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Spatially5explicit wall5to5wall forest5attributes information is critically important for designing 2 

management strategies resilient to climate5induced uncertainties. Multivariate estimation methods 3 

that link forest attributes and auxiliary variables at full5information locations can be used to estimate 4 

the forest attributes for locations with auxiliary5variables information only. However, trade5offs 5 

between estimation accuracies versus logical consistency among estimated attributes may occur. This 6 

is particularly likely for macroscales (i.e., ≥ 1 Mha) with large forest5attributes variances and wide 7 

spacing between full5information locations. We examined these trade5offs for ~390 Mha of 8 

Canada’s boreal zone using variable5space nearest neighbours imputation versus two modelling 9 

methods (i.e., a system of simultaneous nonlinear models and kriging with external drift). We found 10 

logical consistency among estimated forest attributes (i.e., crown closure, average height and age, 11 

volume per ha, species percentages) using: 1) k ≤ 2 nearest neighbours; or 2) careful model selection 12 

for the modelling methods. Of these logically5consistent methods, kriging with external drift was the 13 

most accurate, but implementing this for a macroscale is computationally more difficult. This extra 14 

cost is justified given the importance of assessing strategies under expected climate changes in 15 

Canada’s boreal forest and in other forest regions. 16 

�	��
���: multivariate imputation, system of models, kriging with external drift, national forest 17 

inventory, multi5source inventory 18 
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19 

Designing resilient landscape strategies for changing environmental conditions has increased the 20 

need for forest5attributes information across very large national landscapes or macroscales 21 

(Boisvenue et al. 2016a). In the case of the ~552 Mha Canadian boreal zone (Brandt 2013), 22 

uncertainties surrounding future climates have raised concerns over possible increases in the 23 

frequency and impacts of natural disturbances (Flannigan et al. 2005; Weed et al. 2013). Also, forest 24 

management goals increasingly include a broader range of ecosystem services, including a wider 25 

variety of forest products, sustaining and providing wildlife habitats, and maintaining water and soil 26 

integrity. These changes require policy makers to evaluate the cumulative effects of macroscale 27 

economic and ecological changes (Lindner et al. 2002). More comprehensive and complex decision 28 

support tools are needed to guide changing forest management and policy; wall5to5wall, spatially529 

explicit forest5attributes information is needed to support these tools (Bernier et al. 2016; Boisvenue 30 

et al. 2016b). 31 

Multivariate estimation methods can predict forest5attributes across a landscape by using 32 

relationships between forest attributes and auxiliary variables at full5information locations to 33 

estimate forest attributes at all other locations with only auxiliary variables. However, for scales ≥ 1 34 

Mha (i.e., macroscales), budgetary constraints limit the number of spatial locations with full535 

information to only a small proportion of the land area. Also, the diversity of ecosystems across this 36 

broad spatial scale is often much greater than for smaller spatial scales. As noted by Moeur and Stage 37 

(1995), confidence in this macroscale wall5to5wall forest5attributes information is crucial for 38 

developing a plausible decision space to assess and design management strategies.  39 

To provide forest5attributes information needed for management, many countries have undertaken a 40 

national forest inventory (NFI) that includes ground sampling coupled with remotely sensed imagery 41 
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(Vidal et al. 2016). Commonly, a systematic sample of ground plots is repeatedly measured over 42 

time, providing a continuous assessment using consistent definitions of many forest attributes 43 

(Tomppo 2010). For macroscale NFIs, including Canada, ground plots may be partially or entirely 44 

replaced by interpreted large5scale photo5plots as a cost5effective option (Magnussen and Russo 45 

2012). Using standardized protocols and viewing stereo5pairs of photos as 35D images, professional 46 

photo5interpreters can measure the crown closure, the species composition based crown closure of 47 

each species, and the average height, but other variables are interpreted based on knowledge of the 48 

area, information from ground plots, relationships among variables, and other information (Avery 49 

and Burkhart 2002; Kershaw et al. 2017). Remotely5sensed (e.g., Landsat) and other available wall550 

to5wall map information are then spatially and temporally matched with the NFI plots in a multi551 

sourced forest inventory (Tomppo et al. 2008a; Nilsson et al. 2016). Overall, this multi5sourced 52 

information can be used to obtain wall5to5wall estimates of forest attributes at one point in time; 53 

these estimates can also be used as inputs into growth and yield models for forecasting different 54 

management scenarios (Bettinger et al. 2005; Boisvenue et al. 2016b). 55 

Alternative methods have been proposed for obtaining wall5to5wall estimates of forest5attributes 56 

using multi5source information. Methods can be univariate, where each forest attribute is separately 57 

estimated, or multivariate where a vector or matrix of forest attributes is simultaneously estimated 58 

(see overviews by Eskelson et al. 2009 and by Chirici et al. 2016). Further, estimation methods can 59 

be model5free, where no model or probability distribution is assumed (i.e., nearest5neighbour 60 

imputation methods in real5 or in variable5space), or model5based, where a model with an assumed 61 

probability distribution (parametric model) or without an assumed probability distribution 62 

(nonparametric model) is explicitly described and used in the estimation process (Fehrmann et al. 63 

2008).  64 
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In terms of model5free methods, Tomppo (1988) used nearest neighbours imputation methods (i.e., 65 

a donor method, termed k5NN by Tomppo) based on proximity in variable5space to estimate each 66 

forest attribute (i.e., univariate). Since then, many papers have used variations of univariate kNN 67 

(see Chirici et al. 2016). Alternatively, Moeur and Stage (1995) used a multivariate imputation 68 

method they termed most similar neighbour (MSN) to estimate a vector of forest attributes 69 

simultaneously based on k=1 neighbour. As with variations using kNN, many papers have used 70 

variations on MSN, termed variable5space nearest neighbour methods (VSNN) in an overview paper 71 

by Eskelson et al. (2009). An extension to doubly5multivariate estimation was demonstrated by 72 

Temesgen et al. (2003) who investigated the use of the multivariate VSNN for estimating a matrix of 73 

species, sizes and stems per ha (i.e., a tree5list) needed to project each forested stand within a forest 74 

inventory. In terms of model5based methods, univariate estimation of each forest attribute has a 75 

very long history, including a wide range of linear and nonlinear, parametric and non5parametric 76 

methods. Multivariate estimation using model5based methods is relatively more recent than 77 

univariate model5based methods, but includes using systems of models (e.g., LeMay 1990; Babcock 78 

et al. 2013).   79 

Regardless of the method used, estimates of forest attributes must be accurate and logically 80 

consistent to obtain the confidence of forest managers (Moeur and Stage 1995; Ohmann and 81 

Gregory 2002). Accuracy indicates the closeness of an estimated attribute value to the real value, 82 

often measured by summaries of differences between actual and estimated values for full583 

information spatial locations (Foody 2002). Logical consistency refers to the preservation of 84 

attribute definitions and logical relationships (Morrison 1995), as measured by the degree of 85 

adherence to logical rules that test for nonsensical values for each estimated attribute and for 86 

impossible combinations among estimated attributes (Kainz 1995). 87 
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Using univariate kNN, optimal accuracy for an estimated forest attribute can be achieved via 88 

choosing an optimal combination of the auxiliary variables, the weights associated with each 89 

auxiliary variable, the distance metric, and the number of neighbours (McRoberts 2009). Logical 90 

consistency for each estimated forest attribute is assured using kNN, since k neighbours are selected 91 

from full5information locations and the measured values for the forest attribute are averaged to 92 

obtain the estimate for each location with auxiliary variables only. Using univariate model5based 93 

methods, careful selection of the model can also ensure logical consistency for each estimated forest 94 

attribute. However, logical inconsistencies among attributes may occur using model5free or model595 

based univariate methods since each forest attribute is separately estimated. Using VSNN with k=1 96 

neighbour selected from full5information locations, logical consistency for each estimated forest 97 

attribute as well as across the vector (or matrix) of attributes is obtained (Moeur and Stage 1995; 98 

Mauro et al. 2015). This may not be the case using VSNN with k>1 neighbour, since the vector of 99 

averages calculated using k donor locations may not be a logically consistent combination of forest 100 

attributes (e.g., species compositions than do not occur in nature). Also, estimation accuracy for 101 

each forest attribute may be smaller using VSNN with k≥1 than univariate kNN, since optimal 102 

selection of: 1) auxiliary variables, weights for each auxiliary variable, the distance metric and the 103 

number of neighbours may not be possible given the dimensionality of the multivariate problem 104 

(Indyk and Mowati 1998); and 2) accuracy compromises must be made among the vector (or matrix) 105 

of estimated forest attributes. Using a multivariate model5based method may provide greater 106 

accuracy than VSNN by: 1) developing a simultaneous system of recursive models that allows forest 107 

attributes estimated using a model earlier in the system to be used in estimating forest attributes later 108 

in the system (Pindyck and Rubinfeld 1981; LeMay 1990); and 2) carefully selecting the auxiliary 109 

variable(s) and the model form for each model of the system. While both optimal accuracy and 110 
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logical consistency are desirable, providing both may be cost5prohibitive for very large spatial scales 111 

or macroscales (e.g., Tomppo and Czaplewski 2002; McRoberts 2008; Tomppo et al. 2008b). 112 

In this research paper, we addressed the following main question: Which multivariate estimation 113 

method provides the greatest accuracy for a macroscale problem, while maintaining logical 114 

consistency among forest attributes? To investigate this, we compared three multivariate estimation 115 

methods using a ~390 Mha sub5area of Canada’s boreal forest. For this area, high5resolution 116 

multivariate maps of forest attributes needed for macroscale strategic analysis are currently lacking 117 

or are outdated (Beaudoin et al 2014). Specifically, we compared two model5based approaches, a 118 

system of simultaneous nonlinear models (SNLM) and kriging with external drift (KED) with the 119 

model5free VSNN method to estimate: crown closure percent (CC), average height of dominant 120 

trees (Ht), average age of dominant trees (Age), volume per ha for all trees (Vol), and tree species 121 

percentages. These attributes describe the current forest and are often the input variables used in 122 

stand5level growth models (Bokalo et al. 2010) that underlie many decision5support tools. Given 123 

prior research results for smaller spatial scales, macroscale mapping issues raised by Beaudoin et al. 124 

(2014), and basic principles underlying these three methods, we hypothesized that: 1) VSNN would 125 

be more accurate, since it is model5free; 2) using VSNN with k>1 would increase accuracy, but may 126 

adversely affect logical consistency; 3) carefully designing an SNLM would ensure logical consistency 127 

of forest attributes, while obtaining accurate estimates of each attribute; and 4) greater accuracy 128 

could be achieved by allowing the parameters of the SNLM to vary spatially (KED method). Based 129 

on our results, we selected one method and produced multivariate maps (90 m) required for 130 

macroscale strategic analysis of Canada’s boreal forest management areas within which forest 131 

companies operate (to view these maps see doi: 10.14288/1.0354319). 132 
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Study area 134 

The boreal zone of Canada (hereafter, referred to as “boreal”) has a total area of ~ 552 M ha, 135 

including ~270 Mha of forest (Brandt et al. 2013). Large areas of pure or mixed coniferous tree 136 

species occur, including white spruce (Picea glauca (Moench) Voss), black spruce (Picea mariana (Mill.) 137 

BSP), tamarack (Larix laricina (Du Roi) K. Koch), balsam fir (Abies balsamea (L.) Mill.), jack pine 138 

(Pinus banksiana Lamb.), and lodgepole pine (Pinus contorta Dougl. var latifolia Engelm.). Deciduous 139 

species, particularly aspen (Populus tremuloides Michx.), balsam poplar (Populus balsamifera L.), and 140 

paper birch (Betula papyrifera Marsh.), occur in either pure stands or in mixtures with conifers (Brandt 141 

2013). The boreal is bounded in the north by tundra within the arctic zone, in the south by 142 

grasslands or temperate forests, in the west by the Rocky Mountains, and in the east by the maritime 143 

forests near the Atlantic Ocean. For this study, we confined our study area to south of 60° N, since 144 

tree density becomes sparse as the forest transitions to tundra north of this limit (Fig. 1). Further, 145 

phenological differences between satellite images are more pronounced at these higher latitudes 146 

complicating image acquisition and processing (Banskota et al. 2014). Using this northern boundary 147 

and excluding major lakes, ~390 Mha remained in the study area. 148 

Imagery and other auxiliary data 149 

Multivariate estimation methods rely on a suite of X5 (aka, predictor or auxiliary) variables assembled 150 

from multiple data sources. For this study, 38 possible X5variables were derived from surface 151 

reflectance imagery, climate, topographic and other data assembled for the study area (Table 1). 152 

Surface reflectance imagery for the boreal forest was retrieved from the Landsat Climate Data 153 

Record (USGS Earth Explorer 2013), a Landsat55 (for scenes selected before 2000 and after 2003) 154 

or 7 (between 2000 and 2003) level 25A product generated by the Landsat Ecosystem Disturbance 155 

Page 8 of 47

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



D
raft

 

9 

 

Adaptive Processing System (Masek et al. 2006). These images provided wall5to5wall, orthorectified, 156 

maximally cloud5free coverage at a 30 m resolution. Included with this product were masks for 157 

clouds, cloud shadows, water and ice (Zhu and Woodcock 2012). A total of 1 004 images between 158 

1987 and 2010 were acquired to temporally match the varying acquisition years of the NFI photo5159 

plot data (described later). Scene selection was set to the peak growing season (mid5June to August) 160 

to reduce phenological differences while recognizing that small differences would be unavoidable 161 

over a national geographic extent (Tipton et al. 2010). Images were then masked to remove clouds, 162 

shadows and waterbodies. The resulting processed surface reflectance images provided the 163 

reflectance measures and vegetation indices described in Table 1. 164 

Climate, topographic, and other variables were also considered as possible X5variables (Table 1).  165 

Topographic variables were computed using hydrology tools in ArcGIS v 10.2, including elevation 166 

(Elv), slope (Slp), and aspect (Asp) along with 11 interaction terms recommended by Stage and Salas 167 

(2007), and CTI (compound topographic index; a variable describing topographic position). The 168 

final X5variable was a raster layer of the presence or absence of saturated soils, based on a land cover 169 

layer of wetlands and poorly drained soils extracted from the Natural Resource Canada CanVec+ 170 

dataset (Geogratis 2013). All layers were resampled to the 30 m pixels to match the surface 171 

reflectance imagery using cubic convolution. 172 

Canada’s National Forest Inventory photo5plots 173 

The aerial photo5plots of Canada’s NFI (see https://nfi.nfis.org/) provided the common forest 174 

attributes information (i.e., the Y5variables) used in this study. Although ground plots are available, 175 

they were measured on only a subset (1 in 10) of photo5plot locations (Gillis et al. 2005). Using 20 176 

km by 20 km grid spacing across the boreal, a stereo5photo pair (color, 1:10, 000 or 1:20 000) was 177 

acquired at each grid intersection. Professional photo5interpreters then used 3D viewing to stratify 178 
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the 2 km by 2 km photo5plot into many irregularly5shaped polygons according to the harmonized 179 

definitions of Canada’s NFI Land5Cover Classification System (Gillis et al. 2005). They classified 180 

each polygon as vegetated or non5vegetated (i.e., waterbodies, snow, rock, etc.) land5cover classes. 181 

Non5vegetated polygons were not further considered in this study. Since these areas have been 182 

mapped across Canada in the CanVec+ dataset, they can be masked out of estimated forest 183 

attributes maps. Within the study area, 3 298 photo5plots were classified as vegetated and had cloud5184 

free Landsat5TM/ETM imagery matching the photo5plot acquisition time (Fig. 1). Vegetated 185 

polygons had been further classified by crown closure percent as treed (≥ 10 %) or non5treed 186 

(<10%) based on the FAO (2015) definition, and a series of forest attributes were photo5interpreted 187 

for each treed polygon. A subset of these forest attributes was used as the Y5variables in this study 188 

(Table 2). To reduce the number of Y5variables, species percentages were aggregated into species 189 

groups corresponding with those commonly used in stand5level growth and yield models. 190 

Spatial matching of multi5source data 191 

All layers representing the X5 and Y5variables were spatially and temporally registered (i.e., matched). 192 

A 90 m by 90 m pixel window was extracted from the centroid of each irregularly5shaped polygon 193 

(Fig. 1). Extracting one pixel window avoided within5polygon dependencies and a larger pixel size 194 

mitigated spatial registration issues. Using the centroid avoided polygon edge effects; any 90 m by 90 195 

m pixel window not entirely contained within a polygon boundary was excluded. Then, values for 196 

each X5 and Y5variable were extracted for each pixel. A total of 78 453 full5information locations 197 

with both X5 and Y5 variables was obtained.  198 

Data splitting 199 

The full5information locations data were split into a reference (aka, donor for VSNN or model5200 

fitting for SNLM and KED) versus a target (aka, test or validation) dataset as used in other studies 201 
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(e.g., LeMay and Temesgen 2005; Hall et al. 2006). Although Snee (1977) recommended using n5way 202 

validation, Roecker (1991) found marginal improvement over random splitting in the variable5203 

selection setting. Data were split at the photo5plot level to better mimic the multivariate estimation 204 

applied to the entire land area (i.e., in application, the reference dataset would contain all full5205 

information locations in a photo5plot, but the target dataset would include only spatial locations 206 

outside of photo5plots). The resulting validation dataset had ~20% of the full5information locations 207 

(����� = 15 025) and the reference dataset contained the remaining ~80% (���� = 63 428). 208 

Multivariate estimation methods 209 

����	�

�
��������	
��
�
����	��
�
�	��
210 

For the first method, a system of simultaneous nonlinear models (SNLM; aka simultaneous system 211 

of nonlinear equations; see Judge et al. 1985) representing the relationships between the X5 and Y5212 

variables was fitted using the reference dataset (i.e., full5information locations) and this was applied 213 

to the target dataset (i.e., locations with auxiliary variables only) following Ver Hoef and Temesgen 214 

(2013). Using nonlinear model forms can better reflect known biological relationships (Littell et al. 215 

2006) and careful choices of these forms can ensure logical consistency for each Y5variable of the 216 

system. Then, using a system of models allows for different X5variables in each model of the system. 217 

Variables that do not impact the estimated conditional mean of a particular Y5variable (i.e., the 218 

estimated Y5variable given the particular set of X5variable values) can be dropped from the model. 219 

This allows for more accurate, parsimonious models relative to using a fixed set of X5variables for 220 

all Y5variables. Further, a system of models allows for across5model constraints to ensure logical 221 

consistency across Y5variables (Babcock et al. 2013). Finally, allowing for a Y5variable of one model 222 

to appear as a predictor variable in another model of a simultaneous equations system can improve 223 

both accuracy and logical consistency (LeMay 1990; Gujarati et al. 2011). We specifically used a 224 
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recursive system of simultaneous nonlinear models, thus enabling an estimated Y5variable to be used 225 

as a predictor variable for models later in the ordered system of models (i.e., an instrumental 226 

variables (IV) method; see Pindyck and Rubinfeld 1981; Judge et al. 1985; Gujarati et al. 2011)  227 

The SNLM was carefully developed as a logically ordered, recursive system of models to reflect 228 

logical, biological relationships for each Y5variable and across Y5variables. Specifically, the SNLM 229 

preserved the [0,100] limits of CC and species percentages, the additivity of species percentages 230 

(must sum to 100%), and accounted for the interdependencies of CC, Age, Ht, and Vol. The first 231 

model was the CC model using a logistic model form that constrains estimates within [0,100]. The 232 

estimated CC value (		
 ) was then used to indicate if a location can be considered as treed (		
  ≥ 10 233 

%) or non5treed, since all non5treed locations have logical zero values for estimated species 234 

percentages, Age, Ht, and Vol. 		
  was also available as a possible predictor variable (i.e., using an 235 

IV approach) for later models. The species percentages model was next, again using a logistic model 236 

form to constrain all estimated percentages to [0,100]. Age, Ht, and finally Vol models followed 237 

using nonlinear models to ensure all estimated values were >0, and allowing Y5variables earlier in the 238 

system to be possible predictor variables. Details for each model of the system are presented next.  239 

As noted earlier, the CC model was the first model of the SNLM. For this, we used a logistic model:
240 

[1] 
��

�� 	= 	�� =	 ���	(��)


�	���	(��)	      with  		�� = log � ��

���� = 	 � + "#$% +	&�
 241 

where '� is the CC for the ith observation expressed as a percent; �� is CC expressed as a proportion; 242 

�� is the log odds ratio (i.e., logit);  � is the constant parameter (i.e., intercept of the logit model);  243 

" = ( 
, …  *)′ is a vector of l parameters associated with the $%	vector of predictor variables; 244 

and	&� is the error term. This model was fit using all full5information locations of the reference 245 

dataset and the SAS (v9.4) LOGISTIC procedure. The selection of X5variables was performed using 246 
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the branch5and5bound algorithm of Furnival and Wilson (1974) to find the model with the smallest 247 

AIC, but giving preference to variables that exploit known biological relationships with the Y5248 

variables. The preference variables were AlbY and SS to ensure that crown closure changes with 249 

latitude (i.e., should decrease with increasing latitude; Sirois 1992) and changes for saturated versus 250 

not saturated soils (i.e., should be lower for saturated soils; Glebov and Korzukhin 1992). 251 

For the vector of species percentages model of the SNLM, a generalized version of Eq. 1 to a 252 

multinomial logistic model was used, where species percentages were considered proportions (e.g., 253 

Thompson 1987). 254 

[2] 
��,

�� = ��- =	 ���	(��,)

∑ ���	(��,)/
,01

	  with  ��- =	 log 2��,��/3 =  �- + "4#$% +	&�- 255 

where '�- is the percentage of the 5th species group (j=1…5) for the ith observation and ∑ '�-678
-7
 =256 

100; ��- is species percentage expressed as a proportion; ��- is the log odds ratio for each species 257 

group relative to the baseline species group (J=5), meaning 	��8 = log(1) = 0; and &�- is the error 258 

term. This model ensured that all estimated species percentages were in the [0,100] interval and the 259 

sum of all the species groups were equal to 100 for each observation. This model was fitted using 260 

the subset of the reference dataset considered treed based on 		
  using Eq. [1], and using the SAS 261 

(v9.4) LOGISTIC procedure with the Newton5Raphson maximum likelihood algorithm. X5variables 262 

were selected following the same method as for the CC model. Specifically, SS, MAP, and Slp were 263 

the preference variables, since SS would be expected to relate to the presence of black spruce (Sb) 264 

which is commonly associated with wetland areas (i.e., saturated soils, Brandt 2009), and MAP and 265 

Slp are important abiotic drivers of species composition (Soja et al. 2007).�266 

The remaining models for Age, Ht and Vol were fit as a system of simultaneous nonlinear models 267 

using the subset of locations in the reference dataset considered treed based on 		
 . For Age and Ht, 268 

Page 13 of 47

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



D
raft

 

14 

 

we chose an asymptotic nonlinear model to limit the maximum values to logical biological limits, 269 

while ensuring non5negative values. 270 

[3] '� = ;

����	(<�)+ &�   with   =� =	 � + "#$% + >#?@% 271 

where '� is the Ht or Age for the ith observation in the reference dataset; α is the maximum possible 272 

estimated value (i.e., asymptote); >#is a vector of parameters associated with the ?@%, estimated Y5273 

variables from models earlier in the recursive system; and	εC is the error. 274 

A Chapman5Richards (C5R) model (Richards 1959) was selected for Vol, because this model form 275 

has been widely applied in forestry due to its flexibility, accuracy and biologically meaningful 276 

properties (e.g., Zhao5gang and Feng5ri 2003). However, we used DE
 
instead of FGHI, since it more 277 

directly relates to Vol (e.g., Garcia 2003). 278 

[4] '� =	J�K1 − MNO	DE
 %P
1

1QR +	&�  with  J� = (S� + F#$% + >#?@%	)  279 

where '� is the Vol for the ith observation in the reference dataset; J� is the asymptote or maximum 280 

Vol; M is a shape parameter; T is a parameter associated with DE
 %; U is also a shape parameter; 281 

F = (S
, … S*)′ is a vector of l parameters associated with the $%	vector of predictor variables; >#is 282 

a vector of parameters associated with the ?@% estimated Y5variables from models earlier in the 283 

recursive system (e.g., CC, species percentage, and Age); and	εC is the error. The asymptote 284 

parameter was allowed to vary with X5variables and previously estimated Y5variables, since this 285 

represents the maximum potential volume at a location and varies with site factors and genetics 286 

(Stage and Salas 2007). 287 

Although the models for Age, Ht, and Vol were fitted as a system, the selection of X5variables was 288 

first performed for each model of the system separately. Linearized versions of Age and Ht were 289 

obtained by setting the asymptotes (the	J parameters) to the maximal values in the reference dataset 290 
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(Table 2). A maximum R2 improvement algorithm (e.g., MAXR in REG procedure) was then used 291 

with preference for variables that exploit known biological relationships with the Y5variables. Given 292 

that BW, B8 and B7 spectral wavelengths are associated with forest disturbance (Key and Benson 293 

2006) and shadowing effects indicative of older stand structures (Kuusinen et al. 2014), these X5294 

variables were used as preference variables for Age. For the Ht model, BW was given preference 295 

given the sensitivity of vegetation structure to this spectral wavelength (Hall et al. 2006). For the Vol 296 

model, a linearized version of the C5R model was obtained by fixing the	M and m parameters to 1 297 

and 0, respectively. Following the selection of X5variables, the system was fit using FIML 298 

implemented using PROC MODEL of SAS (v9.4). No error variance models were added since there 299 

was no evidence of heteroscedastic error variances in diagnostic graphs.  300 

�������
����
	��	����
�����
301 

For kriging with external drift (KED), the fitted SNLM was localized by estimating random effects 302 

using the reference data (i.e., representing full5information locations) and then spatially interpolating 303 

these random effects for target locations (i.e., simulating locations with auxiliary variables only; 304 

Schabenberger and Gotway 2005). For KED using a linear model, often the error term is allowed to 305 

spatially vary (i.e., residual kriging), which is equivalent to adding in a spatially5varying intercept 306 

(Littell et al. 2006; Lloyd 2007). However, each model of the SNLM system has a zero y5intercept 307 

(i.e., no y5intercept). Allowing a spatially5varying error term could result in estimated percentages 308 

outside of the [0,100] interval for Eq. 1 and 2, and in negative estimates for Y5variables of Eq. 3 and 309 

4, thereby affecting logical consistency. Instead, we modified one or more parameters of the model 310 

of the SNLM to be random parameters (Schabenberger and Gotway 2005; Littell et al. 2006), as 311 

used by Merz and Bloschl (2003). 312 

After preliminary investigations, we included a spatially5varying  � in the CC model (Eq. 1): 313 
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[5] 
��

�� 	= 	�� =	 ���	(��)


�	���	(��)	      with  		�� = log � ��

���� = 	 � +	X� + "#$% +	&�
 314 

where X�~Z(0, [) is the spatially5varying parameter estimated for each photo5plot; and all other 315 

parameters and variables were previously defined for Eq. 1. This was repeated for the species 316 

percentages model (Eq. 2). For Ht and Age (Eq. 3) and for Vol (Eq. 4), we introduced random 317 

effects as follows: 318 

[6] '� = ;

����	(<��	\�)+ &�    319 

[7] '� =	J�K1 − MNO?@%P 1
1QR +	&�   with  J� = (S� + F#$% + >#?@% + X�)  320 

To estimate X�, we used the SAS (v9.4) NLMIXED procedure for each model separately, where all 321 

other parameters were retained from the previous fit of the SNLM. To apply the spatially5explicit 322 

models to the target dataset, the simple kriging (SK) predictor was used to spatially predict X] for 323 

each spatial location (^) based on the a spatial neighbourhood (Schabenberger and Gotway 2005):  324 

[8] X̂` = ∑ a`X� 	bcde�7
   325 

The a` were estimated from a model of the semi5variogram of X�. Several semi5variogram models 326 

were fit using ArcGIS v10.2; these were visually compared to the empirical semi5variogram and one 327 

model was selected. This was repeated for each of eight cardinal directions (i.e., N, NE, E, SE, S, 328 

SW, W, and NW) to check if the assumed stationarity was met with regards to direction 329 

(Schabenberger and Gotway 2002). 330 

�������	
����	
�	��	��
�	����
��
	�������
�
331 

Unlike the other two methods, VSNN is a model5free method (see Eskelson et al. 2009). The X5332 

variables are used to determine the variable5space distances between reference locations and a target 333 

location; the closest neighbours (i.e., k≥1) among the reference locations are used as donors of the 334 

Y5variable information for the target location. As k increases, the variability of the estimated Y5335 

Page 16 of 47

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



D
raft

 

17 

 

variables across the target dataset (i.e., the spatial extent if used in mapping) decreases as the 336 

estimated Y5variables for each spatial location approach the vector of means using the entire 337 

reference dataset. Two steps were again used, following the use of VSNN by others (e.g., Moisen 338 

and Frescino 2002; Halperin et al. 2016). First, univariate kNN was used to estimate CC for 339 

locations in the target dataset. Then, 		
  (estimated) was used to divide the target dataset into treed 340 

versus non5treed locations as with SNLM and KED. For non5treed locations, all other Y5variables 341 

were estimated as zero for the target dataset. For treed locations, VSNN was used to estimate the 342 

remaining Y5variables for each location in the target dataset using only treed locations of the 343 

reference dataset. The X5variables used for the SNLM and KED methods were also used for the 344 

VSNN method. All X5variables were standardized (i.e., subtracted the mean and divided by standard 345 

deviation) to remove the effects of different measurement scales as in other studies (e.g., LeMay and 346 

Temesgen 2005). Although other distance metrics could be used to select neighbours in multivariate 347 

variable5space (see Eskelson et al. 2009), we used the distance metric proposed by Moeur and Stage 348 

(1995) based on canonical correlation analysis (CCA) between Y5 and X5variables, as used by 349 

Beaudoin et al. (2014). Unlike Moeur and Stage, we varied k from 1 to 15 and used weighted 350 

averages (i.e., inverse5distance in variable5space) of Y5variables from selected neighbours. The R 351 

package YaImpute (Crookston and Finley 2008) was used to implement the VSNN methods. 352 

Comparisons 353 

The accuracy and logical consistency of the three multivariate estimation methods were compared 354 

using the target dataset. For accuracy, reality was defined by the actual Y5variables of the target 355 

dataset. For logical consistency, reality was defined using other non5data driven information to 356 

create a rule5based set of criteria, as recommended by Kainz (1995). For CC, Ht, Age, and Vol, we 357 

tested the null hypothesis Df:	hi 	= 	f (i.e., vector of mean differences between actual and 358 
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estimated forest attributes is a zero vector) against the alternative hypothesis that at least one mean 359 

difference is not equal to zero. For this, we used Hotelling’s paired T2 statistic (Hotelling 1951), a 360 

multivariate generalization of Student’s paired t5statistic. 361 

[9] 						jklmNn	op =	�����?q#ri�
?q 362 

where ����� is the number of full5information locations in the target dataset;	?q 	is the mean vector of 363 

differences between actual and estimated values for the Y5variables; and  ri is the estimated 364 

variance5covariance matrix of these differences. Other accuracy metrics separately calculated for CC, 365 

Ht, Age and Vol using the actual ('s ) versus estimated values	('st ) for the target dataset were: 366 

��� Root Mean Squared Prediction Error (RMSPE) defined as: 367 

[10]  RMSPE = u∑ (�v��vt )w
bxycz

bxycz
`7
  368 

��� Percent RMSPE defined as:  369 

[11]  % RMSPE =	100	({|}~��� ) 370 

where '� is the mean of actual values for forest attribute Y in the target dataset. 371 

��� Mean difference (MD) between actual and estimated Y5variable values, defined as: 372 

[12]               MD =  



bxycz∑ K'̀ − '̀t Pbxycz
`7
 . 373 

��� Pearson’s correlation coefficient between '̀  and '̀t . 374 

To indicate accuracy for extremes of each Y5variable, RMSPE and MD were also calculated using 375 

data representing the 0 to 10th and then the 90 to 100th percentiles of the range of actual values for 376 

each Y5variable in the target dataset. Accuracy of species percentages was assessed by a confusion 377 

matrix of broad species classes. 378 

The rules applied to assess adherence to logical consistency were: 1) estimated percent crown closure 379 

and all species percentages must be within the [0,100] interval; 2) estimated species percentages must 380 
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sum to 100; 3) estimated Ht, Age, and Vol values must be non5negative; 4) across5variables ratios 381 

must be within bounds of biological reality; and 5) species percentages must be possible based on 382 

ecological information. Rules 1, 2 and 3 were met given the steps described in the methods section. 383 

Adherence to Rule 4 was not assured using any of the three methods. Although a variety of 384 

relationships across Y5variables could be evaluated for Rule 4, we used the ratio of ���
  to S�N
  = 385 

�S�I to look for across5variable inconsistencies, since this growth measure is often used in forest 386 

management planning. The cumulative distributions of the actual and estimated MAI values in the 387 

target dataset were compared.  388 

To evaluate Rule 5, we used ternary diagrams of actual and estimated species percentages to visually 389 

check for illogical combinations. Ternary diagrams map the frequency of percent variables in a two5390 

dimensional space on an equilateral triangle (van den Boogaart and Tolosana5Delgado 2013). Points 391 

closer to a vertex of the equilateral triangle represent a larger percentage of the species attributed to 392 

that vertex. These species percentages ternary diagrams were obtained for two ecological 393 

communities (photo5interpreted land areas), namely: 1) lowlands or areas saturated with water long 394 

enough to promote hydrophilic vegetation; and 2) uplands, defined as non5wetland ecosystems. 395 

�	�����
396 

SNLM and KED models 397 

Many combinations of spectral, climate, topographical and other X5variables were evaluated. Based 398 

on the AIC values, three models for CC and species percentages and two systems of Age, Ht, and 399 

Vol models were initially selected (see Table S1 in Supplementary Materials). The CC model with B5, 400 

NSI, NDMI, PPT̀ �, AlbY and SS resulted in the smallest AIC. The species percentage model using 401 

SS, NDMI, B5, MT̀ �, CMD, MAP, Elv and Slp was selected. For the system of Age, Ht and Vol 402 
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models, the previously estimated CC
  (i.e., log(CC
 )) was selected for Age and Ht models, Pȷt  and Aw
  403 

were selected for the Ht model, and Ht
 was selected for the Vol model. Also, allowing the 404 

asymptote (J�) of the Vol model to change with SS resulted in a smaller AIC for the system. 405 

For KED, a random parameter was added to each model of the SNLM as described earlier (Eqs. 55406 

7). The estimated random parameter variances for CC, Aw , Pj, Sb, Sw, Age, Ht and Vol were 0.11, 407 

1.14, 7.38, 2.75, 3.53, 0.31, 0.36, and 79 292.93, respectively. Empirical semi5variograms were 408 

constructed using the estimates of random effects for each random parameter by location (EBLUP; 409 

Schabenberger and Gotway 2005). We found no evidence of directional dependence. The Gaussian 410 

semi5variogram model for species percentages and the exponential semi5variogram model for the 411 

remaining Y5variables fit the data (Supplementary Fig. S1); spatial correlation was found up to 71 km 412 

for the species percentages and up to 300 km and beyond for the other Y5variables. Overall, the 413 

evidence indicated that KED should improve the accuracy relative to the SNLM, particularly for 414 

CC, Ht, Age and Vol. 415 

Comparisons 416 

��������
417 

Applying the selected SNLM to the target dataset (i.e., validation data) resulted in an average 418 

%RMSPE across CC, Ht, Age and Vol of 72% and produced a mean vector of differences nearly 419 

equal to a zero vector (paired T2=8.09, p=0.08, Fig. 2). RMSPE values for CC, Ht, Age and Vol 420 

were 26.4%, 7.4 m, 43.1 years and 76.8 m3 ha51, and MD values were 52.0%, 1.2 m, 53.6 years, and 5421 

0.1 m3 ha51, respectively (Table 3). Estimated values were more accurate for the 0 to 10th percentiles 422 

of actual CC, Ht, Age and Vol than for the 90th to 100th percentiles. Correlations between actual and 423 

estimated Y5variables ranged from 0.49 for Age to 0.56 for Ht (Fig. 3). The overall classification 424 

accuracy for the nine species groups was 48% (Table 4), with smaller accuracies for more mixed 425 
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species groups (C5Ot, CD and DC) compared to the more homogenous species groups (C5Sb, D5426 

Aw and NT). In general, coniferous species groups were primarily confused with other coniferous 427 

species groups, while the mixed species groups (CD and DC) and D5Aw were primarily confused 428 

with each other. The NT group was confused predominantly with the C5Sb group.  429 

The KED method improved the accuracy relative to SNLM for CC, Ht, Age and Vol (Table 3) and 430 

for species percentages (Table 4). The vector of mean differences was also not different from a zero 431 

vector (paired T2=7.72, p =0.10, Fig. 2). For CC, Ht, Age and Vol, the KED method resulted in the 432 

smallest RMSPE among the three methods tested; however, the MD was slightly larger for CC and 433 

Vol relative to the SNLM method (Table 3). KED also resulted in greater accuracies at the extremes 434 

of the 0 to 10th and the 90th to 100th percentiles, with the exception of Age where accuracies were 435 

greater using SNLM at the smaller percentile range and for VSNN at the upper percentile range. 436 

Correlations between actual and estimated values were largest using KED (Fig. 3). Some species 437 

percentages accuracies were also slightly greater using the KED method, notably for C5Pj, C5Sb, C5438 

Sw, and D5Aw species groups (Table 4). However, classification confusion among species groups 439 

was similar to that using SNLM. 440 

With VSNN, k greatly affected the average %RMSPE across CC, Ht, Age and Vol, ranging from 441 

64% for k =15 to 83% for k =1 (Fig. 2). Using k = 1 or 2 resulted in vectors of mean differences 442 

close to a zero vector (paired T2 = 0.22 with p=0.99 and 7.0 with and p=0.13, respectively). 443 

However, for k > 2, there was at least one mean difference that was significantly different from zero 444 

(T2 > 15.01, p <0.0001, Fig. 2). Based on these results, k = 2 was selected for most comparisons to 445 

the other two methods. Using k = 2, RMSPE values for CC, Ht, Age and Vol were larger than the 446 

other methods (Table 3). However, the MD for CC was smaller than either SNLM or KED. Also, 447 

estimates at extremes were more accurate using VSNN for Age, but not for other Y5variables. 448 
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Correlations between actual and estimated CC, Ht, Age and Vol were the smallest among the three 449 

methods, ranging from 0.39 for CC to 0.52 for Ht (Fig. 3). Similarly, the overall classification 450 

accuracy for species groups was the smallest (Table 4). This was particularly true for NT, resulting 451 

from smaller accuracies at the 0 to 10th percentile of CC, which did not improve with increasing k 452 

(Table 3). However, VSNN with k =2 produced the greatest accuracy for mixed species, namely, 453 

CD and DC. 454 

Overall, KED was the most accurate of the methods tested, for estimating CC, Ht, Age and Vol and 455 

species percentages. The resulting multivariate maps using KED (Fig. 4; see also doi: 456 

10.14288/1.0354319) can be used in decision support analyses and also illustrate the logical 457 

consistencies among the estimated forest attributes. For example, the inset maps show taller heights 458 

but younger ages nearer the southern boundary, indicating higher site productivities given the more 459 

favorable climate for tree growth. Across the Y5variables, Age was one of the most challenging to 460 

estimate using SNLM or KED. For the VSNN methods, the most challenging Y variable was CC, 461 

especially for the extremes of the 0 to 10th and 90th to 100th percentiles. 462 

 
�����
�
�����	���
463 

All three methods were designed to meet the criteria described in Rules 1 to 3. To assess Rule 4, we 464 

examined �S�I (Supplementary Fig. S2). All three methods were able to estimate cumulative MAI 465 

distributions that were similar in shape to the target dataset and values were within biological 466 

expectations for the boreal (range = nearly 0.0 to 5.0 m3 ha51 yr51 as represented in the reference 467 

dataset). However, the VSNN methods using large k values resulted in fewer estimated small and 468 

large MAI values representing a loss in variability relative to actual distributions. For Rule 5, under 469 

both lowland and upland communities, SNLM, KED and VSNN with k =2 resulted in species 470 

assemblages similar to those actual in the target dataset (Fig 5). In wetland communities, the target 471 
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dataset had a large frequency of Sb groupings, which was estimated in all of the methods; however, 472 

for the VSNN methods the frequency of mixed species grouping was larger than the SNLM or 473 

KED (Table 4 and Fig. 5). This effect was greater for VSNN with k =15 than k =2. 474 

!�������
�
475 

Interest in designing resilient landscape strategies for changing environmental conditions have 476 

driven policy makers to use decision support tools that are based on wall5to5wall forest5attributes 477 

information. In this study, we compared two model5based (SNLM and KED) and one model5free 478 

(VSNN) multivariate estimation methods to examine possible trade5offs between accuracy and 479 

logical consistency for forest attributes across a macroscale. A cautionary note is that we did not 480 

compare all possible multivariate estimation methods, nor all variations of methods we did test.  481 

Using the model5free VSNN with k > 2 did provide more accurate results than using SNLM for CC, 482 

Ht, Age and Vol. Then, increasing k to 15 (i.e., greater smoothing) provided more accurate results 483 

for Ht, Age and Vol relative to KED. These results indicated that using the model5free approach 484 

can provide more accurate results as anticipated. Also, increasing k in univariate kNN has been 485 

shown to decrease the RMSPE until an optimum k is reached (McRoberts 2009). However, as k 486 

increased, the range of estimated CC values shrunk, resulting in less accurate estimates for the 0 to 487 

10th percentile of CC in particular. This is particularly important since these small CC percentiles are 488 

used to define non5treed areas. Also, using VSNN with k > 2 compressed the range of MAI values 489 

(Supplementary Fig. S2), underestimating areas of both very low and very high productivity forests, 490 

greatly impacting macroscale decision support analyses. Further, using VSNN with larger k5values 491 

resulted in estimated species compositions that included more species. This would lead to an 492 

overestimate of forest area with large species diversity, affecting estimates of ecological services 493 

from forests. At the extreme using very large k5values, all areas would be estimated to have all 494 
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species which could be biologically impossible. Further, the ability to estimate rare species and to 495 

assess forest fire risks that change with species composition (Bernier et al. 2016) would be greatly 496 

curtailed. Overall, VSNN with k ≤ 2 was needed to meet logical consistency rules, but this adversely 497 

affected the accuracies. 498 

We found that an SNLM can be carefully designed to meet logical consistency rules, while remaining 499 

competitive with VSNN with regards to accuracy. Knowledge of the system being modeled is 500 

required, since careful selection of model forms and predictor variables is needed to obtain logically 501 

consistent predictions. Haara and Kangas (2012) showed that model5based methods result in greater 502 

accuracies relative to VSNN when the specified model was correct. Further, more accurate estimates 503 

were obtained for the lower and upper limits of some forest attributes using SNLM versus VSNN. 504 

This is particularly important for estimated CC, given its use in delineating treed versus non5treed 505 

areas in forest monitoring frameworks (Halperin et al. 2016). Similar results were obtained by 506 

Bollandsås et al. (2013) who showed that using a system of models method to estimate diameter 507 

percentiles led to greater accuracies for smaller percentiles relative to a VSNN method. As in this 508 

study, Hall et al. (2006) demonstrated the use of a recursive system of models to estimate above 509 

ground biomass and volume using estimates of CC and Ht from earlier models in the system. They 510 

found that nonlinear models were accurate given that forest attributes tend to have a nonlinear 511 

spectral reflectance pattern which can be explained by the influence of canopy development, amount 512 

of shadow within the canopy, and forest understory effects on spectral response. However, they 513 

cautioned the use of locally5fitted models for larger spatial scales. Räty and Kangas (2008) further 514 

emphasized the need to allow parameters to vary for local conditions. 515 

To allow for locally varying conditions, we used KED and allowed some parameters of the SNLM 516 

to spatially vary, resulting in more accurate estimates relative to SNLM. Other researchers showed 517 
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results similar to our study with accuracy improvements via spatial localization using kriging without 518 

(i.e., no predictor variables) and with external drift (Räty and Kangas 2012; Babcock et al. 2013). For 519 

our study, we calculated the random effects for each spatial varying parameter at a 20 km spatial 520 

scale reflecting distances between NFI photo5plots. This removed abrupt changes at smaller spatial 521 

lags noted by Tuominen et al (2003). We found spatial correlations up to 300 km for some forest 522 

attributes in our study area (Supplementary Fig. S1). In their study, Liang et al. (2016) mapped global 523 

forest productivity and found spatial correlation over thousands of kilometers using residual errors. 524 

We found more limited spatial correlation ranges for species percentages (Supplementary Fig. S1) 525 

and, correspondingly, the accuracy of KED was similar to SNLM for these attributes. Of the 526 

logically consistent methods we tested, KED gave the best results. Overall, accuracies for these 527 

estimated forest attributes were similar to other studies using multi5sourced inventories (e.g., 528 

Ohmann and Gregory 2002; Hall et al. 2006; Beaudoin et al. 2014) and for macroscale studies 529 

looking to develop global5scale maps of forest attributes (Simard et al. 2011).  530 

"
������
��
531 

Both accuracy and logical consistency of estimated forest attributes are critical for reliable strategic 532 

forest analyses. Given the extensive land area of a macroscale, and the extremely limited accessibility 533 

of much of Canada’s forests, the photo5plots used in this study provided a viable option for 534 

providing the information needed in decision support systems. Of the methods we tested, KED 535 

provided both accuracy and logical consistency if based on a carefully designed SNLM. While 536 

VSNN methods with larger k values can be more accurate, we found logical inconsistencies for k > 537 

2 that would affect strategic analyses using this information. Overall, KED is our recommended 538 

method for providing the forest attribute information needed for decision support systems.  539 
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Table 1 Characteristics of the X5variables used as possible predictors for estimating multiple forest 786 

attributes. Values were averaged for the 90 m pixel when the spatial resolution was < 90 m. 787 

0��������	
 !	�������
�

�������

�	�
����
�



��	�����
   
Landsat bands B15Blue (0.45 5 0.52 em); B25Green (0.52 5 0.60 em); B35Red (0.63 5 0.69 em); B45

Infrared (0.77 5 0.90 em); B55Infrared (1.55 5 1.75 em); B75Mid5Infrared (2.08 5 
2.35 em)  

30 m 

Landsat indices   
NDVI Normalized difference vegetation index (B45B3)/(B4+B3) (Rouse et al. 1974) 30 m 
NDMI Normalized difference moisture index (B55B4)/(B5+B4) (Jin and Sader 2005) 30 m 
NLI Nonlinear Index (MWp − M�)/(MWp + M�) (Goel and Qin 1994) 30 m 

NBR Normalized burn ratio (B4+B7)/(B4+B7) (Key and Benson 2006) 30 m 
NSI Normalized soil index [(B5+B3) – (B1+B4)]/[(B5+B3) +(B1+B4)] (Roy et al. 1996) 30 m 
Albedo Albedo, ∑ BC�C7
,C�� , the sum of reflectances between 0.4552.35 em (Lu et al. 

2004)  
30 m 

"�������1
   
Precipitation   

MAP Mean annual precipitation (mm) 1 000 m 

              PPTs� Summer (June to August) precipitation (mm) 1 000 m 

              PPT�� Winter (December to February) precipitation (mm) 1 000 m  
CMD Climatic moisture deficit   1 000 m 

Temperature   
MAT Mean annual temperature (°C) 1 000 m 

 MTs� Summer (June to August) mean temperature (°C) 1 000 m 

 MT�� Winter (December to February) mean temperature (°C) 1 000 m 
MCMT Mean temperature of the coldest month (°C) 1 000 m 
MWMT Mean temperature of the warmest month (°C) 1 000 m 
FFP Length of the frost5free period (days) 1 000 m 

Degree days   
DD5 Degree5days above 5°C (growing degree days) 1 000 m 

/
�
�������11
   
Elv Elevation above sea level (m) 30 m 
Slp Slope angle in degrees  30 m 
Asp  Angle from north in degrees 30 m 
CTI Compound topographic index, ln[(AC + 1)/Slp], where AC is the accumulation 

value of all cells flowing into each downslope cell with each cell weight equal to 1 
(Tarboton 1997) �

30 m 

�	��
�111
   

SS Canvec+ dataset of saturated soil polygons (0=not saturated; 1=saturated).  . 
"

������	�   

AlbX Albers X coordinate (m) . 
AlbY Albers Y coordinate (m)  

* Seasonal and annual climatic variables were accessed from ClimateNA (Wang et al. 2015). 788 

** Accessed from Canada Digital Elevation Data (Geogratis 2013).Eleven variables describing interactions of Elv, Slp 789 

and Asp were calculated as per Stage and Salas (2007). 790 

*** Accessed from the Natural Resource Canada CanVec+ dataset (Geogratis 2013). 791 

Page 37 of 47

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

 

38 

 

Table 2. Statistics for forest attributes (Y5variables) using all data for CC (63 428 and 15 025 records for the reference and target datasets, 792 

respectively), but using only treed records for the other Y5variables (52 807 and 12 347 for the reference and target datasets, respectively).  793 

��������	

 !	�������
�


 �	�	�	��	

 
 /���	�



�	��
 ���2
 ���2

���2

!	�2



 �	��
 ���2
 ���2

���2

!	�2


CC (%) Percent of ground area covered by the 
vertical projection of tree crown areas.  

 
45. 6 0.00 100.0 28.1  45.3 0.00 100.0 29.1 

Species (%) Separation of the CC% into species 
groups (sum to 100%)  

          

Aw Populus spp. + Betula spp.  25.4 0.0 100.0 35.9  25.1 0.0 100.0 35.8 

Pj Pinus spp.  14.1 0.0 100.0 28.0  14.4 0.0 100.0 28.5 

Sb Picea mariana + Larix spp.  46.7 0.0 100.0 41.6  46.5 0.0 100.0 42.0 

Sw Picea glauca + Abies spp.  13.2 0.0 100.0 23.7  13.4 0.0 100.0 25.8 

Other Remaining spp.  0.6 0.0 100.0 4.5  0.6 0.0 100.0 5.0 

Ht (m) 
Average height of dominant trees  12.5 0.2 42.5 6.3  12.4 0.2 36.4 6.4 

Age (Years)  
Average age of the leading tree species   77.1 1.0 304.0 37.5  75.3 1.0 290.0 37.2 

Vol (m3ha51) Total stem volume (live + dead) in for all 
trees > 1.3 m tall 

 
107.2 0.0 649.0 81.7  106.2 0.0 609.0 82.9 

Note: Min. is the minimum, Max. is the maximum and Std. Dev. is the standard deviation. 794 
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Table 3. Accuracies of SNLM, KED and VSNN (k=2) methods. VSNN with k =15 was added for comparison (shaded grey). Statistics 795 

were computed using all of the target data and also using the 0 to 10th and the 90 to 100th percentiles of the corresponding Y5variable. Bold 796 

indicates a more accurate method (e.g., a lower MD).  797 
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Note: RMSE and MD are defined in Eq. [10] and [12], respectively.   798 
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Table 4. Confusion matrix of broad class species groups for each multivariate estimation method. Classes include: NT (non5treed); D5Aw 799 

(>80% Aw); DC (mixed but dominated by Aw); CD (mixed but dominated by coniferous); C5Pj (> 80% conifer, Pj leading); C5Sw (> 80% 800 

conifer, Sw leading); C5Sb (> 80% conifer , Sb leading); D5Ot (50 %<Aw < 80% and >20 % other species groups); and C5Ot (50% 801 

<conifer < 80% and > 20% other species groups. OA is the overall accuracy. Bold indicates a more accurate method.  802 
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Figure 1. The boreal zone in Canada (Brandt 2009) showing the study area (south of 60° N; 804 

boundary is bolded in black) with black squares representing the 2 km by 2 km photo5plots (n=3 805 

298). The dark gray shows areas where forest companies operate. The insert provides a hypothetical 806 

photo5plot with delineated polygons and 90 m by 90 m pixel windows. Crossed markings are 807 

intersections of major latitudes and longitudes. 808 

Figure 2. Percent root mean square prediction errors (%RMSE; Eq.11) averaged over CC, Ht, Age, 809 

Vol and Hotelling’s paired T2 (Eq. 9) by multivariate estimation method using the target dataset 810 

(ntarg=15 025). The k refers to the number of neighbours in VSNN. 811 

Figure 3. Actual versus estimated values by forest attribute variable for the target dataset. The grey 812 

dashed line represents a 1:1 relationship and ‘r’ is the Pearson’s correlation coefficient. Contour lines 813 

depict the numbers of points from low (white) to high (black) densities (ntarg=15 025). 814 

Figure 4. Estimated forest attributes using kriging with external drift (KED) for the areas within 815 

Canada’s boreal forest where forest companies operate. The color ramp displays the minimum 816 

(yellow; 0 for all attributes) and the maximum (dark blue; 100 % for CC and species percentages, 45 817 

m for Ht, 300 years for Age and 500 m3 ha51 for Vol).  818 

Figure 5. Ternary diagrams of species percentages for wetland and upland ecological communities. 819 

The vertices of each triangle represent 100 % of the labeled species. Contour lines depict the 820 

numbers of points from low (white) to high (black) densities (ntarg=15 025).821 
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Fig. 1822 
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Fig. 2    824 
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Fig. 825 

3826 

Page 44 of 47

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



D
raft

 

45 

 

 827 

Fig. 4. 828 
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Fig. 5. 830 
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