02632
MISE(E3,25) 0.07943 0.06700 0.03655 0.03169 0.02897 0.02322
MISE (k] 50) 0.14757 0.11873 0.05607 0.04275 0.03981 0.02994
MISE(El,so) 0.14600 0.10957 0.05813 0.04396 0.04021 0.03509
MISEUgl,so) 0.12855 0.10120 0.04835 0.03844 0.03331 0.02943
For 12,-’(1, i = {1, 2, 3} corresponds to the type of estimator: i = 1 is the transformed filtered data density
estimator, i = 2 is the prior knowledge density and i = 3 is the transformed filtered data density estimator

guided by prior knowledge. ¢ = {0, 25, 50} indicating the filtering scheme

the prior knowledge 152’,1, has a poorer performance than 151,(/). It seems that 153,(;)’5 out-
performance of 121,¢ increases the more filtering we have. Furthermore, we observe that
the performance gets worse when we increase the filtering. This is expected since we
remove some information. The performance gap between the no filtering scheme and
25% filtering scheme is on average about 5% whereas the performance gap between
the no filtering scheme and 50% filtering scheme is on average about 30%. Moreover,
we notice that the performance gap between no filtering and filtering seems to decrease
when the number of observations increases. Comparing k; 4 and k2 4 we notice that
the performance of k; .¢ is always better when then the number of observations in
the data set is small, whereas k| ¢ 1s more competitive to k> .» when the number of
observations increases, especially when the prior knowledge (model 2) is not true.
Comparing k3 ¢ and k> .¢» We recognize that k3 .¢ almost always improves the perfor-
mance of the prior knowledge when prior knowledge is not true (model 2), without
aggravating the performance when the prior knowledge is true (model 1). Particularly,
when a large amount of filtering is present, 123,(,5 seems to be a desirable estimator.

When comparing the Monte Carlo results of our filtering estimation approach with
the method of Buch-Kromann et al. (2009), see Table 2, we see that this approach
of this latter paper is better at estimating the structured density when no filtering is
present. However, when filtering is present the method of Buch-Kromann et al. (2009)
breaks down as expected while our method still works well.

6 Conclusion
This paper presents a method for multivariate density estimation of truncated or cen-

sored data that pays special attention to extreme values. The estimation is based on
a local constant estimator extended with dimension reducing prior knowledge and a
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Table 2 Monte Carlo simulation comparing the performance of the estimators in Buch-Kromann et al.
(2009)

n =100 n =500 n = 1,000

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
MISE(fll,o) 0.06755 0.06071 0.02980 0.02791 0.02064 0.01888
MISE(ﬁz,O) 0.05607 0.06244 0.02057 0.02882 0.01459 0.02300
MISE(E:;,()) 0.05429 0.05774 0.02110 0.02514 0.01493 0.01882
MISE(ﬁl,zs) 0.09934 0.08161 0.05174 0.04361 0.03910 0.03298
MISE(ﬁ2,25) 0.08787 0.08542 0.04195 0.04488 0.03186 0.03736
MISEU_!3,25) 0.08519 0.08139 0.04196 0.04066 0.03237 0.03297
MISE(/ELSO) 0.19136 0.15584 0.12603 0.09889 0.10986 0.08855
MISE(E1,50) 0.17858 0.15591 0.11564 0.10045 0.10321 0.09158
MISE(/ELSO) 0.17672 0.15031 0.11575 0.09561 0.10404 0.08900

For i i, 1 = {1, 2, 3} corresponds to the type of estimator: i = 1 is the transformed kernel density estimator,
i = 2 1is the prior knowledge density and i = 3 is the multiplicative corrected transformation kernel density
estimator. ¢ = {0, 25, 50} indicating the filtering scheme

tail flattening transformation. The asymptotic theory shows that these extensions will
improve the performance of the estimator when the prior knowledge and the transfor-
mation are not too different from the true distribution. A simulation study supports the
asymptotic theory and shows substantial improvements in performance when using
multiplicative bias correction.

Appendix A: Proof of Theorem 1

The Proof of Theorem 1 is divided into two parts: First we analyse fx(d’b), where the
leave-one-out estimator ngbi) @) defined in (1) has been replaced by Sy, . In the second

part, we show that from an asymptotic point of view, we really can replace S’g(bi)‘(i) by
Sx;-
When analysing (2)

iy [ Ka(t — $)Ka(x — X)) ;) dNi(s)

Adb)
"= S [Ka(t —$)Ka(x — Xi)Ri(s)ds

X

we first notice that fx(d’h) () has the same structure as the local constant hazard
estimator

O; 20 [Ka(t —s)Ka(x — X;) dN;(s)

~(d) ey — 2t
) =, = S TRt — ) Ka(r — XpRi(5) ds”

(18)

The only difference is the conditional survival function S'g(b’_) @) that enters the expres-

sion of fx(d’b), but not o?)(cd).
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When analysing &fcd), Nielsen and Linton (1995) divided the error of the haz-
ard estimator into a variable part V, (¢) converging in distribution and describing the
asymptotic variance, and a stable part B, (f) converging in probability and describing
the asymptotic bias. We have

&)(cd)(t) — ax([) = Vx(l) + Bx(t)’

where
Voo = 2=t Kalt = 9Kax = Xi) dMis)
* S [ Ka(t —s)Ka(x — Xi)Ri(s)ds
and
B.(t) = S [ Ka(t —$)Ka(x — X)fax, (s) — ax ()} Ri(s) ds
! S [Kat —$)Ka(x — X)Ri(s)ds '
Now define
D) = S [ Ka(t —s)Ka(x — Xi)Sx, (s) dN; (s)

Z?:] de(t —8)Ki(x — X;)R;(s)ds

where the only difference from fx(d’b) is that we have replaced 3‘;;? @) by Sx;.

When analysing fx(d) (t), we divide the error into its variable part Ve (t) and its
stable part B. (1) similarly to what is done for &,((d) (1) in Nielsen and Linton (1995):

FD (1) — fo(t) = V(1) + Bo(0).
where

>z ) Ka(t — $)Ka(x — X;)Sx, (s) dM; (s)

Vi(t) = > [ Ka(t —s)Kg(x — X;)R;i(s)ds

and

21 Ka(t = s)Ka(x = X){fx, (5) = fx(®)}Ri(s)ds

By (1) = S Ka(t —s)Ka(x — Xi)Ri(s)ds

We first notice that By (¢) is exactly the same functional of the density f, (s) as B, ()
is of the functional o, (s). Therefore, the asymptotic expression of By (¢) is found by
taking the asymptotic expression of B, (¢) and then replacing the conditional hazard
of this latter expression with our conditional density. From Theorem 1(b) in Nielsen
and Linton (1995), we get that
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d72 Bo(t) 5 pa(K)Bi(f, $)(x. 1) + Ba(f, $)(x. 1))

where By (f, ¢)(x, t) and B (f, ¢)(x, t) is defined in (11) and (12), respectively.

We can interpret V, () by relating it to the corresponding expression for the haz-
ard V(7). The only difference between these two expressions is that Sy, (s) enters in
front of d M; (s) in the marginal integral of V. (1), but not in V, (r). We therefore see
that the asymptotic variance of Ve (¢) is identical to the asymptotic variance of V,(¢),
but with the component Sf (t) entering the compensator in the variance calculation,
cf. Theorem 1(a) in Nielsen and Linton (1995):

VndVi(t) = NA{0, yi(x, 1)}
where

NONIG
i) = {||K||%}2%
p £ 050

= {IK I3 e

In the second part of the proof, we show that fx(d’b) (t) and fx(d) () are equivalent from
an asymptotic point of view. First note that

FED @ = FOw)|

S [ Kat = 9)Kalx = X0) (8 (6) = Sx,9) dN;(s)
Z?:l de(t —8)Ki(x — X;)R;(s)ds

Sy Kaxe = X0 [ Katt =) (S ) (5) = Sx,(9) dNi(s)
Z;’:l de(t —5)Kg(x — X;)R;(s)ds

> Ka(x — Xj)h; Z’}zl Ka(x — X;)
Z?:] Kg(x — Xj) z;;] fKa'(t —HKy(x — X))Ri(s)ds

Zn:ai (X)h;

i=1

IA

1©x)]

where h; =  [Kqt — s) (sgg_{(i)@ — Sy, (s)) dN;i(s), O() =
! 3 KaGeo X)) Ky(=X;)
n 1Y [ Ka(t=9)Ka(x—X) Ri () ds ST KaGa-X))®
The numerator of ®(x) is a kernel density estimator, and therefore it converges
to a constant. Moreover, from the Proof of Theorem 1 in Nielsen and Linton (1995),
we know that the denominator of ® (x) converges in probability. Therefore |® (x)| =
Op(1) can be neglected.

and q; (x) =
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It now remains to be shown that

n
E(x) = ai(x)h
i=1
=op(d® +n"2d7"

We know that Sg(b,) (l.)(s) = S'g(hl) (l.)(s) with probability 1, where

N
(b (b
Sg(i),(i)(s) = exp [—/ ag(i)ﬁ)(u) du] ,
0

>z | Kpt—5)Kp(x—X;) dN; (s)
max {3 2; [ Ko(t=5)Kp(x=X )R, (5) ds , "4
leave-one-out hazard estimator with smoothed exposure bounded from below, which
follows from Assumption A. Therefore it is sufficient to show that

and the hazard estimator, &gfi) MOES is a

n
E) =D ai(x)h
i=1
= op(d*> +n"12a7h

where

i = / Ka(t =) (3¢ 1)) = Sx,)) dNi(s)

- / K () (S'Qw(t — du) — Sx,(t — du)) AN (t — du).

The boundedness of the smoothed exposure from below in the hazard estimator

&;f,) (i)(u) ensures that the second moment of H,- exists. This is essentially the same

trick as used in (Mammen and Nielsen 2007, p. 886). From algebra we know that
(> ai ()c)h',-)2 <>, a;j(x)h? since "', a;(x) = 1. Therefore,

n
E2(x) = D ai(0h}.
i=1
Taking the conditional expectation given X;, we get
n
EIE20IX] = D aiE [i71X:].
j=1
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For the survival function estimator with artificial exposure, S( X).(0) (s), the proof and
result from Theorem 1 in Linton et al. (2003) holds for the second moment and we
therefore get

X,}

2
dN;(t — du) X[]

2
dN;(t —du)

E[i?|X;] =E ‘/K(u)( 3 ot —du) — Sx, (t — du)

N—

=E

SN—"

/ K20 (85 ¢ = du) = Sx, (¢ = du)
—E / K2(u) (S
/K W)E [ (s“” o)t — du) = Sx, (t — du)

:/KZ(M)E[(S(b)(I)(t du)—Sx, (t— du)) ‘

= g (X)b* + ga(Xp)n~'p7!

) it — du) — Sx, (1 — du)

SN—"

2
dA;(t — du) Xi]

2

N—

Xl':l dA;(t — du)

><

i] ay, (t—du)R;(t—du) du

where the third equality holds because SX ) is a leave-one-out estimator and
hence predictable. Moreover, the main components in Sg?,) (l.)(v) and Sg(bi) (l.)(v) are

fov éé;b) (u) du and fov oe;m (u) du; exactly the marginally integrated hazards consid-
ered in Linton et al. (2003). The last equality therefore follows from Theorem 1 in
Linton et al. (2003), where the functions g corresponding to the bias and g, cor-
responding to the variance are continuous functions, and X; belongs to a bounded
interval. Therefore,

Zai (x) (gl(Xi)b4 + gz(Xi)n_lb_l)
i=1
=0pb*+n7 b7

E[E2(x)|X;]

IA

which gives

E[£2(x)] = E [IE [é2(x)|x,-]]
=0p®*+n v

and hence
fx(bl,bz)(t) _ f_x(bl)(t) — Op(b2 +n—1/2b—1/2)
— 0P(d2 + n—l/Zd—l)
where the last equality holds when d > b and d* < b. O
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Appendix B: Proof of Theorem 2

The Proof of Theorem 2 is analogous to the Proof of Theorem 1 in Appendix A. We
define

S [ Ka(t — 9)Ka(x — X;)Sx, (9){hx, ()}~ dNi(s)
S [ Ka(t — 9)Ka(x — X;)Ri(s) ds ’

gD(1) = hy(r)

and divide the error of gj((d) () into its variable part ‘7(t) and its stable part é(t):

g9ty — fu(t) = V() + B(t)

where
0oty = izt ] Kalt = )Kalx = X0)Sx, () (0, ()}~ dMi s)
T > Ka(t —$)Ka(x — X)Ri(s)ds
and
- ha () 250y [ Ka(t = $)Kq(x — X;) [Sx,- () {hx, ()} Ly, (s) - {X‘?] R;(s)ds
Bx (1) = ¥ (1)

i1 [ Ka(t —s)Kq(x — X;)R;(s)ds
= he()B*(1)
S [ Ka(t=s)Ka(x—X){ex, (s)—cx (D} Ri(s) ds
> JKa(t=9)Ka=Xi) Ri(s) ds
The variable part V, () corresponds to V,(¢) in the Proof of Theorem 1 in Appen-
dix A, but with an extra term %, (¢) {h X; (s)}_1 that enters in front of dM;(s). But

hy(t) {h X; (s)}71 is asymptotically equivalent to 1, and the asymptotics of the vari-

where B*(r) =

able part of gff’”’) () is therefore identical to the asymptotics of the variable part of
7940, A _

When it comes to the stable part B, (¢), we note that B} () corresponds to B (¢) in
the Proof of Theorem 1 in Appendix A, but with ¢ instead of f. The final asymptotics
of B, (1) is therefore identical to the asymptotics of By (r), but with ¢ replacing f. We
therefore have

d72 B (t) 5 12 (K)he (0){B1(c, ) (x. 1) + Balc, §)(x. 1)}

The second part of the proof, where we have to show that gfﬁd”’) (t) and gf;“ (t) are
equivalent from an asymptotic point of view, corresponds to the Proof of Theorem 1

in Appendix A. O

Appendix C: Proof of Theorem 3

The Proof of Theorem 3 is based on a combination of the Proof of Theorem 1 above and
the technique used in the proof of the multivariate transformation approach without
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filtering in Theorem 2 in Buch-Larsen et al. (2005). Like in this latter paper, we argue
that we can simply consider the pointwise asymptotic theory of the kernel density
estimator on the transformed axes. That is, we can use the result from Theorem 1 on
the transformed axes where the kernel density estimation is carried out. The condi-
tional density on the transformed axes is fy {¥~!(v)} [v {w™! (v)}]_l. We get the
bias expression of Theorem 3 after we have back-transformed and multiplied by v (¢)
as part of this process.

When it comes to the variance, we follow Buch-Larsen et al. (2005) in showing that
the variance equals the variance calculated on the transformed axes—where a division
of ¥y comes from the expression of the density on the transformed axes—and then
during the backtransformation we get a multiplication by 2. The final result is that
the variance is multiplied by ¥ compared with the variance in Theorem 3. O

Appendix D: Proof of Theorem 4

The Proof of Theorem 4 is based on a straightforward combination of the Proof of
Theorem 2 and the Proof of Theorem 3 and we leave it out. O

Appendix E: Maximum likelihood parameters for the Champernowne
distribution

The following describes the procedure for estimating the parameters of the Cham-
pernowne distribution (14) by a maximum likelihood procedure taking filtering into
account.

Let ()7,-, Xi, T;, Dj)i=1,....n be the data set to which we want to estimate a Cham-
pernowne distribution, where 171' = Y; A C; is the Y;’s subjected to right censoring, X;
is the covariate, 7; is the truncation and D; = I (Y; < C;) is the “at-risk” indicator.
Let Ni(s) = I(Y;, D = 1) be the corresponding counting process with intensities
1i(s), and let R;(s) = I(T; <s <Y;) be the “at-risk” indicator. We can estimate a
Champernowne distribution to this data set by assuming the following parametric
model

Ai(t,0) =a(t,0)R; (1)

a(t+c)?~!

where a(t,0) = T+ (107 =27 is the parametric hazard function for the Cham-

pernowne distribution and 6 = («, M, ¢) is the parameters in the Champernowne
distribution.
Then it follows from Andersen et al. (1993) that the likelihood function is

Loy= [] ewo)™® exp(/ra(u,G)R.(u)du)
0

O<t<oo

where N.(s) = >/, Ni(s) and R.(s) = >_"_ Ri(s).
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We therefore determine the parameters of the Champernowne distribution by max-
imizing the log likelihood function with respect to 6

logL(9) = ZIOg{a(f’i, 0)}D; — /Ooooc(u, O)YR; (u) du

i=1
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