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Multivariate empirical mode decomposition
BY N. REHMAN* AND D. P. MANDIC

Department of Electrical and Electronic Engineering, Imperial College London,
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Despite empirical mode decomposition (EMD) becoming a de facto standard for
time-frequency analysis of nonlinear and non-stationary signals, its multivariate
extensions are only emerging; yet, they are a prerequisite for direct multichannel data
analysis. An important step in this direction is the computation of the local mean, as
the concept of local extrema is not well defined for multivariate signals. To this end,
we propose to use real-valued projections along multiple directions on hyperspheres
(n-spheres) in order to calculate the envelopes and the local mean of multivariate signals,
leading to multivariate extension of EMD. To generate a suitable set of direction vectors,
unit hyperspheres (n-spheres) are sampled based on both uniform angular sampling
methods and quasi-Monte Carlo-based low-discrepancy sequences. The potential of
the proposed algorithm to find common oscillatory modes within multivariate data is
demonstrated by simulations performed on both hexavariate synthetic and real-world
human motion signals.

Keywords: multivariate signal analysis; empirical mode decomposition; intrinsic mode
functions; multiscale analysis; inertial body sensors; human motion analysis

1. Introduction

The empirical mode decomposition (EMD) algorithm is a fully data-driven
method designed for multiscale decomposition and time-frequency analysis of
real-world signals (Huang et al. 1998), whereby the original signal is modelled as
a linear combination of intrinsic oscillatory modes, called intrinsic mode functions
(IMFs). The IMFs are defined so as to exhibit locality in time and to represent
a single oscillatory mode; the subsequent application of Hilbert transform
provides meaningful instantaneous frequency estimates (the so-called Hilbert–
Huang transform) (Huang & Shen 2005). Owing to no a priori assumptions
regarding the data nature, EMD has found applications in the analysis of
nonlinear and non-stationary signals (e.g. Duffy 2004; Gautama et al. 2004;
Janosi & Muller 2005; Wu & Hu 2006; Huang & Wu 2008; Lin et al. 2009).
The recent advances in physics and engineering have brought to light new

problems dealing with complexity, uncertainty, nonlinearity and multichannel
dynamics (Gautama et al. 2004; Mandic & Goh 2009); these signals are, however,
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almost invariably processed channel-wise (e.g. Duffy 2004; Janosi & Muller 2005;
Wu & Hu 2006; Huang & Wu 2008). Extensions of standard EMD to multivariate
signals are, therefore, a prerequisite for the accurate data-driven time-frequency
analysis of such processes. In addition, joint analysis of multiple oscillatory
components within a higher dimensional signal also helps to circumvent the mode
alignment problem1 (Looney & Mandic 2009) experienced with standard EMD;
in the complex domain, this has proven to facilitate, e.g., the synchronization of
multichannel EEG signals and image fusion (Mandic et al. 2008; Looney &Mandic
2009). Recent multivariate extensions of EMD include those suitable for the
processing of bivariate (e.g. Tanaka & Mandic 2006; Altaf et al. 2007; Rilling
et al. 2007) and trivariate (Rehman & Mandic in press) signals; however, general
original n-variate extensions of EMD are still lacking, and are subject of this
work.
The key issue in EMD algorithm is the computation of the local mean of

the original signal, a step which depends critically on finding the local extrema.
However, for multivariate signals, this is not straightforward; for instance, the
complex and quaternion fields are not ordered (Mandic & Goh 2009). We
propose to alleviate this problem by using multiple real-valued projections of the
signal; the extrema of such projected signals are then interpolated component-
wise to yield the desired multidimensional envelopes of the signal. In our
proposed multivariate extension of EMD, we choose a suitable set of direction
vectors in n-dimensional spaces by using: (i) uniform angular coordinates and
(ii) low-discrepancy pointsets stemming from quasi-Monte Carlo methods. It
is shown that a set of direction vectors based on uniform sampling in the
angular coordinate system is convenient to deal with; however, it yields non-
uniformly distributed direction vectors. The approach based on low-discrepancy
pointsets (Niederreiter 1992) provides a more uniform distribution of direction
vectors (Cui & Freeden 1997), and hence more accurate local mean estimates in
n-dimensional spaces.
This paper is organized as follows: bivariate and trivariate extensions of EMD

are first discussed in §2. Section 3 introduces the proposed multivariate EMD
method and analyses choices for a set of direction vectors in n-dimensional
spaces. Section 4 illustrates the mode alignment property of the proposed method
on a synthetic hexavariate signal and on multivariate processing of real-world
orientation data.

2. Existing multivariate extensions of EMD

EMD is a fully data-driven method for the multiscale analysis of nonlinear and
non-stationary real-world signals (Huang et al. 1998). It decomposes the original
signal into a finite set of amplitude- and/or frequency-modulated (AM/FM)
components, termed IMFs, which represent its inherent oscillatory modes. More
specifically, for a real-valued signal x(k), the standard EMD finds a set of N

1Mode alignment in multivariate data corresponds to finding a set of common scales/modes across
different components (variates) of a multivariate signal, thus ensuring that the IMFs are matched
both in the number and in scale properties.
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IMFs {ci(k)}Ni=1, and a monotonic residue signal r(k), so that

x(k)=
N∑

i=1
ci(k)+ r(k). (2.1)

To ensure well-behaved intrinsic oscillations, IMFs ci(k) are defined so as to have
symmetric upper and lower envelopes, with the number of zero crossings and
the number of extrema differing at most by one. An iterative process called the
sifting algorithm is employed to extract IMFs; for illustration, a sifting procedure
for obtaining the first IMF from the signal x ′(k) is outlined in algorithm 1.

Algorithm 1. The standard EMD algorithm.

1. Find the locations of all the extrema of x ′(k).
2. Interpolate (using cubic spline interpolation) between all the minima
(respectively maxima) to obtain the lower signal envelope, emin(k) (respectively
emax(k)).

3. Compute the local mean m(k)= [emin(k)+ emax(k)]/2.
4. Subtract the mean from the signal to obtain the ‘oscillatory mode’
s(k)= x ′(k)−m(k).

5. If s(k) obeys the stopping criteria, then we define d(k)= s(k) as an IMF,
otherwise set x ′(k)= s(k) and repeat the process from step 1.

Once the first IMF is obtained, the same procedure is applied iteratively to the
residual r(k)= x(k)− d(k) to extract the remaining IMFs. The standard stopping
criterion terminates the sifting process only after the above condition for an IMF
is met for S consecutive times (Huang et al. 2003).

(a)Bivariate/complex extensions of EMD

The first complex extension of EMD was proposed by Tanaka & Mandic (2006);
it employed the concept of analytical signal and subsequently applied standard
EMD to analyse complex/bivariate data; however, this method cannot guarantee
an equal number of real and imaginary IMFs, thus limiting its applications. An
extension of EMD which operates fully in the complex domain was first proposed
by Altaf et al. (2007), termed rotation-invariant EMD (RI-EMD). The extrema
of a complex/bivariate signal are chosen to be the points where the angle of the
derivative of the complex signal becomes zero, that is, based on the change in
the phase of the signal. The signal envelopes are produced by using component-
wise spline interpolation, and the local maxima and minima are then averaged to
obtain the local mean of the bivariate signal.
The RI-EMD algorithm uses effectively only the extrema of the imaginary

part of the complex signal, which results in envelopes based on only two
projected directions. An algorithm which gives more accurate values of the local
mean is the bivariate EMD (BEMD) (Rilling et al. 2007), where the envelopes
corresponding to multiple directions in the complex plane are generated,
and then averaged to obtain the local mean. The set of direction vectors
for projections are chosen as equidistant points along the unit circle. The

Proc. R. Soc. A (2010)

 on April 6, 2010rspa.royalsocietypublishing.orgDownloaded from 



1294 N. Rehman and D. P. Mandic

zero mean rotating components embedded in the input bivariate signal then
become bivariate/complex-valued IMFs. The RI-EMD and BEMD algorithms
are equivalent for K = 4 direction vectors.

(b)Trivariate EMD

An extension of EMD to trivariate signals has been recently proposed
by Rehman & Mandic (in press); the estimation of the local mean and
envelopes of a trivariate signal is performed by taking projections along multiple
directions in three-dimensional spaces. To generate a set of multiple direction
vectors in a three-dimensional space, a lattice is created by taking equidistant
points on multiple longitudinal lines on the sphere (obtaining the so-called
‘equi-longitudinal lines’). The three-dimensional rotating components are thus
embedded within the input signal as pure quaternion IMFs, thus benefitting from
the desired rotation and orientation modelling capability of quaternion algebra.

3. The proposed n-variate EMD algorithm

In real-valued EMD, the local mean is computed by taking an average of upper
and lower envelopes, which in turn are obtained by interpolating between the
local maxima and minima. However, in general, for multivariate signals, the
local maxima and minima may not be defined directly.2 Moreover, the notion of
‘oscillatory modes’ defining an IMF is rather confusing for multivariate signals.
To deal with these problems, we propose to generate multiple n-dimensional
envelopes by taking signal projections along different directions in n-dimensional
spaces; these are then averaged to obtain the local mean. This idea of mapping
an input multivariate signal into multiple real-valued ‘projected’ signals, to
generate multidimensional envelopes, is a generalization of the concept employed
in existing bivariate (Rilling et al. 2007) and trivariate (Rehman & Mandic
in press) extensions of EMD, yielding n-dimensional rotational modes via the
corresponding multivariate IMFs. However, the issue of choosing a suitable set
of direction vectors for taking signal projections in n-dimensional spaces needs
special attention.

(a)Direction vectors on an n-sphere

The calculation of the local mean can be considered an approximation of
the integral of all the envelopes along multiple directions in an n-dimensional
space, and the accuracy of this approximation is dependent on how uniformly the
direction vectors are chosen, especially for a limited number of direction vectors.
As the direction vectors in n-dimensional spaces can be equivalently represented
as points on the corresponding unit (n − 1) spheres,3 therefore, the problem of
finding a suitable set of direction vectors can be treated as that of finding a
uniform sampling scheme on an n sphere.
2For instance, the fields of complex numbers and quaternions are not ordered, and relations such
as ‘<’ and ‘>’ do not make sense.
3An n sphere (hypersphere) is an extension of the ordinary sphere to an arbitrary dimension and is
represented mathematically in equation (3.1). We adopt the terminology that an n sphere resides
in an (n + 1)-dimensional Euclidean coordinate system.
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Figure 1. Direction vectors for taking projections of trivariate signals on a two-sphere generated
by using (a) spherical coordinate system and (b) a low-discrepancy Hammersley sequence.

(i)Uniform angular sampling

A simple and practically convenient choice for a set of direction vectors
is to employ uniform angular sampling of a unit sphere in an n-dimensional
hyperspherical coordinate system. The resulting set of direction vectors covers
the whole (n − 1) sphere, as shown in figure 1a for a particular example of a
two-sphere. For the generation of a pointset on an (n − 1) sphere, consider the n
sphere with centre point C and radius R, given by

R=
n+1∑

j=1
(xj − Cj)2. (3.1)

A coordinate system in an n-dimensional Euclidean space can then be defined
to serve as a pointset (and the corresponding set of direction vectors) on an
(n − 1) sphere. Let {θ1, θ2, . . . , θ(n−1)} be the (n − 1) angular coordinates, then an
n-dimensional coordinate system having {xi}ni=1 as the n coordinates on a unit
(n − 1) sphere is given by

x1 = cos(θ1),
x2 = sin(θ1)× cos(θ2),
x3 = sin(θ1)× sin(θ2)× cos(θ3),
...

xn−1 = sin(θ1)× · · · × sin(θn−2)× cos(θn−1)
and xn = sin(θ1)× · · · × sin(θn−2)× sin(θn−1).






(3.2)
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The pointset corresponding to the n-dimensional coordinate system is now very
convenient to generate; however, for n > 1, it does not provide a uniform sampling
distribution, as illustrated by a higher density of the points when approaching
the poles of a two-sphere (figure 1a).

(ii) Sampling based on low-discrepancy pointsets

We next employ the concept of discrepancy to generate a uniform pointset
on an n sphere. Discrepancy can be regarded as a quantitative measure for
the irregularity (non-uniformity) of a distribution, and may be used for the
generation of the so-called ‘low discrepancy pointset’, leading to a more uniform
distribution on the n sphere. It belongs to the class of quasi-Monte Carlo methods
(Niederreiter 1992), which are particularly important in numerical integration
problems where they ensure smaller error bounds as compared with the standard
Monte Carlo methods.4 As the computation of local mean via envelope averaging
can be seen as a numerical integration problem, we can use quasi-Monte Carlo
techniques to estimate the local mean within multivariate extension of EMD.
This way, the low-discrepancy sequences yield a more uniformly distributed set
of direction vectors for generating signal projections and the corresponding signal
envelopes ensuring accurate local mean estimates.
A convenient method for generating multidimensional ‘low-discrepancy’

sequences involves the family of Halton and Hammersley sequences, which
are proven to show considerable improvement, in terms of error bounds, over
standard Monte Carlo methods (Niederreiter 1992). Moreover, the set of direction
vectors generated by the Hammersley sequence also yields improved generalized
discrepancy estimates as compared with other sampling methods, and hence
are uniformly distributed on a sphere (Cui & Freeden 1997). To generate the
Hammersley sequence, let x1, x2, . . . , xn be the first n prime numbers, then the
ith sample of a one-dimensional Halton sequence, denoted by rxi , is given by

rxi = a0
x

+ a1
x2

+ a2
x3

+ · · · + as
xs+1
, (3.3)

where base-x representation of i is given by

i = a0 + a1 × x + a2 × x2 + · · · + as × xs. (3.4)

Starting from i = 0, the ith sample of the Halton sequence then becomes
(rx1i , r

x2
i , . . . , r

xn
i ). (3.5)

The Hammersley sequence is used when the total number of samples n is
known a priori; in this case, the ith sample within the Hammersley sequence
is calculated as

(i/n, rx1i , r
x2
i , . . . , r

xn−1
i ). (3.6)

For illustration, figures 1b and 2 show, respectively, the pointsets on the surface
of the sphere (two-sphere) and hypersphere (three-sphere) generated by the low-
discrepancy Hammersley sequence. Observe that, as desired, the points generated
4Standard Monte Carlo methods, using independent random samples, can also be used to develop
multivariate extensions of EMD. However, this would only result in a probabalistic error bound;
thus, any two applications of the algorithm with similar input and parameters would, in general,
yield different decompositions.
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Figure 2. Direction vectors for taking projections of a quaternion signal (with n = 4 components) on
a unit three-sphere generated by using a low-discrepancy Hammersley sequence. For visualization
purposes, the pointset is plotted on three unit two-spheres, defined, respectively, by (a) WXY ,
(b) XYZ and (c) WYZ axes.

by the low-discrepancy method are more uniformly distributed. In figure 2,
ideally, the pointset should be plotted on a three-sphere; however, for visualization
purposes, we can only use three two-spheres.
The Halton and Hammersley sequence-based pointsets are convenient to

generate; however, their performance may decrease with an increase in the
number of dimensions. To alleviate this problem, (t,s) sequences and (t,m,s) nets
(Niederreiter 1992) may be used. Once a suitable set of direction vectors on the
n sphere is generated (by using any of the above methods), projections of the
input signal are calculated along this set; the extrema of such projected signals
are interpolated component-wise to yield the desired multidimensional envelopes
of the signal. The multiple envelope curves, each corresponding to a particular
direction vector, are then averaged to obtain the multivariate signal mean.
Consider a sequence of n-dimensional vectors {v(t)}Tt=1 = {v1(t), v2(t), . . . ,

vn(t)} which represents a multivariate signal with n components, and xθk =
{xk1 , xk2 , . . . , xkn } denoting a set of direction vectors along the directions given
by angles θ k = {θ k1 , θ k2 , . . . , θ k(n−1)} on an (n − 1) sphere. Then, the proposed
multivariate extension of EMD suitable for operating on general nonlinear and
non-stationary n-variate time series is summarized in algorithm 2.
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Algorithm 2. Multivariate extension of EMD.

1. Choose a suitable pointset for sampling on an (n − 1) sphere.
2. Calculate a projection, denoted by pθk (t)}Tt=1, of the input signal {v(t)}Tt=1 along
the direction vector xθk , for all k (the whole set of direction vectors), giving
pθk (t)}Kk=1 as the set of projections.

3. Find the time instants {tθki } corresponding to the maxima of the set of projected
signals pθk (t)}Kk=1.

4. Interpolate [tθki , v(tθki )] to obtain multivariate envelope curves eθk (t)}Kk=1.
5. For a set of K direction vectors, the mean m(t) of the envelope curves is
calculated as

m(t)= 1
K

K∑

k=1
eθk (t). (3.7)

6. Extract the ‘detail’ d(t) using d(t)= x(t)−m(t). If the ‘detail’ d(t) fulfills
the stoppage criterion for a multivariate IMF, apply the above procedure to
x(t)− d(t), otherwise apply it to d(t).

The stoppage criterion for multivariate IMFs is similar to that proposed by
Huang et al. (2003), the difference being that the condition for equality of the
number of extrema and zero crossings is not imposed, as extrema cannot be
properly defined for multivariate signals (Mandic & Goh 2009).

4. Simulations

Simulations were conducted on both a synthetic signal and a real-world
multivariate inertial body motion recording. For all the signals, the low-
discrepancy Hammersley sequence was used to generate a set of K = 512 direction
vectors for taking signal projections.

(a)Mode alignment using multivariate IMFs

Similarly to bivariate (Rilling et al. 2007) and trivariate (Rehman & Mandic
in press) extensions of EMD, we will now show that the proposed n-variate
extension of EMD has the ability to align ‘common scales’ present within
multivariate data. Each ‘common scale’ is manifested in the common oscillatory
modes in all the variates within an n-variate IMF. Such mode alignment property
helps to make use of similar scales in different data sources, and hence, can
be used for data fusion purposes (Mandic et al. 2008). To illustrate the mode
alignment property of the proposed method, we analysed a synthetic hexavariate
time series; each component (variate), shown in the top row of figure 3 (denoted
by U ,V ,W ,X ,Y and Z ), was constructed from a set of four sinusoids. One
sinusoid was made common to all the components, whereas the remaining three
sinusoidal components were combined so that the resulting signal had a common
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Figure 3. Decomposition of a synthetic multivariate signal (U ,V ,W ,X ,Y ,Z ) exhibiting multiple
frequency modes (with f1 = 2Hz, f2 = 8Hz, f3 = 16Hz and f4 = 32Hz) via the proposed multivariate
EMD algorithm. Each IMF carries a single frequency mode, illustrating the alignment of common
scales within different components of a multivariate signal.

frequency mode in each UVWY , UVX and UWXZ components. The proposed
n-variate EMD extension was then applied to the resulting hexavariate signal
yielding multiple IMFs, as shown in figure 3. Observe that the sinusoid common
to all the components of the input is the third IMF, whereas the remaining three
frequency modes were also accurately extracted in the respective IMFs. Notice
the similar separability of the tones as with standard EMD; for more detail, see
Rilling & Flandrin (2008). Such mode alignment cannot be achieved by the real-
valued EMD applied component-wise, as it generally does not yield the same
number of IMFs per component.
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Figure 4. A real-world hexavariate orientation signal and its decomposition via the proposed
multivariate EMD algorithm. Trivariate orientation signals corresponding to the (a) left-hand
movement, and (b) the left ankle movement, are shown in the top row, with selected IMFs below
depicting the common rotational modes.

(b)Rotational modes extraction from real-world signals

To illustrate the ability of the proposed method to extract common modes
within multivariate real-world signals, we next considered body motion data
recorded in a Tai Chi sequence. The data were captured using two inertial
three-dimensional sensors attached to the left hand and the left ankle; these
were combined to form a single hexavariate signal. The common rotational
modes were found within multiple hexavariate IMFs, and the components
corresponding to the hand and the ankle were plotted separately as three-
dimensional plots in figure 4. Observe that each such IMF represents a unique
rotational mode embedded within the original trivariate signal. Unlike when
applying the trivariate EMD method separately on each three-dimensional signal,
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our proposed method guarantees the extraction of common rotational modes,
as the direct analysis of a hexavariate signal results in matched IMFs (both in
number and in frequency scale).

5. Conclusions

An extension of EMD has been proposed to cater for a general class of n-variate
signals. The critical step of envelope interpolation is performed by taking
projections of the multivariate signal along multiple directions on an n sphere.
In addition, the use of low discrepancy pointset gives uniformly distributed
direction vectors on an n sphere and makes the resulting method accurate and
computationally efficient. It has been shown that the proposed method has
the ability to extract common rotational modes across the signal components,
making it suitable, for example, for fusion of information from multiple sources.
Simulations on synthetic and real-world hexavariate data support the analysis.
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